1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 	do {								\
165 		seq = ((msgid >> 26) & 0x3f);				\
166 		seqid = (msgid & 0x3fffff);				\
167 	} while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172 	unsigned char medium;
173 	unsigned char protocol;
174 
175 	/*
176 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177 	 * but may be changed by the user.
178 	 */
179 	unsigned char address;
180 
181 	/*
182 	 * My LUN.  This should generally stay the SMS LUN, but just in
183 	 * case...
184 	 */
185 	unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 	char                   *name;
191 	struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196 	struct platform_device pdev;
197 	struct ipmi_device_id  id;
198 	unsigned char          guid[16];
199 	int                    guid_set;
200 	char                   name[16];
201 	struct kref	       usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204 
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210 	/* Commands we got from the user that were invalid. */
211 	IPMI_STAT_sent_invalid_commands = 0,
212 
213 	/* Commands we sent to the MC. */
214 	IPMI_STAT_sent_local_commands,
215 
216 	/* Responses from the MC that were delivered to a user. */
217 	IPMI_STAT_handled_local_responses,
218 
219 	/* Responses from the MC that were not delivered to a user. */
220 	IPMI_STAT_unhandled_local_responses,
221 
222 	/* Commands we sent out to the IPMB bus. */
223 	IPMI_STAT_sent_ipmb_commands,
224 
225 	/* Commands sent on the IPMB that had errors on the SEND CMD */
226 	IPMI_STAT_sent_ipmb_command_errs,
227 
228 	/* Each retransmit increments this count. */
229 	IPMI_STAT_retransmitted_ipmb_commands,
230 
231 	/*
232 	 * When a message times out (runs out of retransmits) this is
233 	 * incremented.
234 	 */
235 	IPMI_STAT_timed_out_ipmb_commands,
236 
237 	/*
238 	 * This is like above, but for broadcasts.  Broadcasts are
239 	 * *not* included in the above count (they are expected to
240 	 * time out).
241 	 */
242 	IPMI_STAT_timed_out_ipmb_broadcasts,
243 
244 	/* Responses I have sent to the IPMB bus. */
245 	IPMI_STAT_sent_ipmb_responses,
246 
247 	/* The response was delivered to the user. */
248 	IPMI_STAT_handled_ipmb_responses,
249 
250 	/* The response had invalid data in it. */
251 	IPMI_STAT_invalid_ipmb_responses,
252 
253 	/* The response didn't have anyone waiting for it. */
254 	IPMI_STAT_unhandled_ipmb_responses,
255 
256 	/* Commands we sent out to the IPMB bus. */
257 	IPMI_STAT_sent_lan_commands,
258 
259 	/* Commands sent on the IPMB that had errors on the SEND CMD */
260 	IPMI_STAT_sent_lan_command_errs,
261 
262 	/* Each retransmit increments this count. */
263 	IPMI_STAT_retransmitted_lan_commands,
264 
265 	/*
266 	 * When a message times out (runs out of retransmits) this is
267 	 * incremented.
268 	 */
269 	IPMI_STAT_timed_out_lan_commands,
270 
271 	/* Responses I have sent to the IPMB bus. */
272 	IPMI_STAT_sent_lan_responses,
273 
274 	/* The response was delivered to the user. */
275 	IPMI_STAT_handled_lan_responses,
276 
277 	/* The response had invalid data in it. */
278 	IPMI_STAT_invalid_lan_responses,
279 
280 	/* The response didn't have anyone waiting for it. */
281 	IPMI_STAT_unhandled_lan_responses,
282 
283 	/* The command was delivered to the user. */
284 	IPMI_STAT_handled_commands,
285 
286 	/* The command had invalid data in it. */
287 	IPMI_STAT_invalid_commands,
288 
289 	/* The command didn't have anyone waiting for it. */
290 	IPMI_STAT_unhandled_commands,
291 
292 	/* Invalid data in an event. */
293 	IPMI_STAT_invalid_events,
294 
295 	/* Events that were received with the proper format. */
296 	IPMI_STAT_events,
297 
298 	/* Retransmissions on IPMB that failed. */
299 	IPMI_STAT_dropped_rexmit_ipmb_commands,
300 
301 	/* Retransmissions on LAN that failed. */
302 	IPMI_STAT_dropped_rexmit_lan_commands,
303 
304 	/* This *must* remain last, add new values above this. */
305 	IPMI_NUM_STATS
306 };
307 
308 
309 #define IPMI_IPMB_NUM_SEQ	64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312 	/* What interface number are we? */
313 	int intf_num;
314 
315 	struct kref refcount;
316 
317 	/* Set when the interface is being unregistered. */
318 	bool in_shutdown;
319 
320 	/* Used for a list of interfaces. */
321 	struct list_head link;
322 
323 	/*
324 	 * The list of upper layers that are using me.  seq_lock
325 	 * protects this.
326 	 */
327 	struct list_head users;
328 
329 	/* Information to supply to users. */
330 	unsigned char ipmi_version_major;
331 	unsigned char ipmi_version_minor;
332 
333 	/* Used for wake ups at startup. */
334 	wait_queue_head_t waitq;
335 
336 	struct bmc_device *bmc;
337 	char *my_dev_name;
338 
339 	/*
340 	 * This is the lower-layer's sender routine.  Note that you
341 	 * must either be holding the ipmi_interfaces_mutex or be in
342 	 * an umpreemptible region to use this.  You must fetch the
343 	 * value into a local variable and make sure it is not NULL.
344 	 */
345 	struct ipmi_smi_handlers *handlers;
346 	void                     *send_info;
347 
348 #ifdef CONFIG_PROC_FS
349 	/* A list of proc entries for this interface. */
350 	struct mutex           proc_entry_lock;
351 	struct ipmi_proc_entry *proc_entries;
352 #endif
353 
354 	/* Driver-model device for the system interface. */
355 	struct device          *si_dev;
356 
357 	/*
358 	 * A table of sequence numbers for this interface.  We use the
359 	 * sequence numbers for IPMB messages that go out of the
360 	 * interface to match them up with their responses.  A routine
361 	 * is called periodically to time the items in this list.
362 	 */
363 	spinlock_t       seq_lock;
364 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 	int curr_seq;
366 
367 	/*
368 	 * Messages queued for delivery.  If delivery fails (out of memory
369 	 * for instance), They will stay in here to be processed later in a
370 	 * periodic timer interrupt.  The tasklet is for handling received
371 	 * messages directly from the handler.
372 	 */
373 	spinlock_t       waiting_rcv_msgs_lock;
374 	struct list_head waiting_rcv_msgs;
375 	atomic_t	 watchdog_pretimeouts_to_deliver;
376 	struct tasklet_struct recv_tasklet;
377 
378 	spinlock_t             xmit_msgs_lock;
379 	struct list_head       xmit_msgs;
380 	struct ipmi_smi_msg    *curr_msg;
381 	struct list_head       hp_xmit_msgs;
382 
383 	/*
384 	 * The list of command receivers that are registered for commands
385 	 * on this interface.
386 	 */
387 	struct mutex     cmd_rcvrs_mutex;
388 	struct list_head cmd_rcvrs;
389 
390 	/*
391 	 * Events that were queues because no one was there to receive
392 	 * them.
393 	 */
394 	spinlock_t       events_lock; /* For dealing with event stuff. */
395 	struct list_head waiting_events;
396 	unsigned int     waiting_events_count; /* How many events in queue? */
397 	char             delivering_events;
398 	char             event_msg_printed;
399 	atomic_t         event_waiters;
400 	unsigned int     ticks_to_req_ev;
401 	int              last_needs_timer;
402 
403 	/*
404 	 * The event receiver for my BMC, only really used at panic
405 	 * shutdown as a place to store this.
406 	 */
407 	unsigned char event_receiver;
408 	unsigned char event_receiver_lun;
409 	unsigned char local_sel_device;
410 	unsigned char local_event_generator;
411 
412 	/* For handling of maintenance mode. */
413 	int maintenance_mode;
414 	bool maintenance_mode_enable;
415 	int auto_maintenance_timeout;
416 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417 
418 	/*
419 	 * A cheap hack, if this is non-null and a message to an
420 	 * interface comes in with a NULL user, call this routine with
421 	 * it.  Note that the message will still be freed by the
422 	 * caller.  This only works on the system interface.
423 	 */
424 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425 
426 	/*
427 	 * When we are scanning the channels for an SMI, this will
428 	 * tell which channel we are scanning.
429 	 */
430 	int curr_channel;
431 
432 	/* Channel information */
433 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434 
435 	/* Proc FS stuff. */
436 	struct proc_dir_entry *proc_dir;
437 	char                  proc_dir_name[10];
438 
439 	atomic_t stats[IPMI_NUM_STATS];
440 
441 	/*
442 	 * run_to_completion duplicate of smb_info, smi_info
443 	 * and ipmi_serial_info structures. Used to decrease numbers of
444 	 * parameters passed by "low" level IPMI code.
445 	 */
446 	int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449 
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454 	.driver = {
455 		.name = "ipmi",
456 		.bus = &platform_bus_type
457 	}
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460 
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463 
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469 
470 #define ipmi_inc_stat(intf, stat) \
471 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474 
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476 				   "ACPI", "SMBIOS", "PCI",
477 				   "device-tree", "default" };
478 
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481 	if (src > SI_DEFAULT)
482 		src = 0; /* Invalid */
483 	return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486 
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491 
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496 
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501 
502 static void free_recv_msg_list(struct list_head *q)
503 {
504 	struct ipmi_recv_msg *msg, *msg2;
505 
506 	list_for_each_entry_safe(msg, msg2, q, link) {
507 		list_del(&msg->link);
508 		ipmi_free_recv_msg(msg);
509 	}
510 }
511 
512 static void free_smi_msg_list(struct list_head *q)
513 {
514 	struct ipmi_smi_msg *msg, *msg2;
515 
516 	list_for_each_entry_safe(msg, msg2, q, link) {
517 		list_del(&msg->link);
518 		ipmi_free_smi_msg(msg);
519 	}
520 }
521 
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524 	int              i;
525 	struct cmd_rcvr  *rcvr, *rcvr2;
526 	struct list_head list;
527 
528 	tasklet_kill(&intf->recv_tasklet);
529 
530 	free_smi_msg_list(&intf->waiting_rcv_msgs);
531 	free_recv_msg_list(&intf->waiting_events);
532 
533 	/*
534 	 * Wholesale remove all the entries from the list in the
535 	 * interface and wait for RCU to know that none are in use.
536 	 */
537 	mutex_lock(&intf->cmd_rcvrs_mutex);
538 	INIT_LIST_HEAD(&list);
539 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540 	mutex_unlock(&intf->cmd_rcvrs_mutex);
541 
542 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543 		kfree(rcvr);
544 
545 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546 		if ((intf->seq_table[i].inuse)
547 					&& (intf->seq_table[i].recv_msg))
548 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549 	}
550 }
551 
552 static void intf_free(struct kref *ref)
553 {
554 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555 
556 	clean_up_interface_data(intf);
557 	kfree(intf);
558 }
559 
560 struct watcher_entry {
561 	int              intf_num;
562 	ipmi_smi_t       intf;
563 	struct list_head link;
564 };
565 
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568 	ipmi_smi_t intf;
569 	LIST_HEAD(to_deliver);
570 	struct watcher_entry *e, *e2;
571 
572 	mutex_lock(&smi_watchers_mutex);
573 
574 	mutex_lock(&ipmi_interfaces_mutex);
575 
576 	/* Build a list of things to deliver. */
577 	list_for_each_entry(intf, &ipmi_interfaces, link) {
578 		if (intf->intf_num == -1)
579 			continue;
580 		e = kmalloc(sizeof(*e), GFP_KERNEL);
581 		if (!e)
582 			goto out_err;
583 		kref_get(&intf->refcount);
584 		e->intf = intf;
585 		e->intf_num = intf->intf_num;
586 		list_add_tail(&e->link, &to_deliver);
587 	}
588 
589 	/* We will succeed, so add it to the list. */
590 	list_add(&watcher->link, &smi_watchers);
591 
592 	mutex_unlock(&ipmi_interfaces_mutex);
593 
594 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
595 		list_del(&e->link);
596 		watcher->new_smi(e->intf_num, e->intf->si_dev);
597 		kref_put(&e->intf->refcount, intf_free);
598 		kfree(e);
599 	}
600 
601 	mutex_unlock(&smi_watchers_mutex);
602 
603 	return 0;
604 
605  out_err:
606 	mutex_unlock(&ipmi_interfaces_mutex);
607 	mutex_unlock(&smi_watchers_mutex);
608 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
609 		list_del(&e->link);
610 		kref_put(&e->intf->refcount, intf_free);
611 		kfree(e);
612 	}
613 	return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616 
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619 	mutex_lock(&smi_watchers_mutex);
620 	list_del(&(watcher->link));
621 	mutex_unlock(&smi_watchers_mutex);
622 	return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625 
626 /*
627  * Must be called with smi_watchers_mutex held.
628  */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632 	struct ipmi_smi_watcher *w;
633 
634 	list_for_each_entry(w, &smi_watchers, link) {
635 		if (try_module_get(w->owner)) {
636 			w->new_smi(i, dev);
637 			module_put(w->owner);
638 		}
639 	}
640 }
641 
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645 	if (addr1->addr_type != addr2->addr_type)
646 		return 0;
647 
648 	if (addr1->channel != addr2->channel)
649 		return 0;
650 
651 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652 		struct ipmi_system_interface_addr *smi_addr1
653 		    = (struct ipmi_system_interface_addr *) addr1;
654 		struct ipmi_system_interface_addr *smi_addr2
655 		    = (struct ipmi_system_interface_addr *) addr2;
656 		return (smi_addr1->lun == smi_addr2->lun);
657 	}
658 
659 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660 		struct ipmi_ipmb_addr *ipmb_addr1
661 		    = (struct ipmi_ipmb_addr *) addr1;
662 		struct ipmi_ipmb_addr *ipmb_addr2
663 		    = (struct ipmi_ipmb_addr *) addr2;
664 
665 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
667 	}
668 
669 	if (is_lan_addr(addr1)) {
670 		struct ipmi_lan_addr *lan_addr1
671 			= (struct ipmi_lan_addr *) addr1;
672 		struct ipmi_lan_addr *lan_addr2
673 		    = (struct ipmi_lan_addr *) addr2;
674 
675 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
677 			&& (lan_addr1->session_handle
678 			    == lan_addr2->session_handle)
679 			&& (lan_addr1->lun == lan_addr2->lun));
680 	}
681 
682 	return 1;
683 }
684 
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687 	if (len < sizeof(struct ipmi_system_interface_addr))
688 		return -EINVAL;
689 
690 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691 		if (addr->channel != IPMI_BMC_CHANNEL)
692 			return -EINVAL;
693 		return 0;
694 	}
695 
696 	if ((addr->channel == IPMI_BMC_CHANNEL)
697 	    || (addr->channel >= IPMI_MAX_CHANNELS)
698 	    || (addr->channel < 0))
699 		return -EINVAL;
700 
701 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702 		if (len < sizeof(struct ipmi_ipmb_addr))
703 			return -EINVAL;
704 		return 0;
705 	}
706 
707 	if (is_lan_addr(addr)) {
708 		if (len < sizeof(struct ipmi_lan_addr))
709 			return -EINVAL;
710 		return 0;
711 	}
712 
713 	return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716 
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720 		return sizeof(struct ipmi_system_interface_addr);
721 
722 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724 		return sizeof(struct ipmi_ipmb_addr);
725 
726 	if (addr_type == IPMI_LAN_ADDR_TYPE)
727 		return sizeof(struct ipmi_lan_addr);
728 
729 	return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732 
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735 	if (!msg->user) {
736 		ipmi_smi_t    intf = msg->user_msg_data;
737 
738 		/* Special handling for NULL users. */
739 		if (intf->null_user_handler) {
740 			intf->null_user_handler(intf, msg);
741 			ipmi_inc_stat(intf, handled_local_responses);
742 		} else {
743 			/* No handler, so give up. */
744 			ipmi_inc_stat(intf, unhandled_local_responses);
745 		}
746 		ipmi_free_recv_msg(msg);
747 	} else {
748 		ipmi_user_t user = msg->user;
749 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
750 	}
751 }
752 
753 static void
754 deliver_err_response(struct ipmi_recv_msg *msg, int err)
755 {
756 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757 	msg->msg_data[0] = err;
758 	msg->msg.netfn |= 1; /* Convert to a response. */
759 	msg->msg.data_len = 1;
760 	msg->msg.data = msg->msg_data;
761 	deliver_response(msg);
762 }
763 
764 /*
765  * Find the next sequence number not being used and add the given
766  * message with the given timeout to the sequence table.  This must be
767  * called with the interface's seq_lock held.
768  */
769 static int intf_next_seq(ipmi_smi_t           intf,
770 			 struct ipmi_recv_msg *recv_msg,
771 			 unsigned long        timeout,
772 			 int                  retries,
773 			 int                  broadcast,
774 			 unsigned char        *seq,
775 			 long                 *seqid)
776 {
777 	int          rv = 0;
778 	unsigned int i;
779 
780 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782 		if (!intf->seq_table[i].inuse)
783 			break;
784 	}
785 
786 	if (!intf->seq_table[i].inuse) {
787 		intf->seq_table[i].recv_msg = recv_msg;
788 
789 		/*
790 		 * Start with the maximum timeout, when the send response
791 		 * comes in we will start the real timer.
792 		 */
793 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794 		intf->seq_table[i].orig_timeout = timeout;
795 		intf->seq_table[i].retries_left = retries;
796 		intf->seq_table[i].broadcast = broadcast;
797 		intf->seq_table[i].inuse = 1;
798 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799 		*seq = i;
800 		*seqid = intf->seq_table[i].seqid;
801 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802 		need_waiter(intf);
803 	} else {
804 		rv = -EAGAIN;
805 	}
806 
807 	return rv;
808 }
809 
810 /*
811  * Return the receive message for the given sequence number and
812  * release the sequence number so it can be reused.  Some other data
813  * is passed in to be sure the message matches up correctly (to help
814  * guard against message coming in after their timeout and the
815  * sequence number being reused).
816  */
817 static int intf_find_seq(ipmi_smi_t           intf,
818 			 unsigned char        seq,
819 			 short                channel,
820 			 unsigned char        cmd,
821 			 unsigned char        netfn,
822 			 struct ipmi_addr     *addr,
823 			 struct ipmi_recv_msg **recv_msg)
824 {
825 	int           rv = -ENODEV;
826 	unsigned long flags;
827 
828 	if (seq >= IPMI_IPMB_NUM_SEQ)
829 		return -EINVAL;
830 
831 	spin_lock_irqsave(&(intf->seq_lock), flags);
832 	if (intf->seq_table[seq].inuse) {
833 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834 
835 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836 				&& (msg->msg.netfn == netfn)
837 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
838 			*recv_msg = msg;
839 			intf->seq_table[seq].inuse = 0;
840 			rv = 0;
841 		}
842 	}
843 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
844 
845 	return rv;
846 }
847 
848 
849 /* Start the timer for a specific sequence table entry. */
850 static int intf_start_seq_timer(ipmi_smi_t intf,
851 				long       msgid)
852 {
853 	int           rv = -ENODEV;
854 	unsigned long flags;
855 	unsigned char seq;
856 	unsigned long seqid;
857 
858 
859 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860 
861 	spin_lock_irqsave(&(intf->seq_lock), flags);
862 	/*
863 	 * We do this verification because the user can be deleted
864 	 * while a message is outstanding.
865 	 */
866 	if ((intf->seq_table[seq].inuse)
867 				&& (intf->seq_table[seq].seqid == seqid)) {
868 		struct seq_table *ent = &(intf->seq_table[seq]);
869 		ent->timeout = ent->orig_timeout;
870 		rv = 0;
871 	}
872 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
873 
874 	return rv;
875 }
876 
877 /* Got an error for the send message for a specific sequence number. */
878 static int intf_err_seq(ipmi_smi_t   intf,
879 			long         msgid,
880 			unsigned int err)
881 {
882 	int                  rv = -ENODEV;
883 	unsigned long        flags;
884 	unsigned char        seq;
885 	unsigned long        seqid;
886 	struct ipmi_recv_msg *msg = NULL;
887 
888 
889 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890 
891 	spin_lock_irqsave(&(intf->seq_lock), flags);
892 	/*
893 	 * We do this verification because the user can be deleted
894 	 * while a message is outstanding.
895 	 */
896 	if ((intf->seq_table[seq].inuse)
897 				&& (intf->seq_table[seq].seqid == seqid)) {
898 		struct seq_table *ent = &(intf->seq_table[seq]);
899 
900 		ent->inuse = 0;
901 		msg = ent->recv_msg;
902 		rv = 0;
903 	}
904 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
905 
906 	if (msg)
907 		deliver_err_response(msg, err);
908 
909 	return rv;
910 }
911 
912 
913 int ipmi_create_user(unsigned int          if_num,
914 		     struct ipmi_user_hndl *handler,
915 		     void                  *handler_data,
916 		     ipmi_user_t           *user)
917 {
918 	unsigned long flags;
919 	ipmi_user_t   new_user;
920 	int           rv = 0;
921 	ipmi_smi_t    intf;
922 
923 	/*
924 	 * There is no module usecount here, because it's not
925 	 * required.  Since this can only be used by and called from
926 	 * other modules, they will implicitly use this module, and
927 	 * thus this can't be removed unless the other modules are
928 	 * removed.
929 	 */
930 
931 	if (handler == NULL)
932 		return -EINVAL;
933 
934 	/*
935 	 * Make sure the driver is actually initialized, this handles
936 	 * problems with initialization order.
937 	 */
938 	if (!initialized) {
939 		rv = ipmi_init_msghandler();
940 		if (rv)
941 			return rv;
942 
943 		/*
944 		 * The init code doesn't return an error if it was turned
945 		 * off, but it won't initialize.  Check that.
946 		 */
947 		if (!initialized)
948 			return -ENODEV;
949 	}
950 
951 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952 	if (!new_user)
953 		return -ENOMEM;
954 
955 	mutex_lock(&ipmi_interfaces_mutex);
956 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957 		if (intf->intf_num == if_num)
958 			goto found;
959 	}
960 	/* Not found, return an error */
961 	rv = -EINVAL;
962 	goto out_kfree;
963 
964  found:
965 	/* Note that each existing user holds a refcount to the interface. */
966 	kref_get(&intf->refcount);
967 
968 	kref_init(&new_user->refcount);
969 	new_user->handler = handler;
970 	new_user->handler_data = handler_data;
971 	new_user->intf = intf;
972 	new_user->gets_events = false;
973 
974 	if (!try_module_get(intf->handlers->owner)) {
975 		rv = -ENODEV;
976 		goto out_kref;
977 	}
978 
979 	if (intf->handlers->inc_usecount) {
980 		rv = intf->handlers->inc_usecount(intf->send_info);
981 		if (rv) {
982 			module_put(intf->handlers->owner);
983 			goto out_kref;
984 		}
985 	}
986 
987 	/*
988 	 * Hold the lock so intf->handlers is guaranteed to be good
989 	 * until now
990 	 */
991 	mutex_unlock(&ipmi_interfaces_mutex);
992 
993 	new_user->valid = true;
994 	spin_lock_irqsave(&intf->seq_lock, flags);
995 	list_add_rcu(&new_user->link, &intf->users);
996 	spin_unlock_irqrestore(&intf->seq_lock, flags);
997 	if (handler->ipmi_watchdog_pretimeout) {
998 		/* User wants pretimeouts, so make sure to watch for them. */
999 		if (atomic_inc_return(&intf->event_waiters) == 1)
1000 			need_waiter(intf);
1001 	}
1002 	*user = new_user;
1003 	return 0;
1004 
1005 out_kref:
1006 	kref_put(&intf->refcount, intf_free);
1007 out_kfree:
1008 	mutex_unlock(&ipmi_interfaces_mutex);
1009 	kfree(new_user);
1010 	return rv;
1011 }
1012 EXPORT_SYMBOL(ipmi_create_user);
1013 
1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015 {
1016 	int           rv = 0;
1017 	ipmi_smi_t    intf;
1018 	struct ipmi_smi_handlers *handlers;
1019 
1020 	mutex_lock(&ipmi_interfaces_mutex);
1021 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022 		if (intf->intf_num == if_num)
1023 			goto found;
1024 	}
1025 	/* Not found, return an error */
1026 	rv = -EINVAL;
1027 	mutex_unlock(&ipmi_interfaces_mutex);
1028 	return rv;
1029 
1030 found:
1031 	handlers = intf->handlers;
1032 	rv = -ENOSYS;
1033 	if (handlers->get_smi_info)
1034 		rv = handlers->get_smi_info(intf->send_info, data);
1035 	mutex_unlock(&ipmi_interfaces_mutex);
1036 
1037 	return rv;
1038 }
1039 EXPORT_SYMBOL(ipmi_get_smi_info);
1040 
1041 static void free_user(struct kref *ref)
1042 {
1043 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044 	kfree(user);
1045 }
1046 
1047 int ipmi_destroy_user(ipmi_user_t user)
1048 {
1049 	ipmi_smi_t       intf = user->intf;
1050 	int              i;
1051 	unsigned long    flags;
1052 	struct cmd_rcvr  *rcvr;
1053 	struct cmd_rcvr  *rcvrs = NULL;
1054 
1055 	user->valid = false;
1056 
1057 	if (user->handler->ipmi_watchdog_pretimeout)
1058 		atomic_dec(&intf->event_waiters);
1059 
1060 	if (user->gets_events)
1061 		atomic_dec(&intf->event_waiters);
1062 
1063 	/* Remove the user from the interface's sequence table. */
1064 	spin_lock_irqsave(&intf->seq_lock, flags);
1065 	list_del_rcu(&user->link);
1066 
1067 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068 		if (intf->seq_table[i].inuse
1069 		    && (intf->seq_table[i].recv_msg->user == user)) {
1070 			intf->seq_table[i].inuse = 0;
1071 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072 		}
1073 	}
1074 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1075 
1076 	/*
1077 	 * Remove the user from the command receiver's table.  First
1078 	 * we build a list of everything (not using the standard link,
1079 	 * since other things may be using it till we do
1080 	 * synchronize_rcu()) then free everything in that list.
1081 	 */
1082 	mutex_lock(&intf->cmd_rcvrs_mutex);
1083 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084 		if (rcvr->user == user) {
1085 			list_del_rcu(&rcvr->link);
1086 			rcvr->next = rcvrs;
1087 			rcvrs = rcvr;
1088 		}
1089 	}
1090 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1091 	synchronize_rcu();
1092 	while (rcvrs) {
1093 		rcvr = rcvrs;
1094 		rcvrs = rcvr->next;
1095 		kfree(rcvr);
1096 	}
1097 
1098 	mutex_lock(&ipmi_interfaces_mutex);
1099 	if (intf->handlers) {
1100 		module_put(intf->handlers->owner);
1101 		if (intf->handlers->dec_usecount)
1102 			intf->handlers->dec_usecount(intf->send_info);
1103 	}
1104 	mutex_unlock(&ipmi_interfaces_mutex);
1105 
1106 	kref_put(&intf->refcount, intf_free);
1107 
1108 	kref_put(&user->refcount, free_user);
1109 
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL(ipmi_destroy_user);
1113 
1114 void ipmi_get_version(ipmi_user_t   user,
1115 		      unsigned char *major,
1116 		      unsigned char *minor)
1117 {
1118 	*major = user->intf->ipmi_version_major;
1119 	*minor = user->intf->ipmi_version_minor;
1120 }
1121 EXPORT_SYMBOL(ipmi_get_version);
1122 
1123 int ipmi_set_my_address(ipmi_user_t   user,
1124 			unsigned int  channel,
1125 			unsigned char address)
1126 {
1127 	if (channel >= IPMI_MAX_CHANNELS)
1128 		return -EINVAL;
1129 	user->intf->channels[channel].address = address;
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_my_address);
1133 
1134 int ipmi_get_my_address(ipmi_user_t   user,
1135 			unsigned int  channel,
1136 			unsigned char *address)
1137 {
1138 	if (channel >= IPMI_MAX_CHANNELS)
1139 		return -EINVAL;
1140 	*address = user->intf->channels[channel].address;
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL(ipmi_get_my_address);
1144 
1145 int ipmi_set_my_LUN(ipmi_user_t   user,
1146 		    unsigned int  channel,
1147 		    unsigned char LUN)
1148 {
1149 	if (channel >= IPMI_MAX_CHANNELS)
1150 		return -EINVAL;
1151 	user->intf->channels[channel].lun = LUN & 0x3;
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(ipmi_set_my_LUN);
1155 
1156 int ipmi_get_my_LUN(ipmi_user_t   user,
1157 		    unsigned int  channel,
1158 		    unsigned char *address)
1159 {
1160 	if (channel >= IPMI_MAX_CHANNELS)
1161 		return -EINVAL;
1162 	*address = user->intf->channels[channel].lun;
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(ipmi_get_my_LUN);
1166 
1167 int ipmi_get_maintenance_mode(ipmi_user_t user)
1168 {
1169 	int           mode;
1170 	unsigned long flags;
1171 
1172 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173 	mode = user->intf->maintenance_mode;
1174 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175 
1176 	return mode;
1177 }
1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179 
1180 static void maintenance_mode_update(ipmi_smi_t intf)
1181 {
1182 	if (intf->handlers->set_maintenance_mode)
1183 		intf->handlers->set_maintenance_mode(
1184 			intf->send_info, intf->maintenance_mode_enable);
1185 }
1186 
1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188 {
1189 	int           rv = 0;
1190 	unsigned long flags;
1191 	ipmi_smi_t    intf = user->intf;
1192 
1193 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194 	if (intf->maintenance_mode != mode) {
1195 		switch (mode) {
1196 		case IPMI_MAINTENANCE_MODE_AUTO:
1197 			intf->maintenance_mode_enable
1198 				= (intf->auto_maintenance_timeout > 0);
1199 			break;
1200 
1201 		case IPMI_MAINTENANCE_MODE_OFF:
1202 			intf->maintenance_mode_enable = false;
1203 			break;
1204 
1205 		case IPMI_MAINTENANCE_MODE_ON:
1206 			intf->maintenance_mode_enable = true;
1207 			break;
1208 
1209 		default:
1210 			rv = -EINVAL;
1211 			goto out_unlock;
1212 		}
1213 		intf->maintenance_mode = mode;
1214 
1215 		maintenance_mode_update(intf);
1216 	}
1217  out_unlock:
1218 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219 
1220 	return rv;
1221 }
1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223 
1224 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225 {
1226 	unsigned long        flags;
1227 	ipmi_smi_t           intf = user->intf;
1228 	struct ipmi_recv_msg *msg, *msg2;
1229 	struct list_head     msgs;
1230 
1231 	INIT_LIST_HEAD(&msgs);
1232 
1233 	spin_lock_irqsave(&intf->events_lock, flags);
1234 	if (user->gets_events == val)
1235 		goto out;
1236 
1237 	user->gets_events = val;
1238 
1239 	if (val) {
1240 		if (atomic_inc_return(&intf->event_waiters) == 1)
1241 			need_waiter(intf);
1242 	} else {
1243 		atomic_dec(&intf->event_waiters);
1244 	}
1245 
1246 	if (intf->delivering_events)
1247 		/*
1248 		 * Another thread is delivering events for this, so
1249 		 * let it handle any new events.
1250 		 */
1251 		goto out;
1252 
1253 	/* Deliver any queued events. */
1254 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256 			list_move_tail(&msg->link, &msgs);
1257 		intf->waiting_events_count = 0;
1258 		if (intf->event_msg_printed) {
1259 			printk(KERN_WARNING PFX "Event queue no longer"
1260 			       " full\n");
1261 			intf->event_msg_printed = 0;
1262 		}
1263 
1264 		intf->delivering_events = 1;
1265 		spin_unlock_irqrestore(&intf->events_lock, flags);
1266 
1267 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268 			msg->user = user;
1269 			kref_get(&user->refcount);
1270 			deliver_response(msg);
1271 		}
1272 
1273 		spin_lock_irqsave(&intf->events_lock, flags);
1274 		intf->delivering_events = 0;
1275 	}
1276 
1277  out:
1278 	spin_unlock_irqrestore(&intf->events_lock, flags);
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(ipmi_set_gets_events);
1283 
1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285 				      unsigned char netfn,
1286 				      unsigned char cmd,
1287 				      unsigned char chan)
1288 {
1289 	struct cmd_rcvr *rcvr;
1290 
1291 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293 					&& (rcvr->chans & (1 << chan)))
1294 			return rcvr;
1295 	}
1296 	return NULL;
1297 }
1298 
1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300 				 unsigned char netfn,
1301 				 unsigned char cmd,
1302 				 unsigned int  chans)
1303 {
1304 	struct cmd_rcvr *rcvr;
1305 
1306 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308 					&& (rcvr->chans & chans))
1309 			return 0;
1310 	}
1311 	return 1;
1312 }
1313 
1314 int ipmi_register_for_cmd(ipmi_user_t   user,
1315 			  unsigned char netfn,
1316 			  unsigned char cmd,
1317 			  unsigned int  chans)
1318 {
1319 	ipmi_smi_t      intf = user->intf;
1320 	struct cmd_rcvr *rcvr;
1321 	int             rv = 0;
1322 
1323 
1324 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325 	if (!rcvr)
1326 		return -ENOMEM;
1327 	rcvr->cmd = cmd;
1328 	rcvr->netfn = netfn;
1329 	rcvr->chans = chans;
1330 	rcvr->user = user;
1331 
1332 	mutex_lock(&intf->cmd_rcvrs_mutex);
1333 	/* Make sure the command/netfn is not already registered. */
1334 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335 		rv = -EBUSY;
1336 		goto out_unlock;
1337 	}
1338 
1339 	if (atomic_inc_return(&intf->event_waiters) == 1)
1340 		need_waiter(intf);
1341 
1342 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343 
1344  out_unlock:
1345 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1346 	if (rv)
1347 		kfree(rcvr);
1348 
1349 	return rv;
1350 }
1351 EXPORT_SYMBOL(ipmi_register_for_cmd);
1352 
1353 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354 			    unsigned char netfn,
1355 			    unsigned char cmd,
1356 			    unsigned int  chans)
1357 {
1358 	ipmi_smi_t      intf = user->intf;
1359 	struct cmd_rcvr *rcvr;
1360 	struct cmd_rcvr *rcvrs = NULL;
1361 	int i, rv = -ENOENT;
1362 
1363 	mutex_lock(&intf->cmd_rcvrs_mutex);
1364 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365 		if (((1 << i) & chans) == 0)
1366 			continue;
1367 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368 		if (rcvr == NULL)
1369 			continue;
1370 		if (rcvr->user == user) {
1371 			rv = 0;
1372 			rcvr->chans &= ~chans;
1373 			if (rcvr->chans == 0) {
1374 				list_del_rcu(&rcvr->link);
1375 				rcvr->next = rcvrs;
1376 				rcvrs = rcvr;
1377 			}
1378 		}
1379 	}
1380 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1381 	synchronize_rcu();
1382 	while (rcvrs) {
1383 		atomic_dec(&intf->event_waiters);
1384 		rcvr = rcvrs;
1385 		rcvrs = rcvr->next;
1386 		kfree(rcvr);
1387 	}
1388 	return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391 
1392 static unsigned char
1393 ipmb_checksum(unsigned char *data, int size)
1394 {
1395 	unsigned char csum = 0;
1396 
1397 	for (; size > 0; size--, data++)
1398 		csum += *data;
1399 
1400 	return -csum;
1401 }
1402 
1403 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404 				   struct kernel_ipmi_msg *msg,
1405 				   struct ipmi_ipmb_addr *ipmb_addr,
1406 				   long                  msgid,
1407 				   unsigned char         ipmb_seq,
1408 				   int                   broadcast,
1409 				   unsigned char         source_address,
1410 				   unsigned char         source_lun)
1411 {
1412 	int i = broadcast;
1413 
1414 	/* Format the IPMB header data. */
1415 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417 	smi_msg->data[2] = ipmb_addr->channel;
1418 	if (broadcast)
1419 		smi_msg->data[3] = 0;
1420 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423 	smi_msg->data[i+6] = source_address;
1424 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425 	smi_msg->data[i+8] = msg->cmd;
1426 
1427 	/* Now tack on the data to the message. */
1428 	if (msg->data_len > 0)
1429 		memcpy(&(smi_msg->data[i+9]), msg->data,
1430 		       msg->data_len);
1431 	smi_msg->data_size = msg->data_len + 9;
1432 
1433 	/* Now calculate the checksum and tack it on. */
1434 	smi_msg->data[i+smi_msg->data_size]
1435 		= ipmb_checksum(&(smi_msg->data[i+6]),
1436 				smi_msg->data_size-6);
1437 
1438 	/*
1439 	 * Add on the checksum size and the offset from the
1440 	 * broadcast.
1441 	 */
1442 	smi_msg->data_size += 1 + i;
1443 
1444 	smi_msg->msgid = msgid;
1445 }
1446 
1447 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448 				  struct kernel_ipmi_msg *msg,
1449 				  struct ipmi_lan_addr  *lan_addr,
1450 				  long                  msgid,
1451 				  unsigned char         ipmb_seq,
1452 				  unsigned char         source_lun)
1453 {
1454 	/* Format the IPMB header data. */
1455 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457 	smi_msg->data[2] = lan_addr->channel;
1458 	smi_msg->data[3] = lan_addr->session_handle;
1459 	smi_msg->data[4] = lan_addr->remote_SWID;
1460 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462 	smi_msg->data[7] = lan_addr->local_SWID;
1463 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464 	smi_msg->data[9] = msg->cmd;
1465 
1466 	/* Now tack on the data to the message. */
1467 	if (msg->data_len > 0)
1468 		memcpy(&(smi_msg->data[10]), msg->data,
1469 		       msg->data_len);
1470 	smi_msg->data_size = msg->data_len + 10;
1471 
1472 	/* Now calculate the checksum and tack it on. */
1473 	smi_msg->data[smi_msg->data_size]
1474 		= ipmb_checksum(&(smi_msg->data[7]),
1475 				smi_msg->data_size-7);
1476 
1477 	/*
1478 	 * Add on the checksum size and the offset from the
1479 	 * broadcast.
1480 	 */
1481 	smi_msg->data_size += 1;
1482 
1483 	smi_msg->msgid = msgid;
1484 }
1485 
1486 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1487 					     struct ipmi_smi_msg *smi_msg,
1488 					     int priority)
1489 {
1490 	if (intf->curr_msg) {
1491 		if (priority > 0)
1492 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1493 		else
1494 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1495 		smi_msg = NULL;
1496 	} else {
1497 		intf->curr_msg = smi_msg;
1498 	}
1499 
1500 	return smi_msg;
1501 }
1502 
1503 
1504 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1505 		     struct ipmi_smi_msg *smi_msg, int priority)
1506 {
1507 	int run_to_completion = intf->run_to_completion;
1508 
1509 	if (run_to_completion) {
1510 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1511 	} else {
1512 		unsigned long flags;
1513 
1514 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1515 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1516 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517 	}
1518 
1519 	if (smi_msg)
1520 		handlers->sender(intf->send_info, smi_msg);
1521 }
1522 
1523 /*
1524  * Separate from ipmi_request so that the user does not have to be
1525  * supplied in certain circumstances (mainly at panic time).  If
1526  * messages are supplied, they will be freed, even if an error
1527  * occurs.
1528  */
1529 static int i_ipmi_request(ipmi_user_t          user,
1530 			  ipmi_smi_t           intf,
1531 			  struct ipmi_addr     *addr,
1532 			  long                 msgid,
1533 			  struct kernel_ipmi_msg *msg,
1534 			  void                 *user_msg_data,
1535 			  void                 *supplied_smi,
1536 			  struct ipmi_recv_msg *supplied_recv,
1537 			  int                  priority,
1538 			  unsigned char        source_address,
1539 			  unsigned char        source_lun,
1540 			  int                  retries,
1541 			  unsigned int         retry_time_ms)
1542 {
1543 	int                      rv = 0;
1544 	struct ipmi_smi_msg      *smi_msg;
1545 	struct ipmi_recv_msg     *recv_msg;
1546 	unsigned long            flags;
1547 
1548 
1549 	if (supplied_recv)
1550 		recv_msg = supplied_recv;
1551 	else {
1552 		recv_msg = ipmi_alloc_recv_msg();
1553 		if (recv_msg == NULL)
1554 			return -ENOMEM;
1555 	}
1556 	recv_msg->user_msg_data = user_msg_data;
1557 
1558 	if (supplied_smi)
1559 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1560 	else {
1561 		smi_msg = ipmi_alloc_smi_msg();
1562 		if (smi_msg == NULL) {
1563 			ipmi_free_recv_msg(recv_msg);
1564 			return -ENOMEM;
1565 		}
1566 	}
1567 
1568 	rcu_read_lock();
1569 	if (intf->in_shutdown) {
1570 		rv = -ENODEV;
1571 		goto out_err;
1572 	}
1573 
1574 	recv_msg->user = user;
1575 	if (user)
1576 		kref_get(&user->refcount);
1577 	recv_msg->msgid = msgid;
1578 	/*
1579 	 * Store the message to send in the receive message so timeout
1580 	 * responses can get the proper response data.
1581 	 */
1582 	recv_msg->msg = *msg;
1583 
1584 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1585 		struct ipmi_system_interface_addr *smi_addr;
1586 
1587 		if (msg->netfn & 1) {
1588 			/* Responses are not allowed to the SMI. */
1589 			rv = -EINVAL;
1590 			goto out_err;
1591 		}
1592 
1593 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1594 		if (smi_addr->lun > 3) {
1595 			ipmi_inc_stat(intf, sent_invalid_commands);
1596 			rv = -EINVAL;
1597 			goto out_err;
1598 		}
1599 
1600 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1601 
1602 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1604 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1605 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1606 			/*
1607 			 * We don't let the user do these, since we manage
1608 			 * the sequence numbers.
1609 			 */
1610 			ipmi_inc_stat(intf, sent_invalid_commands);
1611 			rv = -EINVAL;
1612 			goto out_err;
1613 		}
1614 
1615 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1616 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1617 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1618 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1619 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1620 			intf->auto_maintenance_timeout
1621 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1622 			if (!intf->maintenance_mode
1623 			    && !intf->maintenance_mode_enable) {
1624 				intf->maintenance_mode_enable = true;
1625 				maintenance_mode_update(intf);
1626 			}
1627 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1628 					       flags);
1629 		}
1630 
1631 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1632 			ipmi_inc_stat(intf, sent_invalid_commands);
1633 			rv = -EMSGSIZE;
1634 			goto out_err;
1635 		}
1636 
1637 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1638 		smi_msg->data[1] = msg->cmd;
1639 		smi_msg->msgid = msgid;
1640 		smi_msg->user_data = recv_msg;
1641 		if (msg->data_len > 0)
1642 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1643 		smi_msg->data_size = msg->data_len + 2;
1644 		ipmi_inc_stat(intf, sent_local_commands);
1645 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1646 		struct ipmi_ipmb_addr *ipmb_addr;
1647 		unsigned char         ipmb_seq;
1648 		long                  seqid;
1649 		int                   broadcast = 0;
1650 
1651 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1652 			ipmi_inc_stat(intf, sent_invalid_commands);
1653 			rv = -EINVAL;
1654 			goto out_err;
1655 		}
1656 
1657 		if (intf->channels[addr->channel].medium
1658 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1659 			ipmi_inc_stat(intf, sent_invalid_commands);
1660 			rv = -EINVAL;
1661 			goto out_err;
1662 		}
1663 
1664 		if (retries < 0) {
1665 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1666 			retries = 0; /* Don't retry broadcasts. */
1667 		    else
1668 			retries = 4;
1669 		}
1670 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1671 		    /*
1672 		     * Broadcasts add a zero at the beginning of the
1673 		     * message, but otherwise is the same as an IPMB
1674 		     * address.
1675 		     */
1676 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1677 		    broadcast = 1;
1678 		}
1679 
1680 
1681 		/* Default to 1 second retries. */
1682 		if (retry_time_ms == 0)
1683 		    retry_time_ms = 1000;
1684 
1685 		/*
1686 		 * 9 for the header and 1 for the checksum, plus
1687 		 * possibly one for the broadcast.
1688 		 */
1689 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1690 			ipmi_inc_stat(intf, sent_invalid_commands);
1691 			rv = -EMSGSIZE;
1692 			goto out_err;
1693 		}
1694 
1695 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1696 		if (ipmb_addr->lun > 3) {
1697 			ipmi_inc_stat(intf, sent_invalid_commands);
1698 			rv = -EINVAL;
1699 			goto out_err;
1700 		}
1701 
1702 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1703 
1704 		if (recv_msg->msg.netfn & 0x1) {
1705 			/*
1706 			 * It's a response, so use the user's sequence
1707 			 * from msgid.
1708 			 */
1709 			ipmi_inc_stat(intf, sent_ipmb_responses);
1710 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1711 					msgid, broadcast,
1712 					source_address, source_lun);
1713 
1714 			/*
1715 			 * Save the receive message so we can use it
1716 			 * to deliver the response.
1717 			 */
1718 			smi_msg->user_data = recv_msg;
1719 		} else {
1720 			/* It's a command, so get a sequence for it. */
1721 
1722 			spin_lock_irqsave(&(intf->seq_lock), flags);
1723 
1724 			/*
1725 			 * Create a sequence number with a 1 second
1726 			 * timeout and 4 retries.
1727 			 */
1728 			rv = intf_next_seq(intf,
1729 					   recv_msg,
1730 					   retry_time_ms,
1731 					   retries,
1732 					   broadcast,
1733 					   &ipmb_seq,
1734 					   &seqid);
1735 			if (rv) {
1736 				/*
1737 				 * We have used up all the sequence numbers,
1738 				 * probably, so abort.
1739 				 */
1740 				spin_unlock_irqrestore(&(intf->seq_lock),
1741 						       flags);
1742 				goto out_err;
1743 			}
1744 
1745 			ipmi_inc_stat(intf, sent_ipmb_commands);
1746 
1747 			/*
1748 			 * Store the sequence number in the message,
1749 			 * so that when the send message response
1750 			 * comes back we can start the timer.
1751 			 */
1752 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1753 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1754 					ipmb_seq, broadcast,
1755 					source_address, source_lun);
1756 
1757 			/*
1758 			 * Copy the message into the recv message data, so we
1759 			 * can retransmit it later if necessary.
1760 			 */
1761 			memcpy(recv_msg->msg_data, smi_msg->data,
1762 			       smi_msg->data_size);
1763 			recv_msg->msg.data = recv_msg->msg_data;
1764 			recv_msg->msg.data_len = smi_msg->data_size;
1765 
1766 			/*
1767 			 * We don't unlock until here, because we need
1768 			 * to copy the completed message into the
1769 			 * recv_msg before we release the lock.
1770 			 * Otherwise, race conditions may bite us.  I
1771 			 * know that's pretty paranoid, but I prefer
1772 			 * to be correct.
1773 			 */
1774 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1775 		}
1776 	} else if (is_lan_addr(addr)) {
1777 		struct ipmi_lan_addr  *lan_addr;
1778 		unsigned char         ipmb_seq;
1779 		long                  seqid;
1780 
1781 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1782 			ipmi_inc_stat(intf, sent_invalid_commands);
1783 			rv = -EINVAL;
1784 			goto out_err;
1785 		}
1786 
1787 		if ((intf->channels[addr->channel].medium
1788 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1789 		    && (intf->channels[addr->channel].medium
1790 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1791 			ipmi_inc_stat(intf, sent_invalid_commands);
1792 			rv = -EINVAL;
1793 			goto out_err;
1794 		}
1795 
1796 		retries = 4;
1797 
1798 		/* Default to 1 second retries. */
1799 		if (retry_time_ms == 0)
1800 		    retry_time_ms = 1000;
1801 
1802 		/* 11 for the header and 1 for the checksum. */
1803 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1804 			ipmi_inc_stat(intf, sent_invalid_commands);
1805 			rv = -EMSGSIZE;
1806 			goto out_err;
1807 		}
1808 
1809 		lan_addr = (struct ipmi_lan_addr *) addr;
1810 		if (lan_addr->lun > 3) {
1811 			ipmi_inc_stat(intf, sent_invalid_commands);
1812 			rv = -EINVAL;
1813 			goto out_err;
1814 		}
1815 
1816 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1817 
1818 		if (recv_msg->msg.netfn & 0x1) {
1819 			/*
1820 			 * It's a response, so use the user's sequence
1821 			 * from msgid.
1822 			 */
1823 			ipmi_inc_stat(intf, sent_lan_responses);
1824 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1825 				       msgid, source_lun);
1826 
1827 			/*
1828 			 * Save the receive message so we can use it
1829 			 * to deliver the response.
1830 			 */
1831 			smi_msg->user_data = recv_msg;
1832 		} else {
1833 			/* It's a command, so get a sequence for it. */
1834 
1835 			spin_lock_irqsave(&(intf->seq_lock), flags);
1836 
1837 			/*
1838 			 * Create a sequence number with a 1 second
1839 			 * timeout and 4 retries.
1840 			 */
1841 			rv = intf_next_seq(intf,
1842 					   recv_msg,
1843 					   retry_time_ms,
1844 					   retries,
1845 					   0,
1846 					   &ipmb_seq,
1847 					   &seqid);
1848 			if (rv) {
1849 				/*
1850 				 * We have used up all the sequence numbers,
1851 				 * probably, so abort.
1852 				 */
1853 				spin_unlock_irqrestore(&(intf->seq_lock),
1854 						       flags);
1855 				goto out_err;
1856 			}
1857 
1858 			ipmi_inc_stat(intf, sent_lan_commands);
1859 
1860 			/*
1861 			 * Store the sequence number in the message,
1862 			 * so that when the send message response
1863 			 * comes back we can start the timer.
1864 			 */
1865 			format_lan_msg(smi_msg, msg, lan_addr,
1866 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1867 				       ipmb_seq, source_lun);
1868 
1869 			/*
1870 			 * Copy the message into the recv message data, so we
1871 			 * can retransmit it later if necessary.
1872 			 */
1873 			memcpy(recv_msg->msg_data, smi_msg->data,
1874 			       smi_msg->data_size);
1875 			recv_msg->msg.data = recv_msg->msg_data;
1876 			recv_msg->msg.data_len = smi_msg->data_size;
1877 
1878 			/*
1879 			 * We don't unlock until here, because we need
1880 			 * to copy the completed message into the
1881 			 * recv_msg before we release the lock.
1882 			 * Otherwise, race conditions may bite us.  I
1883 			 * know that's pretty paranoid, but I prefer
1884 			 * to be correct.
1885 			 */
1886 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1887 		}
1888 	} else {
1889 	    /* Unknown address type. */
1890 		ipmi_inc_stat(intf, sent_invalid_commands);
1891 		rv = -EINVAL;
1892 		goto out_err;
1893 	}
1894 
1895 #ifdef DEBUG_MSGING
1896 	{
1897 		int m;
1898 		for (m = 0; m < smi_msg->data_size; m++)
1899 			printk(" %2.2x", smi_msg->data[m]);
1900 		printk("\n");
1901 	}
1902 #endif
1903 
1904 	smi_send(intf, intf->handlers, smi_msg, priority);
1905 	rcu_read_unlock();
1906 
1907 	return 0;
1908 
1909  out_err:
1910 	rcu_read_unlock();
1911 	ipmi_free_smi_msg(smi_msg);
1912 	ipmi_free_recv_msg(recv_msg);
1913 	return rv;
1914 }
1915 
1916 static int check_addr(ipmi_smi_t       intf,
1917 		      struct ipmi_addr *addr,
1918 		      unsigned char    *saddr,
1919 		      unsigned char    *lun)
1920 {
1921 	if (addr->channel >= IPMI_MAX_CHANNELS)
1922 		return -EINVAL;
1923 	*lun = intf->channels[addr->channel].lun;
1924 	*saddr = intf->channels[addr->channel].address;
1925 	return 0;
1926 }
1927 
1928 int ipmi_request_settime(ipmi_user_t      user,
1929 			 struct ipmi_addr *addr,
1930 			 long             msgid,
1931 			 struct kernel_ipmi_msg  *msg,
1932 			 void             *user_msg_data,
1933 			 int              priority,
1934 			 int              retries,
1935 			 unsigned int     retry_time_ms)
1936 {
1937 	unsigned char saddr = 0, lun = 0;
1938 	int           rv;
1939 
1940 	if (!user)
1941 		return -EINVAL;
1942 	rv = check_addr(user->intf, addr, &saddr, &lun);
1943 	if (rv)
1944 		return rv;
1945 	return i_ipmi_request(user,
1946 			      user->intf,
1947 			      addr,
1948 			      msgid,
1949 			      msg,
1950 			      user_msg_data,
1951 			      NULL, NULL,
1952 			      priority,
1953 			      saddr,
1954 			      lun,
1955 			      retries,
1956 			      retry_time_ms);
1957 }
1958 EXPORT_SYMBOL(ipmi_request_settime);
1959 
1960 int ipmi_request_supply_msgs(ipmi_user_t          user,
1961 			     struct ipmi_addr     *addr,
1962 			     long                 msgid,
1963 			     struct kernel_ipmi_msg *msg,
1964 			     void                 *user_msg_data,
1965 			     void                 *supplied_smi,
1966 			     struct ipmi_recv_msg *supplied_recv,
1967 			     int                  priority)
1968 {
1969 	unsigned char saddr = 0, lun = 0;
1970 	int           rv;
1971 
1972 	if (!user)
1973 		return -EINVAL;
1974 	rv = check_addr(user->intf, addr, &saddr, &lun);
1975 	if (rv)
1976 		return rv;
1977 	return i_ipmi_request(user,
1978 			      user->intf,
1979 			      addr,
1980 			      msgid,
1981 			      msg,
1982 			      user_msg_data,
1983 			      supplied_smi,
1984 			      supplied_recv,
1985 			      priority,
1986 			      saddr,
1987 			      lun,
1988 			      -1, 0);
1989 }
1990 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1991 
1992 #ifdef CONFIG_PROC_FS
1993 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1994 {
1995 	ipmi_smi_t intf = m->private;
1996 	int        i;
1997 
1998 	seq_printf(m, "%x", intf->channels[0].address);
1999 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2000 		seq_printf(m, " %x", intf->channels[i].address);
2001 	seq_putc(m, '\n');
2002 
2003 	return seq_has_overflowed(m);
2004 }
2005 
2006 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2007 {
2008 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2009 }
2010 
2011 static const struct file_operations smi_ipmb_proc_ops = {
2012 	.open		= smi_ipmb_proc_open,
2013 	.read		= seq_read,
2014 	.llseek		= seq_lseek,
2015 	.release	= single_release,
2016 };
2017 
2018 static int smi_version_proc_show(struct seq_file *m, void *v)
2019 {
2020 	ipmi_smi_t intf = m->private;
2021 
2022 	seq_printf(m, "%u.%u\n",
2023 		   ipmi_version_major(&intf->bmc->id),
2024 		   ipmi_version_minor(&intf->bmc->id));
2025 
2026 	return seq_has_overflowed(m);
2027 }
2028 
2029 static int smi_version_proc_open(struct inode *inode, struct file *file)
2030 {
2031 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2032 }
2033 
2034 static const struct file_operations smi_version_proc_ops = {
2035 	.open		= smi_version_proc_open,
2036 	.read		= seq_read,
2037 	.llseek		= seq_lseek,
2038 	.release	= single_release,
2039 };
2040 
2041 static int smi_stats_proc_show(struct seq_file *m, void *v)
2042 {
2043 	ipmi_smi_t intf = m->private;
2044 
2045 	seq_printf(m, "sent_invalid_commands:       %u\n",
2046 		       ipmi_get_stat(intf, sent_invalid_commands));
2047 	seq_printf(m, "sent_local_commands:         %u\n",
2048 		       ipmi_get_stat(intf, sent_local_commands));
2049 	seq_printf(m, "handled_local_responses:     %u\n",
2050 		       ipmi_get_stat(intf, handled_local_responses));
2051 	seq_printf(m, "unhandled_local_responses:   %u\n",
2052 		       ipmi_get_stat(intf, unhandled_local_responses));
2053 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2054 		       ipmi_get_stat(intf, sent_ipmb_commands));
2055 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2056 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2057 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2058 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2059 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2060 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2061 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2062 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2063 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2064 		       ipmi_get_stat(intf, sent_ipmb_responses));
2065 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2066 		       ipmi_get_stat(intf, handled_ipmb_responses));
2067 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2068 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2069 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2070 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2071 	seq_printf(m, "sent_lan_commands:           %u\n",
2072 		       ipmi_get_stat(intf, sent_lan_commands));
2073 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2074 		       ipmi_get_stat(intf, sent_lan_command_errs));
2075 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2076 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2077 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2078 		       ipmi_get_stat(intf, timed_out_lan_commands));
2079 	seq_printf(m, "sent_lan_responses:          %u\n",
2080 		       ipmi_get_stat(intf, sent_lan_responses));
2081 	seq_printf(m, "handled_lan_responses:       %u\n",
2082 		       ipmi_get_stat(intf, handled_lan_responses));
2083 	seq_printf(m, "invalid_lan_responses:       %u\n",
2084 		       ipmi_get_stat(intf, invalid_lan_responses));
2085 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2086 		       ipmi_get_stat(intf, unhandled_lan_responses));
2087 	seq_printf(m, "handled_commands:            %u\n",
2088 		       ipmi_get_stat(intf, handled_commands));
2089 	seq_printf(m, "invalid_commands:            %u\n",
2090 		       ipmi_get_stat(intf, invalid_commands));
2091 	seq_printf(m, "unhandled_commands:          %u\n",
2092 		       ipmi_get_stat(intf, unhandled_commands));
2093 	seq_printf(m, "invalid_events:              %u\n",
2094 		       ipmi_get_stat(intf, invalid_events));
2095 	seq_printf(m, "events:                      %u\n",
2096 		       ipmi_get_stat(intf, events));
2097 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2098 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2099 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2100 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2101 	return 0;
2102 }
2103 
2104 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2105 {
2106 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2107 }
2108 
2109 static const struct file_operations smi_stats_proc_ops = {
2110 	.open		= smi_stats_proc_open,
2111 	.read		= seq_read,
2112 	.llseek		= seq_lseek,
2113 	.release	= single_release,
2114 };
2115 #endif /* CONFIG_PROC_FS */
2116 
2117 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2118 			    const struct file_operations *proc_ops,
2119 			    void *data)
2120 {
2121 	int                    rv = 0;
2122 #ifdef CONFIG_PROC_FS
2123 	struct proc_dir_entry  *file;
2124 	struct ipmi_proc_entry *entry;
2125 
2126 	/* Create a list element. */
2127 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2128 	if (!entry)
2129 		return -ENOMEM;
2130 	entry->name = kstrdup(name, GFP_KERNEL);
2131 	if (!entry->name) {
2132 		kfree(entry);
2133 		return -ENOMEM;
2134 	}
2135 
2136 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2137 	if (!file) {
2138 		kfree(entry->name);
2139 		kfree(entry);
2140 		rv = -ENOMEM;
2141 	} else {
2142 		mutex_lock(&smi->proc_entry_lock);
2143 		/* Stick it on the list. */
2144 		entry->next = smi->proc_entries;
2145 		smi->proc_entries = entry;
2146 		mutex_unlock(&smi->proc_entry_lock);
2147 	}
2148 #endif /* CONFIG_PROC_FS */
2149 
2150 	return rv;
2151 }
2152 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2153 
2154 static int add_proc_entries(ipmi_smi_t smi, int num)
2155 {
2156 	int rv = 0;
2157 
2158 #ifdef CONFIG_PROC_FS
2159 	sprintf(smi->proc_dir_name, "%d", num);
2160 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2161 	if (!smi->proc_dir)
2162 		rv = -ENOMEM;
2163 
2164 	if (rv == 0)
2165 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2166 					     &smi_stats_proc_ops,
2167 					     smi);
2168 
2169 	if (rv == 0)
2170 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2171 					     &smi_ipmb_proc_ops,
2172 					     smi);
2173 
2174 	if (rv == 0)
2175 		rv = ipmi_smi_add_proc_entry(smi, "version",
2176 					     &smi_version_proc_ops,
2177 					     smi);
2178 #endif /* CONFIG_PROC_FS */
2179 
2180 	return rv;
2181 }
2182 
2183 static void remove_proc_entries(ipmi_smi_t smi)
2184 {
2185 #ifdef CONFIG_PROC_FS
2186 	struct ipmi_proc_entry *entry;
2187 
2188 	mutex_lock(&smi->proc_entry_lock);
2189 	while (smi->proc_entries) {
2190 		entry = smi->proc_entries;
2191 		smi->proc_entries = entry->next;
2192 
2193 		remove_proc_entry(entry->name, smi->proc_dir);
2194 		kfree(entry->name);
2195 		kfree(entry);
2196 	}
2197 	mutex_unlock(&smi->proc_entry_lock);
2198 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2199 #endif /* CONFIG_PROC_FS */
2200 }
2201 
2202 static int __find_bmc_guid(struct device *dev, void *data)
2203 {
2204 	unsigned char *id = data;
2205 	struct bmc_device *bmc = to_bmc_device(dev);
2206 	return memcmp(bmc->guid, id, 16) == 0;
2207 }
2208 
2209 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2210 					     unsigned char *guid)
2211 {
2212 	struct device *dev;
2213 
2214 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2215 	if (dev)
2216 		return to_bmc_device(dev);
2217 	else
2218 		return NULL;
2219 }
2220 
2221 struct prod_dev_id {
2222 	unsigned int  product_id;
2223 	unsigned char device_id;
2224 };
2225 
2226 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2227 {
2228 	struct prod_dev_id *id = data;
2229 	struct bmc_device *bmc = to_bmc_device(dev);
2230 
2231 	return (bmc->id.product_id == id->product_id
2232 		&& bmc->id.device_id == id->device_id);
2233 }
2234 
2235 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2236 	struct device_driver *drv,
2237 	unsigned int product_id, unsigned char device_id)
2238 {
2239 	struct prod_dev_id id = {
2240 		.product_id = product_id,
2241 		.device_id = device_id,
2242 	};
2243 	struct device *dev;
2244 
2245 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2246 	if (dev)
2247 		return to_bmc_device(dev);
2248 	else
2249 		return NULL;
2250 }
2251 
2252 static ssize_t device_id_show(struct device *dev,
2253 			      struct device_attribute *attr,
2254 			      char *buf)
2255 {
2256 	struct bmc_device *bmc = to_bmc_device(dev);
2257 
2258 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2259 }
2260 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2261 
2262 static ssize_t provides_device_sdrs_show(struct device *dev,
2263 					 struct device_attribute *attr,
2264 					 char *buf)
2265 {
2266 	struct bmc_device *bmc = to_bmc_device(dev);
2267 
2268 	return snprintf(buf, 10, "%u\n",
2269 			(bmc->id.device_revision & 0x80) >> 7);
2270 }
2271 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2272 		   NULL);
2273 
2274 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2275 			     char *buf)
2276 {
2277 	struct bmc_device *bmc = to_bmc_device(dev);
2278 
2279 	return snprintf(buf, 20, "%u\n",
2280 			bmc->id.device_revision & 0x0F);
2281 }
2282 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2283 
2284 static ssize_t firmware_revision_show(struct device *dev,
2285 				      struct device_attribute *attr,
2286 				      char *buf)
2287 {
2288 	struct bmc_device *bmc = to_bmc_device(dev);
2289 
2290 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2291 			bmc->id.firmware_revision_2);
2292 }
2293 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2294 
2295 static ssize_t ipmi_version_show(struct device *dev,
2296 				 struct device_attribute *attr,
2297 				 char *buf)
2298 {
2299 	struct bmc_device *bmc = to_bmc_device(dev);
2300 
2301 	return snprintf(buf, 20, "%u.%u\n",
2302 			ipmi_version_major(&bmc->id),
2303 			ipmi_version_minor(&bmc->id));
2304 }
2305 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2306 
2307 static ssize_t add_dev_support_show(struct device *dev,
2308 				    struct device_attribute *attr,
2309 				    char *buf)
2310 {
2311 	struct bmc_device *bmc = to_bmc_device(dev);
2312 
2313 	return snprintf(buf, 10, "0x%02x\n",
2314 			bmc->id.additional_device_support);
2315 }
2316 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2317 		   NULL);
2318 
2319 static ssize_t manufacturer_id_show(struct device *dev,
2320 				    struct device_attribute *attr,
2321 				    char *buf)
2322 {
2323 	struct bmc_device *bmc = to_bmc_device(dev);
2324 
2325 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2326 }
2327 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2328 
2329 static ssize_t product_id_show(struct device *dev,
2330 			       struct device_attribute *attr,
2331 			       char *buf)
2332 {
2333 	struct bmc_device *bmc = to_bmc_device(dev);
2334 
2335 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2336 }
2337 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2338 
2339 static ssize_t aux_firmware_rev_show(struct device *dev,
2340 				     struct device_attribute *attr,
2341 				     char *buf)
2342 {
2343 	struct bmc_device *bmc = to_bmc_device(dev);
2344 
2345 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2346 			bmc->id.aux_firmware_revision[3],
2347 			bmc->id.aux_firmware_revision[2],
2348 			bmc->id.aux_firmware_revision[1],
2349 			bmc->id.aux_firmware_revision[0]);
2350 }
2351 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2352 
2353 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2354 			 char *buf)
2355 {
2356 	struct bmc_device *bmc = to_bmc_device(dev);
2357 
2358 	return snprintf(buf, 100, "%Lx%Lx\n",
2359 			(long long) bmc->guid[0],
2360 			(long long) bmc->guid[8]);
2361 }
2362 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2363 
2364 static struct attribute *bmc_dev_attrs[] = {
2365 	&dev_attr_device_id.attr,
2366 	&dev_attr_provides_device_sdrs.attr,
2367 	&dev_attr_revision.attr,
2368 	&dev_attr_firmware_revision.attr,
2369 	&dev_attr_ipmi_version.attr,
2370 	&dev_attr_additional_device_support.attr,
2371 	&dev_attr_manufacturer_id.attr,
2372 	&dev_attr_product_id.attr,
2373 	&dev_attr_aux_firmware_revision.attr,
2374 	&dev_attr_guid.attr,
2375 	NULL
2376 };
2377 
2378 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2379 				       struct attribute *attr, int idx)
2380 {
2381 	struct device *dev = kobj_to_dev(kobj);
2382 	struct bmc_device *bmc = to_bmc_device(dev);
2383 	umode_t mode = attr->mode;
2384 
2385 	if (attr == &dev_attr_aux_firmware_revision.attr)
2386 		return bmc->id.aux_firmware_revision_set ? mode : 0;
2387 	if (attr == &dev_attr_guid.attr)
2388 		return bmc->guid_set ? mode : 0;
2389 	return mode;
2390 }
2391 
2392 static struct attribute_group bmc_dev_attr_group = {
2393 	.attrs		= bmc_dev_attrs,
2394 	.is_visible	= bmc_dev_attr_is_visible,
2395 };
2396 
2397 static const struct attribute_group *bmc_dev_attr_groups[] = {
2398 	&bmc_dev_attr_group,
2399 	NULL
2400 };
2401 
2402 static struct device_type bmc_device_type = {
2403 	.groups		= bmc_dev_attr_groups,
2404 };
2405 
2406 static void
2407 release_bmc_device(struct device *dev)
2408 {
2409 	kfree(to_bmc_device(dev));
2410 }
2411 
2412 static void
2413 cleanup_bmc_device(struct kref *ref)
2414 {
2415 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2416 
2417 	platform_device_unregister(&bmc->pdev);
2418 }
2419 
2420 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2421 {
2422 	struct bmc_device *bmc = intf->bmc;
2423 
2424 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2425 	if (intf->my_dev_name) {
2426 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2427 		kfree(intf->my_dev_name);
2428 		intf->my_dev_name = NULL;
2429 	}
2430 
2431 	mutex_lock(&ipmidriver_mutex);
2432 	kref_put(&bmc->usecount, cleanup_bmc_device);
2433 	intf->bmc = NULL;
2434 	mutex_unlock(&ipmidriver_mutex);
2435 }
2436 
2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438 {
2439 	int               rv;
2440 	struct bmc_device *bmc = intf->bmc;
2441 	struct bmc_device *old_bmc;
2442 
2443 	mutex_lock(&ipmidriver_mutex);
2444 
2445 	/*
2446 	 * Try to find if there is an bmc_device struct
2447 	 * representing the interfaced BMC already
2448 	 */
2449 	if (bmc->guid_set)
2450 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451 	else
2452 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453 						    bmc->id.product_id,
2454 						    bmc->id.device_id);
2455 
2456 	/*
2457 	 * If there is already an bmc_device, free the new one,
2458 	 * otherwise register the new BMC device
2459 	 */
2460 	if (old_bmc) {
2461 		kfree(bmc);
2462 		intf->bmc = old_bmc;
2463 		bmc = old_bmc;
2464 
2465 		kref_get(&bmc->usecount);
2466 		mutex_unlock(&ipmidriver_mutex);
2467 
2468 		printk(KERN_INFO
2469 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471 		       bmc->id.manufacturer_id,
2472 		       bmc->id.product_id,
2473 		       bmc->id.device_id);
2474 	} else {
2475 		unsigned char orig_dev_id = bmc->id.device_id;
2476 		int warn_printed = 0;
2477 
2478 		snprintf(bmc->name, sizeof(bmc->name),
2479 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2480 		bmc->pdev.name = bmc->name;
2481 
2482 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483 						 bmc->id.product_id,
2484 						 bmc->id.device_id)) {
2485 			if (!warn_printed) {
2486 				printk(KERN_WARNING PFX
2487 				       "This machine has two different BMCs"
2488 				       " with the same product id and device"
2489 				       " id.  This is an error in the"
2490 				       " firmware, but incrementing the"
2491 				       " device id to work around the problem."
2492 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493 				       bmc->id.product_id, bmc->id.device_id);
2494 				warn_printed = 1;
2495 			}
2496 			bmc->id.device_id++; /* Wraps at 255 */
2497 			if (bmc->id.device_id == orig_dev_id) {
2498 				printk(KERN_ERR PFX
2499 				       "Out of device ids!\n");
2500 				break;
2501 			}
2502 		}
2503 
2504 		bmc->pdev.dev.driver = &ipmidriver.driver;
2505 		bmc->pdev.id = bmc->id.device_id;
2506 		bmc->pdev.dev.release = release_bmc_device;
2507 		bmc->pdev.dev.type = &bmc_device_type;
2508 		kref_init(&bmc->usecount);
2509 
2510 		rv = platform_device_register(&bmc->pdev);
2511 		mutex_unlock(&ipmidriver_mutex);
2512 		if (rv) {
2513 			put_device(&bmc->pdev.dev);
2514 			printk(KERN_ERR
2515 			       "ipmi_msghandler:"
2516 			       " Unable to register bmc device: %d\n",
2517 			       rv);
2518 			/*
2519 			 * Don't go to out_err, you can only do that if
2520 			 * the device is registered already.
2521 			 */
2522 			return rv;
2523 		}
2524 
2525 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2526 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2527 			 bmc->id.manufacturer_id,
2528 			 bmc->id.product_id,
2529 			 bmc->id.device_id);
2530 	}
2531 
2532 	/*
2533 	 * create symlink from system interface device to bmc device
2534 	 * and back.
2535 	 */
2536 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2537 	if (rv) {
2538 		printk(KERN_ERR
2539 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2540 		       rv);
2541 		goto out_err;
2542 	}
2543 
2544 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2545 	if (!intf->my_dev_name) {
2546 		rv = -ENOMEM;
2547 		printk(KERN_ERR
2548 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2549 		       rv);
2550 		goto out_err;
2551 	}
2552 
2553 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2554 			       intf->my_dev_name);
2555 	if (rv) {
2556 		kfree(intf->my_dev_name);
2557 		intf->my_dev_name = NULL;
2558 		printk(KERN_ERR
2559 		       "ipmi_msghandler:"
2560 		       " Unable to create symlink to bmc: %d\n",
2561 		       rv);
2562 		goto out_err;
2563 	}
2564 
2565 	return 0;
2566 
2567 out_err:
2568 	ipmi_bmc_unregister(intf);
2569 	return rv;
2570 }
2571 
2572 static int
2573 send_guid_cmd(ipmi_smi_t intf, int chan)
2574 {
2575 	struct kernel_ipmi_msg            msg;
2576 	struct ipmi_system_interface_addr si;
2577 
2578 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2579 	si.channel = IPMI_BMC_CHANNEL;
2580 	si.lun = 0;
2581 
2582 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2583 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2584 	msg.data = NULL;
2585 	msg.data_len = 0;
2586 	return i_ipmi_request(NULL,
2587 			      intf,
2588 			      (struct ipmi_addr *) &si,
2589 			      0,
2590 			      &msg,
2591 			      intf,
2592 			      NULL,
2593 			      NULL,
2594 			      0,
2595 			      intf->channels[0].address,
2596 			      intf->channels[0].lun,
2597 			      -1, 0);
2598 }
2599 
2600 static void
2601 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2602 {
2603 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2604 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2605 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2606 		/* Not for me */
2607 		return;
2608 
2609 	if (msg->msg.data[0] != 0) {
2610 		/* Error from getting the GUID, the BMC doesn't have one. */
2611 		intf->bmc->guid_set = 0;
2612 		goto out;
2613 	}
2614 
2615 	if (msg->msg.data_len < 17) {
2616 		intf->bmc->guid_set = 0;
2617 		printk(KERN_WARNING PFX
2618 		       "guid_handler: The GUID response from the BMC was too"
2619 		       " short, it was %d but should have been 17.  Assuming"
2620 		       " GUID is not available.\n",
2621 		       msg->msg.data_len);
2622 		goto out;
2623 	}
2624 
2625 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2626 	intf->bmc->guid_set = 1;
2627  out:
2628 	wake_up(&intf->waitq);
2629 }
2630 
2631 static void
2632 get_guid(ipmi_smi_t intf)
2633 {
2634 	int rv;
2635 
2636 	intf->bmc->guid_set = 0x2;
2637 	intf->null_user_handler = guid_handler;
2638 	rv = send_guid_cmd(intf, 0);
2639 	if (rv)
2640 		/* Send failed, no GUID available. */
2641 		intf->bmc->guid_set = 0;
2642 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2643 	intf->null_user_handler = NULL;
2644 }
2645 
2646 static int
2647 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2648 {
2649 	struct kernel_ipmi_msg            msg;
2650 	unsigned char                     data[1];
2651 	struct ipmi_system_interface_addr si;
2652 
2653 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2654 	si.channel = IPMI_BMC_CHANNEL;
2655 	si.lun = 0;
2656 
2657 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2658 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2659 	msg.data = data;
2660 	msg.data_len = 1;
2661 	data[0] = chan;
2662 	return i_ipmi_request(NULL,
2663 			      intf,
2664 			      (struct ipmi_addr *) &si,
2665 			      0,
2666 			      &msg,
2667 			      intf,
2668 			      NULL,
2669 			      NULL,
2670 			      0,
2671 			      intf->channels[0].address,
2672 			      intf->channels[0].lun,
2673 			      -1, 0);
2674 }
2675 
2676 static void
2677 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2678 {
2679 	int rv = 0;
2680 	int chan;
2681 
2682 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2683 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2684 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2685 		/* It's the one we want */
2686 		if (msg->msg.data[0] != 0) {
2687 			/* Got an error from the channel, just go on. */
2688 
2689 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2690 				/*
2691 				 * If the MC does not support this
2692 				 * command, that is legal.  We just
2693 				 * assume it has one IPMB at channel
2694 				 * zero.
2695 				 */
2696 				intf->channels[0].medium
2697 					= IPMI_CHANNEL_MEDIUM_IPMB;
2698 				intf->channels[0].protocol
2699 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2700 
2701 				intf->curr_channel = IPMI_MAX_CHANNELS;
2702 				wake_up(&intf->waitq);
2703 				goto out;
2704 			}
2705 			goto next_channel;
2706 		}
2707 		if (msg->msg.data_len < 4) {
2708 			/* Message not big enough, just go on. */
2709 			goto next_channel;
2710 		}
2711 		chan = intf->curr_channel;
2712 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2713 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2714 
2715  next_channel:
2716 		intf->curr_channel++;
2717 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2718 			wake_up(&intf->waitq);
2719 		else
2720 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2721 
2722 		if (rv) {
2723 			/* Got an error somehow, just give up. */
2724 			printk(KERN_WARNING PFX
2725 			       "Error sending channel information for channel"
2726 			       " %d: %d\n", intf->curr_channel, rv);
2727 
2728 			intf->curr_channel = IPMI_MAX_CHANNELS;
2729 			wake_up(&intf->waitq);
2730 		}
2731 	}
2732  out:
2733 	return;
2734 }
2735 
2736 static void ipmi_poll(ipmi_smi_t intf)
2737 {
2738 	if (intf->handlers->poll)
2739 		intf->handlers->poll(intf->send_info);
2740 	/* In case something came in */
2741 	handle_new_recv_msgs(intf);
2742 }
2743 
2744 void ipmi_poll_interface(ipmi_user_t user)
2745 {
2746 	ipmi_poll(user->intf);
2747 }
2748 EXPORT_SYMBOL(ipmi_poll_interface);
2749 
2750 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2751 		      void		       *send_info,
2752 		      struct ipmi_device_id    *device_id,
2753 		      struct device            *si_dev,
2754 		      unsigned char            slave_addr)
2755 {
2756 	int              i, j;
2757 	int              rv;
2758 	ipmi_smi_t       intf;
2759 	ipmi_smi_t       tintf;
2760 	struct list_head *link;
2761 
2762 	/*
2763 	 * Make sure the driver is actually initialized, this handles
2764 	 * problems with initialization order.
2765 	 */
2766 	if (!initialized) {
2767 		rv = ipmi_init_msghandler();
2768 		if (rv)
2769 			return rv;
2770 		/*
2771 		 * The init code doesn't return an error if it was turned
2772 		 * off, but it won't initialize.  Check that.
2773 		 */
2774 		if (!initialized)
2775 			return -ENODEV;
2776 	}
2777 
2778 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2779 	if (!intf)
2780 		return -ENOMEM;
2781 
2782 	intf->ipmi_version_major = ipmi_version_major(device_id);
2783 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2784 
2785 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2786 	if (!intf->bmc) {
2787 		kfree(intf);
2788 		return -ENOMEM;
2789 	}
2790 	intf->intf_num = -1; /* Mark it invalid for now. */
2791 	kref_init(&intf->refcount);
2792 	intf->bmc->id = *device_id;
2793 	intf->si_dev = si_dev;
2794 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2795 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2796 		intf->channels[j].lun = 2;
2797 	}
2798 	if (slave_addr != 0)
2799 		intf->channels[0].address = slave_addr;
2800 	INIT_LIST_HEAD(&intf->users);
2801 	intf->handlers = handlers;
2802 	intf->send_info = send_info;
2803 	spin_lock_init(&intf->seq_lock);
2804 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2805 		intf->seq_table[j].inuse = 0;
2806 		intf->seq_table[j].seqid = 0;
2807 	}
2808 	intf->curr_seq = 0;
2809 #ifdef CONFIG_PROC_FS
2810 	mutex_init(&intf->proc_entry_lock);
2811 #endif
2812 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2813 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2814 	tasklet_init(&intf->recv_tasklet,
2815 		     smi_recv_tasklet,
2816 		     (unsigned long) intf);
2817 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2818 	spin_lock_init(&intf->xmit_msgs_lock);
2819 	INIT_LIST_HEAD(&intf->xmit_msgs);
2820 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2821 	spin_lock_init(&intf->events_lock);
2822 	atomic_set(&intf->event_waiters, 0);
2823 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2824 	INIT_LIST_HEAD(&intf->waiting_events);
2825 	intf->waiting_events_count = 0;
2826 	mutex_init(&intf->cmd_rcvrs_mutex);
2827 	spin_lock_init(&intf->maintenance_mode_lock);
2828 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2829 	init_waitqueue_head(&intf->waitq);
2830 	for (i = 0; i < IPMI_NUM_STATS; i++)
2831 		atomic_set(&intf->stats[i], 0);
2832 
2833 	intf->proc_dir = NULL;
2834 
2835 	mutex_lock(&smi_watchers_mutex);
2836 	mutex_lock(&ipmi_interfaces_mutex);
2837 	/* Look for a hole in the numbers. */
2838 	i = 0;
2839 	link = &ipmi_interfaces;
2840 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2841 		if (tintf->intf_num != i) {
2842 			link = &tintf->link;
2843 			break;
2844 		}
2845 		i++;
2846 	}
2847 	/* Add the new interface in numeric order. */
2848 	if (i == 0)
2849 		list_add_rcu(&intf->link, &ipmi_interfaces);
2850 	else
2851 		list_add_tail_rcu(&intf->link, link);
2852 
2853 	rv = handlers->start_processing(send_info, intf);
2854 	if (rv)
2855 		goto out;
2856 
2857 	get_guid(intf);
2858 
2859 	if ((intf->ipmi_version_major > 1)
2860 			|| ((intf->ipmi_version_major == 1)
2861 			    && (intf->ipmi_version_minor >= 5))) {
2862 		/*
2863 		 * Start scanning the channels to see what is
2864 		 * available.
2865 		 */
2866 		intf->null_user_handler = channel_handler;
2867 		intf->curr_channel = 0;
2868 		rv = send_channel_info_cmd(intf, 0);
2869 		if (rv) {
2870 			printk(KERN_WARNING PFX
2871 			       "Error sending channel information for channel"
2872 			       " 0, %d\n", rv);
2873 			goto out;
2874 		}
2875 
2876 		/* Wait for the channel info to be read. */
2877 		wait_event(intf->waitq,
2878 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2879 		intf->null_user_handler = NULL;
2880 	} else {
2881 		/* Assume a single IPMB channel at zero. */
2882 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2883 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2884 		intf->curr_channel = IPMI_MAX_CHANNELS;
2885 	}
2886 
2887 	if (rv == 0)
2888 		rv = add_proc_entries(intf, i);
2889 
2890 	rv = ipmi_bmc_register(intf, i);
2891 
2892  out:
2893 	if (rv) {
2894 		if (intf->proc_dir)
2895 			remove_proc_entries(intf);
2896 		intf->handlers = NULL;
2897 		list_del_rcu(&intf->link);
2898 		mutex_unlock(&ipmi_interfaces_mutex);
2899 		mutex_unlock(&smi_watchers_mutex);
2900 		synchronize_rcu();
2901 		kref_put(&intf->refcount, intf_free);
2902 	} else {
2903 		/*
2904 		 * Keep memory order straight for RCU readers.  Make
2905 		 * sure everything else is committed to memory before
2906 		 * setting intf_num to mark the interface valid.
2907 		 */
2908 		smp_wmb();
2909 		intf->intf_num = i;
2910 		mutex_unlock(&ipmi_interfaces_mutex);
2911 		/* After this point the interface is legal to use. */
2912 		call_smi_watchers(i, intf->si_dev);
2913 		mutex_unlock(&smi_watchers_mutex);
2914 	}
2915 
2916 	return rv;
2917 }
2918 EXPORT_SYMBOL(ipmi_register_smi);
2919 
2920 static void deliver_smi_err_response(ipmi_smi_t intf,
2921 				     struct ipmi_smi_msg *msg,
2922 				     unsigned char err)
2923 {
2924 	msg->rsp[0] = msg->data[0] | 4;
2925 	msg->rsp[1] = msg->data[1];
2926 	msg->rsp[2] = err;
2927 	msg->rsp_size = 3;
2928 	/* It's an error, so it will never requeue, no need to check return. */
2929 	handle_one_recv_msg(intf, msg);
2930 }
2931 
2932 static void cleanup_smi_msgs(ipmi_smi_t intf)
2933 {
2934 	int              i;
2935 	struct seq_table *ent;
2936 	struct ipmi_smi_msg *msg;
2937 	struct list_head *entry;
2938 	struct list_head tmplist;
2939 
2940 	/* Clear out our transmit queues and hold the messages. */
2941 	INIT_LIST_HEAD(&tmplist);
2942 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2943 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2944 
2945 	/* Current message first, to preserve order */
2946 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2947 		/* Wait for the message to clear out. */
2948 		schedule_timeout(1);
2949 	}
2950 
2951 	/* No need for locks, the interface is down. */
2952 
2953 	/*
2954 	 * Return errors for all pending messages in queue and in the
2955 	 * tables waiting for remote responses.
2956 	 */
2957 	while (!list_empty(&tmplist)) {
2958 		entry = tmplist.next;
2959 		list_del(entry);
2960 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2961 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2962 	}
2963 
2964 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2965 		ent = &(intf->seq_table[i]);
2966 		if (!ent->inuse)
2967 			continue;
2968 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2969 	}
2970 }
2971 
2972 int ipmi_unregister_smi(ipmi_smi_t intf)
2973 {
2974 	struct ipmi_smi_watcher *w;
2975 	int intf_num = intf->intf_num;
2976 	ipmi_user_t user;
2977 
2978 	ipmi_bmc_unregister(intf);
2979 
2980 	mutex_lock(&smi_watchers_mutex);
2981 	mutex_lock(&ipmi_interfaces_mutex);
2982 	intf->intf_num = -1;
2983 	intf->in_shutdown = true;
2984 	list_del_rcu(&intf->link);
2985 	mutex_unlock(&ipmi_interfaces_mutex);
2986 	synchronize_rcu();
2987 
2988 	cleanup_smi_msgs(intf);
2989 
2990 	/* Clean up the effects of users on the lower-level software. */
2991 	mutex_lock(&ipmi_interfaces_mutex);
2992 	rcu_read_lock();
2993 	list_for_each_entry_rcu(user, &intf->users, link) {
2994 		module_put(intf->handlers->owner);
2995 		if (intf->handlers->dec_usecount)
2996 			intf->handlers->dec_usecount(intf->send_info);
2997 	}
2998 	rcu_read_unlock();
2999 	intf->handlers = NULL;
3000 	mutex_unlock(&ipmi_interfaces_mutex);
3001 
3002 	remove_proc_entries(intf);
3003 
3004 	/*
3005 	 * Call all the watcher interfaces to tell them that
3006 	 * an interface is gone.
3007 	 */
3008 	list_for_each_entry(w, &smi_watchers, link)
3009 		w->smi_gone(intf_num);
3010 	mutex_unlock(&smi_watchers_mutex);
3011 
3012 	kref_put(&intf->refcount, intf_free);
3013 	return 0;
3014 }
3015 EXPORT_SYMBOL(ipmi_unregister_smi);
3016 
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018 				   struct ipmi_smi_msg *msg)
3019 {
3020 	struct ipmi_ipmb_addr ipmb_addr;
3021 	struct ipmi_recv_msg  *recv_msg;
3022 
3023 	/*
3024 	 * This is 11, not 10, because the response must contain a
3025 	 * completion code.
3026 	 */
3027 	if (msg->rsp_size < 11) {
3028 		/* Message not big enough, just ignore it. */
3029 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3030 		return 0;
3031 	}
3032 
3033 	if (msg->rsp[2] != 0) {
3034 		/* An error getting the response, just ignore it. */
3035 		return 0;
3036 	}
3037 
3038 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039 	ipmb_addr.slave_addr = msg->rsp[6];
3040 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041 	ipmb_addr.lun = msg->rsp[7] & 3;
3042 
3043 	/*
3044 	 * It's a response from a remote entity.  Look up the sequence
3045 	 * number and handle the response.
3046 	 */
3047 	if (intf_find_seq(intf,
3048 			  msg->rsp[7] >> 2,
3049 			  msg->rsp[3] & 0x0f,
3050 			  msg->rsp[8],
3051 			  (msg->rsp[4] >> 2) & (~1),
3052 			  (struct ipmi_addr *) &(ipmb_addr),
3053 			  &recv_msg)) {
3054 		/*
3055 		 * We were unable to find the sequence number,
3056 		 * so just nuke the message.
3057 		 */
3058 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059 		return 0;
3060 	}
3061 
3062 	memcpy(recv_msg->msg_data,
3063 	       &(msg->rsp[9]),
3064 	       msg->rsp_size - 9);
3065 	/*
3066 	 * The other fields matched, so no need to set them, except
3067 	 * for netfn, which needs to be the response that was
3068 	 * returned, not the request value.
3069 	 */
3070 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071 	recv_msg->msg.data = recv_msg->msg_data;
3072 	recv_msg->msg.data_len = msg->rsp_size - 10;
3073 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074 	ipmi_inc_stat(intf, handled_ipmb_responses);
3075 	deliver_response(recv_msg);
3076 
3077 	return 0;
3078 }
3079 
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081 				   struct ipmi_smi_msg *msg)
3082 {
3083 	struct cmd_rcvr          *rcvr;
3084 	int                      rv = 0;
3085 	unsigned char            netfn;
3086 	unsigned char            cmd;
3087 	unsigned char            chan;
3088 	ipmi_user_t              user = NULL;
3089 	struct ipmi_ipmb_addr    *ipmb_addr;
3090 	struct ipmi_recv_msg     *recv_msg;
3091 
3092 	if (msg->rsp_size < 10) {
3093 		/* Message not big enough, just ignore it. */
3094 		ipmi_inc_stat(intf, invalid_commands);
3095 		return 0;
3096 	}
3097 
3098 	if (msg->rsp[2] != 0) {
3099 		/* An error getting the response, just ignore it. */
3100 		return 0;
3101 	}
3102 
3103 	netfn = msg->rsp[4] >> 2;
3104 	cmd = msg->rsp[8];
3105 	chan = msg->rsp[3] & 0xf;
3106 
3107 	rcu_read_lock();
3108 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3109 	if (rcvr) {
3110 		user = rcvr->user;
3111 		kref_get(&user->refcount);
3112 	} else
3113 		user = NULL;
3114 	rcu_read_unlock();
3115 
3116 	if (user == NULL) {
3117 		/* We didn't find a user, deliver an error response. */
3118 		ipmi_inc_stat(intf, unhandled_commands);
3119 
3120 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3121 		msg->data[1] = IPMI_SEND_MSG_CMD;
3122 		msg->data[2] = msg->rsp[3];
3123 		msg->data[3] = msg->rsp[6];
3124 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3125 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3126 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3127 		/* rqseq/lun */
3128 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3129 		msg->data[8] = msg->rsp[8]; /* cmd */
3130 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3131 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3132 		msg->data_size = 11;
3133 
3134 #ifdef DEBUG_MSGING
3135 	{
3136 		int m;
3137 		printk("Invalid command:");
3138 		for (m = 0; m < msg->data_size; m++)
3139 			printk(" %2.2x", msg->data[m]);
3140 		printk("\n");
3141 	}
3142 #endif
3143 		rcu_read_lock();
3144 		if (!intf->in_shutdown) {
3145 			smi_send(intf, intf->handlers, msg, 0);
3146 			/*
3147 			 * We used the message, so return the value
3148 			 * that causes it to not be freed or
3149 			 * queued.
3150 			 */
3151 			rv = -1;
3152 		}
3153 		rcu_read_unlock();
3154 	} else {
3155 		/* Deliver the message to the user. */
3156 		ipmi_inc_stat(intf, handled_commands);
3157 
3158 		recv_msg = ipmi_alloc_recv_msg();
3159 		if (!recv_msg) {
3160 			/*
3161 			 * We couldn't allocate memory for the
3162 			 * message, so requeue it for handling
3163 			 * later.
3164 			 */
3165 			rv = 1;
3166 			kref_put(&user->refcount, free_user);
3167 		} else {
3168 			/* Extract the source address from the data. */
3169 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3170 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3171 			ipmb_addr->slave_addr = msg->rsp[6];
3172 			ipmb_addr->lun = msg->rsp[7] & 3;
3173 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3174 
3175 			/*
3176 			 * Extract the rest of the message information
3177 			 * from the IPMB header.
3178 			 */
3179 			recv_msg->user = user;
3180 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3181 			recv_msg->msgid = msg->rsp[7] >> 2;
3182 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3183 			recv_msg->msg.cmd = msg->rsp[8];
3184 			recv_msg->msg.data = recv_msg->msg_data;
3185 
3186 			/*
3187 			 * We chop off 10, not 9 bytes because the checksum
3188 			 * at the end also needs to be removed.
3189 			 */
3190 			recv_msg->msg.data_len = msg->rsp_size - 10;
3191 			memcpy(recv_msg->msg_data,
3192 			       &(msg->rsp[9]),
3193 			       msg->rsp_size - 10);
3194 			deliver_response(recv_msg);
3195 		}
3196 	}
3197 
3198 	return rv;
3199 }
3200 
3201 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3202 				  struct ipmi_smi_msg *msg)
3203 {
3204 	struct ipmi_lan_addr  lan_addr;
3205 	struct ipmi_recv_msg  *recv_msg;
3206 
3207 
3208 	/*
3209 	 * This is 13, not 12, because the response must contain a
3210 	 * completion code.
3211 	 */
3212 	if (msg->rsp_size < 13) {
3213 		/* Message not big enough, just ignore it. */
3214 		ipmi_inc_stat(intf, invalid_lan_responses);
3215 		return 0;
3216 	}
3217 
3218 	if (msg->rsp[2] != 0) {
3219 		/* An error getting the response, just ignore it. */
3220 		return 0;
3221 	}
3222 
3223 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3224 	lan_addr.session_handle = msg->rsp[4];
3225 	lan_addr.remote_SWID = msg->rsp[8];
3226 	lan_addr.local_SWID = msg->rsp[5];
3227 	lan_addr.channel = msg->rsp[3] & 0x0f;
3228 	lan_addr.privilege = msg->rsp[3] >> 4;
3229 	lan_addr.lun = msg->rsp[9] & 3;
3230 
3231 	/*
3232 	 * It's a response from a remote entity.  Look up the sequence
3233 	 * number and handle the response.
3234 	 */
3235 	if (intf_find_seq(intf,
3236 			  msg->rsp[9] >> 2,
3237 			  msg->rsp[3] & 0x0f,
3238 			  msg->rsp[10],
3239 			  (msg->rsp[6] >> 2) & (~1),
3240 			  (struct ipmi_addr *) &(lan_addr),
3241 			  &recv_msg)) {
3242 		/*
3243 		 * We were unable to find the sequence number,
3244 		 * so just nuke the message.
3245 		 */
3246 		ipmi_inc_stat(intf, unhandled_lan_responses);
3247 		return 0;
3248 	}
3249 
3250 	memcpy(recv_msg->msg_data,
3251 	       &(msg->rsp[11]),
3252 	       msg->rsp_size - 11);
3253 	/*
3254 	 * The other fields matched, so no need to set them, except
3255 	 * for netfn, which needs to be the response that was
3256 	 * returned, not the request value.
3257 	 */
3258 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3259 	recv_msg->msg.data = recv_msg->msg_data;
3260 	recv_msg->msg.data_len = msg->rsp_size - 12;
3261 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3262 	ipmi_inc_stat(intf, handled_lan_responses);
3263 	deliver_response(recv_msg);
3264 
3265 	return 0;
3266 }
3267 
3268 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3269 				  struct ipmi_smi_msg *msg)
3270 {
3271 	struct cmd_rcvr          *rcvr;
3272 	int                      rv = 0;
3273 	unsigned char            netfn;
3274 	unsigned char            cmd;
3275 	unsigned char            chan;
3276 	ipmi_user_t              user = NULL;
3277 	struct ipmi_lan_addr     *lan_addr;
3278 	struct ipmi_recv_msg     *recv_msg;
3279 
3280 	if (msg->rsp_size < 12) {
3281 		/* Message not big enough, just ignore it. */
3282 		ipmi_inc_stat(intf, invalid_commands);
3283 		return 0;
3284 	}
3285 
3286 	if (msg->rsp[2] != 0) {
3287 		/* An error getting the response, just ignore it. */
3288 		return 0;
3289 	}
3290 
3291 	netfn = msg->rsp[6] >> 2;
3292 	cmd = msg->rsp[10];
3293 	chan = msg->rsp[3] & 0xf;
3294 
3295 	rcu_read_lock();
3296 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3297 	if (rcvr) {
3298 		user = rcvr->user;
3299 		kref_get(&user->refcount);
3300 	} else
3301 		user = NULL;
3302 	rcu_read_unlock();
3303 
3304 	if (user == NULL) {
3305 		/* We didn't find a user, just give up. */
3306 		ipmi_inc_stat(intf, unhandled_commands);
3307 
3308 		/*
3309 		 * Don't do anything with these messages, just allow
3310 		 * them to be freed.
3311 		 */
3312 		rv = 0;
3313 	} else {
3314 		/* Deliver the message to the user. */
3315 		ipmi_inc_stat(intf, handled_commands);
3316 
3317 		recv_msg = ipmi_alloc_recv_msg();
3318 		if (!recv_msg) {
3319 			/*
3320 			 * We couldn't allocate memory for the
3321 			 * message, so requeue it for handling later.
3322 			 */
3323 			rv = 1;
3324 			kref_put(&user->refcount, free_user);
3325 		} else {
3326 			/* Extract the source address from the data. */
3327 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3328 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3329 			lan_addr->session_handle = msg->rsp[4];
3330 			lan_addr->remote_SWID = msg->rsp[8];
3331 			lan_addr->local_SWID = msg->rsp[5];
3332 			lan_addr->lun = msg->rsp[9] & 3;
3333 			lan_addr->channel = msg->rsp[3] & 0xf;
3334 			lan_addr->privilege = msg->rsp[3] >> 4;
3335 
3336 			/*
3337 			 * Extract the rest of the message information
3338 			 * from the IPMB header.
3339 			 */
3340 			recv_msg->user = user;
3341 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3342 			recv_msg->msgid = msg->rsp[9] >> 2;
3343 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3344 			recv_msg->msg.cmd = msg->rsp[10];
3345 			recv_msg->msg.data = recv_msg->msg_data;
3346 
3347 			/*
3348 			 * We chop off 12, not 11 bytes because the checksum
3349 			 * at the end also needs to be removed.
3350 			 */
3351 			recv_msg->msg.data_len = msg->rsp_size - 12;
3352 			memcpy(recv_msg->msg_data,
3353 			       &(msg->rsp[11]),
3354 			       msg->rsp_size - 12);
3355 			deliver_response(recv_msg);
3356 		}
3357 	}
3358 
3359 	return rv;
3360 }
3361 
3362 /*
3363  * This routine will handle "Get Message" command responses with
3364  * channels that use an OEM Medium. The message format belongs to
3365  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3366  * Chapter 22, sections 22.6 and 22.24 for more details.
3367  */
3368 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3369 				  struct ipmi_smi_msg *msg)
3370 {
3371 	struct cmd_rcvr       *rcvr;
3372 	int                   rv = 0;
3373 	unsigned char         netfn;
3374 	unsigned char         cmd;
3375 	unsigned char         chan;
3376 	ipmi_user_t           user = NULL;
3377 	struct ipmi_system_interface_addr *smi_addr;
3378 	struct ipmi_recv_msg  *recv_msg;
3379 
3380 	/*
3381 	 * We expect the OEM SW to perform error checking
3382 	 * so we just do some basic sanity checks
3383 	 */
3384 	if (msg->rsp_size < 4) {
3385 		/* Message not big enough, just ignore it. */
3386 		ipmi_inc_stat(intf, invalid_commands);
3387 		return 0;
3388 	}
3389 
3390 	if (msg->rsp[2] != 0) {
3391 		/* An error getting the response, just ignore it. */
3392 		return 0;
3393 	}
3394 
3395 	/*
3396 	 * This is an OEM Message so the OEM needs to know how
3397 	 * handle the message. We do no interpretation.
3398 	 */
3399 	netfn = msg->rsp[0] >> 2;
3400 	cmd = msg->rsp[1];
3401 	chan = msg->rsp[3] & 0xf;
3402 
3403 	rcu_read_lock();
3404 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3405 	if (rcvr) {
3406 		user = rcvr->user;
3407 		kref_get(&user->refcount);
3408 	} else
3409 		user = NULL;
3410 	rcu_read_unlock();
3411 
3412 	if (user == NULL) {
3413 		/* We didn't find a user, just give up. */
3414 		ipmi_inc_stat(intf, unhandled_commands);
3415 
3416 		/*
3417 		 * Don't do anything with these messages, just allow
3418 		 * them to be freed.
3419 		 */
3420 
3421 		rv = 0;
3422 	} else {
3423 		/* Deliver the message to the user. */
3424 		ipmi_inc_stat(intf, handled_commands);
3425 
3426 		recv_msg = ipmi_alloc_recv_msg();
3427 		if (!recv_msg) {
3428 			/*
3429 			 * We couldn't allocate memory for the
3430 			 * message, so requeue it for handling
3431 			 * later.
3432 			 */
3433 			rv = 1;
3434 			kref_put(&user->refcount, free_user);
3435 		} else {
3436 			/*
3437 			 * OEM Messages are expected to be delivered via
3438 			 * the system interface to SMS software.  We might
3439 			 * need to visit this again depending on OEM
3440 			 * requirements
3441 			 */
3442 			smi_addr = ((struct ipmi_system_interface_addr *)
3443 				    &(recv_msg->addr));
3444 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3445 			smi_addr->channel = IPMI_BMC_CHANNEL;
3446 			smi_addr->lun = msg->rsp[0] & 3;
3447 
3448 			recv_msg->user = user;
3449 			recv_msg->user_msg_data = NULL;
3450 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3451 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3452 			recv_msg->msg.cmd = msg->rsp[1];
3453 			recv_msg->msg.data = recv_msg->msg_data;
3454 
3455 			/*
3456 			 * The message starts at byte 4 which follows the
3457 			 * the Channel Byte in the "GET MESSAGE" command
3458 			 */
3459 			recv_msg->msg.data_len = msg->rsp_size - 4;
3460 			memcpy(recv_msg->msg_data,
3461 			       &(msg->rsp[4]),
3462 			       msg->rsp_size - 4);
3463 			deliver_response(recv_msg);
3464 		}
3465 	}
3466 
3467 	return rv;
3468 }
3469 
3470 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3471 				     struct ipmi_smi_msg  *msg)
3472 {
3473 	struct ipmi_system_interface_addr *smi_addr;
3474 
3475 	recv_msg->msgid = 0;
3476 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3477 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3478 	smi_addr->channel = IPMI_BMC_CHANNEL;
3479 	smi_addr->lun = msg->rsp[0] & 3;
3480 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3481 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3482 	recv_msg->msg.cmd = msg->rsp[1];
3483 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3484 	recv_msg->msg.data = recv_msg->msg_data;
3485 	recv_msg->msg.data_len = msg->rsp_size - 3;
3486 }
3487 
3488 static int handle_read_event_rsp(ipmi_smi_t          intf,
3489 				 struct ipmi_smi_msg *msg)
3490 {
3491 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3492 	struct list_head     msgs;
3493 	ipmi_user_t          user;
3494 	int                  rv = 0;
3495 	int                  deliver_count = 0;
3496 	unsigned long        flags;
3497 
3498 	if (msg->rsp_size < 19) {
3499 		/* Message is too small to be an IPMB event. */
3500 		ipmi_inc_stat(intf, invalid_events);
3501 		return 0;
3502 	}
3503 
3504 	if (msg->rsp[2] != 0) {
3505 		/* An error getting the event, just ignore it. */
3506 		return 0;
3507 	}
3508 
3509 	INIT_LIST_HEAD(&msgs);
3510 
3511 	spin_lock_irqsave(&intf->events_lock, flags);
3512 
3513 	ipmi_inc_stat(intf, events);
3514 
3515 	/*
3516 	 * Allocate and fill in one message for every user that is
3517 	 * getting events.
3518 	 */
3519 	rcu_read_lock();
3520 	list_for_each_entry_rcu(user, &intf->users, link) {
3521 		if (!user->gets_events)
3522 			continue;
3523 
3524 		recv_msg = ipmi_alloc_recv_msg();
3525 		if (!recv_msg) {
3526 			rcu_read_unlock();
3527 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3528 						 link) {
3529 				list_del(&recv_msg->link);
3530 				ipmi_free_recv_msg(recv_msg);
3531 			}
3532 			/*
3533 			 * We couldn't allocate memory for the
3534 			 * message, so requeue it for handling
3535 			 * later.
3536 			 */
3537 			rv = 1;
3538 			goto out;
3539 		}
3540 
3541 		deliver_count++;
3542 
3543 		copy_event_into_recv_msg(recv_msg, msg);
3544 		recv_msg->user = user;
3545 		kref_get(&user->refcount);
3546 		list_add_tail(&(recv_msg->link), &msgs);
3547 	}
3548 	rcu_read_unlock();
3549 
3550 	if (deliver_count) {
3551 		/* Now deliver all the messages. */
3552 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3553 			list_del(&recv_msg->link);
3554 			deliver_response(recv_msg);
3555 		}
3556 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3557 		/*
3558 		 * No one to receive the message, put it in queue if there's
3559 		 * not already too many things in the queue.
3560 		 */
3561 		recv_msg = ipmi_alloc_recv_msg();
3562 		if (!recv_msg) {
3563 			/*
3564 			 * We couldn't allocate memory for the
3565 			 * message, so requeue it for handling
3566 			 * later.
3567 			 */
3568 			rv = 1;
3569 			goto out;
3570 		}
3571 
3572 		copy_event_into_recv_msg(recv_msg, msg);
3573 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3574 		intf->waiting_events_count++;
3575 	} else if (!intf->event_msg_printed) {
3576 		/*
3577 		 * There's too many things in the queue, discard this
3578 		 * message.
3579 		 */
3580 		printk(KERN_WARNING PFX "Event queue full, discarding"
3581 		       " incoming events\n");
3582 		intf->event_msg_printed = 1;
3583 	}
3584 
3585  out:
3586 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3587 
3588 	return rv;
3589 }
3590 
3591 static int handle_bmc_rsp(ipmi_smi_t          intf,
3592 			  struct ipmi_smi_msg *msg)
3593 {
3594 	struct ipmi_recv_msg *recv_msg;
3595 	struct ipmi_user     *user;
3596 
3597 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3598 	if (recv_msg == NULL) {
3599 		printk(KERN_WARNING
3600 		       "IPMI message received with no owner. This\n"
3601 		       "could be because of a malformed message, or\n"
3602 		       "because of a hardware error.  Contact your\n"
3603 		       "hardware vender for assistance\n");
3604 		return 0;
3605 	}
3606 
3607 	user = recv_msg->user;
3608 	/* Make sure the user still exists. */
3609 	if (user && !user->valid) {
3610 		/* The user for the message went away, so give up. */
3611 		ipmi_inc_stat(intf, unhandled_local_responses);
3612 		ipmi_free_recv_msg(recv_msg);
3613 	} else {
3614 		struct ipmi_system_interface_addr *smi_addr;
3615 
3616 		ipmi_inc_stat(intf, handled_local_responses);
3617 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3618 		recv_msg->msgid = msg->msgid;
3619 		smi_addr = ((struct ipmi_system_interface_addr *)
3620 			    &(recv_msg->addr));
3621 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3622 		smi_addr->channel = IPMI_BMC_CHANNEL;
3623 		smi_addr->lun = msg->rsp[0] & 3;
3624 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3625 		recv_msg->msg.cmd = msg->rsp[1];
3626 		memcpy(recv_msg->msg_data,
3627 		       &(msg->rsp[2]),
3628 		       msg->rsp_size - 2);
3629 		recv_msg->msg.data = recv_msg->msg_data;
3630 		recv_msg->msg.data_len = msg->rsp_size - 2;
3631 		deliver_response(recv_msg);
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 /*
3638  * Handle a received message.  Return 1 if the message should be requeued,
3639  * 0 if the message should be freed, or -1 if the message should not
3640  * be freed or requeued.
3641  */
3642 static int handle_one_recv_msg(ipmi_smi_t          intf,
3643 			       struct ipmi_smi_msg *msg)
3644 {
3645 	int requeue;
3646 	int chan;
3647 
3648 #ifdef DEBUG_MSGING
3649 	int m;
3650 	printk("Recv:");
3651 	for (m = 0; m < msg->rsp_size; m++)
3652 		printk(" %2.2x", msg->rsp[m]);
3653 	printk("\n");
3654 #endif
3655 	if (msg->rsp_size < 2) {
3656 		/* Message is too small to be correct. */
3657 		printk(KERN_WARNING PFX "BMC returned to small a message"
3658 		       " for netfn %x cmd %x, got %d bytes\n",
3659 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3660 
3661 		/* Generate an error response for the message. */
3662 		msg->rsp[0] = msg->data[0] | (1 << 2);
3663 		msg->rsp[1] = msg->data[1];
3664 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3665 		msg->rsp_size = 3;
3666 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3667 		   || (msg->rsp[1] != msg->data[1])) {
3668 		/*
3669 		 * The NetFN and Command in the response is not even
3670 		 * marginally correct.
3671 		 */
3672 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3673 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3674 		       (msg->data[0] >> 2) | 1, msg->data[1],
3675 		       msg->rsp[0] >> 2, msg->rsp[1]);
3676 
3677 		/* Generate an error response for the message. */
3678 		msg->rsp[0] = msg->data[0] | (1 << 2);
3679 		msg->rsp[1] = msg->data[1];
3680 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3681 		msg->rsp_size = 3;
3682 	}
3683 
3684 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3685 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3686 	    && (msg->user_data != NULL)) {
3687 		/*
3688 		 * It's a response to a response we sent.  For this we
3689 		 * deliver a send message response to the user.
3690 		 */
3691 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3692 
3693 		requeue = 0;
3694 		if (msg->rsp_size < 2)
3695 			/* Message is too small to be correct. */
3696 			goto out;
3697 
3698 		chan = msg->data[2] & 0x0f;
3699 		if (chan >= IPMI_MAX_CHANNELS)
3700 			/* Invalid channel number */
3701 			goto out;
3702 
3703 		if (!recv_msg)
3704 			goto out;
3705 
3706 		/* Make sure the user still exists. */
3707 		if (!recv_msg->user || !recv_msg->user->valid)
3708 			goto out;
3709 
3710 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3711 		recv_msg->msg.data = recv_msg->msg_data;
3712 		recv_msg->msg.data_len = 1;
3713 		recv_msg->msg_data[0] = msg->rsp[2];
3714 		deliver_response(recv_msg);
3715 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3716 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3717 		/* It's from the receive queue. */
3718 		chan = msg->rsp[3] & 0xf;
3719 		if (chan >= IPMI_MAX_CHANNELS) {
3720 			/* Invalid channel number */
3721 			requeue = 0;
3722 			goto out;
3723 		}
3724 
3725 		/*
3726 		 * We need to make sure the channels have been initialized.
3727 		 * The channel_handler routine will set the "curr_channel"
3728 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3729 		 * channels for this interface have been initialized.
3730 		 */
3731 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3732 			requeue = 0; /* Throw the message away */
3733 			goto out;
3734 		}
3735 
3736 		switch (intf->channels[chan].medium) {
3737 		case IPMI_CHANNEL_MEDIUM_IPMB:
3738 			if (msg->rsp[4] & 0x04) {
3739 				/*
3740 				 * It's a response, so find the
3741 				 * requesting message and send it up.
3742 				 */
3743 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3744 			} else {
3745 				/*
3746 				 * It's a command to the SMS from some other
3747 				 * entity.  Handle that.
3748 				 */
3749 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3750 			}
3751 			break;
3752 
3753 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3754 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3755 			if (msg->rsp[6] & 0x04) {
3756 				/*
3757 				 * It's a response, so find the
3758 				 * requesting message and send it up.
3759 				 */
3760 				requeue = handle_lan_get_msg_rsp(intf, msg);
3761 			} else {
3762 				/*
3763 				 * It's a command to the SMS from some other
3764 				 * entity.  Handle that.
3765 				 */
3766 				requeue = handle_lan_get_msg_cmd(intf, msg);
3767 			}
3768 			break;
3769 
3770 		default:
3771 			/* Check for OEM Channels.  Clients had better
3772 			   register for these commands. */
3773 			if ((intf->channels[chan].medium
3774 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3775 			    && (intf->channels[chan].medium
3776 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3777 				requeue = handle_oem_get_msg_cmd(intf, msg);
3778 			} else {
3779 				/*
3780 				 * We don't handle the channel type, so just
3781 				 * free the message.
3782 				 */
3783 				requeue = 0;
3784 			}
3785 		}
3786 
3787 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3788 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3789 		/* It's an asynchronous event. */
3790 		requeue = handle_read_event_rsp(intf, msg);
3791 	} else {
3792 		/* It's a response from the local BMC. */
3793 		requeue = handle_bmc_rsp(intf, msg);
3794 	}
3795 
3796  out:
3797 	return requeue;
3798 }
3799 
3800 /*
3801  * If there are messages in the queue or pretimeouts, handle them.
3802  */
3803 static void handle_new_recv_msgs(ipmi_smi_t intf)
3804 {
3805 	struct ipmi_smi_msg  *smi_msg;
3806 	unsigned long        flags = 0;
3807 	int                  rv;
3808 	int                  run_to_completion = intf->run_to_completion;
3809 
3810 	/* See if any waiting messages need to be processed. */
3811 	if (!run_to_completion)
3812 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3813 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3814 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3815 				     struct ipmi_smi_msg, link);
3816 		if (!run_to_completion)
3817 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3818 					       flags);
3819 		rv = handle_one_recv_msg(intf, smi_msg);
3820 		if (!run_to_completion)
3821 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822 		if (rv > 0) {
3823 			/*
3824 			 * To preserve message order, quit if we
3825 			 * can't handle a message.
3826 			 */
3827 			break;
3828 		} else {
3829 			list_del(&smi_msg->link);
3830 			if (rv == 0)
3831 				/* Message handled */
3832 				ipmi_free_smi_msg(smi_msg);
3833 			/* If rv < 0, fatal error, del but don't free. */
3834 		}
3835 	}
3836 	if (!run_to_completion)
3837 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3838 
3839 	/*
3840 	 * If the pretimout count is non-zero, decrement one from it and
3841 	 * deliver pretimeouts to all the users.
3842 	 */
3843 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3844 		ipmi_user_t user;
3845 
3846 		rcu_read_lock();
3847 		list_for_each_entry_rcu(user, &intf->users, link) {
3848 			if (user->handler->ipmi_watchdog_pretimeout)
3849 				user->handler->ipmi_watchdog_pretimeout(
3850 					user->handler_data);
3851 		}
3852 		rcu_read_unlock();
3853 	}
3854 }
3855 
3856 static void smi_recv_tasklet(unsigned long val)
3857 {
3858 	unsigned long flags = 0; /* keep us warning-free. */
3859 	ipmi_smi_t intf = (ipmi_smi_t) val;
3860 	int run_to_completion = intf->run_to_completion;
3861 	struct ipmi_smi_msg *newmsg = NULL;
3862 
3863 	/*
3864 	 * Start the next message if available.
3865 	 *
3866 	 * Do this here, not in the actual receiver, because we may deadlock
3867 	 * because the lower layer is allowed to hold locks while calling
3868 	 * message delivery.
3869 	 */
3870 	if (!run_to_completion)
3871 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3872 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3873 		struct list_head *entry = NULL;
3874 
3875 		/* Pick the high priority queue first. */
3876 		if (!list_empty(&intf->hp_xmit_msgs))
3877 			entry = intf->hp_xmit_msgs.next;
3878 		else if (!list_empty(&intf->xmit_msgs))
3879 			entry = intf->xmit_msgs.next;
3880 
3881 		if (entry) {
3882 			list_del(entry);
3883 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3884 			intf->curr_msg = newmsg;
3885 		}
3886 	}
3887 	if (!run_to_completion)
3888 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3889 	if (newmsg)
3890 		intf->handlers->sender(intf->send_info, newmsg);
3891 
3892 	handle_new_recv_msgs(intf);
3893 }
3894 
3895 /* Handle a new message from the lower layer. */
3896 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3897 			   struct ipmi_smi_msg *msg)
3898 {
3899 	unsigned long flags = 0; /* keep us warning-free. */
3900 	int run_to_completion = intf->run_to_completion;
3901 
3902 	if ((msg->data_size >= 2)
3903 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3904 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3905 	    && (msg->user_data == NULL)) {
3906 
3907 		if (intf->in_shutdown)
3908 			goto free_msg;
3909 
3910 		/*
3911 		 * This is the local response to a command send, start
3912 		 * the timer for these.  The user_data will not be
3913 		 * NULL if this is a response send, and we will let
3914 		 * response sends just go through.
3915 		 */
3916 
3917 		/*
3918 		 * Check for errors, if we get certain errors (ones
3919 		 * that mean basically we can try again later), we
3920 		 * ignore them and start the timer.  Otherwise we
3921 		 * report the error immediately.
3922 		 */
3923 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3924 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3925 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3926 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3927 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3928 			int chan = msg->rsp[3] & 0xf;
3929 
3930 			/* Got an error sending the message, handle it. */
3931 			if (chan >= IPMI_MAX_CHANNELS)
3932 				; /* This shouldn't happen */
3933 			else if ((intf->channels[chan].medium
3934 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3935 				 || (intf->channels[chan].medium
3936 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3937 				ipmi_inc_stat(intf, sent_lan_command_errs);
3938 			else
3939 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3940 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3941 		} else
3942 			/* The message was sent, start the timer. */
3943 			intf_start_seq_timer(intf, msg->msgid);
3944 
3945 free_msg:
3946 		ipmi_free_smi_msg(msg);
3947 	} else {
3948 		/*
3949 		 * To preserve message order, we keep a queue and deliver from
3950 		 * a tasklet.
3951 		 */
3952 		if (!run_to_completion)
3953 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3954 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3955 		if (!run_to_completion)
3956 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3957 					       flags);
3958 	}
3959 
3960 	if (!run_to_completion)
3961 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3962 	if (msg == intf->curr_msg)
3963 		intf->curr_msg = NULL;
3964 	if (!run_to_completion)
3965 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3966 
3967 	if (run_to_completion)
3968 		smi_recv_tasklet((unsigned long) intf);
3969 	else
3970 		tasklet_schedule(&intf->recv_tasklet);
3971 }
3972 EXPORT_SYMBOL(ipmi_smi_msg_received);
3973 
3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975 {
3976 	if (intf->in_shutdown)
3977 		return;
3978 
3979 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980 	tasklet_schedule(&intf->recv_tasklet);
3981 }
3982 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983 
3984 static struct ipmi_smi_msg *
3985 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986 		  unsigned char seq, long seqid)
3987 {
3988 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989 	if (!smi_msg)
3990 		/*
3991 		 * If we can't allocate the message, then just return, we
3992 		 * get 4 retries, so this should be ok.
3993 		 */
3994 		return NULL;
3995 
3996 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997 	smi_msg->data_size = recv_msg->msg.data_len;
3998 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999 
4000 #ifdef DEBUG_MSGING
4001 	{
4002 		int m;
4003 		printk("Resend: ");
4004 		for (m = 0; m < smi_msg->data_size; m++)
4005 			printk(" %2.2x", smi_msg->data[m]);
4006 		printk("\n");
4007 	}
4008 #endif
4009 	return smi_msg;
4010 }
4011 
4012 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013 			      struct list_head *timeouts, long timeout_period,
4014 			      int slot, unsigned long *flags,
4015 			      unsigned int *waiting_msgs)
4016 {
4017 	struct ipmi_recv_msg     *msg;
4018 	struct ipmi_smi_handlers *handlers;
4019 
4020 	if (intf->in_shutdown)
4021 		return;
4022 
4023 	if (!ent->inuse)
4024 		return;
4025 
4026 	ent->timeout -= timeout_period;
4027 	if (ent->timeout > 0) {
4028 		(*waiting_msgs)++;
4029 		return;
4030 	}
4031 
4032 	if (ent->retries_left == 0) {
4033 		/* The message has used all its retries. */
4034 		ent->inuse = 0;
4035 		msg = ent->recv_msg;
4036 		list_add_tail(&msg->link, timeouts);
4037 		if (ent->broadcast)
4038 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4039 		else if (is_lan_addr(&ent->recv_msg->addr))
4040 			ipmi_inc_stat(intf, timed_out_lan_commands);
4041 		else
4042 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4043 	} else {
4044 		struct ipmi_smi_msg *smi_msg;
4045 		/* More retries, send again. */
4046 
4047 		(*waiting_msgs)++;
4048 
4049 		/*
4050 		 * Start with the max timer, set to normal timer after
4051 		 * the message is sent.
4052 		 */
4053 		ent->timeout = MAX_MSG_TIMEOUT;
4054 		ent->retries_left--;
4055 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4056 					    ent->seqid);
4057 		if (!smi_msg) {
4058 			if (is_lan_addr(&ent->recv_msg->addr))
4059 				ipmi_inc_stat(intf,
4060 					      dropped_rexmit_lan_commands);
4061 			else
4062 				ipmi_inc_stat(intf,
4063 					      dropped_rexmit_ipmb_commands);
4064 			return;
4065 		}
4066 
4067 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4068 
4069 		/*
4070 		 * Send the new message.  We send with a zero
4071 		 * priority.  It timed out, I doubt time is that
4072 		 * critical now, and high priority messages are really
4073 		 * only for messages to the local MC, which don't get
4074 		 * resent.
4075 		 */
4076 		handlers = intf->handlers;
4077 		if (handlers) {
4078 			if (is_lan_addr(&ent->recv_msg->addr))
4079 				ipmi_inc_stat(intf,
4080 					      retransmitted_lan_commands);
4081 			else
4082 				ipmi_inc_stat(intf,
4083 					      retransmitted_ipmb_commands);
4084 
4085 			smi_send(intf, intf->handlers, smi_msg, 0);
4086 		} else
4087 			ipmi_free_smi_msg(smi_msg);
4088 
4089 		spin_lock_irqsave(&intf->seq_lock, *flags);
4090 	}
4091 }
4092 
4093 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4094 {
4095 	struct list_head     timeouts;
4096 	struct ipmi_recv_msg *msg, *msg2;
4097 	unsigned long        flags;
4098 	int                  i;
4099 	unsigned int         waiting_msgs = 0;
4100 
4101 	/*
4102 	 * Go through the seq table and find any messages that
4103 	 * have timed out, putting them in the timeouts
4104 	 * list.
4105 	 */
4106 	INIT_LIST_HEAD(&timeouts);
4107 	spin_lock_irqsave(&intf->seq_lock, flags);
4108 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4109 		check_msg_timeout(intf, &(intf->seq_table[i]),
4110 				  &timeouts, timeout_period, i,
4111 				  &flags, &waiting_msgs);
4112 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4113 
4114 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4115 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4116 
4117 	/*
4118 	 * Maintenance mode handling.  Check the timeout
4119 	 * optimistically before we claim the lock.  It may
4120 	 * mean a timeout gets missed occasionally, but that
4121 	 * only means the timeout gets extended by one period
4122 	 * in that case.  No big deal, and it avoids the lock
4123 	 * most of the time.
4124 	 */
4125 	if (intf->auto_maintenance_timeout > 0) {
4126 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4127 		if (intf->auto_maintenance_timeout > 0) {
4128 			intf->auto_maintenance_timeout
4129 				-= timeout_period;
4130 			if (!intf->maintenance_mode
4131 			    && (intf->auto_maintenance_timeout <= 0)) {
4132 				intf->maintenance_mode_enable = false;
4133 				maintenance_mode_update(intf);
4134 			}
4135 		}
4136 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4137 				       flags);
4138 	}
4139 
4140 	tasklet_schedule(&intf->recv_tasklet);
4141 
4142 	return waiting_msgs;
4143 }
4144 
4145 static void ipmi_request_event(ipmi_smi_t intf)
4146 {
4147 	/* No event requests when in maintenance mode. */
4148 	if (intf->maintenance_mode_enable)
4149 		return;
4150 
4151 	if (!intf->in_shutdown)
4152 		intf->handlers->request_events(intf->send_info);
4153 }
4154 
4155 static struct timer_list ipmi_timer;
4156 
4157 static atomic_t stop_operation;
4158 
4159 static void ipmi_timeout(unsigned long data)
4160 {
4161 	ipmi_smi_t intf;
4162 	int nt = 0;
4163 
4164 	if (atomic_read(&stop_operation))
4165 		return;
4166 
4167 	rcu_read_lock();
4168 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4169 		int lnt = 0;
4170 
4171 		if (atomic_read(&intf->event_waiters)) {
4172 			intf->ticks_to_req_ev--;
4173 			if (intf->ticks_to_req_ev == 0) {
4174 				ipmi_request_event(intf);
4175 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4176 			}
4177 			lnt++;
4178 		}
4179 
4180 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4181 
4182 		lnt = !!lnt;
4183 		if (lnt != intf->last_needs_timer &&
4184 					intf->handlers->set_need_watch)
4185 			intf->handlers->set_need_watch(intf->send_info, lnt);
4186 		intf->last_needs_timer = lnt;
4187 
4188 		nt += lnt;
4189 	}
4190 	rcu_read_unlock();
4191 
4192 	if (nt)
4193 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4194 }
4195 
4196 static void need_waiter(ipmi_smi_t intf)
4197 {
4198 	/* Racy, but worst case we start the timer twice. */
4199 	if (!timer_pending(&ipmi_timer))
4200 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4201 }
4202 
4203 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4204 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4205 
4206 static void free_smi_msg(struct ipmi_smi_msg *msg)
4207 {
4208 	atomic_dec(&smi_msg_inuse_count);
4209 	kfree(msg);
4210 }
4211 
4212 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4213 {
4214 	struct ipmi_smi_msg *rv;
4215 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4216 	if (rv) {
4217 		rv->done = free_smi_msg;
4218 		rv->user_data = NULL;
4219 		atomic_inc(&smi_msg_inuse_count);
4220 	}
4221 	return rv;
4222 }
4223 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4224 
4225 static void free_recv_msg(struct ipmi_recv_msg *msg)
4226 {
4227 	atomic_dec(&recv_msg_inuse_count);
4228 	kfree(msg);
4229 }
4230 
4231 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4232 {
4233 	struct ipmi_recv_msg *rv;
4234 
4235 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4236 	if (rv) {
4237 		rv->user = NULL;
4238 		rv->done = free_recv_msg;
4239 		atomic_inc(&recv_msg_inuse_count);
4240 	}
4241 	return rv;
4242 }
4243 
4244 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4245 {
4246 	if (msg->user)
4247 		kref_put(&msg->user->refcount, free_user);
4248 	msg->done(msg);
4249 }
4250 EXPORT_SYMBOL(ipmi_free_recv_msg);
4251 
4252 #ifdef CONFIG_IPMI_PANIC_EVENT
4253 
4254 static atomic_t panic_done_count = ATOMIC_INIT(0);
4255 
4256 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4257 {
4258 	atomic_dec(&panic_done_count);
4259 }
4260 
4261 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4262 {
4263 	atomic_dec(&panic_done_count);
4264 }
4265 
4266 /*
4267  * Inside a panic, send a message and wait for a response.
4268  */
4269 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4270 					struct ipmi_addr     *addr,
4271 					struct kernel_ipmi_msg *msg)
4272 {
4273 	struct ipmi_smi_msg  smi_msg;
4274 	struct ipmi_recv_msg recv_msg;
4275 	int rv;
4276 
4277 	smi_msg.done = dummy_smi_done_handler;
4278 	recv_msg.done = dummy_recv_done_handler;
4279 	atomic_add(2, &panic_done_count);
4280 	rv = i_ipmi_request(NULL,
4281 			    intf,
4282 			    addr,
4283 			    0,
4284 			    msg,
4285 			    intf,
4286 			    &smi_msg,
4287 			    &recv_msg,
4288 			    0,
4289 			    intf->channels[0].address,
4290 			    intf->channels[0].lun,
4291 			    0, 1); /* Don't retry, and don't wait. */
4292 	if (rv)
4293 		atomic_sub(2, &panic_done_count);
4294 	while (atomic_read(&panic_done_count) != 0)
4295 		ipmi_poll(intf);
4296 }
4297 
4298 #ifdef CONFIG_IPMI_PANIC_STRING
4299 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4300 {
4301 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4302 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4303 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4304 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4305 		/* A get event receiver command, save it. */
4306 		intf->event_receiver = msg->msg.data[1];
4307 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4308 	}
4309 }
4310 
4311 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4312 {
4313 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4314 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4315 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4316 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4317 		/*
4318 		 * A get device id command, save if we are an event
4319 		 * receiver or generator.
4320 		 */
4321 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4322 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4323 	}
4324 }
4325 #endif
4326 
4327 static void send_panic_events(char *str)
4328 {
4329 	struct kernel_ipmi_msg            msg;
4330 	ipmi_smi_t                        intf;
4331 	unsigned char                     data[16];
4332 	struct ipmi_system_interface_addr *si;
4333 	struct ipmi_addr                  addr;
4334 
4335 	si = (struct ipmi_system_interface_addr *) &addr;
4336 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337 	si->channel = IPMI_BMC_CHANNEL;
4338 	si->lun = 0;
4339 
4340 	/* Fill in an event telling that we have failed. */
4341 	msg.netfn = 0x04; /* Sensor or Event. */
4342 	msg.cmd = 2; /* Platform event command. */
4343 	msg.data = data;
4344 	msg.data_len = 8;
4345 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4346 	data[1] = 0x03; /* This is for IPMI 1.0. */
4347 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4348 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4349 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4350 
4351 	/*
4352 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4353 	 * to make the panic events more useful.
4354 	 */
4355 	if (str) {
4356 		data[3] = str[0];
4357 		data[6] = str[1];
4358 		data[7] = str[2];
4359 	}
4360 
4361 	/* For every registered interface, send the event. */
4362 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4363 		if (!intf->handlers)
4364 			/* Interface is not ready. */
4365 			continue;
4366 
4367 		intf->run_to_completion = 1;
4368 		/* Send the event announcing the panic. */
4369 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4370 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4371 	}
4372 
4373 #ifdef CONFIG_IPMI_PANIC_STRING
4374 	/*
4375 	 * On every interface, dump a bunch of OEM event holding the
4376 	 * string.
4377 	 */
4378 	if (!str)
4379 		return;
4380 
4381 	/* For every registered interface, send the event. */
4382 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4383 		char                  *p = str;
4384 		struct ipmi_ipmb_addr *ipmb;
4385 		int                   j;
4386 
4387 		if (intf->intf_num == -1)
4388 			/* Interface was not ready yet. */
4389 			continue;
4390 
4391 		/*
4392 		 * intf_num is used as an marker to tell if the
4393 		 * interface is valid.  Thus we need a read barrier to
4394 		 * make sure data fetched before checking intf_num
4395 		 * won't be used.
4396 		 */
4397 		smp_rmb();
4398 
4399 		/*
4400 		 * First job here is to figure out where to send the
4401 		 * OEM events.  There's no way in IPMI to send OEM
4402 		 * events using an event send command, so we have to
4403 		 * find the SEL to put them in and stick them in
4404 		 * there.
4405 		 */
4406 
4407 		/* Get capabilities from the get device id. */
4408 		intf->local_sel_device = 0;
4409 		intf->local_event_generator = 0;
4410 		intf->event_receiver = 0;
4411 
4412 		/* Request the device info from the local MC. */
4413 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4414 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4415 		msg.data = NULL;
4416 		msg.data_len = 0;
4417 		intf->null_user_handler = device_id_fetcher;
4418 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4419 
4420 		if (intf->local_event_generator) {
4421 			/* Request the event receiver from the local MC. */
4422 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4423 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4424 			msg.data = NULL;
4425 			msg.data_len = 0;
4426 			intf->null_user_handler = event_receiver_fetcher;
4427 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4428 		}
4429 		intf->null_user_handler = NULL;
4430 
4431 		/*
4432 		 * Validate the event receiver.  The low bit must not
4433 		 * be 1 (it must be a valid IPMB address), it cannot
4434 		 * be zero, and it must not be my address.
4435 		 */
4436 		if (((intf->event_receiver & 1) == 0)
4437 		    && (intf->event_receiver != 0)
4438 		    && (intf->event_receiver != intf->channels[0].address)) {
4439 			/*
4440 			 * The event receiver is valid, send an IPMB
4441 			 * message.
4442 			 */
4443 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4444 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4445 			ipmb->channel = 0; /* FIXME - is this right? */
4446 			ipmb->lun = intf->event_receiver_lun;
4447 			ipmb->slave_addr = intf->event_receiver;
4448 		} else if (intf->local_sel_device) {
4449 			/*
4450 			 * The event receiver was not valid (or was
4451 			 * me), but I am an SEL device, just dump it
4452 			 * in my SEL.
4453 			 */
4454 			si = (struct ipmi_system_interface_addr *) &addr;
4455 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4456 			si->channel = IPMI_BMC_CHANNEL;
4457 			si->lun = 0;
4458 		} else
4459 			continue; /* No where to send the event. */
4460 
4461 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4462 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4463 		msg.data = data;
4464 		msg.data_len = 16;
4465 
4466 		j = 0;
4467 		while (*p) {
4468 			int size = strlen(p);
4469 
4470 			if (size > 11)
4471 				size = 11;
4472 			data[0] = 0;
4473 			data[1] = 0;
4474 			data[2] = 0xf0; /* OEM event without timestamp. */
4475 			data[3] = intf->channels[0].address;
4476 			data[4] = j++; /* sequence # */
4477 			/*
4478 			 * Always give 11 bytes, so strncpy will fill
4479 			 * it with zeroes for me.
4480 			 */
4481 			strncpy(data+5, p, 11);
4482 			p += size;
4483 
4484 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4485 		}
4486 	}
4487 #endif /* CONFIG_IPMI_PANIC_STRING */
4488 }
4489 #endif /* CONFIG_IPMI_PANIC_EVENT */
4490 
4491 static int has_panicked;
4492 
4493 static int panic_event(struct notifier_block *this,
4494 		       unsigned long         event,
4495 		       void                  *ptr)
4496 {
4497 	ipmi_smi_t intf;
4498 
4499 	if (has_panicked)
4500 		return NOTIFY_DONE;
4501 	has_panicked = 1;
4502 
4503 	/* For every registered interface, set it to run to completion. */
4504 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4505 		if (!intf->handlers)
4506 			/* Interface is not ready. */
4507 			continue;
4508 
4509 		intf->run_to_completion = 1;
4510 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4511 	}
4512 
4513 #ifdef CONFIG_IPMI_PANIC_EVENT
4514 	send_panic_events(ptr);
4515 #endif
4516 
4517 	return NOTIFY_DONE;
4518 }
4519 
4520 static struct notifier_block panic_block = {
4521 	.notifier_call	= panic_event,
4522 	.next		= NULL,
4523 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4524 };
4525 
4526 static int ipmi_init_msghandler(void)
4527 {
4528 	int rv;
4529 
4530 	if (initialized)
4531 		return 0;
4532 
4533 	rv = driver_register(&ipmidriver.driver);
4534 	if (rv) {
4535 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4536 		return rv;
4537 	}
4538 
4539 	printk(KERN_INFO "ipmi message handler version "
4540 	       IPMI_DRIVER_VERSION "\n");
4541 
4542 #ifdef CONFIG_PROC_FS
4543 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4544 	if (!proc_ipmi_root) {
4545 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4546 	    driver_unregister(&ipmidriver.driver);
4547 	    return -ENOMEM;
4548 	}
4549 
4550 #endif /* CONFIG_PROC_FS */
4551 
4552 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4553 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4554 
4555 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4556 
4557 	initialized = 1;
4558 
4559 	return 0;
4560 }
4561 
4562 static int __init ipmi_init_msghandler_mod(void)
4563 {
4564 	ipmi_init_msghandler();
4565 	return 0;
4566 }
4567 
4568 static void __exit cleanup_ipmi(void)
4569 {
4570 	int count;
4571 
4572 	if (!initialized)
4573 		return;
4574 
4575 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4576 
4577 	/*
4578 	 * This can't be called if any interfaces exist, so no worry
4579 	 * about shutting down the interfaces.
4580 	 */
4581 
4582 	/*
4583 	 * Tell the timer to stop, then wait for it to stop.  This
4584 	 * avoids problems with race conditions removing the timer
4585 	 * here.
4586 	 */
4587 	atomic_inc(&stop_operation);
4588 	del_timer_sync(&ipmi_timer);
4589 
4590 #ifdef CONFIG_PROC_FS
4591 	proc_remove(proc_ipmi_root);
4592 #endif /* CONFIG_PROC_FS */
4593 
4594 	driver_unregister(&ipmidriver.driver);
4595 
4596 	initialized = 0;
4597 
4598 	/* Check for buffer leaks. */
4599 	count = atomic_read(&smi_msg_inuse_count);
4600 	if (count != 0)
4601 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4602 		       count);
4603 	count = atomic_read(&recv_msg_inuse_count);
4604 	if (count != 0)
4605 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4606 		       count);
4607 }
4608 module_exit(cleanup_ipmi);
4609 
4610 module_init(ipmi_init_msghandler_mod);
4611 MODULE_LICENSE("GPL");
4612 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4613 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4614 		   " interface.");
4615 MODULE_VERSION(IPMI_DRIVER_VERSION);
4616