1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <linux/poll.h> 37 #include <linux/sched.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/interrupt.h> 49 50 #define PFX "IPMI message handler: " 51 52 #define IPMI_DRIVER_VERSION "39.2" 53 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 55 static int ipmi_init_msghandler(void); 56 static void smi_recv_tasklet(unsigned long); 57 static void handle_new_recv_msgs(ipmi_smi_t intf); 58 static void need_waiter(ipmi_smi_t intf); 59 static int handle_one_recv_msg(ipmi_smi_t intf, 60 struct ipmi_smi_msg *msg); 61 62 static int initialized; 63 64 #ifdef CONFIG_PROC_FS 65 static struct proc_dir_entry *proc_ipmi_root; 66 #endif /* CONFIG_PROC_FS */ 67 68 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 70 71 #define MAX_EVENTS_IN_QUEUE 25 72 73 /* 74 * Don't let a message sit in a queue forever, always time it with at lest 75 * the max message timer. This is in milliseconds. 76 */ 77 #define MAX_MSG_TIMEOUT 60000 78 79 /* Call every ~1000 ms. */ 80 #define IPMI_TIMEOUT_TIME 1000 81 82 /* How many jiffies does it take to get to the timeout time. */ 83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 84 85 /* 86 * Request events from the queue every second (this is the number of 87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 88 * future, IPMI will add a way to know immediately if an event is in 89 * the queue and this silliness can go away. 90 */ 91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 92 93 /* 94 * The main "user" data structure. 95 */ 96 struct ipmi_user { 97 struct list_head link; 98 99 /* Set to false when the user is destroyed. */ 100 bool valid; 101 102 struct kref refcount; 103 104 /* The upper layer that handles receive messages. */ 105 struct ipmi_user_hndl *handler; 106 void *handler_data; 107 108 /* The interface this user is bound to. */ 109 ipmi_smi_t intf; 110 111 /* Does this interface receive IPMI events? */ 112 bool gets_events; 113 }; 114 115 struct cmd_rcvr { 116 struct list_head link; 117 118 ipmi_user_t user; 119 unsigned char netfn; 120 unsigned char cmd; 121 unsigned int chans; 122 123 /* 124 * This is used to form a linked lised during mass deletion. 125 * Since this is in an RCU list, we cannot use the link above 126 * or change any data until the RCU period completes. So we 127 * use this next variable during mass deletion so we can have 128 * a list and don't have to wait and restart the search on 129 * every individual deletion of a command. 130 */ 131 struct cmd_rcvr *next; 132 }; 133 134 struct seq_table { 135 unsigned int inuse : 1; 136 unsigned int broadcast : 1; 137 138 unsigned long timeout; 139 unsigned long orig_timeout; 140 unsigned int retries_left; 141 142 /* 143 * To verify on an incoming send message response that this is 144 * the message that the response is for, we keep a sequence id 145 * and increment it every time we send a message. 146 */ 147 long seqid; 148 149 /* 150 * This is held so we can properly respond to the message on a 151 * timeout, and it is used to hold the temporary data for 152 * retransmission, too. 153 */ 154 struct ipmi_recv_msg *recv_msg; 155 }; 156 157 /* 158 * Store the information in a msgid (long) to allow us to find a 159 * sequence table entry from the msgid. 160 */ 161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 162 163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 164 do { \ 165 seq = ((msgid >> 26) & 0x3f); \ 166 seqid = (msgid & 0x3fffff); \ 167 } while (0) 168 169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 170 171 struct ipmi_channel { 172 unsigned char medium; 173 unsigned char protocol; 174 175 /* 176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 177 * but may be changed by the user. 178 */ 179 unsigned char address; 180 181 /* 182 * My LUN. This should generally stay the SMS LUN, but just in 183 * case... 184 */ 185 unsigned char lun; 186 }; 187 188 #ifdef CONFIG_PROC_FS 189 struct ipmi_proc_entry { 190 char *name; 191 struct ipmi_proc_entry *next; 192 }; 193 #endif 194 195 struct bmc_device { 196 struct platform_device pdev; 197 struct ipmi_device_id id; 198 unsigned char guid[16]; 199 int guid_set; 200 char name[16]; 201 struct kref usecount; 202 }; 203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 204 205 /* 206 * Various statistics for IPMI, these index stats[] in the ipmi_smi 207 * structure. 208 */ 209 enum ipmi_stat_indexes { 210 /* Commands we got from the user that were invalid. */ 211 IPMI_STAT_sent_invalid_commands = 0, 212 213 /* Commands we sent to the MC. */ 214 IPMI_STAT_sent_local_commands, 215 216 /* Responses from the MC that were delivered to a user. */ 217 IPMI_STAT_handled_local_responses, 218 219 /* Responses from the MC that were not delivered to a user. */ 220 IPMI_STAT_unhandled_local_responses, 221 222 /* Commands we sent out to the IPMB bus. */ 223 IPMI_STAT_sent_ipmb_commands, 224 225 /* Commands sent on the IPMB that had errors on the SEND CMD */ 226 IPMI_STAT_sent_ipmb_command_errs, 227 228 /* Each retransmit increments this count. */ 229 IPMI_STAT_retransmitted_ipmb_commands, 230 231 /* 232 * When a message times out (runs out of retransmits) this is 233 * incremented. 234 */ 235 IPMI_STAT_timed_out_ipmb_commands, 236 237 /* 238 * This is like above, but for broadcasts. Broadcasts are 239 * *not* included in the above count (they are expected to 240 * time out). 241 */ 242 IPMI_STAT_timed_out_ipmb_broadcasts, 243 244 /* Responses I have sent to the IPMB bus. */ 245 IPMI_STAT_sent_ipmb_responses, 246 247 /* The response was delivered to the user. */ 248 IPMI_STAT_handled_ipmb_responses, 249 250 /* The response had invalid data in it. */ 251 IPMI_STAT_invalid_ipmb_responses, 252 253 /* The response didn't have anyone waiting for it. */ 254 IPMI_STAT_unhandled_ipmb_responses, 255 256 /* Commands we sent out to the IPMB bus. */ 257 IPMI_STAT_sent_lan_commands, 258 259 /* Commands sent on the IPMB that had errors on the SEND CMD */ 260 IPMI_STAT_sent_lan_command_errs, 261 262 /* Each retransmit increments this count. */ 263 IPMI_STAT_retransmitted_lan_commands, 264 265 /* 266 * When a message times out (runs out of retransmits) this is 267 * incremented. 268 */ 269 IPMI_STAT_timed_out_lan_commands, 270 271 /* Responses I have sent to the IPMB bus. */ 272 IPMI_STAT_sent_lan_responses, 273 274 /* The response was delivered to the user. */ 275 IPMI_STAT_handled_lan_responses, 276 277 /* The response had invalid data in it. */ 278 IPMI_STAT_invalid_lan_responses, 279 280 /* The response didn't have anyone waiting for it. */ 281 IPMI_STAT_unhandled_lan_responses, 282 283 /* The command was delivered to the user. */ 284 IPMI_STAT_handled_commands, 285 286 /* The command had invalid data in it. */ 287 IPMI_STAT_invalid_commands, 288 289 /* The command didn't have anyone waiting for it. */ 290 IPMI_STAT_unhandled_commands, 291 292 /* Invalid data in an event. */ 293 IPMI_STAT_invalid_events, 294 295 /* Events that were received with the proper format. */ 296 IPMI_STAT_events, 297 298 /* Retransmissions on IPMB that failed. */ 299 IPMI_STAT_dropped_rexmit_ipmb_commands, 300 301 /* Retransmissions on LAN that failed. */ 302 IPMI_STAT_dropped_rexmit_lan_commands, 303 304 /* This *must* remain last, add new values above this. */ 305 IPMI_NUM_STATS 306 }; 307 308 309 #define IPMI_IPMB_NUM_SEQ 64 310 #define IPMI_MAX_CHANNELS 16 311 struct ipmi_smi { 312 /* What interface number are we? */ 313 int intf_num; 314 315 struct kref refcount; 316 317 /* Set when the interface is being unregistered. */ 318 bool in_shutdown; 319 320 /* Used for a list of interfaces. */ 321 struct list_head link; 322 323 /* 324 * The list of upper layers that are using me. seq_lock 325 * protects this. 326 */ 327 struct list_head users; 328 329 /* Information to supply to users. */ 330 unsigned char ipmi_version_major; 331 unsigned char ipmi_version_minor; 332 333 /* Used for wake ups at startup. */ 334 wait_queue_head_t waitq; 335 336 struct bmc_device *bmc; 337 char *my_dev_name; 338 339 /* 340 * This is the lower-layer's sender routine. Note that you 341 * must either be holding the ipmi_interfaces_mutex or be in 342 * an umpreemptible region to use this. You must fetch the 343 * value into a local variable and make sure it is not NULL. 344 */ 345 struct ipmi_smi_handlers *handlers; 346 void *send_info; 347 348 #ifdef CONFIG_PROC_FS 349 /* A list of proc entries for this interface. */ 350 struct mutex proc_entry_lock; 351 struct ipmi_proc_entry *proc_entries; 352 #endif 353 354 /* Driver-model device for the system interface. */ 355 struct device *si_dev; 356 357 /* 358 * A table of sequence numbers for this interface. We use the 359 * sequence numbers for IPMB messages that go out of the 360 * interface to match them up with their responses. A routine 361 * is called periodically to time the items in this list. 362 */ 363 spinlock_t seq_lock; 364 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 365 int curr_seq; 366 367 /* 368 * Messages queued for delivery. If delivery fails (out of memory 369 * for instance), They will stay in here to be processed later in a 370 * periodic timer interrupt. The tasklet is for handling received 371 * messages directly from the handler. 372 */ 373 spinlock_t waiting_rcv_msgs_lock; 374 struct list_head waiting_rcv_msgs; 375 atomic_t watchdog_pretimeouts_to_deliver; 376 struct tasklet_struct recv_tasklet; 377 378 spinlock_t xmit_msgs_lock; 379 struct list_head xmit_msgs; 380 struct ipmi_smi_msg *curr_msg; 381 struct list_head hp_xmit_msgs; 382 383 /* 384 * The list of command receivers that are registered for commands 385 * on this interface. 386 */ 387 struct mutex cmd_rcvrs_mutex; 388 struct list_head cmd_rcvrs; 389 390 /* 391 * Events that were queues because no one was there to receive 392 * them. 393 */ 394 spinlock_t events_lock; /* For dealing with event stuff. */ 395 struct list_head waiting_events; 396 unsigned int waiting_events_count; /* How many events in queue? */ 397 char delivering_events; 398 char event_msg_printed; 399 atomic_t event_waiters; 400 unsigned int ticks_to_req_ev; 401 int last_needs_timer; 402 403 /* 404 * The event receiver for my BMC, only really used at panic 405 * shutdown as a place to store this. 406 */ 407 unsigned char event_receiver; 408 unsigned char event_receiver_lun; 409 unsigned char local_sel_device; 410 unsigned char local_event_generator; 411 412 /* For handling of maintenance mode. */ 413 int maintenance_mode; 414 bool maintenance_mode_enable; 415 int auto_maintenance_timeout; 416 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 417 418 /* 419 * A cheap hack, if this is non-null and a message to an 420 * interface comes in with a NULL user, call this routine with 421 * it. Note that the message will still be freed by the 422 * caller. This only works on the system interface. 423 */ 424 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 425 426 /* 427 * When we are scanning the channels for an SMI, this will 428 * tell which channel we are scanning. 429 */ 430 int curr_channel; 431 432 /* Channel information */ 433 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 434 435 /* Proc FS stuff. */ 436 struct proc_dir_entry *proc_dir; 437 char proc_dir_name[10]; 438 439 atomic_t stats[IPMI_NUM_STATS]; 440 441 /* 442 * run_to_completion duplicate of smb_info, smi_info 443 * and ipmi_serial_info structures. Used to decrease numbers of 444 * parameters passed by "low" level IPMI code. 445 */ 446 int run_to_completion; 447 }; 448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 449 450 /** 451 * The driver model view of the IPMI messaging driver. 452 */ 453 static struct platform_driver ipmidriver = { 454 .driver = { 455 .name = "ipmi", 456 .bus = &platform_bus_type 457 } 458 }; 459 static DEFINE_MUTEX(ipmidriver_mutex); 460 461 static LIST_HEAD(ipmi_interfaces); 462 static DEFINE_MUTEX(ipmi_interfaces_mutex); 463 464 /* 465 * List of watchers that want to know when smi's are added and deleted. 466 */ 467 static LIST_HEAD(smi_watchers); 468 static DEFINE_MUTEX(smi_watchers_mutex); 469 470 #define ipmi_inc_stat(intf, stat) \ 471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 472 #define ipmi_get_stat(intf, stat) \ 473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 474 475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI", 476 "ACPI", "SMBIOS", "PCI", 477 "device-tree", "default" }; 478 479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 480 { 481 if (src > SI_DEFAULT) 482 src = 0; /* Invalid */ 483 return addr_src_to_str[src]; 484 } 485 EXPORT_SYMBOL(ipmi_addr_src_to_str); 486 487 static int is_lan_addr(struct ipmi_addr *addr) 488 { 489 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 490 } 491 492 static int is_ipmb_addr(struct ipmi_addr *addr) 493 { 494 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 495 } 496 497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 498 { 499 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 500 } 501 502 static void free_recv_msg_list(struct list_head *q) 503 { 504 struct ipmi_recv_msg *msg, *msg2; 505 506 list_for_each_entry_safe(msg, msg2, q, link) { 507 list_del(&msg->link); 508 ipmi_free_recv_msg(msg); 509 } 510 } 511 512 static void free_smi_msg_list(struct list_head *q) 513 { 514 struct ipmi_smi_msg *msg, *msg2; 515 516 list_for_each_entry_safe(msg, msg2, q, link) { 517 list_del(&msg->link); 518 ipmi_free_smi_msg(msg); 519 } 520 } 521 522 static void clean_up_interface_data(ipmi_smi_t intf) 523 { 524 int i; 525 struct cmd_rcvr *rcvr, *rcvr2; 526 struct list_head list; 527 528 tasklet_kill(&intf->recv_tasklet); 529 530 free_smi_msg_list(&intf->waiting_rcv_msgs); 531 free_recv_msg_list(&intf->waiting_events); 532 533 /* 534 * Wholesale remove all the entries from the list in the 535 * interface and wait for RCU to know that none are in use. 536 */ 537 mutex_lock(&intf->cmd_rcvrs_mutex); 538 INIT_LIST_HEAD(&list); 539 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 540 mutex_unlock(&intf->cmd_rcvrs_mutex); 541 542 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 543 kfree(rcvr); 544 545 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 546 if ((intf->seq_table[i].inuse) 547 && (intf->seq_table[i].recv_msg)) 548 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 549 } 550 } 551 552 static void intf_free(struct kref *ref) 553 { 554 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 555 556 clean_up_interface_data(intf); 557 kfree(intf); 558 } 559 560 struct watcher_entry { 561 int intf_num; 562 ipmi_smi_t intf; 563 struct list_head link; 564 }; 565 566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 567 { 568 ipmi_smi_t intf; 569 LIST_HEAD(to_deliver); 570 struct watcher_entry *e, *e2; 571 572 mutex_lock(&smi_watchers_mutex); 573 574 mutex_lock(&ipmi_interfaces_mutex); 575 576 /* Build a list of things to deliver. */ 577 list_for_each_entry(intf, &ipmi_interfaces, link) { 578 if (intf->intf_num == -1) 579 continue; 580 e = kmalloc(sizeof(*e), GFP_KERNEL); 581 if (!e) 582 goto out_err; 583 kref_get(&intf->refcount); 584 e->intf = intf; 585 e->intf_num = intf->intf_num; 586 list_add_tail(&e->link, &to_deliver); 587 } 588 589 /* We will succeed, so add it to the list. */ 590 list_add(&watcher->link, &smi_watchers); 591 592 mutex_unlock(&ipmi_interfaces_mutex); 593 594 list_for_each_entry_safe(e, e2, &to_deliver, link) { 595 list_del(&e->link); 596 watcher->new_smi(e->intf_num, e->intf->si_dev); 597 kref_put(&e->intf->refcount, intf_free); 598 kfree(e); 599 } 600 601 mutex_unlock(&smi_watchers_mutex); 602 603 return 0; 604 605 out_err: 606 mutex_unlock(&ipmi_interfaces_mutex); 607 mutex_unlock(&smi_watchers_mutex); 608 list_for_each_entry_safe(e, e2, &to_deliver, link) { 609 list_del(&e->link); 610 kref_put(&e->intf->refcount, intf_free); 611 kfree(e); 612 } 613 return -ENOMEM; 614 } 615 EXPORT_SYMBOL(ipmi_smi_watcher_register); 616 617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 618 { 619 mutex_lock(&smi_watchers_mutex); 620 list_del(&(watcher->link)); 621 mutex_unlock(&smi_watchers_mutex); 622 return 0; 623 } 624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 625 626 /* 627 * Must be called with smi_watchers_mutex held. 628 */ 629 static void 630 call_smi_watchers(int i, struct device *dev) 631 { 632 struct ipmi_smi_watcher *w; 633 634 list_for_each_entry(w, &smi_watchers, link) { 635 if (try_module_get(w->owner)) { 636 w->new_smi(i, dev); 637 module_put(w->owner); 638 } 639 } 640 } 641 642 static int 643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 644 { 645 if (addr1->addr_type != addr2->addr_type) 646 return 0; 647 648 if (addr1->channel != addr2->channel) 649 return 0; 650 651 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 652 struct ipmi_system_interface_addr *smi_addr1 653 = (struct ipmi_system_interface_addr *) addr1; 654 struct ipmi_system_interface_addr *smi_addr2 655 = (struct ipmi_system_interface_addr *) addr2; 656 return (smi_addr1->lun == smi_addr2->lun); 657 } 658 659 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 660 struct ipmi_ipmb_addr *ipmb_addr1 661 = (struct ipmi_ipmb_addr *) addr1; 662 struct ipmi_ipmb_addr *ipmb_addr2 663 = (struct ipmi_ipmb_addr *) addr2; 664 665 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 666 && (ipmb_addr1->lun == ipmb_addr2->lun)); 667 } 668 669 if (is_lan_addr(addr1)) { 670 struct ipmi_lan_addr *lan_addr1 671 = (struct ipmi_lan_addr *) addr1; 672 struct ipmi_lan_addr *lan_addr2 673 = (struct ipmi_lan_addr *) addr2; 674 675 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 676 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 677 && (lan_addr1->session_handle 678 == lan_addr2->session_handle) 679 && (lan_addr1->lun == lan_addr2->lun)); 680 } 681 682 return 1; 683 } 684 685 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 686 { 687 if (len < sizeof(struct ipmi_system_interface_addr)) 688 return -EINVAL; 689 690 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 691 if (addr->channel != IPMI_BMC_CHANNEL) 692 return -EINVAL; 693 return 0; 694 } 695 696 if ((addr->channel == IPMI_BMC_CHANNEL) 697 || (addr->channel >= IPMI_MAX_CHANNELS) 698 || (addr->channel < 0)) 699 return -EINVAL; 700 701 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 702 if (len < sizeof(struct ipmi_ipmb_addr)) 703 return -EINVAL; 704 return 0; 705 } 706 707 if (is_lan_addr(addr)) { 708 if (len < sizeof(struct ipmi_lan_addr)) 709 return -EINVAL; 710 return 0; 711 } 712 713 return -EINVAL; 714 } 715 EXPORT_SYMBOL(ipmi_validate_addr); 716 717 unsigned int ipmi_addr_length(int addr_type) 718 { 719 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 720 return sizeof(struct ipmi_system_interface_addr); 721 722 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 723 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 724 return sizeof(struct ipmi_ipmb_addr); 725 726 if (addr_type == IPMI_LAN_ADDR_TYPE) 727 return sizeof(struct ipmi_lan_addr); 728 729 return 0; 730 } 731 EXPORT_SYMBOL(ipmi_addr_length); 732 733 static void deliver_response(struct ipmi_recv_msg *msg) 734 { 735 if (!msg->user) { 736 ipmi_smi_t intf = msg->user_msg_data; 737 738 /* Special handling for NULL users. */ 739 if (intf->null_user_handler) { 740 intf->null_user_handler(intf, msg); 741 ipmi_inc_stat(intf, handled_local_responses); 742 } else { 743 /* No handler, so give up. */ 744 ipmi_inc_stat(intf, unhandled_local_responses); 745 } 746 ipmi_free_recv_msg(msg); 747 } else { 748 ipmi_user_t user = msg->user; 749 user->handler->ipmi_recv_hndl(msg, user->handler_data); 750 } 751 } 752 753 static void 754 deliver_err_response(struct ipmi_recv_msg *msg, int err) 755 { 756 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 757 msg->msg_data[0] = err; 758 msg->msg.netfn |= 1; /* Convert to a response. */ 759 msg->msg.data_len = 1; 760 msg->msg.data = msg->msg_data; 761 deliver_response(msg); 762 } 763 764 /* 765 * Find the next sequence number not being used and add the given 766 * message with the given timeout to the sequence table. This must be 767 * called with the interface's seq_lock held. 768 */ 769 static int intf_next_seq(ipmi_smi_t intf, 770 struct ipmi_recv_msg *recv_msg, 771 unsigned long timeout, 772 int retries, 773 int broadcast, 774 unsigned char *seq, 775 long *seqid) 776 { 777 int rv = 0; 778 unsigned int i; 779 780 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 781 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 782 if (!intf->seq_table[i].inuse) 783 break; 784 } 785 786 if (!intf->seq_table[i].inuse) { 787 intf->seq_table[i].recv_msg = recv_msg; 788 789 /* 790 * Start with the maximum timeout, when the send response 791 * comes in we will start the real timer. 792 */ 793 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 794 intf->seq_table[i].orig_timeout = timeout; 795 intf->seq_table[i].retries_left = retries; 796 intf->seq_table[i].broadcast = broadcast; 797 intf->seq_table[i].inuse = 1; 798 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 799 *seq = i; 800 *seqid = intf->seq_table[i].seqid; 801 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 802 need_waiter(intf); 803 } else { 804 rv = -EAGAIN; 805 } 806 807 return rv; 808 } 809 810 /* 811 * Return the receive message for the given sequence number and 812 * release the sequence number so it can be reused. Some other data 813 * is passed in to be sure the message matches up correctly (to help 814 * guard against message coming in after their timeout and the 815 * sequence number being reused). 816 */ 817 static int intf_find_seq(ipmi_smi_t intf, 818 unsigned char seq, 819 short channel, 820 unsigned char cmd, 821 unsigned char netfn, 822 struct ipmi_addr *addr, 823 struct ipmi_recv_msg **recv_msg) 824 { 825 int rv = -ENODEV; 826 unsigned long flags; 827 828 if (seq >= IPMI_IPMB_NUM_SEQ) 829 return -EINVAL; 830 831 spin_lock_irqsave(&(intf->seq_lock), flags); 832 if (intf->seq_table[seq].inuse) { 833 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 834 835 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 836 && (msg->msg.netfn == netfn) 837 && (ipmi_addr_equal(addr, &(msg->addr)))) { 838 *recv_msg = msg; 839 intf->seq_table[seq].inuse = 0; 840 rv = 0; 841 } 842 } 843 spin_unlock_irqrestore(&(intf->seq_lock), flags); 844 845 return rv; 846 } 847 848 849 /* Start the timer for a specific sequence table entry. */ 850 static int intf_start_seq_timer(ipmi_smi_t intf, 851 long msgid) 852 { 853 int rv = -ENODEV; 854 unsigned long flags; 855 unsigned char seq; 856 unsigned long seqid; 857 858 859 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 860 861 spin_lock_irqsave(&(intf->seq_lock), flags); 862 /* 863 * We do this verification because the user can be deleted 864 * while a message is outstanding. 865 */ 866 if ((intf->seq_table[seq].inuse) 867 && (intf->seq_table[seq].seqid == seqid)) { 868 struct seq_table *ent = &(intf->seq_table[seq]); 869 ent->timeout = ent->orig_timeout; 870 rv = 0; 871 } 872 spin_unlock_irqrestore(&(intf->seq_lock), flags); 873 874 return rv; 875 } 876 877 /* Got an error for the send message for a specific sequence number. */ 878 static int intf_err_seq(ipmi_smi_t intf, 879 long msgid, 880 unsigned int err) 881 { 882 int rv = -ENODEV; 883 unsigned long flags; 884 unsigned char seq; 885 unsigned long seqid; 886 struct ipmi_recv_msg *msg = NULL; 887 888 889 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 890 891 spin_lock_irqsave(&(intf->seq_lock), flags); 892 /* 893 * We do this verification because the user can be deleted 894 * while a message is outstanding. 895 */ 896 if ((intf->seq_table[seq].inuse) 897 && (intf->seq_table[seq].seqid == seqid)) { 898 struct seq_table *ent = &(intf->seq_table[seq]); 899 900 ent->inuse = 0; 901 msg = ent->recv_msg; 902 rv = 0; 903 } 904 spin_unlock_irqrestore(&(intf->seq_lock), flags); 905 906 if (msg) 907 deliver_err_response(msg, err); 908 909 return rv; 910 } 911 912 913 int ipmi_create_user(unsigned int if_num, 914 struct ipmi_user_hndl *handler, 915 void *handler_data, 916 ipmi_user_t *user) 917 { 918 unsigned long flags; 919 ipmi_user_t new_user; 920 int rv = 0; 921 ipmi_smi_t intf; 922 923 /* 924 * There is no module usecount here, because it's not 925 * required. Since this can only be used by and called from 926 * other modules, they will implicitly use this module, and 927 * thus this can't be removed unless the other modules are 928 * removed. 929 */ 930 931 if (handler == NULL) 932 return -EINVAL; 933 934 /* 935 * Make sure the driver is actually initialized, this handles 936 * problems with initialization order. 937 */ 938 if (!initialized) { 939 rv = ipmi_init_msghandler(); 940 if (rv) 941 return rv; 942 943 /* 944 * The init code doesn't return an error if it was turned 945 * off, but it won't initialize. Check that. 946 */ 947 if (!initialized) 948 return -ENODEV; 949 } 950 951 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 952 if (!new_user) 953 return -ENOMEM; 954 955 mutex_lock(&ipmi_interfaces_mutex); 956 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 957 if (intf->intf_num == if_num) 958 goto found; 959 } 960 /* Not found, return an error */ 961 rv = -EINVAL; 962 goto out_kfree; 963 964 found: 965 /* Note that each existing user holds a refcount to the interface. */ 966 kref_get(&intf->refcount); 967 968 kref_init(&new_user->refcount); 969 new_user->handler = handler; 970 new_user->handler_data = handler_data; 971 new_user->intf = intf; 972 new_user->gets_events = false; 973 974 if (!try_module_get(intf->handlers->owner)) { 975 rv = -ENODEV; 976 goto out_kref; 977 } 978 979 if (intf->handlers->inc_usecount) { 980 rv = intf->handlers->inc_usecount(intf->send_info); 981 if (rv) { 982 module_put(intf->handlers->owner); 983 goto out_kref; 984 } 985 } 986 987 /* 988 * Hold the lock so intf->handlers is guaranteed to be good 989 * until now 990 */ 991 mutex_unlock(&ipmi_interfaces_mutex); 992 993 new_user->valid = true; 994 spin_lock_irqsave(&intf->seq_lock, flags); 995 list_add_rcu(&new_user->link, &intf->users); 996 spin_unlock_irqrestore(&intf->seq_lock, flags); 997 if (handler->ipmi_watchdog_pretimeout) { 998 /* User wants pretimeouts, so make sure to watch for them. */ 999 if (atomic_inc_return(&intf->event_waiters) == 1) 1000 need_waiter(intf); 1001 } 1002 *user = new_user; 1003 return 0; 1004 1005 out_kref: 1006 kref_put(&intf->refcount, intf_free); 1007 out_kfree: 1008 mutex_unlock(&ipmi_interfaces_mutex); 1009 kfree(new_user); 1010 return rv; 1011 } 1012 EXPORT_SYMBOL(ipmi_create_user); 1013 1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1015 { 1016 int rv = 0; 1017 ipmi_smi_t intf; 1018 struct ipmi_smi_handlers *handlers; 1019 1020 mutex_lock(&ipmi_interfaces_mutex); 1021 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1022 if (intf->intf_num == if_num) 1023 goto found; 1024 } 1025 /* Not found, return an error */ 1026 rv = -EINVAL; 1027 mutex_unlock(&ipmi_interfaces_mutex); 1028 return rv; 1029 1030 found: 1031 handlers = intf->handlers; 1032 rv = -ENOSYS; 1033 if (handlers->get_smi_info) 1034 rv = handlers->get_smi_info(intf->send_info, data); 1035 mutex_unlock(&ipmi_interfaces_mutex); 1036 1037 return rv; 1038 } 1039 EXPORT_SYMBOL(ipmi_get_smi_info); 1040 1041 static void free_user(struct kref *ref) 1042 { 1043 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1044 kfree(user); 1045 } 1046 1047 int ipmi_destroy_user(ipmi_user_t user) 1048 { 1049 ipmi_smi_t intf = user->intf; 1050 int i; 1051 unsigned long flags; 1052 struct cmd_rcvr *rcvr; 1053 struct cmd_rcvr *rcvrs = NULL; 1054 1055 user->valid = false; 1056 1057 if (user->handler->ipmi_watchdog_pretimeout) 1058 atomic_dec(&intf->event_waiters); 1059 1060 if (user->gets_events) 1061 atomic_dec(&intf->event_waiters); 1062 1063 /* Remove the user from the interface's sequence table. */ 1064 spin_lock_irqsave(&intf->seq_lock, flags); 1065 list_del_rcu(&user->link); 1066 1067 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1068 if (intf->seq_table[i].inuse 1069 && (intf->seq_table[i].recv_msg->user == user)) { 1070 intf->seq_table[i].inuse = 0; 1071 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1072 } 1073 } 1074 spin_unlock_irqrestore(&intf->seq_lock, flags); 1075 1076 /* 1077 * Remove the user from the command receiver's table. First 1078 * we build a list of everything (not using the standard link, 1079 * since other things may be using it till we do 1080 * synchronize_rcu()) then free everything in that list. 1081 */ 1082 mutex_lock(&intf->cmd_rcvrs_mutex); 1083 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1084 if (rcvr->user == user) { 1085 list_del_rcu(&rcvr->link); 1086 rcvr->next = rcvrs; 1087 rcvrs = rcvr; 1088 } 1089 } 1090 mutex_unlock(&intf->cmd_rcvrs_mutex); 1091 synchronize_rcu(); 1092 while (rcvrs) { 1093 rcvr = rcvrs; 1094 rcvrs = rcvr->next; 1095 kfree(rcvr); 1096 } 1097 1098 mutex_lock(&ipmi_interfaces_mutex); 1099 if (intf->handlers) { 1100 module_put(intf->handlers->owner); 1101 if (intf->handlers->dec_usecount) 1102 intf->handlers->dec_usecount(intf->send_info); 1103 } 1104 mutex_unlock(&ipmi_interfaces_mutex); 1105 1106 kref_put(&intf->refcount, intf_free); 1107 1108 kref_put(&user->refcount, free_user); 1109 1110 return 0; 1111 } 1112 EXPORT_SYMBOL(ipmi_destroy_user); 1113 1114 void ipmi_get_version(ipmi_user_t user, 1115 unsigned char *major, 1116 unsigned char *minor) 1117 { 1118 *major = user->intf->ipmi_version_major; 1119 *minor = user->intf->ipmi_version_minor; 1120 } 1121 EXPORT_SYMBOL(ipmi_get_version); 1122 1123 int ipmi_set_my_address(ipmi_user_t user, 1124 unsigned int channel, 1125 unsigned char address) 1126 { 1127 if (channel >= IPMI_MAX_CHANNELS) 1128 return -EINVAL; 1129 user->intf->channels[channel].address = address; 1130 return 0; 1131 } 1132 EXPORT_SYMBOL(ipmi_set_my_address); 1133 1134 int ipmi_get_my_address(ipmi_user_t user, 1135 unsigned int channel, 1136 unsigned char *address) 1137 { 1138 if (channel >= IPMI_MAX_CHANNELS) 1139 return -EINVAL; 1140 *address = user->intf->channels[channel].address; 1141 return 0; 1142 } 1143 EXPORT_SYMBOL(ipmi_get_my_address); 1144 1145 int ipmi_set_my_LUN(ipmi_user_t user, 1146 unsigned int channel, 1147 unsigned char LUN) 1148 { 1149 if (channel >= IPMI_MAX_CHANNELS) 1150 return -EINVAL; 1151 user->intf->channels[channel].lun = LUN & 0x3; 1152 return 0; 1153 } 1154 EXPORT_SYMBOL(ipmi_set_my_LUN); 1155 1156 int ipmi_get_my_LUN(ipmi_user_t user, 1157 unsigned int channel, 1158 unsigned char *address) 1159 { 1160 if (channel >= IPMI_MAX_CHANNELS) 1161 return -EINVAL; 1162 *address = user->intf->channels[channel].lun; 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(ipmi_get_my_LUN); 1166 1167 int ipmi_get_maintenance_mode(ipmi_user_t user) 1168 { 1169 int mode; 1170 unsigned long flags; 1171 1172 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1173 mode = user->intf->maintenance_mode; 1174 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1175 1176 return mode; 1177 } 1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1179 1180 static void maintenance_mode_update(ipmi_smi_t intf) 1181 { 1182 if (intf->handlers->set_maintenance_mode) 1183 intf->handlers->set_maintenance_mode( 1184 intf->send_info, intf->maintenance_mode_enable); 1185 } 1186 1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1188 { 1189 int rv = 0; 1190 unsigned long flags; 1191 ipmi_smi_t intf = user->intf; 1192 1193 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1194 if (intf->maintenance_mode != mode) { 1195 switch (mode) { 1196 case IPMI_MAINTENANCE_MODE_AUTO: 1197 intf->maintenance_mode_enable 1198 = (intf->auto_maintenance_timeout > 0); 1199 break; 1200 1201 case IPMI_MAINTENANCE_MODE_OFF: 1202 intf->maintenance_mode_enable = false; 1203 break; 1204 1205 case IPMI_MAINTENANCE_MODE_ON: 1206 intf->maintenance_mode_enable = true; 1207 break; 1208 1209 default: 1210 rv = -EINVAL; 1211 goto out_unlock; 1212 } 1213 intf->maintenance_mode = mode; 1214 1215 maintenance_mode_update(intf); 1216 } 1217 out_unlock: 1218 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1219 1220 return rv; 1221 } 1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1223 1224 int ipmi_set_gets_events(ipmi_user_t user, bool val) 1225 { 1226 unsigned long flags; 1227 ipmi_smi_t intf = user->intf; 1228 struct ipmi_recv_msg *msg, *msg2; 1229 struct list_head msgs; 1230 1231 INIT_LIST_HEAD(&msgs); 1232 1233 spin_lock_irqsave(&intf->events_lock, flags); 1234 if (user->gets_events == val) 1235 goto out; 1236 1237 user->gets_events = val; 1238 1239 if (val) { 1240 if (atomic_inc_return(&intf->event_waiters) == 1) 1241 need_waiter(intf); 1242 } else { 1243 atomic_dec(&intf->event_waiters); 1244 } 1245 1246 if (intf->delivering_events) 1247 /* 1248 * Another thread is delivering events for this, so 1249 * let it handle any new events. 1250 */ 1251 goto out; 1252 1253 /* Deliver any queued events. */ 1254 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1255 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1256 list_move_tail(&msg->link, &msgs); 1257 intf->waiting_events_count = 0; 1258 if (intf->event_msg_printed) { 1259 printk(KERN_WARNING PFX "Event queue no longer" 1260 " full\n"); 1261 intf->event_msg_printed = 0; 1262 } 1263 1264 intf->delivering_events = 1; 1265 spin_unlock_irqrestore(&intf->events_lock, flags); 1266 1267 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1268 msg->user = user; 1269 kref_get(&user->refcount); 1270 deliver_response(msg); 1271 } 1272 1273 spin_lock_irqsave(&intf->events_lock, flags); 1274 intf->delivering_events = 0; 1275 } 1276 1277 out: 1278 spin_unlock_irqrestore(&intf->events_lock, flags); 1279 1280 return 0; 1281 } 1282 EXPORT_SYMBOL(ipmi_set_gets_events); 1283 1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1285 unsigned char netfn, 1286 unsigned char cmd, 1287 unsigned char chan) 1288 { 1289 struct cmd_rcvr *rcvr; 1290 1291 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1292 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1293 && (rcvr->chans & (1 << chan))) 1294 return rcvr; 1295 } 1296 return NULL; 1297 } 1298 1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1300 unsigned char netfn, 1301 unsigned char cmd, 1302 unsigned int chans) 1303 { 1304 struct cmd_rcvr *rcvr; 1305 1306 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1307 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1308 && (rcvr->chans & chans)) 1309 return 0; 1310 } 1311 return 1; 1312 } 1313 1314 int ipmi_register_for_cmd(ipmi_user_t user, 1315 unsigned char netfn, 1316 unsigned char cmd, 1317 unsigned int chans) 1318 { 1319 ipmi_smi_t intf = user->intf; 1320 struct cmd_rcvr *rcvr; 1321 int rv = 0; 1322 1323 1324 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1325 if (!rcvr) 1326 return -ENOMEM; 1327 rcvr->cmd = cmd; 1328 rcvr->netfn = netfn; 1329 rcvr->chans = chans; 1330 rcvr->user = user; 1331 1332 mutex_lock(&intf->cmd_rcvrs_mutex); 1333 /* Make sure the command/netfn is not already registered. */ 1334 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1335 rv = -EBUSY; 1336 goto out_unlock; 1337 } 1338 1339 if (atomic_inc_return(&intf->event_waiters) == 1) 1340 need_waiter(intf); 1341 1342 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1343 1344 out_unlock: 1345 mutex_unlock(&intf->cmd_rcvrs_mutex); 1346 if (rv) 1347 kfree(rcvr); 1348 1349 return rv; 1350 } 1351 EXPORT_SYMBOL(ipmi_register_for_cmd); 1352 1353 int ipmi_unregister_for_cmd(ipmi_user_t user, 1354 unsigned char netfn, 1355 unsigned char cmd, 1356 unsigned int chans) 1357 { 1358 ipmi_smi_t intf = user->intf; 1359 struct cmd_rcvr *rcvr; 1360 struct cmd_rcvr *rcvrs = NULL; 1361 int i, rv = -ENOENT; 1362 1363 mutex_lock(&intf->cmd_rcvrs_mutex); 1364 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1365 if (((1 << i) & chans) == 0) 1366 continue; 1367 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1368 if (rcvr == NULL) 1369 continue; 1370 if (rcvr->user == user) { 1371 rv = 0; 1372 rcvr->chans &= ~chans; 1373 if (rcvr->chans == 0) { 1374 list_del_rcu(&rcvr->link); 1375 rcvr->next = rcvrs; 1376 rcvrs = rcvr; 1377 } 1378 } 1379 } 1380 mutex_unlock(&intf->cmd_rcvrs_mutex); 1381 synchronize_rcu(); 1382 while (rcvrs) { 1383 atomic_dec(&intf->event_waiters); 1384 rcvr = rcvrs; 1385 rcvrs = rcvr->next; 1386 kfree(rcvr); 1387 } 1388 return rv; 1389 } 1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1391 1392 static unsigned char 1393 ipmb_checksum(unsigned char *data, int size) 1394 { 1395 unsigned char csum = 0; 1396 1397 for (; size > 0; size--, data++) 1398 csum += *data; 1399 1400 return -csum; 1401 } 1402 1403 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1404 struct kernel_ipmi_msg *msg, 1405 struct ipmi_ipmb_addr *ipmb_addr, 1406 long msgid, 1407 unsigned char ipmb_seq, 1408 int broadcast, 1409 unsigned char source_address, 1410 unsigned char source_lun) 1411 { 1412 int i = broadcast; 1413 1414 /* Format the IPMB header data. */ 1415 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1416 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1417 smi_msg->data[2] = ipmb_addr->channel; 1418 if (broadcast) 1419 smi_msg->data[3] = 0; 1420 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1421 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1422 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1423 smi_msg->data[i+6] = source_address; 1424 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1425 smi_msg->data[i+8] = msg->cmd; 1426 1427 /* Now tack on the data to the message. */ 1428 if (msg->data_len > 0) 1429 memcpy(&(smi_msg->data[i+9]), msg->data, 1430 msg->data_len); 1431 smi_msg->data_size = msg->data_len + 9; 1432 1433 /* Now calculate the checksum and tack it on. */ 1434 smi_msg->data[i+smi_msg->data_size] 1435 = ipmb_checksum(&(smi_msg->data[i+6]), 1436 smi_msg->data_size-6); 1437 1438 /* 1439 * Add on the checksum size and the offset from the 1440 * broadcast. 1441 */ 1442 smi_msg->data_size += 1 + i; 1443 1444 smi_msg->msgid = msgid; 1445 } 1446 1447 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1448 struct kernel_ipmi_msg *msg, 1449 struct ipmi_lan_addr *lan_addr, 1450 long msgid, 1451 unsigned char ipmb_seq, 1452 unsigned char source_lun) 1453 { 1454 /* Format the IPMB header data. */ 1455 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1456 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1457 smi_msg->data[2] = lan_addr->channel; 1458 smi_msg->data[3] = lan_addr->session_handle; 1459 smi_msg->data[4] = lan_addr->remote_SWID; 1460 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1461 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1462 smi_msg->data[7] = lan_addr->local_SWID; 1463 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1464 smi_msg->data[9] = msg->cmd; 1465 1466 /* Now tack on the data to the message. */ 1467 if (msg->data_len > 0) 1468 memcpy(&(smi_msg->data[10]), msg->data, 1469 msg->data_len); 1470 smi_msg->data_size = msg->data_len + 10; 1471 1472 /* Now calculate the checksum and tack it on. */ 1473 smi_msg->data[smi_msg->data_size] 1474 = ipmb_checksum(&(smi_msg->data[7]), 1475 smi_msg->data_size-7); 1476 1477 /* 1478 * Add on the checksum size and the offset from the 1479 * broadcast. 1480 */ 1481 smi_msg->data_size += 1; 1482 1483 smi_msg->msgid = msgid; 1484 } 1485 1486 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf, 1487 struct ipmi_smi_msg *smi_msg, 1488 int priority) 1489 { 1490 if (intf->curr_msg) { 1491 if (priority > 0) 1492 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1493 else 1494 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1495 smi_msg = NULL; 1496 } else { 1497 intf->curr_msg = smi_msg; 1498 } 1499 1500 return smi_msg; 1501 } 1502 1503 1504 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers, 1505 struct ipmi_smi_msg *smi_msg, int priority) 1506 { 1507 int run_to_completion = intf->run_to_completion; 1508 1509 if (run_to_completion) { 1510 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1511 } else { 1512 unsigned long flags; 1513 1514 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1515 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1516 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1517 } 1518 1519 if (smi_msg) 1520 handlers->sender(intf->send_info, smi_msg); 1521 } 1522 1523 /* 1524 * Separate from ipmi_request so that the user does not have to be 1525 * supplied in certain circumstances (mainly at panic time). If 1526 * messages are supplied, they will be freed, even if an error 1527 * occurs. 1528 */ 1529 static int i_ipmi_request(ipmi_user_t user, 1530 ipmi_smi_t intf, 1531 struct ipmi_addr *addr, 1532 long msgid, 1533 struct kernel_ipmi_msg *msg, 1534 void *user_msg_data, 1535 void *supplied_smi, 1536 struct ipmi_recv_msg *supplied_recv, 1537 int priority, 1538 unsigned char source_address, 1539 unsigned char source_lun, 1540 int retries, 1541 unsigned int retry_time_ms) 1542 { 1543 int rv = 0; 1544 struct ipmi_smi_msg *smi_msg; 1545 struct ipmi_recv_msg *recv_msg; 1546 unsigned long flags; 1547 1548 1549 if (supplied_recv) 1550 recv_msg = supplied_recv; 1551 else { 1552 recv_msg = ipmi_alloc_recv_msg(); 1553 if (recv_msg == NULL) 1554 return -ENOMEM; 1555 } 1556 recv_msg->user_msg_data = user_msg_data; 1557 1558 if (supplied_smi) 1559 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1560 else { 1561 smi_msg = ipmi_alloc_smi_msg(); 1562 if (smi_msg == NULL) { 1563 ipmi_free_recv_msg(recv_msg); 1564 return -ENOMEM; 1565 } 1566 } 1567 1568 rcu_read_lock(); 1569 if (intf->in_shutdown) { 1570 rv = -ENODEV; 1571 goto out_err; 1572 } 1573 1574 recv_msg->user = user; 1575 if (user) 1576 kref_get(&user->refcount); 1577 recv_msg->msgid = msgid; 1578 /* 1579 * Store the message to send in the receive message so timeout 1580 * responses can get the proper response data. 1581 */ 1582 recv_msg->msg = *msg; 1583 1584 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1585 struct ipmi_system_interface_addr *smi_addr; 1586 1587 if (msg->netfn & 1) { 1588 /* Responses are not allowed to the SMI. */ 1589 rv = -EINVAL; 1590 goto out_err; 1591 } 1592 1593 smi_addr = (struct ipmi_system_interface_addr *) addr; 1594 if (smi_addr->lun > 3) { 1595 ipmi_inc_stat(intf, sent_invalid_commands); 1596 rv = -EINVAL; 1597 goto out_err; 1598 } 1599 1600 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1601 1602 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1603 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1604 || (msg->cmd == IPMI_GET_MSG_CMD) 1605 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1606 /* 1607 * We don't let the user do these, since we manage 1608 * the sequence numbers. 1609 */ 1610 ipmi_inc_stat(intf, sent_invalid_commands); 1611 rv = -EINVAL; 1612 goto out_err; 1613 } 1614 1615 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1616 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1617 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1618 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1619 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1620 intf->auto_maintenance_timeout 1621 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1622 if (!intf->maintenance_mode 1623 && !intf->maintenance_mode_enable) { 1624 intf->maintenance_mode_enable = true; 1625 maintenance_mode_update(intf); 1626 } 1627 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1628 flags); 1629 } 1630 1631 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1632 ipmi_inc_stat(intf, sent_invalid_commands); 1633 rv = -EMSGSIZE; 1634 goto out_err; 1635 } 1636 1637 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1638 smi_msg->data[1] = msg->cmd; 1639 smi_msg->msgid = msgid; 1640 smi_msg->user_data = recv_msg; 1641 if (msg->data_len > 0) 1642 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1643 smi_msg->data_size = msg->data_len + 2; 1644 ipmi_inc_stat(intf, sent_local_commands); 1645 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1646 struct ipmi_ipmb_addr *ipmb_addr; 1647 unsigned char ipmb_seq; 1648 long seqid; 1649 int broadcast = 0; 1650 1651 if (addr->channel >= IPMI_MAX_CHANNELS) { 1652 ipmi_inc_stat(intf, sent_invalid_commands); 1653 rv = -EINVAL; 1654 goto out_err; 1655 } 1656 1657 if (intf->channels[addr->channel].medium 1658 != IPMI_CHANNEL_MEDIUM_IPMB) { 1659 ipmi_inc_stat(intf, sent_invalid_commands); 1660 rv = -EINVAL; 1661 goto out_err; 1662 } 1663 1664 if (retries < 0) { 1665 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1666 retries = 0; /* Don't retry broadcasts. */ 1667 else 1668 retries = 4; 1669 } 1670 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1671 /* 1672 * Broadcasts add a zero at the beginning of the 1673 * message, but otherwise is the same as an IPMB 1674 * address. 1675 */ 1676 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1677 broadcast = 1; 1678 } 1679 1680 1681 /* Default to 1 second retries. */ 1682 if (retry_time_ms == 0) 1683 retry_time_ms = 1000; 1684 1685 /* 1686 * 9 for the header and 1 for the checksum, plus 1687 * possibly one for the broadcast. 1688 */ 1689 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1690 ipmi_inc_stat(intf, sent_invalid_commands); 1691 rv = -EMSGSIZE; 1692 goto out_err; 1693 } 1694 1695 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1696 if (ipmb_addr->lun > 3) { 1697 ipmi_inc_stat(intf, sent_invalid_commands); 1698 rv = -EINVAL; 1699 goto out_err; 1700 } 1701 1702 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1703 1704 if (recv_msg->msg.netfn & 0x1) { 1705 /* 1706 * It's a response, so use the user's sequence 1707 * from msgid. 1708 */ 1709 ipmi_inc_stat(intf, sent_ipmb_responses); 1710 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1711 msgid, broadcast, 1712 source_address, source_lun); 1713 1714 /* 1715 * Save the receive message so we can use it 1716 * to deliver the response. 1717 */ 1718 smi_msg->user_data = recv_msg; 1719 } else { 1720 /* It's a command, so get a sequence for it. */ 1721 1722 spin_lock_irqsave(&(intf->seq_lock), flags); 1723 1724 /* 1725 * Create a sequence number with a 1 second 1726 * timeout and 4 retries. 1727 */ 1728 rv = intf_next_seq(intf, 1729 recv_msg, 1730 retry_time_ms, 1731 retries, 1732 broadcast, 1733 &ipmb_seq, 1734 &seqid); 1735 if (rv) { 1736 /* 1737 * We have used up all the sequence numbers, 1738 * probably, so abort. 1739 */ 1740 spin_unlock_irqrestore(&(intf->seq_lock), 1741 flags); 1742 goto out_err; 1743 } 1744 1745 ipmi_inc_stat(intf, sent_ipmb_commands); 1746 1747 /* 1748 * Store the sequence number in the message, 1749 * so that when the send message response 1750 * comes back we can start the timer. 1751 */ 1752 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1753 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1754 ipmb_seq, broadcast, 1755 source_address, source_lun); 1756 1757 /* 1758 * Copy the message into the recv message data, so we 1759 * can retransmit it later if necessary. 1760 */ 1761 memcpy(recv_msg->msg_data, smi_msg->data, 1762 smi_msg->data_size); 1763 recv_msg->msg.data = recv_msg->msg_data; 1764 recv_msg->msg.data_len = smi_msg->data_size; 1765 1766 /* 1767 * We don't unlock until here, because we need 1768 * to copy the completed message into the 1769 * recv_msg before we release the lock. 1770 * Otherwise, race conditions may bite us. I 1771 * know that's pretty paranoid, but I prefer 1772 * to be correct. 1773 */ 1774 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1775 } 1776 } else if (is_lan_addr(addr)) { 1777 struct ipmi_lan_addr *lan_addr; 1778 unsigned char ipmb_seq; 1779 long seqid; 1780 1781 if (addr->channel >= IPMI_MAX_CHANNELS) { 1782 ipmi_inc_stat(intf, sent_invalid_commands); 1783 rv = -EINVAL; 1784 goto out_err; 1785 } 1786 1787 if ((intf->channels[addr->channel].medium 1788 != IPMI_CHANNEL_MEDIUM_8023LAN) 1789 && (intf->channels[addr->channel].medium 1790 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1791 ipmi_inc_stat(intf, sent_invalid_commands); 1792 rv = -EINVAL; 1793 goto out_err; 1794 } 1795 1796 retries = 4; 1797 1798 /* Default to 1 second retries. */ 1799 if (retry_time_ms == 0) 1800 retry_time_ms = 1000; 1801 1802 /* 11 for the header and 1 for the checksum. */ 1803 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1804 ipmi_inc_stat(intf, sent_invalid_commands); 1805 rv = -EMSGSIZE; 1806 goto out_err; 1807 } 1808 1809 lan_addr = (struct ipmi_lan_addr *) addr; 1810 if (lan_addr->lun > 3) { 1811 ipmi_inc_stat(intf, sent_invalid_commands); 1812 rv = -EINVAL; 1813 goto out_err; 1814 } 1815 1816 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1817 1818 if (recv_msg->msg.netfn & 0x1) { 1819 /* 1820 * It's a response, so use the user's sequence 1821 * from msgid. 1822 */ 1823 ipmi_inc_stat(intf, sent_lan_responses); 1824 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1825 msgid, source_lun); 1826 1827 /* 1828 * Save the receive message so we can use it 1829 * to deliver the response. 1830 */ 1831 smi_msg->user_data = recv_msg; 1832 } else { 1833 /* It's a command, so get a sequence for it. */ 1834 1835 spin_lock_irqsave(&(intf->seq_lock), flags); 1836 1837 /* 1838 * Create a sequence number with a 1 second 1839 * timeout and 4 retries. 1840 */ 1841 rv = intf_next_seq(intf, 1842 recv_msg, 1843 retry_time_ms, 1844 retries, 1845 0, 1846 &ipmb_seq, 1847 &seqid); 1848 if (rv) { 1849 /* 1850 * We have used up all the sequence numbers, 1851 * probably, so abort. 1852 */ 1853 spin_unlock_irqrestore(&(intf->seq_lock), 1854 flags); 1855 goto out_err; 1856 } 1857 1858 ipmi_inc_stat(intf, sent_lan_commands); 1859 1860 /* 1861 * Store the sequence number in the message, 1862 * so that when the send message response 1863 * comes back we can start the timer. 1864 */ 1865 format_lan_msg(smi_msg, msg, lan_addr, 1866 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1867 ipmb_seq, source_lun); 1868 1869 /* 1870 * Copy the message into the recv message data, so we 1871 * can retransmit it later if necessary. 1872 */ 1873 memcpy(recv_msg->msg_data, smi_msg->data, 1874 smi_msg->data_size); 1875 recv_msg->msg.data = recv_msg->msg_data; 1876 recv_msg->msg.data_len = smi_msg->data_size; 1877 1878 /* 1879 * We don't unlock until here, because we need 1880 * to copy the completed message into the 1881 * recv_msg before we release the lock. 1882 * Otherwise, race conditions may bite us. I 1883 * know that's pretty paranoid, but I prefer 1884 * to be correct. 1885 */ 1886 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1887 } 1888 } else { 1889 /* Unknown address type. */ 1890 ipmi_inc_stat(intf, sent_invalid_commands); 1891 rv = -EINVAL; 1892 goto out_err; 1893 } 1894 1895 #ifdef DEBUG_MSGING 1896 { 1897 int m; 1898 for (m = 0; m < smi_msg->data_size; m++) 1899 printk(" %2.2x", smi_msg->data[m]); 1900 printk("\n"); 1901 } 1902 #endif 1903 1904 smi_send(intf, intf->handlers, smi_msg, priority); 1905 rcu_read_unlock(); 1906 1907 return 0; 1908 1909 out_err: 1910 rcu_read_unlock(); 1911 ipmi_free_smi_msg(smi_msg); 1912 ipmi_free_recv_msg(recv_msg); 1913 return rv; 1914 } 1915 1916 static int check_addr(ipmi_smi_t intf, 1917 struct ipmi_addr *addr, 1918 unsigned char *saddr, 1919 unsigned char *lun) 1920 { 1921 if (addr->channel >= IPMI_MAX_CHANNELS) 1922 return -EINVAL; 1923 *lun = intf->channels[addr->channel].lun; 1924 *saddr = intf->channels[addr->channel].address; 1925 return 0; 1926 } 1927 1928 int ipmi_request_settime(ipmi_user_t user, 1929 struct ipmi_addr *addr, 1930 long msgid, 1931 struct kernel_ipmi_msg *msg, 1932 void *user_msg_data, 1933 int priority, 1934 int retries, 1935 unsigned int retry_time_ms) 1936 { 1937 unsigned char saddr = 0, lun = 0; 1938 int rv; 1939 1940 if (!user) 1941 return -EINVAL; 1942 rv = check_addr(user->intf, addr, &saddr, &lun); 1943 if (rv) 1944 return rv; 1945 return i_ipmi_request(user, 1946 user->intf, 1947 addr, 1948 msgid, 1949 msg, 1950 user_msg_data, 1951 NULL, NULL, 1952 priority, 1953 saddr, 1954 lun, 1955 retries, 1956 retry_time_ms); 1957 } 1958 EXPORT_SYMBOL(ipmi_request_settime); 1959 1960 int ipmi_request_supply_msgs(ipmi_user_t user, 1961 struct ipmi_addr *addr, 1962 long msgid, 1963 struct kernel_ipmi_msg *msg, 1964 void *user_msg_data, 1965 void *supplied_smi, 1966 struct ipmi_recv_msg *supplied_recv, 1967 int priority) 1968 { 1969 unsigned char saddr = 0, lun = 0; 1970 int rv; 1971 1972 if (!user) 1973 return -EINVAL; 1974 rv = check_addr(user->intf, addr, &saddr, &lun); 1975 if (rv) 1976 return rv; 1977 return i_ipmi_request(user, 1978 user->intf, 1979 addr, 1980 msgid, 1981 msg, 1982 user_msg_data, 1983 supplied_smi, 1984 supplied_recv, 1985 priority, 1986 saddr, 1987 lun, 1988 -1, 0); 1989 } 1990 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1991 1992 #ifdef CONFIG_PROC_FS 1993 static int smi_ipmb_proc_show(struct seq_file *m, void *v) 1994 { 1995 ipmi_smi_t intf = m->private; 1996 int i; 1997 1998 seq_printf(m, "%x", intf->channels[0].address); 1999 for (i = 1; i < IPMI_MAX_CHANNELS; i++) 2000 seq_printf(m, " %x", intf->channels[i].address); 2001 seq_putc(m, '\n'); 2002 2003 return seq_has_overflowed(m); 2004 } 2005 2006 static int smi_ipmb_proc_open(struct inode *inode, struct file *file) 2007 { 2008 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode)); 2009 } 2010 2011 static const struct file_operations smi_ipmb_proc_ops = { 2012 .open = smi_ipmb_proc_open, 2013 .read = seq_read, 2014 .llseek = seq_lseek, 2015 .release = single_release, 2016 }; 2017 2018 static int smi_version_proc_show(struct seq_file *m, void *v) 2019 { 2020 ipmi_smi_t intf = m->private; 2021 2022 seq_printf(m, "%u.%u\n", 2023 ipmi_version_major(&intf->bmc->id), 2024 ipmi_version_minor(&intf->bmc->id)); 2025 2026 return seq_has_overflowed(m); 2027 } 2028 2029 static int smi_version_proc_open(struct inode *inode, struct file *file) 2030 { 2031 return single_open(file, smi_version_proc_show, PDE_DATA(inode)); 2032 } 2033 2034 static const struct file_operations smi_version_proc_ops = { 2035 .open = smi_version_proc_open, 2036 .read = seq_read, 2037 .llseek = seq_lseek, 2038 .release = single_release, 2039 }; 2040 2041 static int smi_stats_proc_show(struct seq_file *m, void *v) 2042 { 2043 ipmi_smi_t intf = m->private; 2044 2045 seq_printf(m, "sent_invalid_commands: %u\n", 2046 ipmi_get_stat(intf, sent_invalid_commands)); 2047 seq_printf(m, "sent_local_commands: %u\n", 2048 ipmi_get_stat(intf, sent_local_commands)); 2049 seq_printf(m, "handled_local_responses: %u\n", 2050 ipmi_get_stat(intf, handled_local_responses)); 2051 seq_printf(m, "unhandled_local_responses: %u\n", 2052 ipmi_get_stat(intf, unhandled_local_responses)); 2053 seq_printf(m, "sent_ipmb_commands: %u\n", 2054 ipmi_get_stat(intf, sent_ipmb_commands)); 2055 seq_printf(m, "sent_ipmb_command_errs: %u\n", 2056 ipmi_get_stat(intf, sent_ipmb_command_errs)); 2057 seq_printf(m, "retransmitted_ipmb_commands: %u\n", 2058 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 2059 seq_printf(m, "timed_out_ipmb_commands: %u\n", 2060 ipmi_get_stat(intf, timed_out_ipmb_commands)); 2061 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n", 2062 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 2063 seq_printf(m, "sent_ipmb_responses: %u\n", 2064 ipmi_get_stat(intf, sent_ipmb_responses)); 2065 seq_printf(m, "handled_ipmb_responses: %u\n", 2066 ipmi_get_stat(intf, handled_ipmb_responses)); 2067 seq_printf(m, "invalid_ipmb_responses: %u\n", 2068 ipmi_get_stat(intf, invalid_ipmb_responses)); 2069 seq_printf(m, "unhandled_ipmb_responses: %u\n", 2070 ipmi_get_stat(intf, unhandled_ipmb_responses)); 2071 seq_printf(m, "sent_lan_commands: %u\n", 2072 ipmi_get_stat(intf, sent_lan_commands)); 2073 seq_printf(m, "sent_lan_command_errs: %u\n", 2074 ipmi_get_stat(intf, sent_lan_command_errs)); 2075 seq_printf(m, "retransmitted_lan_commands: %u\n", 2076 ipmi_get_stat(intf, retransmitted_lan_commands)); 2077 seq_printf(m, "timed_out_lan_commands: %u\n", 2078 ipmi_get_stat(intf, timed_out_lan_commands)); 2079 seq_printf(m, "sent_lan_responses: %u\n", 2080 ipmi_get_stat(intf, sent_lan_responses)); 2081 seq_printf(m, "handled_lan_responses: %u\n", 2082 ipmi_get_stat(intf, handled_lan_responses)); 2083 seq_printf(m, "invalid_lan_responses: %u\n", 2084 ipmi_get_stat(intf, invalid_lan_responses)); 2085 seq_printf(m, "unhandled_lan_responses: %u\n", 2086 ipmi_get_stat(intf, unhandled_lan_responses)); 2087 seq_printf(m, "handled_commands: %u\n", 2088 ipmi_get_stat(intf, handled_commands)); 2089 seq_printf(m, "invalid_commands: %u\n", 2090 ipmi_get_stat(intf, invalid_commands)); 2091 seq_printf(m, "unhandled_commands: %u\n", 2092 ipmi_get_stat(intf, unhandled_commands)); 2093 seq_printf(m, "invalid_events: %u\n", 2094 ipmi_get_stat(intf, invalid_events)); 2095 seq_printf(m, "events: %u\n", 2096 ipmi_get_stat(intf, events)); 2097 seq_printf(m, "failed rexmit LAN msgs: %u\n", 2098 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 2099 seq_printf(m, "failed rexmit IPMB msgs: %u\n", 2100 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 2101 return 0; 2102 } 2103 2104 static int smi_stats_proc_open(struct inode *inode, struct file *file) 2105 { 2106 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 2107 } 2108 2109 static const struct file_operations smi_stats_proc_ops = { 2110 .open = smi_stats_proc_open, 2111 .read = seq_read, 2112 .llseek = seq_lseek, 2113 .release = single_release, 2114 }; 2115 #endif /* CONFIG_PROC_FS */ 2116 2117 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 2118 const struct file_operations *proc_ops, 2119 void *data) 2120 { 2121 int rv = 0; 2122 #ifdef CONFIG_PROC_FS 2123 struct proc_dir_entry *file; 2124 struct ipmi_proc_entry *entry; 2125 2126 /* Create a list element. */ 2127 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2128 if (!entry) 2129 return -ENOMEM; 2130 entry->name = kstrdup(name, GFP_KERNEL); 2131 if (!entry->name) { 2132 kfree(entry); 2133 return -ENOMEM; 2134 } 2135 2136 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data); 2137 if (!file) { 2138 kfree(entry->name); 2139 kfree(entry); 2140 rv = -ENOMEM; 2141 } else { 2142 mutex_lock(&smi->proc_entry_lock); 2143 /* Stick it on the list. */ 2144 entry->next = smi->proc_entries; 2145 smi->proc_entries = entry; 2146 mutex_unlock(&smi->proc_entry_lock); 2147 } 2148 #endif /* CONFIG_PROC_FS */ 2149 2150 return rv; 2151 } 2152 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2153 2154 static int add_proc_entries(ipmi_smi_t smi, int num) 2155 { 2156 int rv = 0; 2157 2158 #ifdef CONFIG_PROC_FS 2159 sprintf(smi->proc_dir_name, "%d", num); 2160 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2161 if (!smi->proc_dir) 2162 rv = -ENOMEM; 2163 2164 if (rv == 0) 2165 rv = ipmi_smi_add_proc_entry(smi, "stats", 2166 &smi_stats_proc_ops, 2167 smi); 2168 2169 if (rv == 0) 2170 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2171 &smi_ipmb_proc_ops, 2172 smi); 2173 2174 if (rv == 0) 2175 rv = ipmi_smi_add_proc_entry(smi, "version", 2176 &smi_version_proc_ops, 2177 smi); 2178 #endif /* CONFIG_PROC_FS */ 2179 2180 return rv; 2181 } 2182 2183 static void remove_proc_entries(ipmi_smi_t smi) 2184 { 2185 #ifdef CONFIG_PROC_FS 2186 struct ipmi_proc_entry *entry; 2187 2188 mutex_lock(&smi->proc_entry_lock); 2189 while (smi->proc_entries) { 2190 entry = smi->proc_entries; 2191 smi->proc_entries = entry->next; 2192 2193 remove_proc_entry(entry->name, smi->proc_dir); 2194 kfree(entry->name); 2195 kfree(entry); 2196 } 2197 mutex_unlock(&smi->proc_entry_lock); 2198 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2199 #endif /* CONFIG_PROC_FS */ 2200 } 2201 2202 static int __find_bmc_guid(struct device *dev, void *data) 2203 { 2204 unsigned char *id = data; 2205 struct bmc_device *bmc = to_bmc_device(dev); 2206 return memcmp(bmc->guid, id, 16) == 0; 2207 } 2208 2209 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2210 unsigned char *guid) 2211 { 2212 struct device *dev; 2213 2214 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2215 if (dev) 2216 return to_bmc_device(dev); 2217 else 2218 return NULL; 2219 } 2220 2221 struct prod_dev_id { 2222 unsigned int product_id; 2223 unsigned char device_id; 2224 }; 2225 2226 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2227 { 2228 struct prod_dev_id *id = data; 2229 struct bmc_device *bmc = to_bmc_device(dev); 2230 2231 return (bmc->id.product_id == id->product_id 2232 && bmc->id.device_id == id->device_id); 2233 } 2234 2235 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2236 struct device_driver *drv, 2237 unsigned int product_id, unsigned char device_id) 2238 { 2239 struct prod_dev_id id = { 2240 .product_id = product_id, 2241 .device_id = device_id, 2242 }; 2243 struct device *dev; 2244 2245 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2246 if (dev) 2247 return to_bmc_device(dev); 2248 else 2249 return NULL; 2250 } 2251 2252 static ssize_t device_id_show(struct device *dev, 2253 struct device_attribute *attr, 2254 char *buf) 2255 { 2256 struct bmc_device *bmc = to_bmc_device(dev); 2257 2258 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2259 } 2260 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL); 2261 2262 static ssize_t provides_device_sdrs_show(struct device *dev, 2263 struct device_attribute *attr, 2264 char *buf) 2265 { 2266 struct bmc_device *bmc = to_bmc_device(dev); 2267 2268 return snprintf(buf, 10, "%u\n", 2269 (bmc->id.device_revision & 0x80) >> 7); 2270 } 2271 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show, 2272 NULL); 2273 2274 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2275 char *buf) 2276 { 2277 struct bmc_device *bmc = to_bmc_device(dev); 2278 2279 return snprintf(buf, 20, "%u\n", 2280 bmc->id.device_revision & 0x0F); 2281 } 2282 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL); 2283 2284 static ssize_t firmware_revision_show(struct device *dev, 2285 struct device_attribute *attr, 2286 char *buf) 2287 { 2288 struct bmc_device *bmc = to_bmc_device(dev); 2289 2290 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2291 bmc->id.firmware_revision_2); 2292 } 2293 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL); 2294 2295 static ssize_t ipmi_version_show(struct device *dev, 2296 struct device_attribute *attr, 2297 char *buf) 2298 { 2299 struct bmc_device *bmc = to_bmc_device(dev); 2300 2301 return snprintf(buf, 20, "%u.%u\n", 2302 ipmi_version_major(&bmc->id), 2303 ipmi_version_minor(&bmc->id)); 2304 } 2305 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL); 2306 2307 static ssize_t add_dev_support_show(struct device *dev, 2308 struct device_attribute *attr, 2309 char *buf) 2310 { 2311 struct bmc_device *bmc = to_bmc_device(dev); 2312 2313 return snprintf(buf, 10, "0x%02x\n", 2314 bmc->id.additional_device_support); 2315 } 2316 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2317 NULL); 2318 2319 static ssize_t manufacturer_id_show(struct device *dev, 2320 struct device_attribute *attr, 2321 char *buf) 2322 { 2323 struct bmc_device *bmc = to_bmc_device(dev); 2324 2325 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2326 } 2327 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL); 2328 2329 static ssize_t product_id_show(struct device *dev, 2330 struct device_attribute *attr, 2331 char *buf) 2332 { 2333 struct bmc_device *bmc = to_bmc_device(dev); 2334 2335 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2336 } 2337 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL); 2338 2339 static ssize_t aux_firmware_rev_show(struct device *dev, 2340 struct device_attribute *attr, 2341 char *buf) 2342 { 2343 struct bmc_device *bmc = to_bmc_device(dev); 2344 2345 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2346 bmc->id.aux_firmware_revision[3], 2347 bmc->id.aux_firmware_revision[2], 2348 bmc->id.aux_firmware_revision[1], 2349 bmc->id.aux_firmware_revision[0]); 2350 } 2351 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2352 2353 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2354 char *buf) 2355 { 2356 struct bmc_device *bmc = to_bmc_device(dev); 2357 2358 return snprintf(buf, 100, "%Lx%Lx\n", 2359 (long long) bmc->guid[0], 2360 (long long) bmc->guid[8]); 2361 } 2362 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL); 2363 2364 static struct attribute *bmc_dev_attrs[] = { 2365 &dev_attr_device_id.attr, 2366 &dev_attr_provides_device_sdrs.attr, 2367 &dev_attr_revision.attr, 2368 &dev_attr_firmware_revision.attr, 2369 &dev_attr_ipmi_version.attr, 2370 &dev_attr_additional_device_support.attr, 2371 &dev_attr_manufacturer_id.attr, 2372 &dev_attr_product_id.attr, 2373 &dev_attr_aux_firmware_revision.attr, 2374 &dev_attr_guid.attr, 2375 NULL 2376 }; 2377 2378 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2379 struct attribute *attr, int idx) 2380 { 2381 struct device *dev = kobj_to_dev(kobj); 2382 struct bmc_device *bmc = to_bmc_device(dev); 2383 umode_t mode = attr->mode; 2384 2385 if (attr == &dev_attr_aux_firmware_revision.attr) 2386 return bmc->id.aux_firmware_revision_set ? mode : 0; 2387 if (attr == &dev_attr_guid.attr) 2388 return bmc->guid_set ? mode : 0; 2389 return mode; 2390 } 2391 2392 static struct attribute_group bmc_dev_attr_group = { 2393 .attrs = bmc_dev_attrs, 2394 .is_visible = bmc_dev_attr_is_visible, 2395 }; 2396 2397 static const struct attribute_group *bmc_dev_attr_groups[] = { 2398 &bmc_dev_attr_group, 2399 NULL 2400 }; 2401 2402 static struct device_type bmc_device_type = { 2403 .groups = bmc_dev_attr_groups, 2404 }; 2405 2406 static void 2407 release_bmc_device(struct device *dev) 2408 { 2409 kfree(to_bmc_device(dev)); 2410 } 2411 2412 static void 2413 cleanup_bmc_device(struct kref *ref) 2414 { 2415 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 2416 2417 platform_device_unregister(&bmc->pdev); 2418 } 2419 2420 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2421 { 2422 struct bmc_device *bmc = intf->bmc; 2423 2424 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 2425 if (intf->my_dev_name) { 2426 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 2427 kfree(intf->my_dev_name); 2428 intf->my_dev_name = NULL; 2429 } 2430 2431 mutex_lock(&ipmidriver_mutex); 2432 kref_put(&bmc->usecount, cleanup_bmc_device); 2433 intf->bmc = NULL; 2434 mutex_unlock(&ipmidriver_mutex); 2435 } 2436 2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum) 2438 { 2439 int rv; 2440 struct bmc_device *bmc = intf->bmc; 2441 struct bmc_device *old_bmc; 2442 2443 mutex_lock(&ipmidriver_mutex); 2444 2445 /* 2446 * Try to find if there is an bmc_device struct 2447 * representing the interfaced BMC already 2448 */ 2449 if (bmc->guid_set) 2450 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2451 else 2452 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2453 bmc->id.product_id, 2454 bmc->id.device_id); 2455 2456 /* 2457 * If there is already an bmc_device, free the new one, 2458 * otherwise register the new BMC device 2459 */ 2460 if (old_bmc) { 2461 kfree(bmc); 2462 intf->bmc = old_bmc; 2463 bmc = old_bmc; 2464 2465 kref_get(&bmc->usecount); 2466 mutex_unlock(&ipmidriver_mutex); 2467 2468 printk(KERN_INFO 2469 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2470 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2471 bmc->id.manufacturer_id, 2472 bmc->id.product_id, 2473 bmc->id.device_id); 2474 } else { 2475 unsigned char orig_dev_id = bmc->id.device_id; 2476 int warn_printed = 0; 2477 2478 snprintf(bmc->name, sizeof(bmc->name), 2479 "ipmi_bmc.%4.4x", bmc->id.product_id); 2480 bmc->pdev.name = bmc->name; 2481 2482 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2483 bmc->id.product_id, 2484 bmc->id.device_id)) { 2485 if (!warn_printed) { 2486 printk(KERN_WARNING PFX 2487 "This machine has two different BMCs" 2488 " with the same product id and device" 2489 " id. This is an error in the" 2490 " firmware, but incrementing the" 2491 " device id to work around the problem." 2492 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2493 bmc->id.product_id, bmc->id.device_id); 2494 warn_printed = 1; 2495 } 2496 bmc->id.device_id++; /* Wraps at 255 */ 2497 if (bmc->id.device_id == orig_dev_id) { 2498 printk(KERN_ERR PFX 2499 "Out of device ids!\n"); 2500 break; 2501 } 2502 } 2503 2504 bmc->pdev.dev.driver = &ipmidriver.driver; 2505 bmc->pdev.id = bmc->id.device_id; 2506 bmc->pdev.dev.release = release_bmc_device; 2507 bmc->pdev.dev.type = &bmc_device_type; 2508 kref_init(&bmc->usecount); 2509 2510 rv = platform_device_register(&bmc->pdev); 2511 mutex_unlock(&ipmidriver_mutex); 2512 if (rv) { 2513 put_device(&bmc->pdev.dev); 2514 printk(KERN_ERR 2515 "ipmi_msghandler:" 2516 " Unable to register bmc device: %d\n", 2517 rv); 2518 /* 2519 * Don't go to out_err, you can only do that if 2520 * the device is registered already. 2521 */ 2522 return rv; 2523 } 2524 2525 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2526 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2527 bmc->id.manufacturer_id, 2528 bmc->id.product_id, 2529 bmc->id.device_id); 2530 } 2531 2532 /* 2533 * create symlink from system interface device to bmc device 2534 * and back. 2535 */ 2536 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 2537 if (rv) { 2538 printk(KERN_ERR 2539 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2540 rv); 2541 goto out_err; 2542 } 2543 2544 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum); 2545 if (!intf->my_dev_name) { 2546 rv = -ENOMEM; 2547 printk(KERN_ERR 2548 "ipmi_msghandler: allocate link from BMC: %d\n", 2549 rv); 2550 goto out_err; 2551 } 2552 2553 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 2554 intf->my_dev_name); 2555 if (rv) { 2556 kfree(intf->my_dev_name); 2557 intf->my_dev_name = NULL; 2558 printk(KERN_ERR 2559 "ipmi_msghandler:" 2560 " Unable to create symlink to bmc: %d\n", 2561 rv); 2562 goto out_err; 2563 } 2564 2565 return 0; 2566 2567 out_err: 2568 ipmi_bmc_unregister(intf); 2569 return rv; 2570 } 2571 2572 static int 2573 send_guid_cmd(ipmi_smi_t intf, int chan) 2574 { 2575 struct kernel_ipmi_msg msg; 2576 struct ipmi_system_interface_addr si; 2577 2578 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2579 si.channel = IPMI_BMC_CHANNEL; 2580 si.lun = 0; 2581 2582 msg.netfn = IPMI_NETFN_APP_REQUEST; 2583 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2584 msg.data = NULL; 2585 msg.data_len = 0; 2586 return i_ipmi_request(NULL, 2587 intf, 2588 (struct ipmi_addr *) &si, 2589 0, 2590 &msg, 2591 intf, 2592 NULL, 2593 NULL, 2594 0, 2595 intf->channels[0].address, 2596 intf->channels[0].lun, 2597 -1, 0); 2598 } 2599 2600 static void 2601 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2602 { 2603 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2604 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2605 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2606 /* Not for me */ 2607 return; 2608 2609 if (msg->msg.data[0] != 0) { 2610 /* Error from getting the GUID, the BMC doesn't have one. */ 2611 intf->bmc->guid_set = 0; 2612 goto out; 2613 } 2614 2615 if (msg->msg.data_len < 17) { 2616 intf->bmc->guid_set = 0; 2617 printk(KERN_WARNING PFX 2618 "guid_handler: The GUID response from the BMC was too" 2619 " short, it was %d but should have been 17. Assuming" 2620 " GUID is not available.\n", 2621 msg->msg.data_len); 2622 goto out; 2623 } 2624 2625 memcpy(intf->bmc->guid, msg->msg.data, 16); 2626 intf->bmc->guid_set = 1; 2627 out: 2628 wake_up(&intf->waitq); 2629 } 2630 2631 static void 2632 get_guid(ipmi_smi_t intf) 2633 { 2634 int rv; 2635 2636 intf->bmc->guid_set = 0x2; 2637 intf->null_user_handler = guid_handler; 2638 rv = send_guid_cmd(intf, 0); 2639 if (rv) 2640 /* Send failed, no GUID available. */ 2641 intf->bmc->guid_set = 0; 2642 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2643 intf->null_user_handler = NULL; 2644 } 2645 2646 static int 2647 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2648 { 2649 struct kernel_ipmi_msg msg; 2650 unsigned char data[1]; 2651 struct ipmi_system_interface_addr si; 2652 2653 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2654 si.channel = IPMI_BMC_CHANNEL; 2655 si.lun = 0; 2656 2657 msg.netfn = IPMI_NETFN_APP_REQUEST; 2658 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2659 msg.data = data; 2660 msg.data_len = 1; 2661 data[0] = chan; 2662 return i_ipmi_request(NULL, 2663 intf, 2664 (struct ipmi_addr *) &si, 2665 0, 2666 &msg, 2667 intf, 2668 NULL, 2669 NULL, 2670 0, 2671 intf->channels[0].address, 2672 intf->channels[0].lun, 2673 -1, 0); 2674 } 2675 2676 static void 2677 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2678 { 2679 int rv = 0; 2680 int chan; 2681 2682 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2683 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2684 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2685 /* It's the one we want */ 2686 if (msg->msg.data[0] != 0) { 2687 /* Got an error from the channel, just go on. */ 2688 2689 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2690 /* 2691 * If the MC does not support this 2692 * command, that is legal. We just 2693 * assume it has one IPMB at channel 2694 * zero. 2695 */ 2696 intf->channels[0].medium 2697 = IPMI_CHANNEL_MEDIUM_IPMB; 2698 intf->channels[0].protocol 2699 = IPMI_CHANNEL_PROTOCOL_IPMB; 2700 2701 intf->curr_channel = IPMI_MAX_CHANNELS; 2702 wake_up(&intf->waitq); 2703 goto out; 2704 } 2705 goto next_channel; 2706 } 2707 if (msg->msg.data_len < 4) { 2708 /* Message not big enough, just go on. */ 2709 goto next_channel; 2710 } 2711 chan = intf->curr_channel; 2712 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2713 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2714 2715 next_channel: 2716 intf->curr_channel++; 2717 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2718 wake_up(&intf->waitq); 2719 else 2720 rv = send_channel_info_cmd(intf, intf->curr_channel); 2721 2722 if (rv) { 2723 /* Got an error somehow, just give up. */ 2724 printk(KERN_WARNING PFX 2725 "Error sending channel information for channel" 2726 " %d: %d\n", intf->curr_channel, rv); 2727 2728 intf->curr_channel = IPMI_MAX_CHANNELS; 2729 wake_up(&intf->waitq); 2730 } 2731 } 2732 out: 2733 return; 2734 } 2735 2736 static void ipmi_poll(ipmi_smi_t intf) 2737 { 2738 if (intf->handlers->poll) 2739 intf->handlers->poll(intf->send_info); 2740 /* In case something came in */ 2741 handle_new_recv_msgs(intf); 2742 } 2743 2744 void ipmi_poll_interface(ipmi_user_t user) 2745 { 2746 ipmi_poll(user->intf); 2747 } 2748 EXPORT_SYMBOL(ipmi_poll_interface); 2749 2750 int ipmi_register_smi(struct ipmi_smi_handlers *handlers, 2751 void *send_info, 2752 struct ipmi_device_id *device_id, 2753 struct device *si_dev, 2754 unsigned char slave_addr) 2755 { 2756 int i, j; 2757 int rv; 2758 ipmi_smi_t intf; 2759 ipmi_smi_t tintf; 2760 struct list_head *link; 2761 2762 /* 2763 * Make sure the driver is actually initialized, this handles 2764 * problems with initialization order. 2765 */ 2766 if (!initialized) { 2767 rv = ipmi_init_msghandler(); 2768 if (rv) 2769 return rv; 2770 /* 2771 * The init code doesn't return an error if it was turned 2772 * off, but it won't initialize. Check that. 2773 */ 2774 if (!initialized) 2775 return -ENODEV; 2776 } 2777 2778 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2779 if (!intf) 2780 return -ENOMEM; 2781 2782 intf->ipmi_version_major = ipmi_version_major(device_id); 2783 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2784 2785 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2786 if (!intf->bmc) { 2787 kfree(intf); 2788 return -ENOMEM; 2789 } 2790 intf->intf_num = -1; /* Mark it invalid for now. */ 2791 kref_init(&intf->refcount); 2792 intf->bmc->id = *device_id; 2793 intf->si_dev = si_dev; 2794 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2795 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2796 intf->channels[j].lun = 2; 2797 } 2798 if (slave_addr != 0) 2799 intf->channels[0].address = slave_addr; 2800 INIT_LIST_HEAD(&intf->users); 2801 intf->handlers = handlers; 2802 intf->send_info = send_info; 2803 spin_lock_init(&intf->seq_lock); 2804 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2805 intf->seq_table[j].inuse = 0; 2806 intf->seq_table[j].seqid = 0; 2807 } 2808 intf->curr_seq = 0; 2809 #ifdef CONFIG_PROC_FS 2810 mutex_init(&intf->proc_entry_lock); 2811 #endif 2812 spin_lock_init(&intf->waiting_rcv_msgs_lock); 2813 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 2814 tasklet_init(&intf->recv_tasklet, 2815 smi_recv_tasklet, 2816 (unsigned long) intf); 2817 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 2818 spin_lock_init(&intf->xmit_msgs_lock); 2819 INIT_LIST_HEAD(&intf->xmit_msgs); 2820 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 2821 spin_lock_init(&intf->events_lock); 2822 atomic_set(&intf->event_waiters, 0); 2823 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 2824 INIT_LIST_HEAD(&intf->waiting_events); 2825 intf->waiting_events_count = 0; 2826 mutex_init(&intf->cmd_rcvrs_mutex); 2827 spin_lock_init(&intf->maintenance_mode_lock); 2828 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2829 init_waitqueue_head(&intf->waitq); 2830 for (i = 0; i < IPMI_NUM_STATS; i++) 2831 atomic_set(&intf->stats[i], 0); 2832 2833 intf->proc_dir = NULL; 2834 2835 mutex_lock(&smi_watchers_mutex); 2836 mutex_lock(&ipmi_interfaces_mutex); 2837 /* Look for a hole in the numbers. */ 2838 i = 0; 2839 link = &ipmi_interfaces; 2840 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2841 if (tintf->intf_num != i) { 2842 link = &tintf->link; 2843 break; 2844 } 2845 i++; 2846 } 2847 /* Add the new interface in numeric order. */ 2848 if (i == 0) 2849 list_add_rcu(&intf->link, &ipmi_interfaces); 2850 else 2851 list_add_tail_rcu(&intf->link, link); 2852 2853 rv = handlers->start_processing(send_info, intf); 2854 if (rv) 2855 goto out; 2856 2857 get_guid(intf); 2858 2859 if ((intf->ipmi_version_major > 1) 2860 || ((intf->ipmi_version_major == 1) 2861 && (intf->ipmi_version_minor >= 5))) { 2862 /* 2863 * Start scanning the channels to see what is 2864 * available. 2865 */ 2866 intf->null_user_handler = channel_handler; 2867 intf->curr_channel = 0; 2868 rv = send_channel_info_cmd(intf, 0); 2869 if (rv) { 2870 printk(KERN_WARNING PFX 2871 "Error sending channel information for channel" 2872 " 0, %d\n", rv); 2873 goto out; 2874 } 2875 2876 /* Wait for the channel info to be read. */ 2877 wait_event(intf->waitq, 2878 intf->curr_channel >= IPMI_MAX_CHANNELS); 2879 intf->null_user_handler = NULL; 2880 } else { 2881 /* Assume a single IPMB channel at zero. */ 2882 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2883 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2884 intf->curr_channel = IPMI_MAX_CHANNELS; 2885 } 2886 2887 if (rv == 0) 2888 rv = add_proc_entries(intf, i); 2889 2890 rv = ipmi_bmc_register(intf, i); 2891 2892 out: 2893 if (rv) { 2894 if (intf->proc_dir) 2895 remove_proc_entries(intf); 2896 intf->handlers = NULL; 2897 list_del_rcu(&intf->link); 2898 mutex_unlock(&ipmi_interfaces_mutex); 2899 mutex_unlock(&smi_watchers_mutex); 2900 synchronize_rcu(); 2901 kref_put(&intf->refcount, intf_free); 2902 } else { 2903 /* 2904 * Keep memory order straight for RCU readers. Make 2905 * sure everything else is committed to memory before 2906 * setting intf_num to mark the interface valid. 2907 */ 2908 smp_wmb(); 2909 intf->intf_num = i; 2910 mutex_unlock(&ipmi_interfaces_mutex); 2911 /* After this point the interface is legal to use. */ 2912 call_smi_watchers(i, intf->si_dev); 2913 mutex_unlock(&smi_watchers_mutex); 2914 } 2915 2916 return rv; 2917 } 2918 EXPORT_SYMBOL(ipmi_register_smi); 2919 2920 static void deliver_smi_err_response(ipmi_smi_t intf, 2921 struct ipmi_smi_msg *msg, 2922 unsigned char err) 2923 { 2924 msg->rsp[0] = msg->data[0] | 4; 2925 msg->rsp[1] = msg->data[1]; 2926 msg->rsp[2] = err; 2927 msg->rsp_size = 3; 2928 /* It's an error, so it will never requeue, no need to check return. */ 2929 handle_one_recv_msg(intf, msg); 2930 } 2931 2932 static void cleanup_smi_msgs(ipmi_smi_t intf) 2933 { 2934 int i; 2935 struct seq_table *ent; 2936 struct ipmi_smi_msg *msg; 2937 struct list_head *entry; 2938 struct list_head tmplist; 2939 2940 /* Clear out our transmit queues and hold the messages. */ 2941 INIT_LIST_HEAD(&tmplist); 2942 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 2943 list_splice_tail(&intf->xmit_msgs, &tmplist); 2944 2945 /* Current message first, to preserve order */ 2946 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 2947 /* Wait for the message to clear out. */ 2948 schedule_timeout(1); 2949 } 2950 2951 /* No need for locks, the interface is down. */ 2952 2953 /* 2954 * Return errors for all pending messages in queue and in the 2955 * tables waiting for remote responses. 2956 */ 2957 while (!list_empty(&tmplist)) { 2958 entry = tmplist.next; 2959 list_del(entry); 2960 msg = list_entry(entry, struct ipmi_smi_msg, link); 2961 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 2962 } 2963 2964 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2965 ent = &(intf->seq_table[i]); 2966 if (!ent->inuse) 2967 continue; 2968 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2969 } 2970 } 2971 2972 int ipmi_unregister_smi(ipmi_smi_t intf) 2973 { 2974 struct ipmi_smi_watcher *w; 2975 int intf_num = intf->intf_num; 2976 ipmi_user_t user; 2977 2978 ipmi_bmc_unregister(intf); 2979 2980 mutex_lock(&smi_watchers_mutex); 2981 mutex_lock(&ipmi_interfaces_mutex); 2982 intf->intf_num = -1; 2983 intf->in_shutdown = true; 2984 list_del_rcu(&intf->link); 2985 mutex_unlock(&ipmi_interfaces_mutex); 2986 synchronize_rcu(); 2987 2988 cleanup_smi_msgs(intf); 2989 2990 /* Clean up the effects of users on the lower-level software. */ 2991 mutex_lock(&ipmi_interfaces_mutex); 2992 rcu_read_lock(); 2993 list_for_each_entry_rcu(user, &intf->users, link) { 2994 module_put(intf->handlers->owner); 2995 if (intf->handlers->dec_usecount) 2996 intf->handlers->dec_usecount(intf->send_info); 2997 } 2998 rcu_read_unlock(); 2999 intf->handlers = NULL; 3000 mutex_unlock(&ipmi_interfaces_mutex); 3001 3002 remove_proc_entries(intf); 3003 3004 /* 3005 * Call all the watcher interfaces to tell them that 3006 * an interface is gone. 3007 */ 3008 list_for_each_entry(w, &smi_watchers, link) 3009 w->smi_gone(intf_num); 3010 mutex_unlock(&smi_watchers_mutex); 3011 3012 kref_put(&intf->refcount, intf_free); 3013 return 0; 3014 } 3015 EXPORT_SYMBOL(ipmi_unregister_smi); 3016 3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 3018 struct ipmi_smi_msg *msg) 3019 { 3020 struct ipmi_ipmb_addr ipmb_addr; 3021 struct ipmi_recv_msg *recv_msg; 3022 3023 /* 3024 * This is 11, not 10, because the response must contain a 3025 * completion code. 3026 */ 3027 if (msg->rsp_size < 11) { 3028 /* Message not big enough, just ignore it. */ 3029 ipmi_inc_stat(intf, invalid_ipmb_responses); 3030 return 0; 3031 } 3032 3033 if (msg->rsp[2] != 0) { 3034 /* An error getting the response, just ignore it. */ 3035 return 0; 3036 } 3037 3038 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3039 ipmb_addr.slave_addr = msg->rsp[6]; 3040 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3041 ipmb_addr.lun = msg->rsp[7] & 3; 3042 3043 /* 3044 * It's a response from a remote entity. Look up the sequence 3045 * number and handle the response. 3046 */ 3047 if (intf_find_seq(intf, 3048 msg->rsp[7] >> 2, 3049 msg->rsp[3] & 0x0f, 3050 msg->rsp[8], 3051 (msg->rsp[4] >> 2) & (~1), 3052 (struct ipmi_addr *) &(ipmb_addr), 3053 &recv_msg)) { 3054 /* 3055 * We were unable to find the sequence number, 3056 * so just nuke the message. 3057 */ 3058 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3059 return 0; 3060 } 3061 3062 memcpy(recv_msg->msg_data, 3063 &(msg->rsp[9]), 3064 msg->rsp_size - 9); 3065 /* 3066 * The other fields matched, so no need to set them, except 3067 * for netfn, which needs to be the response that was 3068 * returned, not the request value. 3069 */ 3070 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3071 recv_msg->msg.data = recv_msg->msg_data; 3072 recv_msg->msg.data_len = msg->rsp_size - 10; 3073 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3074 ipmi_inc_stat(intf, handled_ipmb_responses); 3075 deliver_response(recv_msg); 3076 3077 return 0; 3078 } 3079 3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3081 struct ipmi_smi_msg *msg) 3082 { 3083 struct cmd_rcvr *rcvr; 3084 int rv = 0; 3085 unsigned char netfn; 3086 unsigned char cmd; 3087 unsigned char chan; 3088 ipmi_user_t user = NULL; 3089 struct ipmi_ipmb_addr *ipmb_addr; 3090 struct ipmi_recv_msg *recv_msg; 3091 3092 if (msg->rsp_size < 10) { 3093 /* Message not big enough, just ignore it. */ 3094 ipmi_inc_stat(intf, invalid_commands); 3095 return 0; 3096 } 3097 3098 if (msg->rsp[2] != 0) { 3099 /* An error getting the response, just ignore it. */ 3100 return 0; 3101 } 3102 3103 netfn = msg->rsp[4] >> 2; 3104 cmd = msg->rsp[8]; 3105 chan = msg->rsp[3] & 0xf; 3106 3107 rcu_read_lock(); 3108 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3109 if (rcvr) { 3110 user = rcvr->user; 3111 kref_get(&user->refcount); 3112 } else 3113 user = NULL; 3114 rcu_read_unlock(); 3115 3116 if (user == NULL) { 3117 /* We didn't find a user, deliver an error response. */ 3118 ipmi_inc_stat(intf, unhandled_commands); 3119 3120 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3121 msg->data[1] = IPMI_SEND_MSG_CMD; 3122 msg->data[2] = msg->rsp[3]; 3123 msg->data[3] = msg->rsp[6]; 3124 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3125 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3126 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3127 /* rqseq/lun */ 3128 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3129 msg->data[8] = msg->rsp[8]; /* cmd */ 3130 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3131 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3132 msg->data_size = 11; 3133 3134 #ifdef DEBUG_MSGING 3135 { 3136 int m; 3137 printk("Invalid command:"); 3138 for (m = 0; m < msg->data_size; m++) 3139 printk(" %2.2x", msg->data[m]); 3140 printk("\n"); 3141 } 3142 #endif 3143 rcu_read_lock(); 3144 if (!intf->in_shutdown) { 3145 smi_send(intf, intf->handlers, msg, 0); 3146 /* 3147 * We used the message, so return the value 3148 * that causes it to not be freed or 3149 * queued. 3150 */ 3151 rv = -1; 3152 } 3153 rcu_read_unlock(); 3154 } else { 3155 /* Deliver the message to the user. */ 3156 ipmi_inc_stat(intf, handled_commands); 3157 3158 recv_msg = ipmi_alloc_recv_msg(); 3159 if (!recv_msg) { 3160 /* 3161 * We couldn't allocate memory for the 3162 * message, so requeue it for handling 3163 * later. 3164 */ 3165 rv = 1; 3166 kref_put(&user->refcount, free_user); 3167 } else { 3168 /* Extract the source address from the data. */ 3169 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3170 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3171 ipmb_addr->slave_addr = msg->rsp[6]; 3172 ipmb_addr->lun = msg->rsp[7] & 3; 3173 ipmb_addr->channel = msg->rsp[3] & 0xf; 3174 3175 /* 3176 * Extract the rest of the message information 3177 * from the IPMB header. 3178 */ 3179 recv_msg->user = user; 3180 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3181 recv_msg->msgid = msg->rsp[7] >> 2; 3182 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3183 recv_msg->msg.cmd = msg->rsp[8]; 3184 recv_msg->msg.data = recv_msg->msg_data; 3185 3186 /* 3187 * We chop off 10, not 9 bytes because the checksum 3188 * at the end also needs to be removed. 3189 */ 3190 recv_msg->msg.data_len = msg->rsp_size - 10; 3191 memcpy(recv_msg->msg_data, 3192 &(msg->rsp[9]), 3193 msg->rsp_size - 10); 3194 deliver_response(recv_msg); 3195 } 3196 } 3197 3198 return rv; 3199 } 3200 3201 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3202 struct ipmi_smi_msg *msg) 3203 { 3204 struct ipmi_lan_addr lan_addr; 3205 struct ipmi_recv_msg *recv_msg; 3206 3207 3208 /* 3209 * This is 13, not 12, because the response must contain a 3210 * completion code. 3211 */ 3212 if (msg->rsp_size < 13) { 3213 /* Message not big enough, just ignore it. */ 3214 ipmi_inc_stat(intf, invalid_lan_responses); 3215 return 0; 3216 } 3217 3218 if (msg->rsp[2] != 0) { 3219 /* An error getting the response, just ignore it. */ 3220 return 0; 3221 } 3222 3223 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3224 lan_addr.session_handle = msg->rsp[4]; 3225 lan_addr.remote_SWID = msg->rsp[8]; 3226 lan_addr.local_SWID = msg->rsp[5]; 3227 lan_addr.channel = msg->rsp[3] & 0x0f; 3228 lan_addr.privilege = msg->rsp[3] >> 4; 3229 lan_addr.lun = msg->rsp[9] & 3; 3230 3231 /* 3232 * It's a response from a remote entity. Look up the sequence 3233 * number and handle the response. 3234 */ 3235 if (intf_find_seq(intf, 3236 msg->rsp[9] >> 2, 3237 msg->rsp[3] & 0x0f, 3238 msg->rsp[10], 3239 (msg->rsp[6] >> 2) & (~1), 3240 (struct ipmi_addr *) &(lan_addr), 3241 &recv_msg)) { 3242 /* 3243 * We were unable to find the sequence number, 3244 * so just nuke the message. 3245 */ 3246 ipmi_inc_stat(intf, unhandled_lan_responses); 3247 return 0; 3248 } 3249 3250 memcpy(recv_msg->msg_data, 3251 &(msg->rsp[11]), 3252 msg->rsp_size - 11); 3253 /* 3254 * The other fields matched, so no need to set them, except 3255 * for netfn, which needs to be the response that was 3256 * returned, not the request value. 3257 */ 3258 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3259 recv_msg->msg.data = recv_msg->msg_data; 3260 recv_msg->msg.data_len = msg->rsp_size - 12; 3261 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3262 ipmi_inc_stat(intf, handled_lan_responses); 3263 deliver_response(recv_msg); 3264 3265 return 0; 3266 } 3267 3268 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3269 struct ipmi_smi_msg *msg) 3270 { 3271 struct cmd_rcvr *rcvr; 3272 int rv = 0; 3273 unsigned char netfn; 3274 unsigned char cmd; 3275 unsigned char chan; 3276 ipmi_user_t user = NULL; 3277 struct ipmi_lan_addr *lan_addr; 3278 struct ipmi_recv_msg *recv_msg; 3279 3280 if (msg->rsp_size < 12) { 3281 /* Message not big enough, just ignore it. */ 3282 ipmi_inc_stat(intf, invalid_commands); 3283 return 0; 3284 } 3285 3286 if (msg->rsp[2] != 0) { 3287 /* An error getting the response, just ignore it. */ 3288 return 0; 3289 } 3290 3291 netfn = msg->rsp[6] >> 2; 3292 cmd = msg->rsp[10]; 3293 chan = msg->rsp[3] & 0xf; 3294 3295 rcu_read_lock(); 3296 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3297 if (rcvr) { 3298 user = rcvr->user; 3299 kref_get(&user->refcount); 3300 } else 3301 user = NULL; 3302 rcu_read_unlock(); 3303 3304 if (user == NULL) { 3305 /* We didn't find a user, just give up. */ 3306 ipmi_inc_stat(intf, unhandled_commands); 3307 3308 /* 3309 * Don't do anything with these messages, just allow 3310 * them to be freed. 3311 */ 3312 rv = 0; 3313 } else { 3314 /* Deliver the message to the user. */ 3315 ipmi_inc_stat(intf, handled_commands); 3316 3317 recv_msg = ipmi_alloc_recv_msg(); 3318 if (!recv_msg) { 3319 /* 3320 * We couldn't allocate memory for the 3321 * message, so requeue it for handling later. 3322 */ 3323 rv = 1; 3324 kref_put(&user->refcount, free_user); 3325 } else { 3326 /* Extract the source address from the data. */ 3327 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3328 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3329 lan_addr->session_handle = msg->rsp[4]; 3330 lan_addr->remote_SWID = msg->rsp[8]; 3331 lan_addr->local_SWID = msg->rsp[5]; 3332 lan_addr->lun = msg->rsp[9] & 3; 3333 lan_addr->channel = msg->rsp[3] & 0xf; 3334 lan_addr->privilege = msg->rsp[3] >> 4; 3335 3336 /* 3337 * Extract the rest of the message information 3338 * from the IPMB header. 3339 */ 3340 recv_msg->user = user; 3341 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3342 recv_msg->msgid = msg->rsp[9] >> 2; 3343 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3344 recv_msg->msg.cmd = msg->rsp[10]; 3345 recv_msg->msg.data = recv_msg->msg_data; 3346 3347 /* 3348 * We chop off 12, not 11 bytes because the checksum 3349 * at the end also needs to be removed. 3350 */ 3351 recv_msg->msg.data_len = msg->rsp_size - 12; 3352 memcpy(recv_msg->msg_data, 3353 &(msg->rsp[11]), 3354 msg->rsp_size - 12); 3355 deliver_response(recv_msg); 3356 } 3357 } 3358 3359 return rv; 3360 } 3361 3362 /* 3363 * This routine will handle "Get Message" command responses with 3364 * channels that use an OEM Medium. The message format belongs to 3365 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3366 * Chapter 22, sections 22.6 and 22.24 for more details. 3367 */ 3368 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3369 struct ipmi_smi_msg *msg) 3370 { 3371 struct cmd_rcvr *rcvr; 3372 int rv = 0; 3373 unsigned char netfn; 3374 unsigned char cmd; 3375 unsigned char chan; 3376 ipmi_user_t user = NULL; 3377 struct ipmi_system_interface_addr *smi_addr; 3378 struct ipmi_recv_msg *recv_msg; 3379 3380 /* 3381 * We expect the OEM SW to perform error checking 3382 * so we just do some basic sanity checks 3383 */ 3384 if (msg->rsp_size < 4) { 3385 /* Message not big enough, just ignore it. */ 3386 ipmi_inc_stat(intf, invalid_commands); 3387 return 0; 3388 } 3389 3390 if (msg->rsp[2] != 0) { 3391 /* An error getting the response, just ignore it. */ 3392 return 0; 3393 } 3394 3395 /* 3396 * This is an OEM Message so the OEM needs to know how 3397 * handle the message. We do no interpretation. 3398 */ 3399 netfn = msg->rsp[0] >> 2; 3400 cmd = msg->rsp[1]; 3401 chan = msg->rsp[3] & 0xf; 3402 3403 rcu_read_lock(); 3404 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3405 if (rcvr) { 3406 user = rcvr->user; 3407 kref_get(&user->refcount); 3408 } else 3409 user = NULL; 3410 rcu_read_unlock(); 3411 3412 if (user == NULL) { 3413 /* We didn't find a user, just give up. */ 3414 ipmi_inc_stat(intf, unhandled_commands); 3415 3416 /* 3417 * Don't do anything with these messages, just allow 3418 * them to be freed. 3419 */ 3420 3421 rv = 0; 3422 } else { 3423 /* Deliver the message to the user. */ 3424 ipmi_inc_stat(intf, handled_commands); 3425 3426 recv_msg = ipmi_alloc_recv_msg(); 3427 if (!recv_msg) { 3428 /* 3429 * We couldn't allocate memory for the 3430 * message, so requeue it for handling 3431 * later. 3432 */ 3433 rv = 1; 3434 kref_put(&user->refcount, free_user); 3435 } else { 3436 /* 3437 * OEM Messages are expected to be delivered via 3438 * the system interface to SMS software. We might 3439 * need to visit this again depending on OEM 3440 * requirements 3441 */ 3442 smi_addr = ((struct ipmi_system_interface_addr *) 3443 &(recv_msg->addr)); 3444 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3445 smi_addr->channel = IPMI_BMC_CHANNEL; 3446 smi_addr->lun = msg->rsp[0] & 3; 3447 3448 recv_msg->user = user; 3449 recv_msg->user_msg_data = NULL; 3450 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3451 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3452 recv_msg->msg.cmd = msg->rsp[1]; 3453 recv_msg->msg.data = recv_msg->msg_data; 3454 3455 /* 3456 * The message starts at byte 4 which follows the 3457 * the Channel Byte in the "GET MESSAGE" command 3458 */ 3459 recv_msg->msg.data_len = msg->rsp_size - 4; 3460 memcpy(recv_msg->msg_data, 3461 &(msg->rsp[4]), 3462 msg->rsp_size - 4); 3463 deliver_response(recv_msg); 3464 } 3465 } 3466 3467 return rv; 3468 } 3469 3470 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3471 struct ipmi_smi_msg *msg) 3472 { 3473 struct ipmi_system_interface_addr *smi_addr; 3474 3475 recv_msg->msgid = 0; 3476 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3477 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3478 smi_addr->channel = IPMI_BMC_CHANNEL; 3479 smi_addr->lun = msg->rsp[0] & 3; 3480 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3481 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3482 recv_msg->msg.cmd = msg->rsp[1]; 3483 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3484 recv_msg->msg.data = recv_msg->msg_data; 3485 recv_msg->msg.data_len = msg->rsp_size - 3; 3486 } 3487 3488 static int handle_read_event_rsp(ipmi_smi_t intf, 3489 struct ipmi_smi_msg *msg) 3490 { 3491 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3492 struct list_head msgs; 3493 ipmi_user_t user; 3494 int rv = 0; 3495 int deliver_count = 0; 3496 unsigned long flags; 3497 3498 if (msg->rsp_size < 19) { 3499 /* Message is too small to be an IPMB event. */ 3500 ipmi_inc_stat(intf, invalid_events); 3501 return 0; 3502 } 3503 3504 if (msg->rsp[2] != 0) { 3505 /* An error getting the event, just ignore it. */ 3506 return 0; 3507 } 3508 3509 INIT_LIST_HEAD(&msgs); 3510 3511 spin_lock_irqsave(&intf->events_lock, flags); 3512 3513 ipmi_inc_stat(intf, events); 3514 3515 /* 3516 * Allocate and fill in one message for every user that is 3517 * getting events. 3518 */ 3519 rcu_read_lock(); 3520 list_for_each_entry_rcu(user, &intf->users, link) { 3521 if (!user->gets_events) 3522 continue; 3523 3524 recv_msg = ipmi_alloc_recv_msg(); 3525 if (!recv_msg) { 3526 rcu_read_unlock(); 3527 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3528 link) { 3529 list_del(&recv_msg->link); 3530 ipmi_free_recv_msg(recv_msg); 3531 } 3532 /* 3533 * We couldn't allocate memory for the 3534 * message, so requeue it for handling 3535 * later. 3536 */ 3537 rv = 1; 3538 goto out; 3539 } 3540 3541 deliver_count++; 3542 3543 copy_event_into_recv_msg(recv_msg, msg); 3544 recv_msg->user = user; 3545 kref_get(&user->refcount); 3546 list_add_tail(&(recv_msg->link), &msgs); 3547 } 3548 rcu_read_unlock(); 3549 3550 if (deliver_count) { 3551 /* Now deliver all the messages. */ 3552 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3553 list_del(&recv_msg->link); 3554 deliver_response(recv_msg); 3555 } 3556 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3557 /* 3558 * No one to receive the message, put it in queue if there's 3559 * not already too many things in the queue. 3560 */ 3561 recv_msg = ipmi_alloc_recv_msg(); 3562 if (!recv_msg) { 3563 /* 3564 * We couldn't allocate memory for the 3565 * message, so requeue it for handling 3566 * later. 3567 */ 3568 rv = 1; 3569 goto out; 3570 } 3571 3572 copy_event_into_recv_msg(recv_msg, msg); 3573 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3574 intf->waiting_events_count++; 3575 } else if (!intf->event_msg_printed) { 3576 /* 3577 * There's too many things in the queue, discard this 3578 * message. 3579 */ 3580 printk(KERN_WARNING PFX "Event queue full, discarding" 3581 " incoming events\n"); 3582 intf->event_msg_printed = 1; 3583 } 3584 3585 out: 3586 spin_unlock_irqrestore(&(intf->events_lock), flags); 3587 3588 return rv; 3589 } 3590 3591 static int handle_bmc_rsp(ipmi_smi_t intf, 3592 struct ipmi_smi_msg *msg) 3593 { 3594 struct ipmi_recv_msg *recv_msg; 3595 struct ipmi_user *user; 3596 3597 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3598 if (recv_msg == NULL) { 3599 printk(KERN_WARNING 3600 "IPMI message received with no owner. This\n" 3601 "could be because of a malformed message, or\n" 3602 "because of a hardware error. Contact your\n" 3603 "hardware vender for assistance\n"); 3604 return 0; 3605 } 3606 3607 user = recv_msg->user; 3608 /* Make sure the user still exists. */ 3609 if (user && !user->valid) { 3610 /* The user for the message went away, so give up. */ 3611 ipmi_inc_stat(intf, unhandled_local_responses); 3612 ipmi_free_recv_msg(recv_msg); 3613 } else { 3614 struct ipmi_system_interface_addr *smi_addr; 3615 3616 ipmi_inc_stat(intf, handled_local_responses); 3617 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3618 recv_msg->msgid = msg->msgid; 3619 smi_addr = ((struct ipmi_system_interface_addr *) 3620 &(recv_msg->addr)); 3621 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3622 smi_addr->channel = IPMI_BMC_CHANNEL; 3623 smi_addr->lun = msg->rsp[0] & 3; 3624 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3625 recv_msg->msg.cmd = msg->rsp[1]; 3626 memcpy(recv_msg->msg_data, 3627 &(msg->rsp[2]), 3628 msg->rsp_size - 2); 3629 recv_msg->msg.data = recv_msg->msg_data; 3630 recv_msg->msg.data_len = msg->rsp_size - 2; 3631 deliver_response(recv_msg); 3632 } 3633 3634 return 0; 3635 } 3636 3637 /* 3638 * Handle a received message. Return 1 if the message should be requeued, 3639 * 0 if the message should be freed, or -1 if the message should not 3640 * be freed or requeued. 3641 */ 3642 static int handle_one_recv_msg(ipmi_smi_t intf, 3643 struct ipmi_smi_msg *msg) 3644 { 3645 int requeue; 3646 int chan; 3647 3648 #ifdef DEBUG_MSGING 3649 int m; 3650 printk("Recv:"); 3651 for (m = 0; m < msg->rsp_size; m++) 3652 printk(" %2.2x", msg->rsp[m]); 3653 printk("\n"); 3654 #endif 3655 if (msg->rsp_size < 2) { 3656 /* Message is too small to be correct. */ 3657 printk(KERN_WARNING PFX "BMC returned to small a message" 3658 " for netfn %x cmd %x, got %d bytes\n", 3659 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3660 3661 /* Generate an error response for the message. */ 3662 msg->rsp[0] = msg->data[0] | (1 << 2); 3663 msg->rsp[1] = msg->data[1]; 3664 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3665 msg->rsp_size = 3; 3666 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3667 || (msg->rsp[1] != msg->data[1])) { 3668 /* 3669 * The NetFN and Command in the response is not even 3670 * marginally correct. 3671 */ 3672 printk(KERN_WARNING PFX "BMC returned incorrect response," 3673 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3674 (msg->data[0] >> 2) | 1, msg->data[1], 3675 msg->rsp[0] >> 2, msg->rsp[1]); 3676 3677 /* Generate an error response for the message. */ 3678 msg->rsp[0] = msg->data[0] | (1 << 2); 3679 msg->rsp[1] = msg->data[1]; 3680 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3681 msg->rsp_size = 3; 3682 } 3683 3684 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3685 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3686 && (msg->user_data != NULL)) { 3687 /* 3688 * It's a response to a response we sent. For this we 3689 * deliver a send message response to the user. 3690 */ 3691 struct ipmi_recv_msg *recv_msg = msg->user_data; 3692 3693 requeue = 0; 3694 if (msg->rsp_size < 2) 3695 /* Message is too small to be correct. */ 3696 goto out; 3697 3698 chan = msg->data[2] & 0x0f; 3699 if (chan >= IPMI_MAX_CHANNELS) 3700 /* Invalid channel number */ 3701 goto out; 3702 3703 if (!recv_msg) 3704 goto out; 3705 3706 /* Make sure the user still exists. */ 3707 if (!recv_msg->user || !recv_msg->user->valid) 3708 goto out; 3709 3710 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3711 recv_msg->msg.data = recv_msg->msg_data; 3712 recv_msg->msg.data_len = 1; 3713 recv_msg->msg_data[0] = msg->rsp[2]; 3714 deliver_response(recv_msg); 3715 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3716 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3717 /* It's from the receive queue. */ 3718 chan = msg->rsp[3] & 0xf; 3719 if (chan >= IPMI_MAX_CHANNELS) { 3720 /* Invalid channel number */ 3721 requeue = 0; 3722 goto out; 3723 } 3724 3725 /* 3726 * We need to make sure the channels have been initialized. 3727 * The channel_handler routine will set the "curr_channel" 3728 * equal to or greater than IPMI_MAX_CHANNELS when all the 3729 * channels for this interface have been initialized. 3730 */ 3731 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3732 requeue = 0; /* Throw the message away */ 3733 goto out; 3734 } 3735 3736 switch (intf->channels[chan].medium) { 3737 case IPMI_CHANNEL_MEDIUM_IPMB: 3738 if (msg->rsp[4] & 0x04) { 3739 /* 3740 * It's a response, so find the 3741 * requesting message and send it up. 3742 */ 3743 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3744 } else { 3745 /* 3746 * It's a command to the SMS from some other 3747 * entity. Handle that. 3748 */ 3749 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3750 } 3751 break; 3752 3753 case IPMI_CHANNEL_MEDIUM_8023LAN: 3754 case IPMI_CHANNEL_MEDIUM_ASYNC: 3755 if (msg->rsp[6] & 0x04) { 3756 /* 3757 * It's a response, so find the 3758 * requesting message and send it up. 3759 */ 3760 requeue = handle_lan_get_msg_rsp(intf, msg); 3761 } else { 3762 /* 3763 * It's a command to the SMS from some other 3764 * entity. Handle that. 3765 */ 3766 requeue = handle_lan_get_msg_cmd(intf, msg); 3767 } 3768 break; 3769 3770 default: 3771 /* Check for OEM Channels. Clients had better 3772 register for these commands. */ 3773 if ((intf->channels[chan].medium 3774 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3775 && (intf->channels[chan].medium 3776 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3777 requeue = handle_oem_get_msg_cmd(intf, msg); 3778 } else { 3779 /* 3780 * We don't handle the channel type, so just 3781 * free the message. 3782 */ 3783 requeue = 0; 3784 } 3785 } 3786 3787 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3788 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3789 /* It's an asynchronous event. */ 3790 requeue = handle_read_event_rsp(intf, msg); 3791 } else { 3792 /* It's a response from the local BMC. */ 3793 requeue = handle_bmc_rsp(intf, msg); 3794 } 3795 3796 out: 3797 return requeue; 3798 } 3799 3800 /* 3801 * If there are messages in the queue or pretimeouts, handle them. 3802 */ 3803 static void handle_new_recv_msgs(ipmi_smi_t intf) 3804 { 3805 struct ipmi_smi_msg *smi_msg; 3806 unsigned long flags = 0; 3807 int rv; 3808 int run_to_completion = intf->run_to_completion; 3809 3810 /* See if any waiting messages need to be processed. */ 3811 if (!run_to_completion) 3812 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3813 while (!list_empty(&intf->waiting_rcv_msgs)) { 3814 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 3815 struct ipmi_smi_msg, link); 3816 if (!run_to_completion) 3817 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3818 flags); 3819 rv = handle_one_recv_msg(intf, smi_msg); 3820 if (!run_to_completion) 3821 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3822 if (rv > 0) { 3823 /* 3824 * To preserve message order, quit if we 3825 * can't handle a message. 3826 */ 3827 break; 3828 } else { 3829 list_del(&smi_msg->link); 3830 if (rv == 0) 3831 /* Message handled */ 3832 ipmi_free_smi_msg(smi_msg); 3833 /* If rv < 0, fatal error, del but don't free. */ 3834 } 3835 } 3836 if (!run_to_completion) 3837 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 3838 3839 /* 3840 * If the pretimout count is non-zero, decrement one from it and 3841 * deliver pretimeouts to all the users. 3842 */ 3843 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 3844 ipmi_user_t user; 3845 3846 rcu_read_lock(); 3847 list_for_each_entry_rcu(user, &intf->users, link) { 3848 if (user->handler->ipmi_watchdog_pretimeout) 3849 user->handler->ipmi_watchdog_pretimeout( 3850 user->handler_data); 3851 } 3852 rcu_read_unlock(); 3853 } 3854 } 3855 3856 static void smi_recv_tasklet(unsigned long val) 3857 { 3858 unsigned long flags = 0; /* keep us warning-free. */ 3859 ipmi_smi_t intf = (ipmi_smi_t) val; 3860 int run_to_completion = intf->run_to_completion; 3861 struct ipmi_smi_msg *newmsg = NULL; 3862 3863 /* 3864 * Start the next message if available. 3865 * 3866 * Do this here, not in the actual receiver, because we may deadlock 3867 * because the lower layer is allowed to hold locks while calling 3868 * message delivery. 3869 */ 3870 if (!run_to_completion) 3871 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3872 if (intf->curr_msg == NULL && !intf->in_shutdown) { 3873 struct list_head *entry = NULL; 3874 3875 /* Pick the high priority queue first. */ 3876 if (!list_empty(&intf->hp_xmit_msgs)) 3877 entry = intf->hp_xmit_msgs.next; 3878 else if (!list_empty(&intf->xmit_msgs)) 3879 entry = intf->xmit_msgs.next; 3880 3881 if (entry) { 3882 list_del(entry); 3883 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 3884 intf->curr_msg = newmsg; 3885 } 3886 } 3887 if (!run_to_completion) 3888 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3889 if (newmsg) 3890 intf->handlers->sender(intf->send_info, newmsg); 3891 3892 handle_new_recv_msgs(intf); 3893 } 3894 3895 /* Handle a new message from the lower layer. */ 3896 void ipmi_smi_msg_received(ipmi_smi_t intf, 3897 struct ipmi_smi_msg *msg) 3898 { 3899 unsigned long flags = 0; /* keep us warning-free. */ 3900 int run_to_completion = intf->run_to_completion; 3901 3902 if ((msg->data_size >= 2) 3903 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3904 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3905 && (msg->user_data == NULL)) { 3906 3907 if (intf->in_shutdown) 3908 goto free_msg; 3909 3910 /* 3911 * This is the local response to a command send, start 3912 * the timer for these. The user_data will not be 3913 * NULL if this is a response send, and we will let 3914 * response sends just go through. 3915 */ 3916 3917 /* 3918 * Check for errors, if we get certain errors (ones 3919 * that mean basically we can try again later), we 3920 * ignore them and start the timer. Otherwise we 3921 * report the error immediately. 3922 */ 3923 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3924 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3925 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3926 && (msg->rsp[2] != IPMI_BUS_ERR) 3927 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3928 int chan = msg->rsp[3] & 0xf; 3929 3930 /* Got an error sending the message, handle it. */ 3931 if (chan >= IPMI_MAX_CHANNELS) 3932 ; /* This shouldn't happen */ 3933 else if ((intf->channels[chan].medium 3934 == IPMI_CHANNEL_MEDIUM_8023LAN) 3935 || (intf->channels[chan].medium 3936 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3937 ipmi_inc_stat(intf, sent_lan_command_errs); 3938 else 3939 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3940 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3941 } else 3942 /* The message was sent, start the timer. */ 3943 intf_start_seq_timer(intf, msg->msgid); 3944 3945 free_msg: 3946 ipmi_free_smi_msg(msg); 3947 } else { 3948 /* 3949 * To preserve message order, we keep a queue and deliver from 3950 * a tasklet. 3951 */ 3952 if (!run_to_completion) 3953 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3954 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 3955 if (!run_to_completion) 3956 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3957 flags); 3958 } 3959 3960 if (!run_to_completion) 3961 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3962 if (msg == intf->curr_msg) 3963 intf->curr_msg = NULL; 3964 if (!run_to_completion) 3965 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3966 3967 if (run_to_completion) 3968 smi_recv_tasklet((unsigned long) intf); 3969 else 3970 tasklet_schedule(&intf->recv_tasklet); 3971 } 3972 EXPORT_SYMBOL(ipmi_smi_msg_received); 3973 3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3975 { 3976 if (intf->in_shutdown) 3977 return; 3978 3979 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 3980 tasklet_schedule(&intf->recv_tasklet); 3981 } 3982 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3983 3984 static struct ipmi_smi_msg * 3985 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3986 unsigned char seq, long seqid) 3987 { 3988 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3989 if (!smi_msg) 3990 /* 3991 * If we can't allocate the message, then just return, we 3992 * get 4 retries, so this should be ok. 3993 */ 3994 return NULL; 3995 3996 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 3997 smi_msg->data_size = recv_msg->msg.data_len; 3998 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 3999 4000 #ifdef DEBUG_MSGING 4001 { 4002 int m; 4003 printk("Resend: "); 4004 for (m = 0; m < smi_msg->data_size; m++) 4005 printk(" %2.2x", smi_msg->data[m]); 4006 printk("\n"); 4007 } 4008 #endif 4009 return smi_msg; 4010 } 4011 4012 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 4013 struct list_head *timeouts, long timeout_period, 4014 int slot, unsigned long *flags, 4015 unsigned int *waiting_msgs) 4016 { 4017 struct ipmi_recv_msg *msg; 4018 struct ipmi_smi_handlers *handlers; 4019 4020 if (intf->in_shutdown) 4021 return; 4022 4023 if (!ent->inuse) 4024 return; 4025 4026 ent->timeout -= timeout_period; 4027 if (ent->timeout > 0) { 4028 (*waiting_msgs)++; 4029 return; 4030 } 4031 4032 if (ent->retries_left == 0) { 4033 /* The message has used all its retries. */ 4034 ent->inuse = 0; 4035 msg = ent->recv_msg; 4036 list_add_tail(&msg->link, timeouts); 4037 if (ent->broadcast) 4038 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4039 else if (is_lan_addr(&ent->recv_msg->addr)) 4040 ipmi_inc_stat(intf, timed_out_lan_commands); 4041 else 4042 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4043 } else { 4044 struct ipmi_smi_msg *smi_msg; 4045 /* More retries, send again. */ 4046 4047 (*waiting_msgs)++; 4048 4049 /* 4050 * Start with the max timer, set to normal timer after 4051 * the message is sent. 4052 */ 4053 ent->timeout = MAX_MSG_TIMEOUT; 4054 ent->retries_left--; 4055 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4056 ent->seqid); 4057 if (!smi_msg) { 4058 if (is_lan_addr(&ent->recv_msg->addr)) 4059 ipmi_inc_stat(intf, 4060 dropped_rexmit_lan_commands); 4061 else 4062 ipmi_inc_stat(intf, 4063 dropped_rexmit_ipmb_commands); 4064 return; 4065 } 4066 4067 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4068 4069 /* 4070 * Send the new message. We send with a zero 4071 * priority. It timed out, I doubt time is that 4072 * critical now, and high priority messages are really 4073 * only for messages to the local MC, which don't get 4074 * resent. 4075 */ 4076 handlers = intf->handlers; 4077 if (handlers) { 4078 if (is_lan_addr(&ent->recv_msg->addr)) 4079 ipmi_inc_stat(intf, 4080 retransmitted_lan_commands); 4081 else 4082 ipmi_inc_stat(intf, 4083 retransmitted_ipmb_commands); 4084 4085 smi_send(intf, intf->handlers, smi_msg, 0); 4086 } else 4087 ipmi_free_smi_msg(smi_msg); 4088 4089 spin_lock_irqsave(&intf->seq_lock, *flags); 4090 } 4091 } 4092 4093 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period) 4094 { 4095 struct list_head timeouts; 4096 struct ipmi_recv_msg *msg, *msg2; 4097 unsigned long flags; 4098 int i; 4099 unsigned int waiting_msgs = 0; 4100 4101 /* 4102 * Go through the seq table and find any messages that 4103 * have timed out, putting them in the timeouts 4104 * list. 4105 */ 4106 INIT_LIST_HEAD(&timeouts); 4107 spin_lock_irqsave(&intf->seq_lock, flags); 4108 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4109 check_msg_timeout(intf, &(intf->seq_table[i]), 4110 &timeouts, timeout_period, i, 4111 &flags, &waiting_msgs); 4112 spin_unlock_irqrestore(&intf->seq_lock, flags); 4113 4114 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4115 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4116 4117 /* 4118 * Maintenance mode handling. Check the timeout 4119 * optimistically before we claim the lock. It may 4120 * mean a timeout gets missed occasionally, but that 4121 * only means the timeout gets extended by one period 4122 * in that case. No big deal, and it avoids the lock 4123 * most of the time. 4124 */ 4125 if (intf->auto_maintenance_timeout > 0) { 4126 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4127 if (intf->auto_maintenance_timeout > 0) { 4128 intf->auto_maintenance_timeout 4129 -= timeout_period; 4130 if (!intf->maintenance_mode 4131 && (intf->auto_maintenance_timeout <= 0)) { 4132 intf->maintenance_mode_enable = false; 4133 maintenance_mode_update(intf); 4134 } 4135 } 4136 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4137 flags); 4138 } 4139 4140 tasklet_schedule(&intf->recv_tasklet); 4141 4142 return waiting_msgs; 4143 } 4144 4145 static void ipmi_request_event(ipmi_smi_t intf) 4146 { 4147 /* No event requests when in maintenance mode. */ 4148 if (intf->maintenance_mode_enable) 4149 return; 4150 4151 if (!intf->in_shutdown) 4152 intf->handlers->request_events(intf->send_info); 4153 } 4154 4155 static struct timer_list ipmi_timer; 4156 4157 static atomic_t stop_operation; 4158 4159 static void ipmi_timeout(unsigned long data) 4160 { 4161 ipmi_smi_t intf; 4162 int nt = 0; 4163 4164 if (atomic_read(&stop_operation)) 4165 return; 4166 4167 rcu_read_lock(); 4168 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4169 int lnt = 0; 4170 4171 if (atomic_read(&intf->event_waiters)) { 4172 intf->ticks_to_req_ev--; 4173 if (intf->ticks_to_req_ev == 0) { 4174 ipmi_request_event(intf); 4175 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4176 } 4177 lnt++; 4178 } 4179 4180 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 4181 4182 lnt = !!lnt; 4183 if (lnt != intf->last_needs_timer && 4184 intf->handlers->set_need_watch) 4185 intf->handlers->set_need_watch(intf->send_info, lnt); 4186 intf->last_needs_timer = lnt; 4187 4188 nt += lnt; 4189 } 4190 rcu_read_unlock(); 4191 4192 if (nt) 4193 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4194 } 4195 4196 static void need_waiter(ipmi_smi_t intf) 4197 { 4198 /* Racy, but worst case we start the timer twice. */ 4199 if (!timer_pending(&ipmi_timer)) 4200 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4201 } 4202 4203 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4204 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4205 4206 static void free_smi_msg(struct ipmi_smi_msg *msg) 4207 { 4208 atomic_dec(&smi_msg_inuse_count); 4209 kfree(msg); 4210 } 4211 4212 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4213 { 4214 struct ipmi_smi_msg *rv; 4215 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4216 if (rv) { 4217 rv->done = free_smi_msg; 4218 rv->user_data = NULL; 4219 atomic_inc(&smi_msg_inuse_count); 4220 } 4221 return rv; 4222 } 4223 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4224 4225 static void free_recv_msg(struct ipmi_recv_msg *msg) 4226 { 4227 atomic_dec(&recv_msg_inuse_count); 4228 kfree(msg); 4229 } 4230 4231 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4232 { 4233 struct ipmi_recv_msg *rv; 4234 4235 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4236 if (rv) { 4237 rv->user = NULL; 4238 rv->done = free_recv_msg; 4239 atomic_inc(&recv_msg_inuse_count); 4240 } 4241 return rv; 4242 } 4243 4244 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4245 { 4246 if (msg->user) 4247 kref_put(&msg->user->refcount, free_user); 4248 msg->done(msg); 4249 } 4250 EXPORT_SYMBOL(ipmi_free_recv_msg); 4251 4252 #ifdef CONFIG_IPMI_PANIC_EVENT 4253 4254 static atomic_t panic_done_count = ATOMIC_INIT(0); 4255 4256 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4257 { 4258 atomic_dec(&panic_done_count); 4259 } 4260 4261 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4262 { 4263 atomic_dec(&panic_done_count); 4264 } 4265 4266 /* 4267 * Inside a panic, send a message and wait for a response. 4268 */ 4269 static void ipmi_panic_request_and_wait(ipmi_smi_t intf, 4270 struct ipmi_addr *addr, 4271 struct kernel_ipmi_msg *msg) 4272 { 4273 struct ipmi_smi_msg smi_msg; 4274 struct ipmi_recv_msg recv_msg; 4275 int rv; 4276 4277 smi_msg.done = dummy_smi_done_handler; 4278 recv_msg.done = dummy_recv_done_handler; 4279 atomic_add(2, &panic_done_count); 4280 rv = i_ipmi_request(NULL, 4281 intf, 4282 addr, 4283 0, 4284 msg, 4285 intf, 4286 &smi_msg, 4287 &recv_msg, 4288 0, 4289 intf->channels[0].address, 4290 intf->channels[0].lun, 4291 0, 1); /* Don't retry, and don't wait. */ 4292 if (rv) 4293 atomic_sub(2, &panic_done_count); 4294 while (atomic_read(&panic_done_count) != 0) 4295 ipmi_poll(intf); 4296 } 4297 4298 #ifdef CONFIG_IPMI_PANIC_STRING 4299 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4300 { 4301 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4302 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4303 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4304 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4305 /* A get event receiver command, save it. */ 4306 intf->event_receiver = msg->msg.data[1]; 4307 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4308 } 4309 } 4310 4311 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4312 { 4313 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4314 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4315 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4316 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4317 /* 4318 * A get device id command, save if we are an event 4319 * receiver or generator. 4320 */ 4321 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4322 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4323 } 4324 } 4325 #endif 4326 4327 static void send_panic_events(char *str) 4328 { 4329 struct kernel_ipmi_msg msg; 4330 ipmi_smi_t intf; 4331 unsigned char data[16]; 4332 struct ipmi_system_interface_addr *si; 4333 struct ipmi_addr addr; 4334 4335 si = (struct ipmi_system_interface_addr *) &addr; 4336 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4337 si->channel = IPMI_BMC_CHANNEL; 4338 si->lun = 0; 4339 4340 /* Fill in an event telling that we have failed. */ 4341 msg.netfn = 0x04; /* Sensor or Event. */ 4342 msg.cmd = 2; /* Platform event command. */ 4343 msg.data = data; 4344 msg.data_len = 8; 4345 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4346 data[1] = 0x03; /* This is for IPMI 1.0. */ 4347 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4348 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4349 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4350 4351 /* 4352 * Put a few breadcrumbs in. Hopefully later we can add more things 4353 * to make the panic events more useful. 4354 */ 4355 if (str) { 4356 data[3] = str[0]; 4357 data[6] = str[1]; 4358 data[7] = str[2]; 4359 } 4360 4361 /* For every registered interface, send the event. */ 4362 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4363 if (!intf->handlers) 4364 /* Interface is not ready. */ 4365 continue; 4366 4367 intf->run_to_completion = 1; 4368 /* Send the event announcing the panic. */ 4369 intf->handlers->set_run_to_completion(intf->send_info, 1); 4370 ipmi_panic_request_and_wait(intf, &addr, &msg); 4371 } 4372 4373 #ifdef CONFIG_IPMI_PANIC_STRING 4374 /* 4375 * On every interface, dump a bunch of OEM event holding the 4376 * string. 4377 */ 4378 if (!str) 4379 return; 4380 4381 /* For every registered interface, send the event. */ 4382 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4383 char *p = str; 4384 struct ipmi_ipmb_addr *ipmb; 4385 int j; 4386 4387 if (intf->intf_num == -1) 4388 /* Interface was not ready yet. */ 4389 continue; 4390 4391 /* 4392 * intf_num is used as an marker to tell if the 4393 * interface is valid. Thus we need a read barrier to 4394 * make sure data fetched before checking intf_num 4395 * won't be used. 4396 */ 4397 smp_rmb(); 4398 4399 /* 4400 * First job here is to figure out where to send the 4401 * OEM events. There's no way in IPMI to send OEM 4402 * events using an event send command, so we have to 4403 * find the SEL to put them in and stick them in 4404 * there. 4405 */ 4406 4407 /* Get capabilities from the get device id. */ 4408 intf->local_sel_device = 0; 4409 intf->local_event_generator = 0; 4410 intf->event_receiver = 0; 4411 4412 /* Request the device info from the local MC. */ 4413 msg.netfn = IPMI_NETFN_APP_REQUEST; 4414 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4415 msg.data = NULL; 4416 msg.data_len = 0; 4417 intf->null_user_handler = device_id_fetcher; 4418 ipmi_panic_request_and_wait(intf, &addr, &msg); 4419 4420 if (intf->local_event_generator) { 4421 /* Request the event receiver from the local MC. */ 4422 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4423 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4424 msg.data = NULL; 4425 msg.data_len = 0; 4426 intf->null_user_handler = event_receiver_fetcher; 4427 ipmi_panic_request_and_wait(intf, &addr, &msg); 4428 } 4429 intf->null_user_handler = NULL; 4430 4431 /* 4432 * Validate the event receiver. The low bit must not 4433 * be 1 (it must be a valid IPMB address), it cannot 4434 * be zero, and it must not be my address. 4435 */ 4436 if (((intf->event_receiver & 1) == 0) 4437 && (intf->event_receiver != 0) 4438 && (intf->event_receiver != intf->channels[0].address)) { 4439 /* 4440 * The event receiver is valid, send an IPMB 4441 * message. 4442 */ 4443 ipmb = (struct ipmi_ipmb_addr *) &addr; 4444 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4445 ipmb->channel = 0; /* FIXME - is this right? */ 4446 ipmb->lun = intf->event_receiver_lun; 4447 ipmb->slave_addr = intf->event_receiver; 4448 } else if (intf->local_sel_device) { 4449 /* 4450 * The event receiver was not valid (or was 4451 * me), but I am an SEL device, just dump it 4452 * in my SEL. 4453 */ 4454 si = (struct ipmi_system_interface_addr *) &addr; 4455 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4456 si->channel = IPMI_BMC_CHANNEL; 4457 si->lun = 0; 4458 } else 4459 continue; /* No where to send the event. */ 4460 4461 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4462 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4463 msg.data = data; 4464 msg.data_len = 16; 4465 4466 j = 0; 4467 while (*p) { 4468 int size = strlen(p); 4469 4470 if (size > 11) 4471 size = 11; 4472 data[0] = 0; 4473 data[1] = 0; 4474 data[2] = 0xf0; /* OEM event without timestamp. */ 4475 data[3] = intf->channels[0].address; 4476 data[4] = j++; /* sequence # */ 4477 /* 4478 * Always give 11 bytes, so strncpy will fill 4479 * it with zeroes for me. 4480 */ 4481 strncpy(data+5, p, 11); 4482 p += size; 4483 4484 ipmi_panic_request_and_wait(intf, &addr, &msg); 4485 } 4486 } 4487 #endif /* CONFIG_IPMI_PANIC_STRING */ 4488 } 4489 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4490 4491 static int has_panicked; 4492 4493 static int panic_event(struct notifier_block *this, 4494 unsigned long event, 4495 void *ptr) 4496 { 4497 ipmi_smi_t intf; 4498 4499 if (has_panicked) 4500 return NOTIFY_DONE; 4501 has_panicked = 1; 4502 4503 /* For every registered interface, set it to run to completion. */ 4504 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4505 if (!intf->handlers) 4506 /* Interface is not ready. */ 4507 continue; 4508 4509 intf->run_to_completion = 1; 4510 intf->handlers->set_run_to_completion(intf->send_info, 1); 4511 } 4512 4513 #ifdef CONFIG_IPMI_PANIC_EVENT 4514 send_panic_events(ptr); 4515 #endif 4516 4517 return NOTIFY_DONE; 4518 } 4519 4520 static struct notifier_block panic_block = { 4521 .notifier_call = panic_event, 4522 .next = NULL, 4523 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4524 }; 4525 4526 static int ipmi_init_msghandler(void) 4527 { 4528 int rv; 4529 4530 if (initialized) 4531 return 0; 4532 4533 rv = driver_register(&ipmidriver.driver); 4534 if (rv) { 4535 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4536 return rv; 4537 } 4538 4539 printk(KERN_INFO "ipmi message handler version " 4540 IPMI_DRIVER_VERSION "\n"); 4541 4542 #ifdef CONFIG_PROC_FS 4543 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4544 if (!proc_ipmi_root) { 4545 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4546 driver_unregister(&ipmidriver.driver); 4547 return -ENOMEM; 4548 } 4549 4550 #endif /* CONFIG_PROC_FS */ 4551 4552 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4553 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4554 4555 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4556 4557 initialized = 1; 4558 4559 return 0; 4560 } 4561 4562 static int __init ipmi_init_msghandler_mod(void) 4563 { 4564 ipmi_init_msghandler(); 4565 return 0; 4566 } 4567 4568 static void __exit cleanup_ipmi(void) 4569 { 4570 int count; 4571 4572 if (!initialized) 4573 return; 4574 4575 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4576 4577 /* 4578 * This can't be called if any interfaces exist, so no worry 4579 * about shutting down the interfaces. 4580 */ 4581 4582 /* 4583 * Tell the timer to stop, then wait for it to stop. This 4584 * avoids problems with race conditions removing the timer 4585 * here. 4586 */ 4587 atomic_inc(&stop_operation); 4588 del_timer_sync(&ipmi_timer); 4589 4590 #ifdef CONFIG_PROC_FS 4591 proc_remove(proc_ipmi_root); 4592 #endif /* CONFIG_PROC_FS */ 4593 4594 driver_unregister(&ipmidriver.driver); 4595 4596 initialized = 0; 4597 4598 /* Check for buffer leaks. */ 4599 count = atomic_read(&smi_msg_inuse_count); 4600 if (count != 0) 4601 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4602 count); 4603 count = atomic_read(&recv_msg_inuse_count); 4604 if (count != 0) 4605 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4606 count); 4607 } 4608 module_exit(cleanup_ipmi); 4609 4610 module_init(ipmi_init_msghandler_mod); 4611 MODULE_LICENSE("GPL"); 4612 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4613 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4614 " interface."); 4615 MODULE_VERSION(IPMI_DRIVER_VERSION); 4616