1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <linux/poll.h> 37 #include <linux/sched.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/interrupt.h> 49 50 #define PFX "IPMI message handler: " 51 52 #define IPMI_DRIVER_VERSION "39.2" 53 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 55 static int ipmi_init_msghandler(void); 56 static void smi_recv_tasklet(unsigned long); 57 static void handle_new_recv_msgs(ipmi_smi_t intf); 58 static void need_waiter(ipmi_smi_t intf); 59 static int handle_one_recv_msg(ipmi_smi_t intf, 60 struct ipmi_smi_msg *msg); 61 62 static int initialized; 63 64 #ifdef CONFIG_PROC_FS 65 static struct proc_dir_entry *proc_ipmi_root; 66 #endif /* CONFIG_PROC_FS */ 67 68 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 70 71 #define MAX_EVENTS_IN_QUEUE 25 72 73 /* 74 * Don't let a message sit in a queue forever, always time it with at lest 75 * the max message timer. This is in milliseconds. 76 */ 77 #define MAX_MSG_TIMEOUT 60000 78 79 /* Call every ~1000 ms. */ 80 #define IPMI_TIMEOUT_TIME 1000 81 82 /* How many jiffies does it take to get to the timeout time. */ 83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 84 85 /* 86 * Request events from the queue every second (this is the number of 87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 88 * future, IPMI will add a way to know immediately if an event is in 89 * the queue and this silliness can go away. 90 */ 91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 92 93 /* 94 * The main "user" data structure. 95 */ 96 struct ipmi_user { 97 struct list_head link; 98 99 /* Set to false when the user is destroyed. */ 100 bool valid; 101 102 struct kref refcount; 103 104 /* The upper layer that handles receive messages. */ 105 const struct ipmi_user_hndl *handler; 106 void *handler_data; 107 108 /* The interface this user is bound to. */ 109 ipmi_smi_t intf; 110 111 /* Does this interface receive IPMI events? */ 112 bool gets_events; 113 }; 114 115 struct cmd_rcvr { 116 struct list_head link; 117 118 ipmi_user_t user; 119 unsigned char netfn; 120 unsigned char cmd; 121 unsigned int chans; 122 123 /* 124 * This is used to form a linked lised during mass deletion. 125 * Since this is in an RCU list, we cannot use the link above 126 * or change any data until the RCU period completes. So we 127 * use this next variable during mass deletion so we can have 128 * a list and don't have to wait and restart the search on 129 * every individual deletion of a command. 130 */ 131 struct cmd_rcvr *next; 132 }; 133 134 struct seq_table { 135 unsigned int inuse : 1; 136 unsigned int broadcast : 1; 137 138 unsigned long timeout; 139 unsigned long orig_timeout; 140 unsigned int retries_left; 141 142 /* 143 * To verify on an incoming send message response that this is 144 * the message that the response is for, we keep a sequence id 145 * and increment it every time we send a message. 146 */ 147 long seqid; 148 149 /* 150 * This is held so we can properly respond to the message on a 151 * timeout, and it is used to hold the temporary data for 152 * retransmission, too. 153 */ 154 struct ipmi_recv_msg *recv_msg; 155 }; 156 157 /* 158 * Store the information in a msgid (long) to allow us to find a 159 * sequence table entry from the msgid. 160 */ 161 #define STORE_SEQ_IN_MSGID(seq, seqid) \ 162 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff)) 163 164 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 165 do { \ 166 seq = (((msgid) >> 26) & 0x3f); \ 167 seqid = ((msgid) & 0x3ffffff); \ 168 } while (0) 169 170 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff) 171 172 struct ipmi_channel { 173 unsigned char medium; 174 unsigned char protocol; 175 176 /* 177 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 178 * but may be changed by the user. 179 */ 180 unsigned char address; 181 182 /* 183 * My LUN. This should generally stay the SMS LUN, but just in 184 * case... 185 */ 186 unsigned char lun; 187 }; 188 189 #ifdef CONFIG_PROC_FS 190 struct ipmi_proc_entry { 191 char *name; 192 struct ipmi_proc_entry *next; 193 }; 194 #endif 195 196 struct bmc_device { 197 struct platform_device pdev; 198 struct ipmi_device_id id; 199 unsigned char guid[16]; 200 int guid_set; 201 char name[16]; 202 struct kref usecount; 203 }; 204 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 205 206 /* 207 * Various statistics for IPMI, these index stats[] in the ipmi_smi 208 * structure. 209 */ 210 enum ipmi_stat_indexes { 211 /* Commands we got from the user that were invalid. */ 212 IPMI_STAT_sent_invalid_commands = 0, 213 214 /* Commands we sent to the MC. */ 215 IPMI_STAT_sent_local_commands, 216 217 /* Responses from the MC that were delivered to a user. */ 218 IPMI_STAT_handled_local_responses, 219 220 /* Responses from the MC that were not delivered to a user. */ 221 IPMI_STAT_unhandled_local_responses, 222 223 /* Commands we sent out to the IPMB bus. */ 224 IPMI_STAT_sent_ipmb_commands, 225 226 /* Commands sent on the IPMB that had errors on the SEND CMD */ 227 IPMI_STAT_sent_ipmb_command_errs, 228 229 /* Each retransmit increments this count. */ 230 IPMI_STAT_retransmitted_ipmb_commands, 231 232 /* 233 * When a message times out (runs out of retransmits) this is 234 * incremented. 235 */ 236 IPMI_STAT_timed_out_ipmb_commands, 237 238 /* 239 * This is like above, but for broadcasts. Broadcasts are 240 * *not* included in the above count (they are expected to 241 * time out). 242 */ 243 IPMI_STAT_timed_out_ipmb_broadcasts, 244 245 /* Responses I have sent to the IPMB bus. */ 246 IPMI_STAT_sent_ipmb_responses, 247 248 /* The response was delivered to the user. */ 249 IPMI_STAT_handled_ipmb_responses, 250 251 /* The response had invalid data in it. */ 252 IPMI_STAT_invalid_ipmb_responses, 253 254 /* The response didn't have anyone waiting for it. */ 255 IPMI_STAT_unhandled_ipmb_responses, 256 257 /* Commands we sent out to the IPMB bus. */ 258 IPMI_STAT_sent_lan_commands, 259 260 /* Commands sent on the IPMB that had errors on the SEND CMD */ 261 IPMI_STAT_sent_lan_command_errs, 262 263 /* Each retransmit increments this count. */ 264 IPMI_STAT_retransmitted_lan_commands, 265 266 /* 267 * When a message times out (runs out of retransmits) this is 268 * incremented. 269 */ 270 IPMI_STAT_timed_out_lan_commands, 271 272 /* Responses I have sent to the IPMB bus. */ 273 IPMI_STAT_sent_lan_responses, 274 275 /* The response was delivered to the user. */ 276 IPMI_STAT_handled_lan_responses, 277 278 /* The response had invalid data in it. */ 279 IPMI_STAT_invalid_lan_responses, 280 281 /* The response didn't have anyone waiting for it. */ 282 IPMI_STAT_unhandled_lan_responses, 283 284 /* The command was delivered to the user. */ 285 IPMI_STAT_handled_commands, 286 287 /* The command had invalid data in it. */ 288 IPMI_STAT_invalid_commands, 289 290 /* The command didn't have anyone waiting for it. */ 291 IPMI_STAT_unhandled_commands, 292 293 /* Invalid data in an event. */ 294 IPMI_STAT_invalid_events, 295 296 /* Events that were received with the proper format. */ 297 IPMI_STAT_events, 298 299 /* Retransmissions on IPMB that failed. */ 300 IPMI_STAT_dropped_rexmit_ipmb_commands, 301 302 /* Retransmissions on LAN that failed. */ 303 IPMI_STAT_dropped_rexmit_lan_commands, 304 305 /* This *must* remain last, add new values above this. */ 306 IPMI_NUM_STATS 307 }; 308 309 310 #define IPMI_IPMB_NUM_SEQ 64 311 #define IPMI_MAX_CHANNELS 16 312 struct ipmi_smi { 313 /* What interface number are we? */ 314 int intf_num; 315 316 struct kref refcount; 317 318 /* Set when the interface is being unregistered. */ 319 bool in_shutdown; 320 321 /* Used for a list of interfaces. */ 322 struct list_head link; 323 324 /* 325 * The list of upper layers that are using me. seq_lock 326 * protects this. 327 */ 328 struct list_head users; 329 330 /* Information to supply to users. */ 331 unsigned char ipmi_version_major; 332 unsigned char ipmi_version_minor; 333 334 /* Used for wake ups at startup. */ 335 wait_queue_head_t waitq; 336 337 struct bmc_device *bmc; 338 char *my_dev_name; 339 340 /* 341 * This is the lower-layer's sender routine. Note that you 342 * must either be holding the ipmi_interfaces_mutex or be in 343 * an umpreemptible region to use this. You must fetch the 344 * value into a local variable and make sure it is not NULL. 345 */ 346 const struct ipmi_smi_handlers *handlers; 347 void *send_info; 348 349 #ifdef CONFIG_PROC_FS 350 /* A list of proc entries for this interface. */ 351 struct mutex proc_entry_lock; 352 struct ipmi_proc_entry *proc_entries; 353 #endif 354 355 /* Driver-model device for the system interface. */ 356 struct device *si_dev; 357 358 /* 359 * A table of sequence numbers for this interface. We use the 360 * sequence numbers for IPMB messages that go out of the 361 * interface to match them up with their responses. A routine 362 * is called periodically to time the items in this list. 363 */ 364 spinlock_t seq_lock; 365 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 366 int curr_seq; 367 368 /* 369 * Messages queued for delivery. If delivery fails (out of memory 370 * for instance), They will stay in here to be processed later in a 371 * periodic timer interrupt. The tasklet is for handling received 372 * messages directly from the handler. 373 */ 374 spinlock_t waiting_rcv_msgs_lock; 375 struct list_head waiting_rcv_msgs; 376 atomic_t watchdog_pretimeouts_to_deliver; 377 struct tasklet_struct recv_tasklet; 378 379 spinlock_t xmit_msgs_lock; 380 struct list_head xmit_msgs; 381 struct ipmi_smi_msg *curr_msg; 382 struct list_head hp_xmit_msgs; 383 384 /* 385 * The list of command receivers that are registered for commands 386 * on this interface. 387 */ 388 struct mutex cmd_rcvrs_mutex; 389 struct list_head cmd_rcvrs; 390 391 /* 392 * Events that were queues because no one was there to receive 393 * them. 394 */ 395 spinlock_t events_lock; /* For dealing with event stuff. */ 396 struct list_head waiting_events; 397 unsigned int waiting_events_count; /* How many events in queue? */ 398 char delivering_events; 399 char event_msg_printed; 400 atomic_t event_waiters; 401 unsigned int ticks_to_req_ev; 402 int last_needs_timer; 403 404 /* 405 * The event receiver for my BMC, only really used at panic 406 * shutdown as a place to store this. 407 */ 408 unsigned char event_receiver; 409 unsigned char event_receiver_lun; 410 unsigned char local_sel_device; 411 unsigned char local_event_generator; 412 413 /* For handling of maintenance mode. */ 414 int maintenance_mode; 415 bool maintenance_mode_enable; 416 int auto_maintenance_timeout; 417 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 418 419 /* 420 * A cheap hack, if this is non-null and a message to an 421 * interface comes in with a NULL user, call this routine with 422 * it. Note that the message will still be freed by the 423 * caller. This only works on the system interface. 424 */ 425 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 426 427 /* 428 * When we are scanning the channels for an SMI, this will 429 * tell which channel we are scanning. 430 */ 431 int curr_channel; 432 433 /* Channel information */ 434 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 435 436 /* Proc FS stuff. */ 437 struct proc_dir_entry *proc_dir; 438 char proc_dir_name[10]; 439 440 atomic_t stats[IPMI_NUM_STATS]; 441 442 /* 443 * run_to_completion duplicate of smb_info, smi_info 444 * and ipmi_serial_info structures. Used to decrease numbers of 445 * parameters passed by "low" level IPMI code. 446 */ 447 int run_to_completion; 448 }; 449 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 450 451 /** 452 * The driver model view of the IPMI messaging driver. 453 */ 454 static struct platform_driver ipmidriver = { 455 .driver = { 456 .name = "ipmi", 457 .bus = &platform_bus_type 458 } 459 }; 460 static DEFINE_MUTEX(ipmidriver_mutex); 461 462 static LIST_HEAD(ipmi_interfaces); 463 static DEFINE_MUTEX(ipmi_interfaces_mutex); 464 465 /* 466 * List of watchers that want to know when smi's are added and deleted. 467 */ 468 static LIST_HEAD(smi_watchers); 469 static DEFINE_MUTEX(smi_watchers_mutex); 470 471 #define ipmi_inc_stat(intf, stat) \ 472 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 473 #define ipmi_get_stat(intf, stat) \ 474 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 475 476 static const char * const addr_src_to_str[] = { 477 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI", 478 "device-tree" 479 }; 480 481 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 482 { 483 if (src >= SI_LAST) 484 src = 0; /* Invalid */ 485 return addr_src_to_str[src]; 486 } 487 EXPORT_SYMBOL(ipmi_addr_src_to_str); 488 489 static int is_lan_addr(struct ipmi_addr *addr) 490 { 491 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 492 } 493 494 static int is_ipmb_addr(struct ipmi_addr *addr) 495 { 496 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 497 } 498 499 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 500 { 501 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 502 } 503 504 static void free_recv_msg_list(struct list_head *q) 505 { 506 struct ipmi_recv_msg *msg, *msg2; 507 508 list_for_each_entry_safe(msg, msg2, q, link) { 509 list_del(&msg->link); 510 ipmi_free_recv_msg(msg); 511 } 512 } 513 514 static void free_smi_msg_list(struct list_head *q) 515 { 516 struct ipmi_smi_msg *msg, *msg2; 517 518 list_for_each_entry_safe(msg, msg2, q, link) { 519 list_del(&msg->link); 520 ipmi_free_smi_msg(msg); 521 } 522 } 523 524 static void clean_up_interface_data(ipmi_smi_t intf) 525 { 526 int i; 527 struct cmd_rcvr *rcvr, *rcvr2; 528 struct list_head list; 529 530 tasklet_kill(&intf->recv_tasklet); 531 532 free_smi_msg_list(&intf->waiting_rcv_msgs); 533 free_recv_msg_list(&intf->waiting_events); 534 535 /* 536 * Wholesale remove all the entries from the list in the 537 * interface and wait for RCU to know that none are in use. 538 */ 539 mutex_lock(&intf->cmd_rcvrs_mutex); 540 INIT_LIST_HEAD(&list); 541 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 542 mutex_unlock(&intf->cmd_rcvrs_mutex); 543 544 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 545 kfree(rcvr); 546 547 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 548 if ((intf->seq_table[i].inuse) 549 && (intf->seq_table[i].recv_msg)) 550 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 551 } 552 } 553 554 static void intf_free(struct kref *ref) 555 { 556 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 557 558 clean_up_interface_data(intf); 559 kfree(intf); 560 } 561 562 struct watcher_entry { 563 int intf_num; 564 ipmi_smi_t intf; 565 struct list_head link; 566 }; 567 568 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 569 { 570 ipmi_smi_t intf; 571 LIST_HEAD(to_deliver); 572 struct watcher_entry *e, *e2; 573 574 mutex_lock(&smi_watchers_mutex); 575 576 mutex_lock(&ipmi_interfaces_mutex); 577 578 /* Build a list of things to deliver. */ 579 list_for_each_entry(intf, &ipmi_interfaces, link) { 580 if (intf->intf_num == -1) 581 continue; 582 e = kmalloc(sizeof(*e), GFP_KERNEL); 583 if (!e) 584 goto out_err; 585 kref_get(&intf->refcount); 586 e->intf = intf; 587 e->intf_num = intf->intf_num; 588 list_add_tail(&e->link, &to_deliver); 589 } 590 591 /* We will succeed, so add it to the list. */ 592 list_add(&watcher->link, &smi_watchers); 593 594 mutex_unlock(&ipmi_interfaces_mutex); 595 596 list_for_each_entry_safe(e, e2, &to_deliver, link) { 597 list_del(&e->link); 598 watcher->new_smi(e->intf_num, e->intf->si_dev); 599 kref_put(&e->intf->refcount, intf_free); 600 kfree(e); 601 } 602 603 mutex_unlock(&smi_watchers_mutex); 604 605 return 0; 606 607 out_err: 608 mutex_unlock(&ipmi_interfaces_mutex); 609 mutex_unlock(&smi_watchers_mutex); 610 list_for_each_entry_safe(e, e2, &to_deliver, link) { 611 list_del(&e->link); 612 kref_put(&e->intf->refcount, intf_free); 613 kfree(e); 614 } 615 return -ENOMEM; 616 } 617 EXPORT_SYMBOL(ipmi_smi_watcher_register); 618 619 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 620 { 621 mutex_lock(&smi_watchers_mutex); 622 list_del(&(watcher->link)); 623 mutex_unlock(&smi_watchers_mutex); 624 return 0; 625 } 626 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 627 628 /* 629 * Must be called with smi_watchers_mutex held. 630 */ 631 static void 632 call_smi_watchers(int i, struct device *dev) 633 { 634 struct ipmi_smi_watcher *w; 635 636 list_for_each_entry(w, &smi_watchers, link) { 637 if (try_module_get(w->owner)) { 638 w->new_smi(i, dev); 639 module_put(w->owner); 640 } 641 } 642 } 643 644 static int 645 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 646 { 647 if (addr1->addr_type != addr2->addr_type) 648 return 0; 649 650 if (addr1->channel != addr2->channel) 651 return 0; 652 653 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 654 struct ipmi_system_interface_addr *smi_addr1 655 = (struct ipmi_system_interface_addr *) addr1; 656 struct ipmi_system_interface_addr *smi_addr2 657 = (struct ipmi_system_interface_addr *) addr2; 658 return (smi_addr1->lun == smi_addr2->lun); 659 } 660 661 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 662 struct ipmi_ipmb_addr *ipmb_addr1 663 = (struct ipmi_ipmb_addr *) addr1; 664 struct ipmi_ipmb_addr *ipmb_addr2 665 = (struct ipmi_ipmb_addr *) addr2; 666 667 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 668 && (ipmb_addr1->lun == ipmb_addr2->lun)); 669 } 670 671 if (is_lan_addr(addr1)) { 672 struct ipmi_lan_addr *lan_addr1 673 = (struct ipmi_lan_addr *) addr1; 674 struct ipmi_lan_addr *lan_addr2 675 = (struct ipmi_lan_addr *) addr2; 676 677 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 678 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 679 && (lan_addr1->session_handle 680 == lan_addr2->session_handle) 681 && (lan_addr1->lun == lan_addr2->lun)); 682 } 683 684 return 1; 685 } 686 687 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 688 { 689 if (len < sizeof(struct ipmi_system_interface_addr)) 690 return -EINVAL; 691 692 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 693 if (addr->channel != IPMI_BMC_CHANNEL) 694 return -EINVAL; 695 return 0; 696 } 697 698 if ((addr->channel == IPMI_BMC_CHANNEL) 699 || (addr->channel >= IPMI_MAX_CHANNELS) 700 || (addr->channel < 0)) 701 return -EINVAL; 702 703 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 704 if (len < sizeof(struct ipmi_ipmb_addr)) 705 return -EINVAL; 706 return 0; 707 } 708 709 if (is_lan_addr(addr)) { 710 if (len < sizeof(struct ipmi_lan_addr)) 711 return -EINVAL; 712 return 0; 713 } 714 715 return -EINVAL; 716 } 717 EXPORT_SYMBOL(ipmi_validate_addr); 718 719 unsigned int ipmi_addr_length(int addr_type) 720 { 721 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 722 return sizeof(struct ipmi_system_interface_addr); 723 724 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 725 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 726 return sizeof(struct ipmi_ipmb_addr); 727 728 if (addr_type == IPMI_LAN_ADDR_TYPE) 729 return sizeof(struct ipmi_lan_addr); 730 731 return 0; 732 } 733 EXPORT_SYMBOL(ipmi_addr_length); 734 735 static void deliver_response(struct ipmi_recv_msg *msg) 736 { 737 if (!msg->user) { 738 ipmi_smi_t intf = msg->user_msg_data; 739 740 /* Special handling for NULL users. */ 741 if (intf->null_user_handler) { 742 intf->null_user_handler(intf, msg); 743 ipmi_inc_stat(intf, handled_local_responses); 744 } else { 745 /* No handler, so give up. */ 746 ipmi_inc_stat(intf, unhandled_local_responses); 747 } 748 ipmi_free_recv_msg(msg); 749 } else if (!oops_in_progress) { 750 /* 751 * If we are running in the panic context, calling the 752 * receive handler doesn't much meaning and has a deadlock 753 * risk. At this moment, simply skip it in that case. 754 */ 755 756 ipmi_user_t user = msg->user; 757 user->handler->ipmi_recv_hndl(msg, user->handler_data); 758 } 759 } 760 761 static void 762 deliver_err_response(struct ipmi_recv_msg *msg, int err) 763 { 764 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 765 msg->msg_data[0] = err; 766 msg->msg.netfn |= 1; /* Convert to a response. */ 767 msg->msg.data_len = 1; 768 msg->msg.data = msg->msg_data; 769 deliver_response(msg); 770 } 771 772 /* 773 * Find the next sequence number not being used and add the given 774 * message with the given timeout to the sequence table. This must be 775 * called with the interface's seq_lock held. 776 */ 777 static int intf_next_seq(ipmi_smi_t intf, 778 struct ipmi_recv_msg *recv_msg, 779 unsigned long timeout, 780 int retries, 781 int broadcast, 782 unsigned char *seq, 783 long *seqid) 784 { 785 int rv = 0; 786 unsigned int i; 787 788 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 789 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 790 if (!intf->seq_table[i].inuse) 791 break; 792 } 793 794 if (!intf->seq_table[i].inuse) { 795 intf->seq_table[i].recv_msg = recv_msg; 796 797 /* 798 * Start with the maximum timeout, when the send response 799 * comes in we will start the real timer. 800 */ 801 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 802 intf->seq_table[i].orig_timeout = timeout; 803 intf->seq_table[i].retries_left = retries; 804 intf->seq_table[i].broadcast = broadcast; 805 intf->seq_table[i].inuse = 1; 806 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 807 *seq = i; 808 *seqid = intf->seq_table[i].seqid; 809 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 810 need_waiter(intf); 811 } else { 812 rv = -EAGAIN; 813 } 814 815 return rv; 816 } 817 818 /* 819 * Return the receive message for the given sequence number and 820 * release the sequence number so it can be reused. Some other data 821 * is passed in to be sure the message matches up correctly (to help 822 * guard against message coming in after their timeout and the 823 * sequence number being reused). 824 */ 825 static int intf_find_seq(ipmi_smi_t intf, 826 unsigned char seq, 827 short channel, 828 unsigned char cmd, 829 unsigned char netfn, 830 struct ipmi_addr *addr, 831 struct ipmi_recv_msg **recv_msg) 832 { 833 int rv = -ENODEV; 834 unsigned long flags; 835 836 if (seq >= IPMI_IPMB_NUM_SEQ) 837 return -EINVAL; 838 839 spin_lock_irqsave(&(intf->seq_lock), flags); 840 if (intf->seq_table[seq].inuse) { 841 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 842 843 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 844 && (msg->msg.netfn == netfn) 845 && (ipmi_addr_equal(addr, &(msg->addr)))) { 846 *recv_msg = msg; 847 intf->seq_table[seq].inuse = 0; 848 rv = 0; 849 } 850 } 851 spin_unlock_irqrestore(&(intf->seq_lock), flags); 852 853 return rv; 854 } 855 856 857 /* Start the timer for a specific sequence table entry. */ 858 static int intf_start_seq_timer(ipmi_smi_t intf, 859 long msgid) 860 { 861 int rv = -ENODEV; 862 unsigned long flags; 863 unsigned char seq; 864 unsigned long seqid; 865 866 867 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 868 869 spin_lock_irqsave(&(intf->seq_lock), flags); 870 /* 871 * We do this verification because the user can be deleted 872 * while a message is outstanding. 873 */ 874 if ((intf->seq_table[seq].inuse) 875 && (intf->seq_table[seq].seqid == seqid)) { 876 struct seq_table *ent = &(intf->seq_table[seq]); 877 ent->timeout = ent->orig_timeout; 878 rv = 0; 879 } 880 spin_unlock_irqrestore(&(intf->seq_lock), flags); 881 882 return rv; 883 } 884 885 /* Got an error for the send message for a specific sequence number. */ 886 static int intf_err_seq(ipmi_smi_t intf, 887 long msgid, 888 unsigned int err) 889 { 890 int rv = -ENODEV; 891 unsigned long flags; 892 unsigned char seq; 893 unsigned long seqid; 894 struct ipmi_recv_msg *msg = NULL; 895 896 897 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 898 899 spin_lock_irqsave(&(intf->seq_lock), flags); 900 /* 901 * We do this verification because the user can be deleted 902 * while a message is outstanding. 903 */ 904 if ((intf->seq_table[seq].inuse) 905 && (intf->seq_table[seq].seqid == seqid)) { 906 struct seq_table *ent = &(intf->seq_table[seq]); 907 908 ent->inuse = 0; 909 msg = ent->recv_msg; 910 rv = 0; 911 } 912 spin_unlock_irqrestore(&(intf->seq_lock), flags); 913 914 if (msg) 915 deliver_err_response(msg, err); 916 917 return rv; 918 } 919 920 921 int ipmi_create_user(unsigned int if_num, 922 const struct ipmi_user_hndl *handler, 923 void *handler_data, 924 ipmi_user_t *user) 925 { 926 unsigned long flags; 927 ipmi_user_t new_user; 928 int rv = 0; 929 ipmi_smi_t intf; 930 931 /* 932 * There is no module usecount here, because it's not 933 * required. Since this can only be used by and called from 934 * other modules, they will implicitly use this module, and 935 * thus this can't be removed unless the other modules are 936 * removed. 937 */ 938 939 if (handler == NULL) 940 return -EINVAL; 941 942 /* 943 * Make sure the driver is actually initialized, this handles 944 * problems with initialization order. 945 */ 946 if (!initialized) { 947 rv = ipmi_init_msghandler(); 948 if (rv) 949 return rv; 950 951 /* 952 * The init code doesn't return an error if it was turned 953 * off, but it won't initialize. Check that. 954 */ 955 if (!initialized) 956 return -ENODEV; 957 } 958 959 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 960 if (!new_user) 961 return -ENOMEM; 962 963 mutex_lock(&ipmi_interfaces_mutex); 964 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 965 if (intf->intf_num == if_num) 966 goto found; 967 } 968 /* Not found, return an error */ 969 rv = -EINVAL; 970 goto out_kfree; 971 972 found: 973 /* Note that each existing user holds a refcount to the interface. */ 974 kref_get(&intf->refcount); 975 976 kref_init(&new_user->refcount); 977 new_user->handler = handler; 978 new_user->handler_data = handler_data; 979 new_user->intf = intf; 980 new_user->gets_events = false; 981 982 if (!try_module_get(intf->handlers->owner)) { 983 rv = -ENODEV; 984 goto out_kref; 985 } 986 987 if (intf->handlers->inc_usecount) { 988 rv = intf->handlers->inc_usecount(intf->send_info); 989 if (rv) { 990 module_put(intf->handlers->owner); 991 goto out_kref; 992 } 993 } 994 995 /* 996 * Hold the lock so intf->handlers is guaranteed to be good 997 * until now 998 */ 999 mutex_unlock(&ipmi_interfaces_mutex); 1000 1001 new_user->valid = true; 1002 spin_lock_irqsave(&intf->seq_lock, flags); 1003 list_add_rcu(&new_user->link, &intf->users); 1004 spin_unlock_irqrestore(&intf->seq_lock, flags); 1005 if (handler->ipmi_watchdog_pretimeout) { 1006 /* User wants pretimeouts, so make sure to watch for them. */ 1007 if (atomic_inc_return(&intf->event_waiters) == 1) 1008 need_waiter(intf); 1009 } 1010 *user = new_user; 1011 return 0; 1012 1013 out_kref: 1014 kref_put(&intf->refcount, intf_free); 1015 out_kfree: 1016 mutex_unlock(&ipmi_interfaces_mutex); 1017 kfree(new_user); 1018 return rv; 1019 } 1020 EXPORT_SYMBOL(ipmi_create_user); 1021 1022 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1023 { 1024 int rv = 0; 1025 ipmi_smi_t intf; 1026 const struct ipmi_smi_handlers *handlers; 1027 1028 mutex_lock(&ipmi_interfaces_mutex); 1029 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1030 if (intf->intf_num == if_num) 1031 goto found; 1032 } 1033 /* Not found, return an error */ 1034 rv = -EINVAL; 1035 mutex_unlock(&ipmi_interfaces_mutex); 1036 return rv; 1037 1038 found: 1039 handlers = intf->handlers; 1040 rv = -ENOSYS; 1041 if (handlers->get_smi_info) 1042 rv = handlers->get_smi_info(intf->send_info, data); 1043 mutex_unlock(&ipmi_interfaces_mutex); 1044 1045 return rv; 1046 } 1047 EXPORT_SYMBOL(ipmi_get_smi_info); 1048 1049 static void free_user(struct kref *ref) 1050 { 1051 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1052 kfree(user); 1053 } 1054 1055 int ipmi_destroy_user(ipmi_user_t user) 1056 { 1057 ipmi_smi_t intf = user->intf; 1058 int i; 1059 unsigned long flags; 1060 struct cmd_rcvr *rcvr; 1061 struct cmd_rcvr *rcvrs = NULL; 1062 1063 user->valid = false; 1064 1065 if (user->handler->ipmi_watchdog_pretimeout) 1066 atomic_dec(&intf->event_waiters); 1067 1068 if (user->gets_events) 1069 atomic_dec(&intf->event_waiters); 1070 1071 /* Remove the user from the interface's sequence table. */ 1072 spin_lock_irqsave(&intf->seq_lock, flags); 1073 list_del_rcu(&user->link); 1074 1075 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1076 if (intf->seq_table[i].inuse 1077 && (intf->seq_table[i].recv_msg->user == user)) { 1078 intf->seq_table[i].inuse = 0; 1079 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1080 } 1081 } 1082 spin_unlock_irqrestore(&intf->seq_lock, flags); 1083 1084 /* 1085 * Remove the user from the command receiver's table. First 1086 * we build a list of everything (not using the standard link, 1087 * since other things may be using it till we do 1088 * synchronize_rcu()) then free everything in that list. 1089 */ 1090 mutex_lock(&intf->cmd_rcvrs_mutex); 1091 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1092 if (rcvr->user == user) { 1093 list_del_rcu(&rcvr->link); 1094 rcvr->next = rcvrs; 1095 rcvrs = rcvr; 1096 } 1097 } 1098 mutex_unlock(&intf->cmd_rcvrs_mutex); 1099 synchronize_rcu(); 1100 while (rcvrs) { 1101 rcvr = rcvrs; 1102 rcvrs = rcvr->next; 1103 kfree(rcvr); 1104 } 1105 1106 mutex_lock(&ipmi_interfaces_mutex); 1107 if (intf->handlers) { 1108 module_put(intf->handlers->owner); 1109 if (intf->handlers->dec_usecount) 1110 intf->handlers->dec_usecount(intf->send_info); 1111 } 1112 mutex_unlock(&ipmi_interfaces_mutex); 1113 1114 kref_put(&intf->refcount, intf_free); 1115 1116 kref_put(&user->refcount, free_user); 1117 1118 return 0; 1119 } 1120 EXPORT_SYMBOL(ipmi_destroy_user); 1121 1122 void ipmi_get_version(ipmi_user_t user, 1123 unsigned char *major, 1124 unsigned char *minor) 1125 { 1126 *major = user->intf->ipmi_version_major; 1127 *minor = user->intf->ipmi_version_minor; 1128 } 1129 EXPORT_SYMBOL(ipmi_get_version); 1130 1131 int ipmi_set_my_address(ipmi_user_t user, 1132 unsigned int channel, 1133 unsigned char address) 1134 { 1135 if (channel >= IPMI_MAX_CHANNELS) 1136 return -EINVAL; 1137 user->intf->channels[channel].address = address; 1138 return 0; 1139 } 1140 EXPORT_SYMBOL(ipmi_set_my_address); 1141 1142 int ipmi_get_my_address(ipmi_user_t user, 1143 unsigned int channel, 1144 unsigned char *address) 1145 { 1146 if (channel >= IPMI_MAX_CHANNELS) 1147 return -EINVAL; 1148 *address = user->intf->channels[channel].address; 1149 return 0; 1150 } 1151 EXPORT_SYMBOL(ipmi_get_my_address); 1152 1153 int ipmi_set_my_LUN(ipmi_user_t user, 1154 unsigned int channel, 1155 unsigned char LUN) 1156 { 1157 if (channel >= IPMI_MAX_CHANNELS) 1158 return -EINVAL; 1159 user->intf->channels[channel].lun = LUN & 0x3; 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(ipmi_set_my_LUN); 1163 1164 int ipmi_get_my_LUN(ipmi_user_t user, 1165 unsigned int channel, 1166 unsigned char *address) 1167 { 1168 if (channel >= IPMI_MAX_CHANNELS) 1169 return -EINVAL; 1170 *address = user->intf->channels[channel].lun; 1171 return 0; 1172 } 1173 EXPORT_SYMBOL(ipmi_get_my_LUN); 1174 1175 int ipmi_get_maintenance_mode(ipmi_user_t user) 1176 { 1177 int mode; 1178 unsigned long flags; 1179 1180 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1181 mode = user->intf->maintenance_mode; 1182 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1183 1184 return mode; 1185 } 1186 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1187 1188 static void maintenance_mode_update(ipmi_smi_t intf) 1189 { 1190 if (intf->handlers->set_maintenance_mode) 1191 intf->handlers->set_maintenance_mode( 1192 intf->send_info, intf->maintenance_mode_enable); 1193 } 1194 1195 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1196 { 1197 int rv = 0; 1198 unsigned long flags; 1199 ipmi_smi_t intf = user->intf; 1200 1201 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1202 if (intf->maintenance_mode != mode) { 1203 switch (mode) { 1204 case IPMI_MAINTENANCE_MODE_AUTO: 1205 intf->maintenance_mode_enable 1206 = (intf->auto_maintenance_timeout > 0); 1207 break; 1208 1209 case IPMI_MAINTENANCE_MODE_OFF: 1210 intf->maintenance_mode_enable = false; 1211 break; 1212 1213 case IPMI_MAINTENANCE_MODE_ON: 1214 intf->maintenance_mode_enable = true; 1215 break; 1216 1217 default: 1218 rv = -EINVAL; 1219 goto out_unlock; 1220 } 1221 intf->maintenance_mode = mode; 1222 1223 maintenance_mode_update(intf); 1224 } 1225 out_unlock: 1226 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1227 1228 return rv; 1229 } 1230 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1231 1232 int ipmi_set_gets_events(ipmi_user_t user, bool val) 1233 { 1234 unsigned long flags; 1235 ipmi_smi_t intf = user->intf; 1236 struct ipmi_recv_msg *msg, *msg2; 1237 struct list_head msgs; 1238 1239 INIT_LIST_HEAD(&msgs); 1240 1241 spin_lock_irqsave(&intf->events_lock, flags); 1242 if (user->gets_events == val) 1243 goto out; 1244 1245 user->gets_events = val; 1246 1247 if (val) { 1248 if (atomic_inc_return(&intf->event_waiters) == 1) 1249 need_waiter(intf); 1250 } else { 1251 atomic_dec(&intf->event_waiters); 1252 } 1253 1254 if (intf->delivering_events) 1255 /* 1256 * Another thread is delivering events for this, so 1257 * let it handle any new events. 1258 */ 1259 goto out; 1260 1261 /* Deliver any queued events. */ 1262 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1263 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1264 list_move_tail(&msg->link, &msgs); 1265 intf->waiting_events_count = 0; 1266 if (intf->event_msg_printed) { 1267 printk(KERN_WARNING PFX "Event queue no longer" 1268 " full\n"); 1269 intf->event_msg_printed = 0; 1270 } 1271 1272 intf->delivering_events = 1; 1273 spin_unlock_irqrestore(&intf->events_lock, flags); 1274 1275 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1276 msg->user = user; 1277 kref_get(&user->refcount); 1278 deliver_response(msg); 1279 } 1280 1281 spin_lock_irqsave(&intf->events_lock, flags); 1282 intf->delivering_events = 0; 1283 } 1284 1285 out: 1286 spin_unlock_irqrestore(&intf->events_lock, flags); 1287 1288 return 0; 1289 } 1290 EXPORT_SYMBOL(ipmi_set_gets_events); 1291 1292 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1293 unsigned char netfn, 1294 unsigned char cmd, 1295 unsigned char chan) 1296 { 1297 struct cmd_rcvr *rcvr; 1298 1299 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1300 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1301 && (rcvr->chans & (1 << chan))) 1302 return rcvr; 1303 } 1304 return NULL; 1305 } 1306 1307 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1308 unsigned char netfn, 1309 unsigned char cmd, 1310 unsigned int chans) 1311 { 1312 struct cmd_rcvr *rcvr; 1313 1314 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1315 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1316 && (rcvr->chans & chans)) 1317 return 0; 1318 } 1319 return 1; 1320 } 1321 1322 int ipmi_register_for_cmd(ipmi_user_t user, 1323 unsigned char netfn, 1324 unsigned char cmd, 1325 unsigned int chans) 1326 { 1327 ipmi_smi_t intf = user->intf; 1328 struct cmd_rcvr *rcvr; 1329 int rv = 0; 1330 1331 1332 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1333 if (!rcvr) 1334 return -ENOMEM; 1335 rcvr->cmd = cmd; 1336 rcvr->netfn = netfn; 1337 rcvr->chans = chans; 1338 rcvr->user = user; 1339 1340 mutex_lock(&intf->cmd_rcvrs_mutex); 1341 /* Make sure the command/netfn is not already registered. */ 1342 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1343 rv = -EBUSY; 1344 goto out_unlock; 1345 } 1346 1347 if (atomic_inc_return(&intf->event_waiters) == 1) 1348 need_waiter(intf); 1349 1350 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1351 1352 out_unlock: 1353 mutex_unlock(&intf->cmd_rcvrs_mutex); 1354 if (rv) 1355 kfree(rcvr); 1356 1357 return rv; 1358 } 1359 EXPORT_SYMBOL(ipmi_register_for_cmd); 1360 1361 int ipmi_unregister_for_cmd(ipmi_user_t user, 1362 unsigned char netfn, 1363 unsigned char cmd, 1364 unsigned int chans) 1365 { 1366 ipmi_smi_t intf = user->intf; 1367 struct cmd_rcvr *rcvr; 1368 struct cmd_rcvr *rcvrs = NULL; 1369 int i, rv = -ENOENT; 1370 1371 mutex_lock(&intf->cmd_rcvrs_mutex); 1372 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1373 if (((1 << i) & chans) == 0) 1374 continue; 1375 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1376 if (rcvr == NULL) 1377 continue; 1378 if (rcvr->user == user) { 1379 rv = 0; 1380 rcvr->chans &= ~chans; 1381 if (rcvr->chans == 0) { 1382 list_del_rcu(&rcvr->link); 1383 rcvr->next = rcvrs; 1384 rcvrs = rcvr; 1385 } 1386 } 1387 } 1388 mutex_unlock(&intf->cmd_rcvrs_mutex); 1389 synchronize_rcu(); 1390 while (rcvrs) { 1391 atomic_dec(&intf->event_waiters); 1392 rcvr = rcvrs; 1393 rcvrs = rcvr->next; 1394 kfree(rcvr); 1395 } 1396 return rv; 1397 } 1398 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1399 1400 static unsigned char 1401 ipmb_checksum(unsigned char *data, int size) 1402 { 1403 unsigned char csum = 0; 1404 1405 for (; size > 0; size--, data++) 1406 csum += *data; 1407 1408 return -csum; 1409 } 1410 1411 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1412 struct kernel_ipmi_msg *msg, 1413 struct ipmi_ipmb_addr *ipmb_addr, 1414 long msgid, 1415 unsigned char ipmb_seq, 1416 int broadcast, 1417 unsigned char source_address, 1418 unsigned char source_lun) 1419 { 1420 int i = broadcast; 1421 1422 /* Format the IPMB header data. */ 1423 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1424 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1425 smi_msg->data[2] = ipmb_addr->channel; 1426 if (broadcast) 1427 smi_msg->data[3] = 0; 1428 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1429 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1430 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1431 smi_msg->data[i+6] = source_address; 1432 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1433 smi_msg->data[i+8] = msg->cmd; 1434 1435 /* Now tack on the data to the message. */ 1436 if (msg->data_len > 0) 1437 memcpy(&(smi_msg->data[i+9]), msg->data, 1438 msg->data_len); 1439 smi_msg->data_size = msg->data_len + 9; 1440 1441 /* Now calculate the checksum and tack it on. */ 1442 smi_msg->data[i+smi_msg->data_size] 1443 = ipmb_checksum(&(smi_msg->data[i+6]), 1444 smi_msg->data_size-6); 1445 1446 /* 1447 * Add on the checksum size and the offset from the 1448 * broadcast. 1449 */ 1450 smi_msg->data_size += 1 + i; 1451 1452 smi_msg->msgid = msgid; 1453 } 1454 1455 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1456 struct kernel_ipmi_msg *msg, 1457 struct ipmi_lan_addr *lan_addr, 1458 long msgid, 1459 unsigned char ipmb_seq, 1460 unsigned char source_lun) 1461 { 1462 /* Format the IPMB header data. */ 1463 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1464 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1465 smi_msg->data[2] = lan_addr->channel; 1466 smi_msg->data[3] = lan_addr->session_handle; 1467 smi_msg->data[4] = lan_addr->remote_SWID; 1468 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1469 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1470 smi_msg->data[7] = lan_addr->local_SWID; 1471 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1472 smi_msg->data[9] = msg->cmd; 1473 1474 /* Now tack on the data to the message. */ 1475 if (msg->data_len > 0) 1476 memcpy(&(smi_msg->data[10]), msg->data, 1477 msg->data_len); 1478 smi_msg->data_size = msg->data_len + 10; 1479 1480 /* Now calculate the checksum and tack it on. */ 1481 smi_msg->data[smi_msg->data_size] 1482 = ipmb_checksum(&(smi_msg->data[7]), 1483 smi_msg->data_size-7); 1484 1485 /* 1486 * Add on the checksum size and the offset from the 1487 * broadcast. 1488 */ 1489 smi_msg->data_size += 1; 1490 1491 smi_msg->msgid = msgid; 1492 } 1493 1494 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf, 1495 struct ipmi_smi_msg *smi_msg, 1496 int priority) 1497 { 1498 if (intf->curr_msg) { 1499 if (priority > 0) 1500 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1501 else 1502 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1503 smi_msg = NULL; 1504 } else { 1505 intf->curr_msg = smi_msg; 1506 } 1507 1508 return smi_msg; 1509 } 1510 1511 1512 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers, 1513 struct ipmi_smi_msg *smi_msg, int priority) 1514 { 1515 int run_to_completion = intf->run_to_completion; 1516 1517 if (run_to_completion) { 1518 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1519 } else { 1520 unsigned long flags; 1521 1522 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1523 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1524 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1525 } 1526 1527 if (smi_msg) 1528 handlers->sender(intf->send_info, smi_msg); 1529 } 1530 1531 /* 1532 * Separate from ipmi_request so that the user does not have to be 1533 * supplied in certain circumstances (mainly at panic time). If 1534 * messages are supplied, they will be freed, even if an error 1535 * occurs. 1536 */ 1537 static int i_ipmi_request(ipmi_user_t user, 1538 ipmi_smi_t intf, 1539 struct ipmi_addr *addr, 1540 long msgid, 1541 struct kernel_ipmi_msg *msg, 1542 void *user_msg_data, 1543 void *supplied_smi, 1544 struct ipmi_recv_msg *supplied_recv, 1545 int priority, 1546 unsigned char source_address, 1547 unsigned char source_lun, 1548 int retries, 1549 unsigned int retry_time_ms) 1550 { 1551 int rv = 0; 1552 struct ipmi_smi_msg *smi_msg; 1553 struct ipmi_recv_msg *recv_msg; 1554 unsigned long flags; 1555 1556 1557 if (supplied_recv) 1558 recv_msg = supplied_recv; 1559 else { 1560 recv_msg = ipmi_alloc_recv_msg(); 1561 if (recv_msg == NULL) 1562 return -ENOMEM; 1563 } 1564 recv_msg->user_msg_data = user_msg_data; 1565 1566 if (supplied_smi) 1567 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1568 else { 1569 smi_msg = ipmi_alloc_smi_msg(); 1570 if (smi_msg == NULL) { 1571 ipmi_free_recv_msg(recv_msg); 1572 return -ENOMEM; 1573 } 1574 } 1575 1576 rcu_read_lock(); 1577 if (intf->in_shutdown) { 1578 rv = -ENODEV; 1579 goto out_err; 1580 } 1581 1582 recv_msg->user = user; 1583 if (user) 1584 kref_get(&user->refcount); 1585 recv_msg->msgid = msgid; 1586 /* 1587 * Store the message to send in the receive message so timeout 1588 * responses can get the proper response data. 1589 */ 1590 recv_msg->msg = *msg; 1591 1592 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1593 struct ipmi_system_interface_addr *smi_addr; 1594 1595 if (msg->netfn & 1) { 1596 /* Responses are not allowed to the SMI. */ 1597 rv = -EINVAL; 1598 goto out_err; 1599 } 1600 1601 smi_addr = (struct ipmi_system_interface_addr *) addr; 1602 if (smi_addr->lun > 3) { 1603 ipmi_inc_stat(intf, sent_invalid_commands); 1604 rv = -EINVAL; 1605 goto out_err; 1606 } 1607 1608 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1609 1610 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1611 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1612 || (msg->cmd == IPMI_GET_MSG_CMD) 1613 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1614 /* 1615 * We don't let the user do these, since we manage 1616 * the sequence numbers. 1617 */ 1618 ipmi_inc_stat(intf, sent_invalid_commands); 1619 rv = -EINVAL; 1620 goto out_err; 1621 } 1622 1623 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1624 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1625 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1626 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1627 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1628 intf->auto_maintenance_timeout 1629 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1630 if (!intf->maintenance_mode 1631 && !intf->maintenance_mode_enable) { 1632 intf->maintenance_mode_enable = true; 1633 maintenance_mode_update(intf); 1634 } 1635 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1636 flags); 1637 } 1638 1639 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1640 ipmi_inc_stat(intf, sent_invalid_commands); 1641 rv = -EMSGSIZE; 1642 goto out_err; 1643 } 1644 1645 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1646 smi_msg->data[1] = msg->cmd; 1647 smi_msg->msgid = msgid; 1648 smi_msg->user_data = recv_msg; 1649 if (msg->data_len > 0) 1650 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1651 smi_msg->data_size = msg->data_len + 2; 1652 ipmi_inc_stat(intf, sent_local_commands); 1653 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1654 struct ipmi_ipmb_addr *ipmb_addr; 1655 unsigned char ipmb_seq; 1656 long seqid; 1657 int broadcast = 0; 1658 1659 if (addr->channel >= IPMI_MAX_CHANNELS) { 1660 ipmi_inc_stat(intf, sent_invalid_commands); 1661 rv = -EINVAL; 1662 goto out_err; 1663 } 1664 1665 if (intf->channels[addr->channel].medium 1666 != IPMI_CHANNEL_MEDIUM_IPMB) { 1667 ipmi_inc_stat(intf, sent_invalid_commands); 1668 rv = -EINVAL; 1669 goto out_err; 1670 } 1671 1672 if (retries < 0) { 1673 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1674 retries = 0; /* Don't retry broadcasts. */ 1675 else 1676 retries = 4; 1677 } 1678 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1679 /* 1680 * Broadcasts add a zero at the beginning of the 1681 * message, but otherwise is the same as an IPMB 1682 * address. 1683 */ 1684 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1685 broadcast = 1; 1686 } 1687 1688 1689 /* Default to 1 second retries. */ 1690 if (retry_time_ms == 0) 1691 retry_time_ms = 1000; 1692 1693 /* 1694 * 9 for the header and 1 for the checksum, plus 1695 * possibly one for the broadcast. 1696 */ 1697 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1698 ipmi_inc_stat(intf, sent_invalid_commands); 1699 rv = -EMSGSIZE; 1700 goto out_err; 1701 } 1702 1703 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1704 if (ipmb_addr->lun > 3) { 1705 ipmi_inc_stat(intf, sent_invalid_commands); 1706 rv = -EINVAL; 1707 goto out_err; 1708 } 1709 1710 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1711 1712 if (recv_msg->msg.netfn & 0x1) { 1713 /* 1714 * It's a response, so use the user's sequence 1715 * from msgid. 1716 */ 1717 ipmi_inc_stat(intf, sent_ipmb_responses); 1718 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1719 msgid, broadcast, 1720 source_address, source_lun); 1721 1722 /* 1723 * Save the receive message so we can use it 1724 * to deliver the response. 1725 */ 1726 smi_msg->user_data = recv_msg; 1727 } else { 1728 /* It's a command, so get a sequence for it. */ 1729 1730 spin_lock_irqsave(&(intf->seq_lock), flags); 1731 1732 /* 1733 * Create a sequence number with a 1 second 1734 * timeout and 4 retries. 1735 */ 1736 rv = intf_next_seq(intf, 1737 recv_msg, 1738 retry_time_ms, 1739 retries, 1740 broadcast, 1741 &ipmb_seq, 1742 &seqid); 1743 if (rv) { 1744 /* 1745 * We have used up all the sequence numbers, 1746 * probably, so abort. 1747 */ 1748 spin_unlock_irqrestore(&(intf->seq_lock), 1749 flags); 1750 goto out_err; 1751 } 1752 1753 ipmi_inc_stat(intf, sent_ipmb_commands); 1754 1755 /* 1756 * Store the sequence number in the message, 1757 * so that when the send message response 1758 * comes back we can start the timer. 1759 */ 1760 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1761 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1762 ipmb_seq, broadcast, 1763 source_address, source_lun); 1764 1765 /* 1766 * Copy the message into the recv message data, so we 1767 * can retransmit it later if necessary. 1768 */ 1769 memcpy(recv_msg->msg_data, smi_msg->data, 1770 smi_msg->data_size); 1771 recv_msg->msg.data = recv_msg->msg_data; 1772 recv_msg->msg.data_len = smi_msg->data_size; 1773 1774 /* 1775 * We don't unlock until here, because we need 1776 * to copy the completed message into the 1777 * recv_msg before we release the lock. 1778 * Otherwise, race conditions may bite us. I 1779 * know that's pretty paranoid, but I prefer 1780 * to be correct. 1781 */ 1782 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1783 } 1784 } else if (is_lan_addr(addr)) { 1785 struct ipmi_lan_addr *lan_addr; 1786 unsigned char ipmb_seq; 1787 long seqid; 1788 1789 if (addr->channel >= IPMI_MAX_CHANNELS) { 1790 ipmi_inc_stat(intf, sent_invalid_commands); 1791 rv = -EINVAL; 1792 goto out_err; 1793 } 1794 1795 if ((intf->channels[addr->channel].medium 1796 != IPMI_CHANNEL_MEDIUM_8023LAN) 1797 && (intf->channels[addr->channel].medium 1798 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1799 ipmi_inc_stat(intf, sent_invalid_commands); 1800 rv = -EINVAL; 1801 goto out_err; 1802 } 1803 1804 retries = 4; 1805 1806 /* Default to 1 second retries. */ 1807 if (retry_time_ms == 0) 1808 retry_time_ms = 1000; 1809 1810 /* 11 for the header and 1 for the checksum. */ 1811 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1812 ipmi_inc_stat(intf, sent_invalid_commands); 1813 rv = -EMSGSIZE; 1814 goto out_err; 1815 } 1816 1817 lan_addr = (struct ipmi_lan_addr *) addr; 1818 if (lan_addr->lun > 3) { 1819 ipmi_inc_stat(intf, sent_invalid_commands); 1820 rv = -EINVAL; 1821 goto out_err; 1822 } 1823 1824 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1825 1826 if (recv_msg->msg.netfn & 0x1) { 1827 /* 1828 * It's a response, so use the user's sequence 1829 * from msgid. 1830 */ 1831 ipmi_inc_stat(intf, sent_lan_responses); 1832 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1833 msgid, source_lun); 1834 1835 /* 1836 * Save the receive message so we can use it 1837 * to deliver the response. 1838 */ 1839 smi_msg->user_data = recv_msg; 1840 } else { 1841 /* It's a command, so get a sequence for it. */ 1842 1843 spin_lock_irqsave(&(intf->seq_lock), flags); 1844 1845 /* 1846 * Create a sequence number with a 1 second 1847 * timeout and 4 retries. 1848 */ 1849 rv = intf_next_seq(intf, 1850 recv_msg, 1851 retry_time_ms, 1852 retries, 1853 0, 1854 &ipmb_seq, 1855 &seqid); 1856 if (rv) { 1857 /* 1858 * We have used up all the sequence numbers, 1859 * probably, so abort. 1860 */ 1861 spin_unlock_irqrestore(&(intf->seq_lock), 1862 flags); 1863 goto out_err; 1864 } 1865 1866 ipmi_inc_stat(intf, sent_lan_commands); 1867 1868 /* 1869 * Store the sequence number in the message, 1870 * so that when the send message response 1871 * comes back we can start the timer. 1872 */ 1873 format_lan_msg(smi_msg, msg, lan_addr, 1874 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1875 ipmb_seq, source_lun); 1876 1877 /* 1878 * Copy the message into the recv message data, so we 1879 * can retransmit it later if necessary. 1880 */ 1881 memcpy(recv_msg->msg_data, smi_msg->data, 1882 smi_msg->data_size); 1883 recv_msg->msg.data = recv_msg->msg_data; 1884 recv_msg->msg.data_len = smi_msg->data_size; 1885 1886 /* 1887 * We don't unlock until here, because we need 1888 * to copy the completed message into the 1889 * recv_msg before we release the lock. 1890 * Otherwise, race conditions may bite us. I 1891 * know that's pretty paranoid, but I prefer 1892 * to be correct. 1893 */ 1894 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1895 } 1896 } else { 1897 /* Unknown address type. */ 1898 ipmi_inc_stat(intf, sent_invalid_commands); 1899 rv = -EINVAL; 1900 goto out_err; 1901 } 1902 1903 #ifdef DEBUG_MSGING 1904 { 1905 int m; 1906 for (m = 0; m < smi_msg->data_size; m++) 1907 printk(" %2.2x", smi_msg->data[m]); 1908 printk("\n"); 1909 } 1910 #endif 1911 1912 smi_send(intf, intf->handlers, smi_msg, priority); 1913 rcu_read_unlock(); 1914 1915 return 0; 1916 1917 out_err: 1918 rcu_read_unlock(); 1919 ipmi_free_smi_msg(smi_msg); 1920 ipmi_free_recv_msg(recv_msg); 1921 return rv; 1922 } 1923 1924 static int check_addr(ipmi_smi_t intf, 1925 struct ipmi_addr *addr, 1926 unsigned char *saddr, 1927 unsigned char *lun) 1928 { 1929 if (addr->channel >= IPMI_MAX_CHANNELS) 1930 return -EINVAL; 1931 *lun = intf->channels[addr->channel].lun; 1932 *saddr = intf->channels[addr->channel].address; 1933 return 0; 1934 } 1935 1936 int ipmi_request_settime(ipmi_user_t user, 1937 struct ipmi_addr *addr, 1938 long msgid, 1939 struct kernel_ipmi_msg *msg, 1940 void *user_msg_data, 1941 int priority, 1942 int retries, 1943 unsigned int retry_time_ms) 1944 { 1945 unsigned char saddr = 0, lun = 0; 1946 int rv; 1947 1948 if (!user) 1949 return -EINVAL; 1950 rv = check_addr(user->intf, addr, &saddr, &lun); 1951 if (rv) 1952 return rv; 1953 return i_ipmi_request(user, 1954 user->intf, 1955 addr, 1956 msgid, 1957 msg, 1958 user_msg_data, 1959 NULL, NULL, 1960 priority, 1961 saddr, 1962 lun, 1963 retries, 1964 retry_time_ms); 1965 } 1966 EXPORT_SYMBOL(ipmi_request_settime); 1967 1968 int ipmi_request_supply_msgs(ipmi_user_t user, 1969 struct ipmi_addr *addr, 1970 long msgid, 1971 struct kernel_ipmi_msg *msg, 1972 void *user_msg_data, 1973 void *supplied_smi, 1974 struct ipmi_recv_msg *supplied_recv, 1975 int priority) 1976 { 1977 unsigned char saddr = 0, lun = 0; 1978 int rv; 1979 1980 if (!user) 1981 return -EINVAL; 1982 rv = check_addr(user->intf, addr, &saddr, &lun); 1983 if (rv) 1984 return rv; 1985 return i_ipmi_request(user, 1986 user->intf, 1987 addr, 1988 msgid, 1989 msg, 1990 user_msg_data, 1991 supplied_smi, 1992 supplied_recv, 1993 priority, 1994 saddr, 1995 lun, 1996 -1, 0); 1997 } 1998 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1999 2000 #ifdef CONFIG_PROC_FS 2001 static int smi_ipmb_proc_show(struct seq_file *m, void *v) 2002 { 2003 ipmi_smi_t intf = m->private; 2004 int i; 2005 2006 seq_printf(m, "%x", intf->channels[0].address); 2007 for (i = 1; i < IPMI_MAX_CHANNELS; i++) 2008 seq_printf(m, " %x", intf->channels[i].address); 2009 seq_putc(m, '\n'); 2010 2011 return 0; 2012 } 2013 2014 static int smi_ipmb_proc_open(struct inode *inode, struct file *file) 2015 { 2016 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode)); 2017 } 2018 2019 static const struct file_operations smi_ipmb_proc_ops = { 2020 .open = smi_ipmb_proc_open, 2021 .read = seq_read, 2022 .llseek = seq_lseek, 2023 .release = single_release, 2024 }; 2025 2026 static int smi_version_proc_show(struct seq_file *m, void *v) 2027 { 2028 ipmi_smi_t intf = m->private; 2029 2030 seq_printf(m, "%u.%u\n", 2031 ipmi_version_major(&intf->bmc->id), 2032 ipmi_version_minor(&intf->bmc->id)); 2033 2034 return 0; 2035 } 2036 2037 static int smi_version_proc_open(struct inode *inode, struct file *file) 2038 { 2039 return single_open(file, smi_version_proc_show, PDE_DATA(inode)); 2040 } 2041 2042 static const struct file_operations smi_version_proc_ops = { 2043 .open = smi_version_proc_open, 2044 .read = seq_read, 2045 .llseek = seq_lseek, 2046 .release = single_release, 2047 }; 2048 2049 static int smi_stats_proc_show(struct seq_file *m, void *v) 2050 { 2051 ipmi_smi_t intf = m->private; 2052 2053 seq_printf(m, "sent_invalid_commands: %u\n", 2054 ipmi_get_stat(intf, sent_invalid_commands)); 2055 seq_printf(m, "sent_local_commands: %u\n", 2056 ipmi_get_stat(intf, sent_local_commands)); 2057 seq_printf(m, "handled_local_responses: %u\n", 2058 ipmi_get_stat(intf, handled_local_responses)); 2059 seq_printf(m, "unhandled_local_responses: %u\n", 2060 ipmi_get_stat(intf, unhandled_local_responses)); 2061 seq_printf(m, "sent_ipmb_commands: %u\n", 2062 ipmi_get_stat(intf, sent_ipmb_commands)); 2063 seq_printf(m, "sent_ipmb_command_errs: %u\n", 2064 ipmi_get_stat(intf, sent_ipmb_command_errs)); 2065 seq_printf(m, "retransmitted_ipmb_commands: %u\n", 2066 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 2067 seq_printf(m, "timed_out_ipmb_commands: %u\n", 2068 ipmi_get_stat(intf, timed_out_ipmb_commands)); 2069 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n", 2070 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 2071 seq_printf(m, "sent_ipmb_responses: %u\n", 2072 ipmi_get_stat(intf, sent_ipmb_responses)); 2073 seq_printf(m, "handled_ipmb_responses: %u\n", 2074 ipmi_get_stat(intf, handled_ipmb_responses)); 2075 seq_printf(m, "invalid_ipmb_responses: %u\n", 2076 ipmi_get_stat(intf, invalid_ipmb_responses)); 2077 seq_printf(m, "unhandled_ipmb_responses: %u\n", 2078 ipmi_get_stat(intf, unhandled_ipmb_responses)); 2079 seq_printf(m, "sent_lan_commands: %u\n", 2080 ipmi_get_stat(intf, sent_lan_commands)); 2081 seq_printf(m, "sent_lan_command_errs: %u\n", 2082 ipmi_get_stat(intf, sent_lan_command_errs)); 2083 seq_printf(m, "retransmitted_lan_commands: %u\n", 2084 ipmi_get_stat(intf, retransmitted_lan_commands)); 2085 seq_printf(m, "timed_out_lan_commands: %u\n", 2086 ipmi_get_stat(intf, timed_out_lan_commands)); 2087 seq_printf(m, "sent_lan_responses: %u\n", 2088 ipmi_get_stat(intf, sent_lan_responses)); 2089 seq_printf(m, "handled_lan_responses: %u\n", 2090 ipmi_get_stat(intf, handled_lan_responses)); 2091 seq_printf(m, "invalid_lan_responses: %u\n", 2092 ipmi_get_stat(intf, invalid_lan_responses)); 2093 seq_printf(m, "unhandled_lan_responses: %u\n", 2094 ipmi_get_stat(intf, unhandled_lan_responses)); 2095 seq_printf(m, "handled_commands: %u\n", 2096 ipmi_get_stat(intf, handled_commands)); 2097 seq_printf(m, "invalid_commands: %u\n", 2098 ipmi_get_stat(intf, invalid_commands)); 2099 seq_printf(m, "unhandled_commands: %u\n", 2100 ipmi_get_stat(intf, unhandled_commands)); 2101 seq_printf(m, "invalid_events: %u\n", 2102 ipmi_get_stat(intf, invalid_events)); 2103 seq_printf(m, "events: %u\n", 2104 ipmi_get_stat(intf, events)); 2105 seq_printf(m, "failed rexmit LAN msgs: %u\n", 2106 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 2107 seq_printf(m, "failed rexmit IPMB msgs: %u\n", 2108 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 2109 return 0; 2110 } 2111 2112 static int smi_stats_proc_open(struct inode *inode, struct file *file) 2113 { 2114 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 2115 } 2116 2117 static const struct file_operations smi_stats_proc_ops = { 2118 .open = smi_stats_proc_open, 2119 .read = seq_read, 2120 .llseek = seq_lseek, 2121 .release = single_release, 2122 }; 2123 #endif /* CONFIG_PROC_FS */ 2124 2125 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 2126 const struct file_operations *proc_ops, 2127 void *data) 2128 { 2129 int rv = 0; 2130 #ifdef CONFIG_PROC_FS 2131 struct proc_dir_entry *file; 2132 struct ipmi_proc_entry *entry; 2133 2134 /* Create a list element. */ 2135 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2136 if (!entry) 2137 return -ENOMEM; 2138 entry->name = kstrdup(name, GFP_KERNEL); 2139 if (!entry->name) { 2140 kfree(entry); 2141 return -ENOMEM; 2142 } 2143 2144 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data); 2145 if (!file) { 2146 kfree(entry->name); 2147 kfree(entry); 2148 rv = -ENOMEM; 2149 } else { 2150 mutex_lock(&smi->proc_entry_lock); 2151 /* Stick it on the list. */ 2152 entry->next = smi->proc_entries; 2153 smi->proc_entries = entry; 2154 mutex_unlock(&smi->proc_entry_lock); 2155 } 2156 #endif /* CONFIG_PROC_FS */ 2157 2158 return rv; 2159 } 2160 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2161 2162 static int add_proc_entries(ipmi_smi_t smi, int num) 2163 { 2164 int rv = 0; 2165 2166 #ifdef CONFIG_PROC_FS 2167 sprintf(smi->proc_dir_name, "%d", num); 2168 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2169 if (!smi->proc_dir) 2170 rv = -ENOMEM; 2171 2172 if (rv == 0) 2173 rv = ipmi_smi_add_proc_entry(smi, "stats", 2174 &smi_stats_proc_ops, 2175 smi); 2176 2177 if (rv == 0) 2178 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2179 &smi_ipmb_proc_ops, 2180 smi); 2181 2182 if (rv == 0) 2183 rv = ipmi_smi_add_proc_entry(smi, "version", 2184 &smi_version_proc_ops, 2185 smi); 2186 #endif /* CONFIG_PROC_FS */ 2187 2188 return rv; 2189 } 2190 2191 static void remove_proc_entries(ipmi_smi_t smi) 2192 { 2193 #ifdef CONFIG_PROC_FS 2194 struct ipmi_proc_entry *entry; 2195 2196 mutex_lock(&smi->proc_entry_lock); 2197 while (smi->proc_entries) { 2198 entry = smi->proc_entries; 2199 smi->proc_entries = entry->next; 2200 2201 remove_proc_entry(entry->name, smi->proc_dir); 2202 kfree(entry->name); 2203 kfree(entry); 2204 } 2205 mutex_unlock(&smi->proc_entry_lock); 2206 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2207 #endif /* CONFIG_PROC_FS */ 2208 } 2209 2210 static int __find_bmc_guid(struct device *dev, void *data) 2211 { 2212 unsigned char *id = data; 2213 struct bmc_device *bmc = to_bmc_device(dev); 2214 return memcmp(bmc->guid, id, 16) == 0; 2215 } 2216 2217 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2218 unsigned char *guid) 2219 { 2220 struct device *dev; 2221 2222 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2223 if (dev) 2224 return to_bmc_device(dev); 2225 else 2226 return NULL; 2227 } 2228 2229 struct prod_dev_id { 2230 unsigned int product_id; 2231 unsigned char device_id; 2232 }; 2233 2234 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2235 { 2236 struct prod_dev_id *id = data; 2237 struct bmc_device *bmc = to_bmc_device(dev); 2238 2239 return (bmc->id.product_id == id->product_id 2240 && bmc->id.device_id == id->device_id); 2241 } 2242 2243 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2244 struct device_driver *drv, 2245 unsigned int product_id, unsigned char device_id) 2246 { 2247 struct prod_dev_id id = { 2248 .product_id = product_id, 2249 .device_id = device_id, 2250 }; 2251 struct device *dev; 2252 2253 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2254 if (dev) 2255 return to_bmc_device(dev); 2256 else 2257 return NULL; 2258 } 2259 2260 static ssize_t device_id_show(struct device *dev, 2261 struct device_attribute *attr, 2262 char *buf) 2263 { 2264 struct bmc_device *bmc = to_bmc_device(dev); 2265 2266 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2267 } 2268 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL); 2269 2270 static ssize_t provides_device_sdrs_show(struct device *dev, 2271 struct device_attribute *attr, 2272 char *buf) 2273 { 2274 struct bmc_device *bmc = to_bmc_device(dev); 2275 2276 return snprintf(buf, 10, "%u\n", 2277 (bmc->id.device_revision & 0x80) >> 7); 2278 } 2279 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show, 2280 NULL); 2281 2282 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2283 char *buf) 2284 { 2285 struct bmc_device *bmc = to_bmc_device(dev); 2286 2287 return snprintf(buf, 20, "%u\n", 2288 bmc->id.device_revision & 0x0F); 2289 } 2290 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL); 2291 2292 static ssize_t firmware_revision_show(struct device *dev, 2293 struct device_attribute *attr, 2294 char *buf) 2295 { 2296 struct bmc_device *bmc = to_bmc_device(dev); 2297 2298 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2299 bmc->id.firmware_revision_2); 2300 } 2301 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL); 2302 2303 static ssize_t ipmi_version_show(struct device *dev, 2304 struct device_attribute *attr, 2305 char *buf) 2306 { 2307 struct bmc_device *bmc = to_bmc_device(dev); 2308 2309 return snprintf(buf, 20, "%u.%u\n", 2310 ipmi_version_major(&bmc->id), 2311 ipmi_version_minor(&bmc->id)); 2312 } 2313 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL); 2314 2315 static ssize_t add_dev_support_show(struct device *dev, 2316 struct device_attribute *attr, 2317 char *buf) 2318 { 2319 struct bmc_device *bmc = to_bmc_device(dev); 2320 2321 return snprintf(buf, 10, "0x%02x\n", 2322 bmc->id.additional_device_support); 2323 } 2324 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2325 NULL); 2326 2327 static ssize_t manufacturer_id_show(struct device *dev, 2328 struct device_attribute *attr, 2329 char *buf) 2330 { 2331 struct bmc_device *bmc = to_bmc_device(dev); 2332 2333 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2334 } 2335 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL); 2336 2337 static ssize_t product_id_show(struct device *dev, 2338 struct device_attribute *attr, 2339 char *buf) 2340 { 2341 struct bmc_device *bmc = to_bmc_device(dev); 2342 2343 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2344 } 2345 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL); 2346 2347 static ssize_t aux_firmware_rev_show(struct device *dev, 2348 struct device_attribute *attr, 2349 char *buf) 2350 { 2351 struct bmc_device *bmc = to_bmc_device(dev); 2352 2353 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2354 bmc->id.aux_firmware_revision[3], 2355 bmc->id.aux_firmware_revision[2], 2356 bmc->id.aux_firmware_revision[1], 2357 bmc->id.aux_firmware_revision[0]); 2358 } 2359 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2360 2361 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2362 char *buf) 2363 { 2364 struct bmc_device *bmc = to_bmc_device(dev); 2365 2366 return snprintf(buf, 100, "%Lx%Lx\n", 2367 (long long) bmc->guid[0], 2368 (long long) bmc->guid[8]); 2369 } 2370 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL); 2371 2372 static struct attribute *bmc_dev_attrs[] = { 2373 &dev_attr_device_id.attr, 2374 &dev_attr_provides_device_sdrs.attr, 2375 &dev_attr_revision.attr, 2376 &dev_attr_firmware_revision.attr, 2377 &dev_attr_ipmi_version.attr, 2378 &dev_attr_additional_device_support.attr, 2379 &dev_attr_manufacturer_id.attr, 2380 &dev_attr_product_id.attr, 2381 &dev_attr_aux_firmware_revision.attr, 2382 &dev_attr_guid.attr, 2383 NULL 2384 }; 2385 2386 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2387 struct attribute *attr, int idx) 2388 { 2389 struct device *dev = kobj_to_dev(kobj); 2390 struct bmc_device *bmc = to_bmc_device(dev); 2391 umode_t mode = attr->mode; 2392 2393 if (attr == &dev_attr_aux_firmware_revision.attr) 2394 return bmc->id.aux_firmware_revision_set ? mode : 0; 2395 if (attr == &dev_attr_guid.attr) 2396 return bmc->guid_set ? mode : 0; 2397 return mode; 2398 } 2399 2400 static struct attribute_group bmc_dev_attr_group = { 2401 .attrs = bmc_dev_attrs, 2402 .is_visible = bmc_dev_attr_is_visible, 2403 }; 2404 2405 static const struct attribute_group *bmc_dev_attr_groups[] = { 2406 &bmc_dev_attr_group, 2407 NULL 2408 }; 2409 2410 static struct device_type bmc_device_type = { 2411 .groups = bmc_dev_attr_groups, 2412 }; 2413 2414 static void 2415 release_bmc_device(struct device *dev) 2416 { 2417 kfree(to_bmc_device(dev)); 2418 } 2419 2420 static void 2421 cleanup_bmc_device(struct kref *ref) 2422 { 2423 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 2424 2425 platform_device_unregister(&bmc->pdev); 2426 } 2427 2428 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2429 { 2430 struct bmc_device *bmc = intf->bmc; 2431 2432 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 2433 if (intf->my_dev_name) { 2434 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 2435 kfree(intf->my_dev_name); 2436 intf->my_dev_name = NULL; 2437 } 2438 2439 mutex_lock(&ipmidriver_mutex); 2440 kref_put(&bmc->usecount, cleanup_bmc_device); 2441 intf->bmc = NULL; 2442 mutex_unlock(&ipmidriver_mutex); 2443 } 2444 2445 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum) 2446 { 2447 int rv; 2448 struct bmc_device *bmc = intf->bmc; 2449 struct bmc_device *old_bmc; 2450 2451 mutex_lock(&ipmidriver_mutex); 2452 2453 /* 2454 * Try to find if there is an bmc_device struct 2455 * representing the interfaced BMC already 2456 */ 2457 if (bmc->guid_set) 2458 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2459 else 2460 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2461 bmc->id.product_id, 2462 bmc->id.device_id); 2463 2464 /* 2465 * If there is already an bmc_device, free the new one, 2466 * otherwise register the new BMC device 2467 */ 2468 if (old_bmc) { 2469 kfree(bmc); 2470 intf->bmc = old_bmc; 2471 bmc = old_bmc; 2472 2473 kref_get(&bmc->usecount); 2474 mutex_unlock(&ipmidriver_mutex); 2475 2476 printk(KERN_INFO 2477 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2478 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2479 bmc->id.manufacturer_id, 2480 bmc->id.product_id, 2481 bmc->id.device_id); 2482 } else { 2483 unsigned char orig_dev_id = bmc->id.device_id; 2484 int warn_printed = 0; 2485 2486 snprintf(bmc->name, sizeof(bmc->name), 2487 "ipmi_bmc.%4.4x", bmc->id.product_id); 2488 bmc->pdev.name = bmc->name; 2489 2490 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2491 bmc->id.product_id, 2492 bmc->id.device_id)) { 2493 if (!warn_printed) { 2494 printk(KERN_WARNING PFX 2495 "This machine has two different BMCs" 2496 " with the same product id and device" 2497 " id. This is an error in the" 2498 " firmware, but incrementing the" 2499 " device id to work around the problem." 2500 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2501 bmc->id.product_id, bmc->id.device_id); 2502 warn_printed = 1; 2503 } 2504 bmc->id.device_id++; /* Wraps at 255 */ 2505 if (bmc->id.device_id == orig_dev_id) { 2506 printk(KERN_ERR PFX 2507 "Out of device ids!\n"); 2508 break; 2509 } 2510 } 2511 2512 bmc->pdev.dev.driver = &ipmidriver.driver; 2513 bmc->pdev.id = bmc->id.device_id; 2514 bmc->pdev.dev.release = release_bmc_device; 2515 bmc->pdev.dev.type = &bmc_device_type; 2516 kref_init(&bmc->usecount); 2517 2518 rv = platform_device_register(&bmc->pdev); 2519 mutex_unlock(&ipmidriver_mutex); 2520 if (rv) { 2521 put_device(&bmc->pdev.dev); 2522 printk(KERN_ERR 2523 "ipmi_msghandler:" 2524 " Unable to register bmc device: %d\n", 2525 rv); 2526 /* 2527 * Don't go to out_err, you can only do that if 2528 * the device is registered already. 2529 */ 2530 return rv; 2531 } 2532 2533 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2534 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2535 bmc->id.manufacturer_id, 2536 bmc->id.product_id, 2537 bmc->id.device_id); 2538 } 2539 2540 /* 2541 * create symlink from system interface device to bmc device 2542 * and back. 2543 */ 2544 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 2545 if (rv) { 2546 printk(KERN_ERR 2547 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2548 rv); 2549 goto out_err; 2550 } 2551 2552 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum); 2553 if (!intf->my_dev_name) { 2554 rv = -ENOMEM; 2555 printk(KERN_ERR 2556 "ipmi_msghandler: allocate link from BMC: %d\n", 2557 rv); 2558 goto out_err; 2559 } 2560 2561 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 2562 intf->my_dev_name); 2563 if (rv) { 2564 kfree(intf->my_dev_name); 2565 intf->my_dev_name = NULL; 2566 printk(KERN_ERR 2567 "ipmi_msghandler:" 2568 " Unable to create symlink to bmc: %d\n", 2569 rv); 2570 goto out_err; 2571 } 2572 2573 return 0; 2574 2575 out_err: 2576 ipmi_bmc_unregister(intf); 2577 return rv; 2578 } 2579 2580 static int 2581 send_guid_cmd(ipmi_smi_t intf, int chan) 2582 { 2583 struct kernel_ipmi_msg msg; 2584 struct ipmi_system_interface_addr si; 2585 2586 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2587 si.channel = IPMI_BMC_CHANNEL; 2588 si.lun = 0; 2589 2590 msg.netfn = IPMI_NETFN_APP_REQUEST; 2591 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2592 msg.data = NULL; 2593 msg.data_len = 0; 2594 return i_ipmi_request(NULL, 2595 intf, 2596 (struct ipmi_addr *) &si, 2597 0, 2598 &msg, 2599 intf, 2600 NULL, 2601 NULL, 2602 0, 2603 intf->channels[0].address, 2604 intf->channels[0].lun, 2605 -1, 0); 2606 } 2607 2608 static void 2609 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2610 { 2611 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2612 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2613 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2614 /* Not for me */ 2615 return; 2616 2617 if (msg->msg.data[0] != 0) { 2618 /* Error from getting the GUID, the BMC doesn't have one. */ 2619 intf->bmc->guid_set = 0; 2620 goto out; 2621 } 2622 2623 if (msg->msg.data_len < 17) { 2624 intf->bmc->guid_set = 0; 2625 printk(KERN_WARNING PFX 2626 "guid_handler: The GUID response from the BMC was too" 2627 " short, it was %d but should have been 17. Assuming" 2628 " GUID is not available.\n", 2629 msg->msg.data_len); 2630 goto out; 2631 } 2632 2633 memcpy(intf->bmc->guid, msg->msg.data, 16); 2634 intf->bmc->guid_set = 1; 2635 out: 2636 wake_up(&intf->waitq); 2637 } 2638 2639 static void 2640 get_guid(ipmi_smi_t intf) 2641 { 2642 int rv; 2643 2644 intf->bmc->guid_set = 0x2; 2645 intf->null_user_handler = guid_handler; 2646 rv = send_guid_cmd(intf, 0); 2647 if (rv) 2648 /* Send failed, no GUID available. */ 2649 intf->bmc->guid_set = 0; 2650 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2651 intf->null_user_handler = NULL; 2652 } 2653 2654 static int 2655 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2656 { 2657 struct kernel_ipmi_msg msg; 2658 unsigned char data[1]; 2659 struct ipmi_system_interface_addr si; 2660 2661 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2662 si.channel = IPMI_BMC_CHANNEL; 2663 si.lun = 0; 2664 2665 msg.netfn = IPMI_NETFN_APP_REQUEST; 2666 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2667 msg.data = data; 2668 msg.data_len = 1; 2669 data[0] = chan; 2670 return i_ipmi_request(NULL, 2671 intf, 2672 (struct ipmi_addr *) &si, 2673 0, 2674 &msg, 2675 intf, 2676 NULL, 2677 NULL, 2678 0, 2679 intf->channels[0].address, 2680 intf->channels[0].lun, 2681 -1, 0); 2682 } 2683 2684 static void 2685 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2686 { 2687 int rv = 0; 2688 int chan; 2689 2690 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2691 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2692 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2693 /* It's the one we want */ 2694 if (msg->msg.data[0] != 0) { 2695 /* Got an error from the channel, just go on. */ 2696 2697 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2698 /* 2699 * If the MC does not support this 2700 * command, that is legal. We just 2701 * assume it has one IPMB at channel 2702 * zero. 2703 */ 2704 intf->channels[0].medium 2705 = IPMI_CHANNEL_MEDIUM_IPMB; 2706 intf->channels[0].protocol 2707 = IPMI_CHANNEL_PROTOCOL_IPMB; 2708 2709 intf->curr_channel = IPMI_MAX_CHANNELS; 2710 wake_up(&intf->waitq); 2711 goto out; 2712 } 2713 goto next_channel; 2714 } 2715 if (msg->msg.data_len < 4) { 2716 /* Message not big enough, just go on. */ 2717 goto next_channel; 2718 } 2719 chan = intf->curr_channel; 2720 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2721 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2722 2723 next_channel: 2724 intf->curr_channel++; 2725 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2726 wake_up(&intf->waitq); 2727 else 2728 rv = send_channel_info_cmd(intf, intf->curr_channel); 2729 2730 if (rv) { 2731 /* Got an error somehow, just give up. */ 2732 printk(KERN_WARNING PFX 2733 "Error sending channel information for channel" 2734 " %d: %d\n", intf->curr_channel, rv); 2735 2736 intf->curr_channel = IPMI_MAX_CHANNELS; 2737 wake_up(&intf->waitq); 2738 } 2739 } 2740 out: 2741 return; 2742 } 2743 2744 static void ipmi_poll(ipmi_smi_t intf) 2745 { 2746 if (intf->handlers->poll) 2747 intf->handlers->poll(intf->send_info); 2748 /* In case something came in */ 2749 handle_new_recv_msgs(intf); 2750 } 2751 2752 void ipmi_poll_interface(ipmi_user_t user) 2753 { 2754 ipmi_poll(user->intf); 2755 } 2756 EXPORT_SYMBOL(ipmi_poll_interface); 2757 2758 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers, 2759 void *send_info, 2760 struct ipmi_device_id *device_id, 2761 struct device *si_dev, 2762 unsigned char slave_addr) 2763 { 2764 int i, j; 2765 int rv; 2766 ipmi_smi_t intf; 2767 ipmi_smi_t tintf; 2768 struct list_head *link; 2769 2770 /* 2771 * Make sure the driver is actually initialized, this handles 2772 * problems with initialization order. 2773 */ 2774 if (!initialized) { 2775 rv = ipmi_init_msghandler(); 2776 if (rv) 2777 return rv; 2778 /* 2779 * The init code doesn't return an error if it was turned 2780 * off, but it won't initialize. Check that. 2781 */ 2782 if (!initialized) 2783 return -ENODEV; 2784 } 2785 2786 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2787 if (!intf) 2788 return -ENOMEM; 2789 2790 intf->ipmi_version_major = ipmi_version_major(device_id); 2791 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2792 2793 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2794 if (!intf->bmc) { 2795 kfree(intf); 2796 return -ENOMEM; 2797 } 2798 intf->intf_num = -1; /* Mark it invalid for now. */ 2799 kref_init(&intf->refcount); 2800 intf->bmc->id = *device_id; 2801 intf->si_dev = si_dev; 2802 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2803 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2804 intf->channels[j].lun = 2; 2805 } 2806 if (slave_addr != 0) 2807 intf->channels[0].address = slave_addr; 2808 INIT_LIST_HEAD(&intf->users); 2809 intf->handlers = handlers; 2810 intf->send_info = send_info; 2811 spin_lock_init(&intf->seq_lock); 2812 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2813 intf->seq_table[j].inuse = 0; 2814 intf->seq_table[j].seqid = 0; 2815 } 2816 intf->curr_seq = 0; 2817 #ifdef CONFIG_PROC_FS 2818 mutex_init(&intf->proc_entry_lock); 2819 #endif 2820 spin_lock_init(&intf->waiting_rcv_msgs_lock); 2821 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 2822 tasklet_init(&intf->recv_tasklet, 2823 smi_recv_tasklet, 2824 (unsigned long) intf); 2825 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 2826 spin_lock_init(&intf->xmit_msgs_lock); 2827 INIT_LIST_HEAD(&intf->xmit_msgs); 2828 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 2829 spin_lock_init(&intf->events_lock); 2830 atomic_set(&intf->event_waiters, 0); 2831 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 2832 INIT_LIST_HEAD(&intf->waiting_events); 2833 intf->waiting_events_count = 0; 2834 mutex_init(&intf->cmd_rcvrs_mutex); 2835 spin_lock_init(&intf->maintenance_mode_lock); 2836 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2837 init_waitqueue_head(&intf->waitq); 2838 for (i = 0; i < IPMI_NUM_STATS; i++) 2839 atomic_set(&intf->stats[i], 0); 2840 2841 intf->proc_dir = NULL; 2842 2843 mutex_lock(&smi_watchers_mutex); 2844 mutex_lock(&ipmi_interfaces_mutex); 2845 /* Look for a hole in the numbers. */ 2846 i = 0; 2847 link = &ipmi_interfaces; 2848 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2849 if (tintf->intf_num != i) { 2850 link = &tintf->link; 2851 break; 2852 } 2853 i++; 2854 } 2855 /* Add the new interface in numeric order. */ 2856 if (i == 0) 2857 list_add_rcu(&intf->link, &ipmi_interfaces); 2858 else 2859 list_add_tail_rcu(&intf->link, link); 2860 2861 rv = handlers->start_processing(send_info, intf); 2862 if (rv) 2863 goto out; 2864 2865 get_guid(intf); 2866 2867 if ((intf->ipmi_version_major > 1) 2868 || ((intf->ipmi_version_major == 1) 2869 && (intf->ipmi_version_minor >= 5))) { 2870 /* 2871 * Start scanning the channels to see what is 2872 * available. 2873 */ 2874 intf->null_user_handler = channel_handler; 2875 intf->curr_channel = 0; 2876 rv = send_channel_info_cmd(intf, 0); 2877 if (rv) { 2878 printk(KERN_WARNING PFX 2879 "Error sending channel information for channel" 2880 " 0, %d\n", rv); 2881 goto out; 2882 } 2883 2884 /* Wait for the channel info to be read. */ 2885 wait_event(intf->waitq, 2886 intf->curr_channel >= IPMI_MAX_CHANNELS); 2887 intf->null_user_handler = NULL; 2888 } else { 2889 /* Assume a single IPMB channel at zero. */ 2890 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2891 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2892 intf->curr_channel = IPMI_MAX_CHANNELS; 2893 } 2894 2895 rv = ipmi_bmc_register(intf, i); 2896 2897 if (rv == 0) 2898 rv = add_proc_entries(intf, i); 2899 2900 out: 2901 if (rv) { 2902 if (intf->proc_dir) 2903 remove_proc_entries(intf); 2904 intf->handlers = NULL; 2905 list_del_rcu(&intf->link); 2906 mutex_unlock(&ipmi_interfaces_mutex); 2907 mutex_unlock(&smi_watchers_mutex); 2908 synchronize_rcu(); 2909 kref_put(&intf->refcount, intf_free); 2910 } else { 2911 /* 2912 * Keep memory order straight for RCU readers. Make 2913 * sure everything else is committed to memory before 2914 * setting intf_num to mark the interface valid. 2915 */ 2916 smp_wmb(); 2917 intf->intf_num = i; 2918 mutex_unlock(&ipmi_interfaces_mutex); 2919 /* After this point the interface is legal to use. */ 2920 call_smi_watchers(i, intf->si_dev); 2921 mutex_unlock(&smi_watchers_mutex); 2922 } 2923 2924 return rv; 2925 } 2926 EXPORT_SYMBOL(ipmi_register_smi); 2927 2928 static void deliver_smi_err_response(ipmi_smi_t intf, 2929 struct ipmi_smi_msg *msg, 2930 unsigned char err) 2931 { 2932 msg->rsp[0] = msg->data[0] | 4; 2933 msg->rsp[1] = msg->data[1]; 2934 msg->rsp[2] = err; 2935 msg->rsp_size = 3; 2936 /* It's an error, so it will never requeue, no need to check return. */ 2937 handle_one_recv_msg(intf, msg); 2938 } 2939 2940 static void cleanup_smi_msgs(ipmi_smi_t intf) 2941 { 2942 int i; 2943 struct seq_table *ent; 2944 struct ipmi_smi_msg *msg; 2945 struct list_head *entry; 2946 struct list_head tmplist; 2947 2948 /* Clear out our transmit queues and hold the messages. */ 2949 INIT_LIST_HEAD(&tmplist); 2950 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 2951 list_splice_tail(&intf->xmit_msgs, &tmplist); 2952 2953 /* Current message first, to preserve order */ 2954 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 2955 /* Wait for the message to clear out. */ 2956 schedule_timeout(1); 2957 } 2958 2959 /* No need for locks, the interface is down. */ 2960 2961 /* 2962 * Return errors for all pending messages in queue and in the 2963 * tables waiting for remote responses. 2964 */ 2965 while (!list_empty(&tmplist)) { 2966 entry = tmplist.next; 2967 list_del(entry); 2968 msg = list_entry(entry, struct ipmi_smi_msg, link); 2969 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 2970 } 2971 2972 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2973 ent = &(intf->seq_table[i]); 2974 if (!ent->inuse) 2975 continue; 2976 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2977 } 2978 } 2979 2980 int ipmi_unregister_smi(ipmi_smi_t intf) 2981 { 2982 struct ipmi_smi_watcher *w; 2983 int intf_num = intf->intf_num; 2984 ipmi_user_t user; 2985 2986 mutex_lock(&smi_watchers_mutex); 2987 mutex_lock(&ipmi_interfaces_mutex); 2988 intf->intf_num = -1; 2989 intf->in_shutdown = true; 2990 list_del_rcu(&intf->link); 2991 mutex_unlock(&ipmi_interfaces_mutex); 2992 synchronize_rcu(); 2993 2994 cleanup_smi_msgs(intf); 2995 2996 /* Clean up the effects of users on the lower-level software. */ 2997 mutex_lock(&ipmi_interfaces_mutex); 2998 rcu_read_lock(); 2999 list_for_each_entry_rcu(user, &intf->users, link) { 3000 module_put(intf->handlers->owner); 3001 if (intf->handlers->dec_usecount) 3002 intf->handlers->dec_usecount(intf->send_info); 3003 } 3004 rcu_read_unlock(); 3005 intf->handlers = NULL; 3006 mutex_unlock(&ipmi_interfaces_mutex); 3007 3008 remove_proc_entries(intf); 3009 ipmi_bmc_unregister(intf); 3010 3011 /* 3012 * Call all the watcher interfaces to tell them that 3013 * an interface is gone. 3014 */ 3015 list_for_each_entry(w, &smi_watchers, link) 3016 w->smi_gone(intf_num); 3017 mutex_unlock(&smi_watchers_mutex); 3018 3019 kref_put(&intf->refcount, intf_free); 3020 return 0; 3021 } 3022 EXPORT_SYMBOL(ipmi_unregister_smi); 3023 3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 3025 struct ipmi_smi_msg *msg) 3026 { 3027 struct ipmi_ipmb_addr ipmb_addr; 3028 struct ipmi_recv_msg *recv_msg; 3029 3030 /* 3031 * This is 11, not 10, because the response must contain a 3032 * completion code. 3033 */ 3034 if (msg->rsp_size < 11) { 3035 /* Message not big enough, just ignore it. */ 3036 ipmi_inc_stat(intf, invalid_ipmb_responses); 3037 return 0; 3038 } 3039 3040 if (msg->rsp[2] != 0) { 3041 /* An error getting the response, just ignore it. */ 3042 return 0; 3043 } 3044 3045 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3046 ipmb_addr.slave_addr = msg->rsp[6]; 3047 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3048 ipmb_addr.lun = msg->rsp[7] & 3; 3049 3050 /* 3051 * It's a response from a remote entity. Look up the sequence 3052 * number and handle the response. 3053 */ 3054 if (intf_find_seq(intf, 3055 msg->rsp[7] >> 2, 3056 msg->rsp[3] & 0x0f, 3057 msg->rsp[8], 3058 (msg->rsp[4] >> 2) & (~1), 3059 (struct ipmi_addr *) &(ipmb_addr), 3060 &recv_msg)) { 3061 /* 3062 * We were unable to find the sequence number, 3063 * so just nuke the message. 3064 */ 3065 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3066 return 0; 3067 } 3068 3069 memcpy(recv_msg->msg_data, 3070 &(msg->rsp[9]), 3071 msg->rsp_size - 9); 3072 /* 3073 * The other fields matched, so no need to set them, except 3074 * for netfn, which needs to be the response that was 3075 * returned, not the request value. 3076 */ 3077 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3078 recv_msg->msg.data = recv_msg->msg_data; 3079 recv_msg->msg.data_len = msg->rsp_size - 10; 3080 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3081 ipmi_inc_stat(intf, handled_ipmb_responses); 3082 deliver_response(recv_msg); 3083 3084 return 0; 3085 } 3086 3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3088 struct ipmi_smi_msg *msg) 3089 { 3090 struct cmd_rcvr *rcvr; 3091 int rv = 0; 3092 unsigned char netfn; 3093 unsigned char cmd; 3094 unsigned char chan; 3095 ipmi_user_t user = NULL; 3096 struct ipmi_ipmb_addr *ipmb_addr; 3097 struct ipmi_recv_msg *recv_msg; 3098 3099 if (msg->rsp_size < 10) { 3100 /* Message not big enough, just ignore it. */ 3101 ipmi_inc_stat(intf, invalid_commands); 3102 return 0; 3103 } 3104 3105 if (msg->rsp[2] != 0) { 3106 /* An error getting the response, just ignore it. */ 3107 return 0; 3108 } 3109 3110 netfn = msg->rsp[4] >> 2; 3111 cmd = msg->rsp[8]; 3112 chan = msg->rsp[3] & 0xf; 3113 3114 rcu_read_lock(); 3115 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3116 if (rcvr) { 3117 user = rcvr->user; 3118 kref_get(&user->refcount); 3119 } else 3120 user = NULL; 3121 rcu_read_unlock(); 3122 3123 if (user == NULL) { 3124 /* We didn't find a user, deliver an error response. */ 3125 ipmi_inc_stat(intf, unhandled_commands); 3126 3127 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3128 msg->data[1] = IPMI_SEND_MSG_CMD; 3129 msg->data[2] = msg->rsp[3]; 3130 msg->data[3] = msg->rsp[6]; 3131 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3132 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3133 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3134 /* rqseq/lun */ 3135 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3136 msg->data[8] = msg->rsp[8]; /* cmd */ 3137 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3138 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3139 msg->data_size = 11; 3140 3141 #ifdef DEBUG_MSGING 3142 { 3143 int m; 3144 printk("Invalid command:"); 3145 for (m = 0; m < msg->data_size; m++) 3146 printk(" %2.2x", msg->data[m]); 3147 printk("\n"); 3148 } 3149 #endif 3150 rcu_read_lock(); 3151 if (!intf->in_shutdown) { 3152 smi_send(intf, intf->handlers, msg, 0); 3153 /* 3154 * We used the message, so return the value 3155 * that causes it to not be freed or 3156 * queued. 3157 */ 3158 rv = -1; 3159 } 3160 rcu_read_unlock(); 3161 } else { 3162 /* Deliver the message to the user. */ 3163 ipmi_inc_stat(intf, handled_commands); 3164 3165 recv_msg = ipmi_alloc_recv_msg(); 3166 if (!recv_msg) { 3167 /* 3168 * We couldn't allocate memory for the 3169 * message, so requeue it for handling 3170 * later. 3171 */ 3172 rv = 1; 3173 kref_put(&user->refcount, free_user); 3174 } else { 3175 /* Extract the source address from the data. */ 3176 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3177 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3178 ipmb_addr->slave_addr = msg->rsp[6]; 3179 ipmb_addr->lun = msg->rsp[7] & 3; 3180 ipmb_addr->channel = msg->rsp[3] & 0xf; 3181 3182 /* 3183 * Extract the rest of the message information 3184 * from the IPMB header. 3185 */ 3186 recv_msg->user = user; 3187 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3188 recv_msg->msgid = msg->rsp[7] >> 2; 3189 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3190 recv_msg->msg.cmd = msg->rsp[8]; 3191 recv_msg->msg.data = recv_msg->msg_data; 3192 3193 /* 3194 * We chop off 10, not 9 bytes because the checksum 3195 * at the end also needs to be removed. 3196 */ 3197 recv_msg->msg.data_len = msg->rsp_size - 10; 3198 memcpy(recv_msg->msg_data, 3199 &(msg->rsp[9]), 3200 msg->rsp_size - 10); 3201 deliver_response(recv_msg); 3202 } 3203 } 3204 3205 return rv; 3206 } 3207 3208 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3209 struct ipmi_smi_msg *msg) 3210 { 3211 struct ipmi_lan_addr lan_addr; 3212 struct ipmi_recv_msg *recv_msg; 3213 3214 3215 /* 3216 * This is 13, not 12, because the response must contain a 3217 * completion code. 3218 */ 3219 if (msg->rsp_size < 13) { 3220 /* Message not big enough, just ignore it. */ 3221 ipmi_inc_stat(intf, invalid_lan_responses); 3222 return 0; 3223 } 3224 3225 if (msg->rsp[2] != 0) { 3226 /* An error getting the response, just ignore it. */ 3227 return 0; 3228 } 3229 3230 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3231 lan_addr.session_handle = msg->rsp[4]; 3232 lan_addr.remote_SWID = msg->rsp[8]; 3233 lan_addr.local_SWID = msg->rsp[5]; 3234 lan_addr.channel = msg->rsp[3] & 0x0f; 3235 lan_addr.privilege = msg->rsp[3] >> 4; 3236 lan_addr.lun = msg->rsp[9] & 3; 3237 3238 /* 3239 * It's a response from a remote entity. Look up the sequence 3240 * number and handle the response. 3241 */ 3242 if (intf_find_seq(intf, 3243 msg->rsp[9] >> 2, 3244 msg->rsp[3] & 0x0f, 3245 msg->rsp[10], 3246 (msg->rsp[6] >> 2) & (~1), 3247 (struct ipmi_addr *) &(lan_addr), 3248 &recv_msg)) { 3249 /* 3250 * We were unable to find the sequence number, 3251 * so just nuke the message. 3252 */ 3253 ipmi_inc_stat(intf, unhandled_lan_responses); 3254 return 0; 3255 } 3256 3257 memcpy(recv_msg->msg_data, 3258 &(msg->rsp[11]), 3259 msg->rsp_size - 11); 3260 /* 3261 * The other fields matched, so no need to set them, except 3262 * for netfn, which needs to be the response that was 3263 * returned, not the request value. 3264 */ 3265 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3266 recv_msg->msg.data = recv_msg->msg_data; 3267 recv_msg->msg.data_len = msg->rsp_size - 12; 3268 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3269 ipmi_inc_stat(intf, handled_lan_responses); 3270 deliver_response(recv_msg); 3271 3272 return 0; 3273 } 3274 3275 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3276 struct ipmi_smi_msg *msg) 3277 { 3278 struct cmd_rcvr *rcvr; 3279 int rv = 0; 3280 unsigned char netfn; 3281 unsigned char cmd; 3282 unsigned char chan; 3283 ipmi_user_t user = NULL; 3284 struct ipmi_lan_addr *lan_addr; 3285 struct ipmi_recv_msg *recv_msg; 3286 3287 if (msg->rsp_size < 12) { 3288 /* Message not big enough, just ignore it. */ 3289 ipmi_inc_stat(intf, invalid_commands); 3290 return 0; 3291 } 3292 3293 if (msg->rsp[2] != 0) { 3294 /* An error getting the response, just ignore it. */ 3295 return 0; 3296 } 3297 3298 netfn = msg->rsp[6] >> 2; 3299 cmd = msg->rsp[10]; 3300 chan = msg->rsp[3] & 0xf; 3301 3302 rcu_read_lock(); 3303 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3304 if (rcvr) { 3305 user = rcvr->user; 3306 kref_get(&user->refcount); 3307 } else 3308 user = NULL; 3309 rcu_read_unlock(); 3310 3311 if (user == NULL) { 3312 /* We didn't find a user, just give up. */ 3313 ipmi_inc_stat(intf, unhandled_commands); 3314 3315 /* 3316 * Don't do anything with these messages, just allow 3317 * them to be freed. 3318 */ 3319 rv = 0; 3320 } else { 3321 /* Deliver the message to the user. */ 3322 ipmi_inc_stat(intf, handled_commands); 3323 3324 recv_msg = ipmi_alloc_recv_msg(); 3325 if (!recv_msg) { 3326 /* 3327 * We couldn't allocate memory for the 3328 * message, so requeue it for handling later. 3329 */ 3330 rv = 1; 3331 kref_put(&user->refcount, free_user); 3332 } else { 3333 /* Extract the source address from the data. */ 3334 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3335 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3336 lan_addr->session_handle = msg->rsp[4]; 3337 lan_addr->remote_SWID = msg->rsp[8]; 3338 lan_addr->local_SWID = msg->rsp[5]; 3339 lan_addr->lun = msg->rsp[9] & 3; 3340 lan_addr->channel = msg->rsp[3] & 0xf; 3341 lan_addr->privilege = msg->rsp[3] >> 4; 3342 3343 /* 3344 * Extract the rest of the message information 3345 * from the IPMB header. 3346 */ 3347 recv_msg->user = user; 3348 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3349 recv_msg->msgid = msg->rsp[9] >> 2; 3350 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3351 recv_msg->msg.cmd = msg->rsp[10]; 3352 recv_msg->msg.data = recv_msg->msg_data; 3353 3354 /* 3355 * We chop off 12, not 11 bytes because the checksum 3356 * at the end also needs to be removed. 3357 */ 3358 recv_msg->msg.data_len = msg->rsp_size - 12; 3359 memcpy(recv_msg->msg_data, 3360 &(msg->rsp[11]), 3361 msg->rsp_size - 12); 3362 deliver_response(recv_msg); 3363 } 3364 } 3365 3366 return rv; 3367 } 3368 3369 /* 3370 * This routine will handle "Get Message" command responses with 3371 * channels that use an OEM Medium. The message format belongs to 3372 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3373 * Chapter 22, sections 22.6 and 22.24 for more details. 3374 */ 3375 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3376 struct ipmi_smi_msg *msg) 3377 { 3378 struct cmd_rcvr *rcvr; 3379 int rv = 0; 3380 unsigned char netfn; 3381 unsigned char cmd; 3382 unsigned char chan; 3383 ipmi_user_t user = NULL; 3384 struct ipmi_system_interface_addr *smi_addr; 3385 struct ipmi_recv_msg *recv_msg; 3386 3387 /* 3388 * We expect the OEM SW to perform error checking 3389 * so we just do some basic sanity checks 3390 */ 3391 if (msg->rsp_size < 4) { 3392 /* Message not big enough, just ignore it. */ 3393 ipmi_inc_stat(intf, invalid_commands); 3394 return 0; 3395 } 3396 3397 if (msg->rsp[2] != 0) { 3398 /* An error getting the response, just ignore it. */ 3399 return 0; 3400 } 3401 3402 /* 3403 * This is an OEM Message so the OEM needs to know how 3404 * handle the message. We do no interpretation. 3405 */ 3406 netfn = msg->rsp[0] >> 2; 3407 cmd = msg->rsp[1]; 3408 chan = msg->rsp[3] & 0xf; 3409 3410 rcu_read_lock(); 3411 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3412 if (rcvr) { 3413 user = rcvr->user; 3414 kref_get(&user->refcount); 3415 } else 3416 user = NULL; 3417 rcu_read_unlock(); 3418 3419 if (user == NULL) { 3420 /* We didn't find a user, just give up. */ 3421 ipmi_inc_stat(intf, unhandled_commands); 3422 3423 /* 3424 * Don't do anything with these messages, just allow 3425 * them to be freed. 3426 */ 3427 3428 rv = 0; 3429 } else { 3430 /* Deliver the message to the user. */ 3431 ipmi_inc_stat(intf, handled_commands); 3432 3433 recv_msg = ipmi_alloc_recv_msg(); 3434 if (!recv_msg) { 3435 /* 3436 * We couldn't allocate memory for the 3437 * message, so requeue it for handling 3438 * later. 3439 */ 3440 rv = 1; 3441 kref_put(&user->refcount, free_user); 3442 } else { 3443 /* 3444 * OEM Messages are expected to be delivered via 3445 * the system interface to SMS software. We might 3446 * need to visit this again depending on OEM 3447 * requirements 3448 */ 3449 smi_addr = ((struct ipmi_system_interface_addr *) 3450 &(recv_msg->addr)); 3451 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3452 smi_addr->channel = IPMI_BMC_CHANNEL; 3453 smi_addr->lun = msg->rsp[0] & 3; 3454 3455 recv_msg->user = user; 3456 recv_msg->user_msg_data = NULL; 3457 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3458 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3459 recv_msg->msg.cmd = msg->rsp[1]; 3460 recv_msg->msg.data = recv_msg->msg_data; 3461 3462 /* 3463 * The message starts at byte 4 which follows the 3464 * the Channel Byte in the "GET MESSAGE" command 3465 */ 3466 recv_msg->msg.data_len = msg->rsp_size - 4; 3467 memcpy(recv_msg->msg_data, 3468 &(msg->rsp[4]), 3469 msg->rsp_size - 4); 3470 deliver_response(recv_msg); 3471 } 3472 } 3473 3474 return rv; 3475 } 3476 3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3478 struct ipmi_smi_msg *msg) 3479 { 3480 struct ipmi_system_interface_addr *smi_addr; 3481 3482 recv_msg->msgid = 0; 3483 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3484 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3485 smi_addr->channel = IPMI_BMC_CHANNEL; 3486 smi_addr->lun = msg->rsp[0] & 3; 3487 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3488 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3489 recv_msg->msg.cmd = msg->rsp[1]; 3490 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3491 recv_msg->msg.data = recv_msg->msg_data; 3492 recv_msg->msg.data_len = msg->rsp_size - 3; 3493 } 3494 3495 static int handle_read_event_rsp(ipmi_smi_t intf, 3496 struct ipmi_smi_msg *msg) 3497 { 3498 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3499 struct list_head msgs; 3500 ipmi_user_t user; 3501 int rv = 0; 3502 int deliver_count = 0; 3503 unsigned long flags; 3504 3505 if (msg->rsp_size < 19) { 3506 /* Message is too small to be an IPMB event. */ 3507 ipmi_inc_stat(intf, invalid_events); 3508 return 0; 3509 } 3510 3511 if (msg->rsp[2] != 0) { 3512 /* An error getting the event, just ignore it. */ 3513 return 0; 3514 } 3515 3516 INIT_LIST_HEAD(&msgs); 3517 3518 spin_lock_irqsave(&intf->events_lock, flags); 3519 3520 ipmi_inc_stat(intf, events); 3521 3522 /* 3523 * Allocate and fill in one message for every user that is 3524 * getting events. 3525 */ 3526 rcu_read_lock(); 3527 list_for_each_entry_rcu(user, &intf->users, link) { 3528 if (!user->gets_events) 3529 continue; 3530 3531 recv_msg = ipmi_alloc_recv_msg(); 3532 if (!recv_msg) { 3533 rcu_read_unlock(); 3534 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3535 link) { 3536 list_del(&recv_msg->link); 3537 ipmi_free_recv_msg(recv_msg); 3538 } 3539 /* 3540 * We couldn't allocate memory for the 3541 * message, so requeue it for handling 3542 * later. 3543 */ 3544 rv = 1; 3545 goto out; 3546 } 3547 3548 deliver_count++; 3549 3550 copy_event_into_recv_msg(recv_msg, msg); 3551 recv_msg->user = user; 3552 kref_get(&user->refcount); 3553 list_add_tail(&(recv_msg->link), &msgs); 3554 } 3555 rcu_read_unlock(); 3556 3557 if (deliver_count) { 3558 /* Now deliver all the messages. */ 3559 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3560 list_del(&recv_msg->link); 3561 deliver_response(recv_msg); 3562 } 3563 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3564 /* 3565 * No one to receive the message, put it in queue if there's 3566 * not already too many things in the queue. 3567 */ 3568 recv_msg = ipmi_alloc_recv_msg(); 3569 if (!recv_msg) { 3570 /* 3571 * We couldn't allocate memory for the 3572 * message, so requeue it for handling 3573 * later. 3574 */ 3575 rv = 1; 3576 goto out; 3577 } 3578 3579 copy_event_into_recv_msg(recv_msg, msg); 3580 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3581 intf->waiting_events_count++; 3582 } else if (!intf->event_msg_printed) { 3583 /* 3584 * There's too many things in the queue, discard this 3585 * message. 3586 */ 3587 printk(KERN_WARNING PFX "Event queue full, discarding" 3588 " incoming events\n"); 3589 intf->event_msg_printed = 1; 3590 } 3591 3592 out: 3593 spin_unlock_irqrestore(&(intf->events_lock), flags); 3594 3595 return rv; 3596 } 3597 3598 static int handle_bmc_rsp(ipmi_smi_t intf, 3599 struct ipmi_smi_msg *msg) 3600 { 3601 struct ipmi_recv_msg *recv_msg; 3602 struct ipmi_user *user; 3603 3604 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3605 if (recv_msg == NULL) { 3606 printk(KERN_WARNING 3607 "IPMI message received with no owner. This\n" 3608 "could be because of a malformed message, or\n" 3609 "because of a hardware error. Contact your\n" 3610 "hardware vender for assistance\n"); 3611 return 0; 3612 } 3613 3614 user = recv_msg->user; 3615 /* Make sure the user still exists. */ 3616 if (user && !user->valid) { 3617 /* The user for the message went away, so give up. */ 3618 ipmi_inc_stat(intf, unhandled_local_responses); 3619 ipmi_free_recv_msg(recv_msg); 3620 } else { 3621 struct ipmi_system_interface_addr *smi_addr; 3622 3623 ipmi_inc_stat(intf, handled_local_responses); 3624 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3625 recv_msg->msgid = msg->msgid; 3626 smi_addr = ((struct ipmi_system_interface_addr *) 3627 &(recv_msg->addr)); 3628 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3629 smi_addr->channel = IPMI_BMC_CHANNEL; 3630 smi_addr->lun = msg->rsp[0] & 3; 3631 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3632 recv_msg->msg.cmd = msg->rsp[1]; 3633 memcpy(recv_msg->msg_data, 3634 &(msg->rsp[2]), 3635 msg->rsp_size - 2); 3636 recv_msg->msg.data = recv_msg->msg_data; 3637 recv_msg->msg.data_len = msg->rsp_size - 2; 3638 deliver_response(recv_msg); 3639 } 3640 3641 return 0; 3642 } 3643 3644 /* 3645 * Handle a received message. Return 1 if the message should be requeued, 3646 * 0 if the message should be freed, or -1 if the message should not 3647 * be freed or requeued. 3648 */ 3649 static int handle_one_recv_msg(ipmi_smi_t intf, 3650 struct ipmi_smi_msg *msg) 3651 { 3652 int requeue; 3653 int chan; 3654 3655 #ifdef DEBUG_MSGING 3656 int m; 3657 printk("Recv:"); 3658 for (m = 0; m < msg->rsp_size; m++) 3659 printk(" %2.2x", msg->rsp[m]); 3660 printk("\n"); 3661 #endif 3662 if (msg->rsp_size < 2) { 3663 /* Message is too small to be correct. */ 3664 printk(KERN_WARNING PFX "BMC returned to small a message" 3665 " for netfn %x cmd %x, got %d bytes\n", 3666 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3667 3668 /* Generate an error response for the message. */ 3669 msg->rsp[0] = msg->data[0] | (1 << 2); 3670 msg->rsp[1] = msg->data[1]; 3671 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3672 msg->rsp_size = 3; 3673 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3674 || (msg->rsp[1] != msg->data[1])) { 3675 /* 3676 * The NetFN and Command in the response is not even 3677 * marginally correct. 3678 */ 3679 printk(KERN_WARNING PFX "BMC returned incorrect response," 3680 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3681 (msg->data[0] >> 2) | 1, msg->data[1], 3682 msg->rsp[0] >> 2, msg->rsp[1]); 3683 3684 /* Generate an error response for the message. */ 3685 msg->rsp[0] = msg->data[0] | (1 << 2); 3686 msg->rsp[1] = msg->data[1]; 3687 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3688 msg->rsp_size = 3; 3689 } 3690 3691 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3692 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3693 && (msg->user_data != NULL)) { 3694 /* 3695 * It's a response to a response we sent. For this we 3696 * deliver a send message response to the user. 3697 */ 3698 struct ipmi_recv_msg *recv_msg = msg->user_data; 3699 3700 requeue = 0; 3701 if (msg->rsp_size < 2) 3702 /* Message is too small to be correct. */ 3703 goto out; 3704 3705 chan = msg->data[2] & 0x0f; 3706 if (chan >= IPMI_MAX_CHANNELS) 3707 /* Invalid channel number */ 3708 goto out; 3709 3710 if (!recv_msg) 3711 goto out; 3712 3713 /* Make sure the user still exists. */ 3714 if (!recv_msg->user || !recv_msg->user->valid) 3715 goto out; 3716 3717 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3718 recv_msg->msg.data = recv_msg->msg_data; 3719 recv_msg->msg.data_len = 1; 3720 recv_msg->msg_data[0] = msg->rsp[2]; 3721 deliver_response(recv_msg); 3722 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3723 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3724 /* It's from the receive queue. */ 3725 chan = msg->rsp[3] & 0xf; 3726 if (chan >= IPMI_MAX_CHANNELS) { 3727 /* Invalid channel number */ 3728 requeue = 0; 3729 goto out; 3730 } 3731 3732 /* 3733 * We need to make sure the channels have been initialized. 3734 * The channel_handler routine will set the "curr_channel" 3735 * equal to or greater than IPMI_MAX_CHANNELS when all the 3736 * channels for this interface have been initialized. 3737 */ 3738 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3739 requeue = 0; /* Throw the message away */ 3740 goto out; 3741 } 3742 3743 switch (intf->channels[chan].medium) { 3744 case IPMI_CHANNEL_MEDIUM_IPMB: 3745 if (msg->rsp[4] & 0x04) { 3746 /* 3747 * It's a response, so find the 3748 * requesting message and send it up. 3749 */ 3750 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3751 } else { 3752 /* 3753 * It's a command to the SMS from some other 3754 * entity. Handle that. 3755 */ 3756 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3757 } 3758 break; 3759 3760 case IPMI_CHANNEL_MEDIUM_8023LAN: 3761 case IPMI_CHANNEL_MEDIUM_ASYNC: 3762 if (msg->rsp[6] & 0x04) { 3763 /* 3764 * It's a response, so find the 3765 * requesting message and send it up. 3766 */ 3767 requeue = handle_lan_get_msg_rsp(intf, msg); 3768 } else { 3769 /* 3770 * It's a command to the SMS from some other 3771 * entity. Handle that. 3772 */ 3773 requeue = handle_lan_get_msg_cmd(intf, msg); 3774 } 3775 break; 3776 3777 default: 3778 /* Check for OEM Channels. Clients had better 3779 register for these commands. */ 3780 if ((intf->channels[chan].medium 3781 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3782 && (intf->channels[chan].medium 3783 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3784 requeue = handle_oem_get_msg_cmd(intf, msg); 3785 } else { 3786 /* 3787 * We don't handle the channel type, so just 3788 * free the message. 3789 */ 3790 requeue = 0; 3791 } 3792 } 3793 3794 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3795 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3796 /* It's an asynchronous event. */ 3797 requeue = handle_read_event_rsp(intf, msg); 3798 } else { 3799 /* It's a response from the local BMC. */ 3800 requeue = handle_bmc_rsp(intf, msg); 3801 } 3802 3803 out: 3804 return requeue; 3805 } 3806 3807 /* 3808 * If there are messages in the queue or pretimeouts, handle them. 3809 */ 3810 static void handle_new_recv_msgs(ipmi_smi_t intf) 3811 { 3812 struct ipmi_smi_msg *smi_msg; 3813 unsigned long flags = 0; 3814 int rv; 3815 int run_to_completion = intf->run_to_completion; 3816 3817 /* See if any waiting messages need to be processed. */ 3818 if (!run_to_completion) 3819 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3820 while (!list_empty(&intf->waiting_rcv_msgs)) { 3821 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 3822 struct ipmi_smi_msg, link); 3823 list_del(&smi_msg->link); 3824 if (!run_to_completion) 3825 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3826 flags); 3827 rv = handle_one_recv_msg(intf, smi_msg); 3828 if (!run_to_completion) 3829 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3830 if (rv > 0) { 3831 /* 3832 * To preserve message order, quit if we 3833 * can't handle a message. Add the message 3834 * back at the head, this is safe because this 3835 * tasklet is the only thing that pulls the 3836 * messages. 3837 */ 3838 list_add(&smi_msg->link, &intf->waiting_rcv_msgs); 3839 break; 3840 } else { 3841 if (rv == 0) 3842 /* Message handled */ 3843 ipmi_free_smi_msg(smi_msg); 3844 /* If rv < 0, fatal error, del but don't free. */ 3845 } 3846 } 3847 if (!run_to_completion) 3848 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 3849 3850 /* 3851 * If the pretimout count is non-zero, decrement one from it and 3852 * deliver pretimeouts to all the users. 3853 */ 3854 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 3855 ipmi_user_t user; 3856 3857 rcu_read_lock(); 3858 list_for_each_entry_rcu(user, &intf->users, link) { 3859 if (user->handler->ipmi_watchdog_pretimeout) 3860 user->handler->ipmi_watchdog_pretimeout( 3861 user->handler_data); 3862 } 3863 rcu_read_unlock(); 3864 } 3865 } 3866 3867 static void smi_recv_tasklet(unsigned long val) 3868 { 3869 unsigned long flags = 0; /* keep us warning-free. */ 3870 ipmi_smi_t intf = (ipmi_smi_t) val; 3871 int run_to_completion = intf->run_to_completion; 3872 struct ipmi_smi_msg *newmsg = NULL; 3873 3874 /* 3875 * Start the next message if available. 3876 * 3877 * Do this here, not in the actual receiver, because we may deadlock 3878 * because the lower layer is allowed to hold locks while calling 3879 * message delivery. 3880 */ 3881 if (!run_to_completion) 3882 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3883 if (intf->curr_msg == NULL && !intf->in_shutdown) { 3884 struct list_head *entry = NULL; 3885 3886 /* Pick the high priority queue first. */ 3887 if (!list_empty(&intf->hp_xmit_msgs)) 3888 entry = intf->hp_xmit_msgs.next; 3889 else if (!list_empty(&intf->xmit_msgs)) 3890 entry = intf->xmit_msgs.next; 3891 3892 if (entry) { 3893 list_del(entry); 3894 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 3895 intf->curr_msg = newmsg; 3896 } 3897 } 3898 if (!run_to_completion) 3899 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3900 if (newmsg) 3901 intf->handlers->sender(intf->send_info, newmsg); 3902 3903 handle_new_recv_msgs(intf); 3904 } 3905 3906 /* Handle a new message from the lower layer. */ 3907 void ipmi_smi_msg_received(ipmi_smi_t intf, 3908 struct ipmi_smi_msg *msg) 3909 { 3910 unsigned long flags = 0; /* keep us warning-free. */ 3911 int run_to_completion = intf->run_to_completion; 3912 3913 if ((msg->data_size >= 2) 3914 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3915 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3916 && (msg->user_data == NULL)) { 3917 3918 if (intf->in_shutdown) 3919 goto free_msg; 3920 3921 /* 3922 * This is the local response to a command send, start 3923 * the timer for these. The user_data will not be 3924 * NULL if this is a response send, and we will let 3925 * response sends just go through. 3926 */ 3927 3928 /* 3929 * Check for errors, if we get certain errors (ones 3930 * that mean basically we can try again later), we 3931 * ignore them and start the timer. Otherwise we 3932 * report the error immediately. 3933 */ 3934 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3935 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3936 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3937 && (msg->rsp[2] != IPMI_BUS_ERR) 3938 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3939 int chan = msg->rsp[3] & 0xf; 3940 3941 /* Got an error sending the message, handle it. */ 3942 if (chan >= IPMI_MAX_CHANNELS) 3943 ; /* This shouldn't happen */ 3944 else if ((intf->channels[chan].medium 3945 == IPMI_CHANNEL_MEDIUM_8023LAN) 3946 || (intf->channels[chan].medium 3947 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3948 ipmi_inc_stat(intf, sent_lan_command_errs); 3949 else 3950 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3951 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3952 } else 3953 /* The message was sent, start the timer. */ 3954 intf_start_seq_timer(intf, msg->msgid); 3955 3956 free_msg: 3957 ipmi_free_smi_msg(msg); 3958 } else { 3959 /* 3960 * To preserve message order, we keep a queue and deliver from 3961 * a tasklet. 3962 */ 3963 if (!run_to_completion) 3964 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3965 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 3966 if (!run_to_completion) 3967 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3968 flags); 3969 } 3970 3971 if (!run_to_completion) 3972 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3973 /* 3974 * We can get an asynchronous event or receive message in addition 3975 * to commands we send. 3976 */ 3977 if (msg == intf->curr_msg) 3978 intf->curr_msg = NULL; 3979 if (!run_to_completion) 3980 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3981 3982 if (run_to_completion) 3983 smi_recv_tasklet((unsigned long) intf); 3984 else 3985 tasklet_schedule(&intf->recv_tasklet); 3986 } 3987 EXPORT_SYMBOL(ipmi_smi_msg_received); 3988 3989 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3990 { 3991 if (intf->in_shutdown) 3992 return; 3993 3994 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 3995 tasklet_schedule(&intf->recv_tasklet); 3996 } 3997 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3998 3999 static struct ipmi_smi_msg * 4000 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 4001 unsigned char seq, long seqid) 4002 { 4003 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 4004 if (!smi_msg) 4005 /* 4006 * If we can't allocate the message, then just return, we 4007 * get 4 retries, so this should be ok. 4008 */ 4009 return NULL; 4010 4011 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4012 smi_msg->data_size = recv_msg->msg.data_len; 4013 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4014 4015 #ifdef DEBUG_MSGING 4016 { 4017 int m; 4018 printk("Resend: "); 4019 for (m = 0; m < smi_msg->data_size; m++) 4020 printk(" %2.2x", smi_msg->data[m]); 4021 printk("\n"); 4022 } 4023 #endif 4024 return smi_msg; 4025 } 4026 4027 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 4028 struct list_head *timeouts, long timeout_period, 4029 int slot, unsigned long *flags, 4030 unsigned int *waiting_msgs) 4031 { 4032 struct ipmi_recv_msg *msg; 4033 const struct ipmi_smi_handlers *handlers; 4034 4035 if (intf->in_shutdown) 4036 return; 4037 4038 if (!ent->inuse) 4039 return; 4040 4041 ent->timeout -= timeout_period; 4042 if (ent->timeout > 0) { 4043 (*waiting_msgs)++; 4044 return; 4045 } 4046 4047 if (ent->retries_left == 0) { 4048 /* The message has used all its retries. */ 4049 ent->inuse = 0; 4050 msg = ent->recv_msg; 4051 list_add_tail(&msg->link, timeouts); 4052 if (ent->broadcast) 4053 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4054 else if (is_lan_addr(&ent->recv_msg->addr)) 4055 ipmi_inc_stat(intf, timed_out_lan_commands); 4056 else 4057 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4058 } else { 4059 struct ipmi_smi_msg *smi_msg; 4060 /* More retries, send again. */ 4061 4062 (*waiting_msgs)++; 4063 4064 /* 4065 * Start with the max timer, set to normal timer after 4066 * the message is sent. 4067 */ 4068 ent->timeout = MAX_MSG_TIMEOUT; 4069 ent->retries_left--; 4070 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4071 ent->seqid); 4072 if (!smi_msg) { 4073 if (is_lan_addr(&ent->recv_msg->addr)) 4074 ipmi_inc_stat(intf, 4075 dropped_rexmit_lan_commands); 4076 else 4077 ipmi_inc_stat(intf, 4078 dropped_rexmit_ipmb_commands); 4079 return; 4080 } 4081 4082 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4083 4084 /* 4085 * Send the new message. We send with a zero 4086 * priority. It timed out, I doubt time is that 4087 * critical now, and high priority messages are really 4088 * only for messages to the local MC, which don't get 4089 * resent. 4090 */ 4091 handlers = intf->handlers; 4092 if (handlers) { 4093 if (is_lan_addr(&ent->recv_msg->addr)) 4094 ipmi_inc_stat(intf, 4095 retransmitted_lan_commands); 4096 else 4097 ipmi_inc_stat(intf, 4098 retransmitted_ipmb_commands); 4099 4100 smi_send(intf, handlers, smi_msg, 0); 4101 } else 4102 ipmi_free_smi_msg(smi_msg); 4103 4104 spin_lock_irqsave(&intf->seq_lock, *flags); 4105 } 4106 } 4107 4108 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period) 4109 { 4110 struct list_head timeouts; 4111 struct ipmi_recv_msg *msg, *msg2; 4112 unsigned long flags; 4113 int i; 4114 unsigned int waiting_msgs = 0; 4115 4116 /* 4117 * Go through the seq table and find any messages that 4118 * have timed out, putting them in the timeouts 4119 * list. 4120 */ 4121 INIT_LIST_HEAD(&timeouts); 4122 spin_lock_irqsave(&intf->seq_lock, flags); 4123 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4124 check_msg_timeout(intf, &(intf->seq_table[i]), 4125 &timeouts, timeout_period, i, 4126 &flags, &waiting_msgs); 4127 spin_unlock_irqrestore(&intf->seq_lock, flags); 4128 4129 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4130 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4131 4132 /* 4133 * Maintenance mode handling. Check the timeout 4134 * optimistically before we claim the lock. It may 4135 * mean a timeout gets missed occasionally, but that 4136 * only means the timeout gets extended by one period 4137 * in that case. No big deal, and it avoids the lock 4138 * most of the time. 4139 */ 4140 if (intf->auto_maintenance_timeout > 0) { 4141 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4142 if (intf->auto_maintenance_timeout > 0) { 4143 intf->auto_maintenance_timeout 4144 -= timeout_period; 4145 if (!intf->maintenance_mode 4146 && (intf->auto_maintenance_timeout <= 0)) { 4147 intf->maintenance_mode_enable = false; 4148 maintenance_mode_update(intf); 4149 } 4150 } 4151 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4152 flags); 4153 } 4154 4155 tasklet_schedule(&intf->recv_tasklet); 4156 4157 return waiting_msgs; 4158 } 4159 4160 static void ipmi_request_event(ipmi_smi_t intf) 4161 { 4162 /* No event requests when in maintenance mode. */ 4163 if (intf->maintenance_mode_enable) 4164 return; 4165 4166 if (!intf->in_shutdown) 4167 intf->handlers->request_events(intf->send_info); 4168 } 4169 4170 static struct timer_list ipmi_timer; 4171 4172 static atomic_t stop_operation; 4173 4174 static void ipmi_timeout(unsigned long data) 4175 { 4176 ipmi_smi_t intf; 4177 int nt = 0; 4178 4179 if (atomic_read(&stop_operation)) 4180 return; 4181 4182 rcu_read_lock(); 4183 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4184 int lnt = 0; 4185 4186 if (atomic_read(&intf->event_waiters)) { 4187 intf->ticks_to_req_ev--; 4188 if (intf->ticks_to_req_ev == 0) { 4189 ipmi_request_event(intf); 4190 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4191 } 4192 lnt++; 4193 } 4194 4195 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 4196 4197 lnt = !!lnt; 4198 if (lnt != intf->last_needs_timer && 4199 intf->handlers->set_need_watch) 4200 intf->handlers->set_need_watch(intf->send_info, lnt); 4201 intf->last_needs_timer = lnt; 4202 4203 nt += lnt; 4204 } 4205 rcu_read_unlock(); 4206 4207 if (nt) 4208 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4209 } 4210 4211 static void need_waiter(ipmi_smi_t intf) 4212 { 4213 /* Racy, but worst case we start the timer twice. */ 4214 if (!timer_pending(&ipmi_timer)) 4215 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4216 } 4217 4218 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4219 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4220 4221 static void free_smi_msg(struct ipmi_smi_msg *msg) 4222 { 4223 atomic_dec(&smi_msg_inuse_count); 4224 kfree(msg); 4225 } 4226 4227 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4228 { 4229 struct ipmi_smi_msg *rv; 4230 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4231 if (rv) { 4232 rv->done = free_smi_msg; 4233 rv->user_data = NULL; 4234 atomic_inc(&smi_msg_inuse_count); 4235 } 4236 return rv; 4237 } 4238 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4239 4240 static void free_recv_msg(struct ipmi_recv_msg *msg) 4241 { 4242 atomic_dec(&recv_msg_inuse_count); 4243 kfree(msg); 4244 } 4245 4246 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4247 { 4248 struct ipmi_recv_msg *rv; 4249 4250 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4251 if (rv) { 4252 rv->user = NULL; 4253 rv->done = free_recv_msg; 4254 atomic_inc(&recv_msg_inuse_count); 4255 } 4256 return rv; 4257 } 4258 4259 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4260 { 4261 if (msg->user) 4262 kref_put(&msg->user->refcount, free_user); 4263 msg->done(msg); 4264 } 4265 EXPORT_SYMBOL(ipmi_free_recv_msg); 4266 4267 #ifdef CONFIG_IPMI_PANIC_EVENT 4268 4269 static atomic_t panic_done_count = ATOMIC_INIT(0); 4270 4271 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4272 { 4273 atomic_dec(&panic_done_count); 4274 } 4275 4276 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4277 { 4278 atomic_dec(&panic_done_count); 4279 } 4280 4281 /* 4282 * Inside a panic, send a message and wait for a response. 4283 */ 4284 static void ipmi_panic_request_and_wait(ipmi_smi_t intf, 4285 struct ipmi_addr *addr, 4286 struct kernel_ipmi_msg *msg) 4287 { 4288 struct ipmi_smi_msg smi_msg; 4289 struct ipmi_recv_msg recv_msg; 4290 int rv; 4291 4292 smi_msg.done = dummy_smi_done_handler; 4293 recv_msg.done = dummy_recv_done_handler; 4294 atomic_add(2, &panic_done_count); 4295 rv = i_ipmi_request(NULL, 4296 intf, 4297 addr, 4298 0, 4299 msg, 4300 intf, 4301 &smi_msg, 4302 &recv_msg, 4303 0, 4304 intf->channels[0].address, 4305 intf->channels[0].lun, 4306 0, 1); /* Don't retry, and don't wait. */ 4307 if (rv) 4308 atomic_sub(2, &panic_done_count); 4309 else if (intf->handlers->flush_messages) 4310 intf->handlers->flush_messages(intf->send_info); 4311 4312 while (atomic_read(&panic_done_count) != 0) 4313 ipmi_poll(intf); 4314 } 4315 4316 #ifdef CONFIG_IPMI_PANIC_STRING 4317 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4318 { 4319 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4320 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4321 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4322 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4323 /* A get event receiver command, save it. */ 4324 intf->event_receiver = msg->msg.data[1]; 4325 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4326 } 4327 } 4328 4329 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4330 { 4331 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4332 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4333 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4334 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4335 /* 4336 * A get device id command, save if we are an event 4337 * receiver or generator. 4338 */ 4339 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4340 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4341 } 4342 } 4343 #endif 4344 4345 static void send_panic_events(char *str) 4346 { 4347 struct kernel_ipmi_msg msg; 4348 ipmi_smi_t intf; 4349 unsigned char data[16]; 4350 struct ipmi_system_interface_addr *si; 4351 struct ipmi_addr addr; 4352 4353 si = (struct ipmi_system_interface_addr *) &addr; 4354 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4355 si->channel = IPMI_BMC_CHANNEL; 4356 si->lun = 0; 4357 4358 /* Fill in an event telling that we have failed. */ 4359 msg.netfn = 0x04; /* Sensor or Event. */ 4360 msg.cmd = 2; /* Platform event command. */ 4361 msg.data = data; 4362 msg.data_len = 8; 4363 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4364 data[1] = 0x03; /* This is for IPMI 1.0. */ 4365 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4366 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4367 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4368 4369 /* 4370 * Put a few breadcrumbs in. Hopefully later we can add more things 4371 * to make the panic events more useful. 4372 */ 4373 if (str) { 4374 data[3] = str[0]; 4375 data[6] = str[1]; 4376 data[7] = str[2]; 4377 } 4378 4379 /* For every registered interface, send the event. */ 4380 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4381 if (!intf->handlers) 4382 /* Interface is not ready. */ 4383 continue; 4384 4385 /* Send the event announcing the panic. */ 4386 ipmi_panic_request_and_wait(intf, &addr, &msg); 4387 } 4388 4389 #ifdef CONFIG_IPMI_PANIC_STRING 4390 /* 4391 * On every interface, dump a bunch of OEM event holding the 4392 * string. 4393 */ 4394 if (!str) 4395 return; 4396 4397 /* For every registered interface, send the event. */ 4398 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4399 char *p = str; 4400 struct ipmi_ipmb_addr *ipmb; 4401 int j; 4402 4403 if (intf->intf_num == -1) 4404 /* Interface was not ready yet. */ 4405 continue; 4406 4407 /* 4408 * intf_num is used as an marker to tell if the 4409 * interface is valid. Thus we need a read barrier to 4410 * make sure data fetched before checking intf_num 4411 * won't be used. 4412 */ 4413 smp_rmb(); 4414 4415 /* 4416 * First job here is to figure out where to send the 4417 * OEM events. There's no way in IPMI to send OEM 4418 * events using an event send command, so we have to 4419 * find the SEL to put them in and stick them in 4420 * there. 4421 */ 4422 4423 /* Get capabilities from the get device id. */ 4424 intf->local_sel_device = 0; 4425 intf->local_event_generator = 0; 4426 intf->event_receiver = 0; 4427 4428 /* Request the device info from the local MC. */ 4429 msg.netfn = IPMI_NETFN_APP_REQUEST; 4430 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4431 msg.data = NULL; 4432 msg.data_len = 0; 4433 intf->null_user_handler = device_id_fetcher; 4434 ipmi_panic_request_and_wait(intf, &addr, &msg); 4435 4436 if (intf->local_event_generator) { 4437 /* Request the event receiver from the local MC. */ 4438 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4439 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4440 msg.data = NULL; 4441 msg.data_len = 0; 4442 intf->null_user_handler = event_receiver_fetcher; 4443 ipmi_panic_request_and_wait(intf, &addr, &msg); 4444 } 4445 intf->null_user_handler = NULL; 4446 4447 /* 4448 * Validate the event receiver. The low bit must not 4449 * be 1 (it must be a valid IPMB address), it cannot 4450 * be zero, and it must not be my address. 4451 */ 4452 if (((intf->event_receiver & 1) == 0) 4453 && (intf->event_receiver != 0) 4454 && (intf->event_receiver != intf->channels[0].address)) { 4455 /* 4456 * The event receiver is valid, send an IPMB 4457 * message. 4458 */ 4459 ipmb = (struct ipmi_ipmb_addr *) &addr; 4460 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4461 ipmb->channel = 0; /* FIXME - is this right? */ 4462 ipmb->lun = intf->event_receiver_lun; 4463 ipmb->slave_addr = intf->event_receiver; 4464 } else if (intf->local_sel_device) { 4465 /* 4466 * The event receiver was not valid (or was 4467 * me), but I am an SEL device, just dump it 4468 * in my SEL. 4469 */ 4470 si = (struct ipmi_system_interface_addr *) &addr; 4471 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4472 si->channel = IPMI_BMC_CHANNEL; 4473 si->lun = 0; 4474 } else 4475 continue; /* No where to send the event. */ 4476 4477 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4478 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4479 msg.data = data; 4480 msg.data_len = 16; 4481 4482 j = 0; 4483 while (*p) { 4484 int size = strlen(p); 4485 4486 if (size > 11) 4487 size = 11; 4488 data[0] = 0; 4489 data[1] = 0; 4490 data[2] = 0xf0; /* OEM event without timestamp. */ 4491 data[3] = intf->channels[0].address; 4492 data[4] = j++; /* sequence # */ 4493 /* 4494 * Always give 11 bytes, so strncpy will fill 4495 * it with zeroes for me. 4496 */ 4497 strncpy(data+5, p, 11); 4498 p += size; 4499 4500 ipmi_panic_request_and_wait(intf, &addr, &msg); 4501 } 4502 } 4503 #endif /* CONFIG_IPMI_PANIC_STRING */ 4504 } 4505 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4506 4507 static int has_panicked; 4508 4509 static int panic_event(struct notifier_block *this, 4510 unsigned long event, 4511 void *ptr) 4512 { 4513 ipmi_smi_t intf; 4514 4515 if (has_panicked) 4516 return NOTIFY_DONE; 4517 has_panicked = 1; 4518 4519 /* For every registered interface, set it to run to completion. */ 4520 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4521 if (!intf->handlers) 4522 /* Interface is not ready. */ 4523 continue; 4524 4525 /* 4526 * If we were interrupted while locking xmit_msgs_lock or 4527 * waiting_rcv_msgs_lock, the corresponding list may be 4528 * corrupted. In this case, drop items on the list for 4529 * the safety. 4530 */ 4531 if (!spin_trylock(&intf->xmit_msgs_lock)) { 4532 INIT_LIST_HEAD(&intf->xmit_msgs); 4533 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 4534 } else 4535 spin_unlock(&intf->xmit_msgs_lock); 4536 4537 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 4538 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 4539 else 4540 spin_unlock(&intf->waiting_rcv_msgs_lock); 4541 4542 intf->run_to_completion = 1; 4543 intf->handlers->set_run_to_completion(intf->send_info, 1); 4544 } 4545 4546 #ifdef CONFIG_IPMI_PANIC_EVENT 4547 send_panic_events(ptr); 4548 #endif 4549 4550 return NOTIFY_DONE; 4551 } 4552 4553 static struct notifier_block panic_block = { 4554 .notifier_call = panic_event, 4555 .next = NULL, 4556 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4557 }; 4558 4559 static int ipmi_init_msghandler(void) 4560 { 4561 int rv; 4562 4563 if (initialized) 4564 return 0; 4565 4566 rv = driver_register(&ipmidriver.driver); 4567 if (rv) { 4568 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4569 return rv; 4570 } 4571 4572 printk(KERN_INFO "ipmi message handler version " 4573 IPMI_DRIVER_VERSION "\n"); 4574 4575 #ifdef CONFIG_PROC_FS 4576 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4577 if (!proc_ipmi_root) { 4578 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4579 driver_unregister(&ipmidriver.driver); 4580 return -ENOMEM; 4581 } 4582 4583 #endif /* CONFIG_PROC_FS */ 4584 4585 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4586 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4587 4588 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4589 4590 initialized = 1; 4591 4592 return 0; 4593 } 4594 4595 static int __init ipmi_init_msghandler_mod(void) 4596 { 4597 ipmi_init_msghandler(); 4598 return 0; 4599 } 4600 4601 static void __exit cleanup_ipmi(void) 4602 { 4603 int count; 4604 4605 if (!initialized) 4606 return; 4607 4608 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4609 4610 /* 4611 * This can't be called if any interfaces exist, so no worry 4612 * about shutting down the interfaces. 4613 */ 4614 4615 /* 4616 * Tell the timer to stop, then wait for it to stop. This 4617 * avoids problems with race conditions removing the timer 4618 * here. 4619 */ 4620 atomic_inc(&stop_operation); 4621 del_timer_sync(&ipmi_timer); 4622 4623 #ifdef CONFIG_PROC_FS 4624 proc_remove(proc_ipmi_root); 4625 #endif /* CONFIG_PROC_FS */ 4626 4627 driver_unregister(&ipmidriver.driver); 4628 4629 initialized = 0; 4630 4631 /* Check for buffer leaks. */ 4632 count = atomic_read(&smi_msg_inuse_count); 4633 if (count != 0) 4634 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4635 count); 4636 count = atomic_read(&recv_msg_inuse_count); 4637 if (count != 0) 4638 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4639 count); 4640 } 4641 module_exit(cleanup_ipmi); 4642 4643 module_init(ipmi_init_msghandler_mod); 4644 MODULE_LICENSE("GPL"); 4645 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4646 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4647 " interface."); 4648 MODULE_VERSION(IPMI_DRIVER_VERSION); 4649 MODULE_SOFTDEP("post: ipmi_devintf"); 4650