1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_msghandler.c 4 * 5 * Incoming and outgoing message routing for an IPMI interface. 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 */ 13 14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: " 15 #define dev_fmt pr_fmt 16 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/spinlock.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/ipmi.h> 27 #include <linux/ipmi_smi.h> 28 #include <linux/notifier.h> 29 #include <linux/init.h> 30 #include <linux/proc_fs.h> 31 #include <linux/rcupdate.h> 32 #include <linux/interrupt.h> 33 #include <linux/moduleparam.h> 34 #include <linux/workqueue.h> 35 #include <linux/uuid.h> 36 #include <linux/nospec.h> 37 #include <linux/vmalloc.h> 38 #include <linux/delay.h> 39 40 #define IPMI_DRIVER_VERSION "39.2" 41 42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 43 static int ipmi_init_msghandler(void); 44 static void smi_recv_tasklet(struct tasklet_struct *t); 45 static void handle_new_recv_msgs(struct ipmi_smi *intf); 46 static void need_waiter(struct ipmi_smi *intf); 47 static int handle_one_recv_msg(struct ipmi_smi *intf, 48 struct ipmi_smi_msg *msg); 49 50 static bool initialized; 51 static bool drvregistered; 52 53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */ 54 enum ipmi_panic_event_op { 55 IPMI_SEND_PANIC_EVENT_NONE, 56 IPMI_SEND_PANIC_EVENT, 57 IPMI_SEND_PANIC_EVENT_STRING, 58 IPMI_SEND_PANIC_EVENT_MAX 59 }; 60 61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */ 62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL }; 63 64 #ifdef CONFIG_IPMI_PANIC_STRING 65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING 66 #elif defined(CONFIG_IPMI_PANIC_EVENT) 67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT 68 #else 69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE 70 #endif 71 72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT; 73 74 static int panic_op_write_handler(const char *val, 75 const struct kernel_param *kp) 76 { 77 char valcp[16]; 78 int e; 79 80 strscpy(valcp, val, sizeof(valcp)); 81 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp)); 82 if (e < 0) 83 return e; 84 85 ipmi_send_panic_event = e; 86 return 0; 87 } 88 89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp) 90 { 91 const char *event_str; 92 93 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX) 94 event_str = "???"; 95 else 96 event_str = ipmi_panic_event_str[ipmi_send_panic_event]; 97 98 return sprintf(buffer, "%s\n", event_str); 99 } 100 101 static const struct kernel_param_ops panic_op_ops = { 102 .set = panic_op_write_handler, 103 .get = panic_op_read_handler 104 }; 105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600); 106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events."); 107 108 109 #define MAX_EVENTS_IN_QUEUE 25 110 111 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 112 static unsigned long maintenance_mode_timeout_ms = 30000; 113 module_param(maintenance_mode_timeout_ms, ulong, 0644); 114 MODULE_PARM_DESC(maintenance_mode_timeout_ms, 115 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode."); 116 117 /* 118 * Don't let a message sit in a queue forever, always time it with at lest 119 * the max message timer. This is in milliseconds. 120 */ 121 #define MAX_MSG_TIMEOUT 60000 122 123 /* 124 * Timeout times below are in milliseconds, and are done off a 1 125 * second timer. So setting the value to 1000 would mean anything 126 * between 0 and 1000ms. So really the only reasonable minimum 127 * setting it 2000ms, which is between 1 and 2 seconds. 128 */ 129 130 /* The default timeout for message retries. */ 131 static unsigned long default_retry_ms = 2000; 132 module_param(default_retry_ms, ulong, 0644); 133 MODULE_PARM_DESC(default_retry_ms, 134 "The time (milliseconds) between retry sends"); 135 136 /* The default timeout for maintenance mode message retries. */ 137 static unsigned long default_maintenance_retry_ms = 3000; 138 module_param(default_maintenance_retry_ms, ulong, 0644); 139 MODULE_PARM_DESC(default_maintenance_retry_ms, 140 "The time (milliseconds) between retry sends in maintenance mode"); 141 142 /* The default maximum number of retries */ 143 static unsigned int default_max_retries = 4; 144 module_param(default_max_retries, uint, 0644); 145 MODULE_PARM_DESC(default_max_retries, 146 "The time (milliseconds) between retry sends in maintenance mode"); 147 148 /* Call every ~1000 ms. */ 149 #define IPMI_TIMEOUT_TIME 1000 150 151 /* How many jiffies does it take to get to the timeout time. */ 152 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 153 154 /* 155 * Request events from the queue every second (this is the number of 156 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 157 * future, IPMI will add a way to know immediately if an event is in 158 * the queue and this silliness can go away. 159 */ 160 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 161 162 /* How long should we cache dynamic device IDs? */ 163 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ) 164 165 /* 166 * The main "user" data structure. 167 */ 168 struct ipmi_user { 169 struct list_head link; 170 171 /* 172 * Set to NULL when the user is destroyed, a pointer to myself 173 * so srcu_dereference can be used on it. 174 */ 175 struct ipmi_user *self; 176 struct srcu_struct release_barrier; 177 178 struct kref refcount; 179 180 /* The upper layer that handles receive messages. */ 181 const struct ipmi_user_hndl *handler; 182 void *handler_data; 183 184 /* The interface this user is bound to. */ 185 struct ipmi_smi *intf; 186 187 /* Does this interface receive IPMI events? */ 188 bool gets_events; 189 190 /* Free must run in process context for RCU cleanup. */ 191 struct work_struct remove_work; 192 }; 193 194 static struct workqueue_struct *remove_work_wq; 195 196 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index) 197 __acquires(user->release_barrier) 198 { 199 struct ipmi_user *ruser; 200 201 *index = srcu_read_lock(&user->release_barrier); 202 ruser = srcu_dereference(user->self, &user->release_barrier); 203 if (!ruser) 204 srcu_read_unlock(&user->release_barrier, *index); 205 return ruser; 206 } 207 208 static void release_ipmi_user(struct ipmi_user *user, int index) 209 { 210 srcu_read_unlock(&user->release_barrier, index); 211 } 212 213 struct cmd_rcvr { 214 struct list_head link; 215 216 struct ipmi_user *user; 217 unsigned char netfn; 218 unsigned char cmd; 219 unsigned int chans; 220 221 /* 222 * This is used to form a linked lised during mass deletion. 223 * Since this is in an RCU list, we cannot use the link above 224 * or change any data until the RCU period completes. So we 225 * use this next variable during mass deletion so we can have 226 * a list and don't have to wait and restart the search on 227 * every individual deletion of a command. 228 */ 229 struct cmd_rcvr *next; 230 }; 231 232 struct seq_table { 233 unsigned int inuse : 1; 234 unsigned int broadcast : 1; 235 236 unsigned long timeout; 237 unsigned long orig_timeout; 238 unsigned int retries_left; 239 240 /* 241 * To verify on an incoming send message response that this is 242 * the message that the response is for, we keep a sequence id 243 * and increment it every time we send a message. 244 */ 245 long seqid; 246 247 /* 248 * This is held so we can properly respond to the message on a 249 * timeout, and it is used to hold the temporary data for 250 * retransmission, too. 251 */ 252 struct ipmi_recv_msg *recv_msg; 253 }; 254 255 /* 256 * Store the information in a msgid (long) to allow us to find a 257 * sequence table entry from the msgid. 258 */ 259 #define STORE_SEQ_IN_MSGID(seq, seqid) \ 260 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff)) 261 262 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 263 do { \ 264 seq = (((msgid) >> 26) & 0x3f); \ 265 seqid = ((msgid) & 0x3ffffff); \ 266 } while (0) 267 268 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff) 269 270 #define IPMI_MAX_CHANNELS 16 271 struct ipmi_channel { 272 unsigned char medium; 273 unsigned char protocol; 274 }; 275 276 struct ipmi_channel_set { 277 struct ipmi_channel c[IPMI_MAX_CHANNELS]; 278 }; 279 280 struct ipmi_my_addrinfo { 281 /* 282 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 283 * but may be changed by the user. 284 */ 285 unsigned char address; 286 287 /* 288 * My LUN. This should generally stay the SMS LUN, but just in 289 * case... 290 */ 291 unsigned char lun; 292 }; 293 294 /* 295 * Note that the product id, manufacturer id, guid, and device id are 296 * immutable in this structure, so dyn_mutex is not required for 297 * accessing those. If those change on a BMC, a new BMC is allocated. 298 */ 299 struct bmc_device { 300 struct platform_device pdev; 301 struct list_head intfs; /* Interfaces on this BMC. */ 302 struct ipmi_device_id id; 303 struct ipmi_device_id fetch_id; 304 int dyn_id_set; 305 unsigned long dyn_id_expiry; 306 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */ 307 guid_t guid; 308 guid_t fetch_guid; 309 int dyn_guid_set; 310 struct kref usecount; 311 struct work_struct remove_work; 312 unsigned char cc; /* completion code */ 313 }; 314 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 315 316 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 317 struct ipmi_device_id *id, 318 bool *guid_set, guid_t *guid); 319 320 /* 321 * Various statistics for IPMI, these index stats[] in the ipmi_smi 322 * structure. 323 */ 324 enum ipmi_stat_indexes { 325 /* Commands we got from the user that were invalid. */ 326 IPMI_STAT_sent_invalid_commands = 0, 327 328 /* Commands we sent to the MC. */ 329 IPMI_STAT_sent_local_commands, 330 331 /* Responses from the MC that were delivered to a user. */ 332 IPMI_STAT_handled_local_responses, 333 334 /* Responses from the MC that were not delivered to a user. */ 335 IPMI_STAT_unhandled_local_responses, 336 337 /* Commands we sent out to the IPMB bus. */ 338 IPMI_STAT_sent_ipmb_commands, 339 340 /* Commands sent on the IPMB that had errors on the SEND CMD */ 341 IPMI_STAT_sent_ipmb_command_errs, 342 343 /* Each retransmit increments this count. */ 344 IPMI_STAT_retransmitted_ipmb_commands, 345 346 /* 347 * When a message times out (runs out of retransmits) this is 348 * incremented. 349 */ 350 IPMI_STAT_timed_out_ipmb_commands, 351 352 /* 353 * This is like above, but for broadcasts. Broadcasts are 354 * *not* included in the above count (they are expected to 355 * time out). 356 */ 357 IPMI_STAT_timed_out_ipmb_broadcasts, 358 359 /* Responses I have sent to the IPMB bus. */ 360 IPMI_STAT_sent_ipmb_responses, 361 362 /* The response was delivered to the user. */ 363 IPMI_STAT_handled_ipmb_responses, 364 365 /* The response had invalid data in it. */ 366 IPMI_STAT_invalid_ipmb_responses, 367 368 /* The response didn't have anyone waiting for it. */ 369 IPMI_STAT_unhandled_ipmb_responses, 370 371 /* Commands we sent out to the IPMB bus. */ 372 IPMI_STAT_sent_lan_commands, 373 374 /* Commands sent on the IPMB that had errors on the SEND CMD */ 375 IPMI_STAT_sent_lan_command_errs, 376 377 /* Each retransmit increments this count. */ 378 IPMI_STAT_retransmitted_lan_commands, 379 380 /* 381 * When a message times out (runs out of retransmits) this is 382 * incremented. 383 */ 384 IPMI_STAT_timed_out_lan_commands, 385 386 /* Responses I have sent to the IPMB bus. */ 387 IPMI_STAT_sent_lan_responses, 388 389 /* The response was delivered to the user. */ 390 IPMI_STAT_handled_lan_responses, 391 392 /* The response had invalid data in it. */ 393 IPMI_STAT_invalid_lan_responses, 394 395 /* The response didn't have anyone waiting for it. */ 396 IPMI_STAT_unhandled_lan_responses, 397 398 /* The command was delivered to the user. */ 399 IPMI_STAT_handled_commands, 400 401 /* The command had invalid data in it. */ 402 IPMI_STAT_invalid_commands, 403 404 /* The command didn't have anyone waiting for it. */ 405 IPMI_STAT_unhandled_commands, 406 407 /* Invalid data in an event. */ 408 IPMI_STAT_invalid_events, 409 410 /* Events that were received with the proper format. */ 411 IPMI_STAT_events, 412 413 /* Retransmissions on IPMB that failed. */ 414 IPMI_STAT_dropped_rexmit_ipmb_commands, 415 416 /* Retransmissions on LAN that failed. */ 417 IPMI_STAT_dropped_rexmit_lan_commands, 418 419 /* This *must* remain last, add new values above this. */ 420 IPMI_NUM_STATS 421 }; 422 423 424 #define IPMI_IPMB_NUM_SEQ 64 425 struct ipmi_smi { 426 struct module *owner; 427 428 /* What interface number are we? */ 429 int intf_num; 430 431 struct kref refcount; 432 433 /* Set when the interface is being unregistered. */ 434 bool in_shutdown; 435 436 /* Used for a list of interfaces. */ 437 struct list_head link; 438 439 /* 440 * The list of upper layers that are using me. seq_lock write 441 * protects this. Read protection is with srcu. 442 */ 443 struct list_head users; 444 struct srcu_struct users_srcu; 445 446 /* Used for wake ups at startup. */ 447 wait_queue_head_t waitq; 448 449 /* 450 * Prevents the interface from being unregistered when the 451 * interface is used by being looked up through the BMC 452 * structure. 453 */ 454 struct mutex bmc_reg_mutex; 455 456 struct bmc_device tmp_bmc; 457 struct bmc_device *bmc; 458 bool bmc_registered; 459 struct list_head bmc_link; 460 char *my_dev_name; 461 bool in_bmc_register; /* Handle recursive situations. Yuck. */ 462 struct work_struct bmc_reg_work; 463 464 const struct ipmi_smi_handlers *handlers; 465 void *send_info; 466 467 /* Driver-model device for the system interface. */ 468 struct device *si_dev; 469 470 /* 471 * A table of sequence numbers for this interface. We use the 472 * sequence numbers for IPMB messages that go out of the 473 * interface to match them up with their responses. A routine 474 * is called periodically to time the items in this list. 475 */ 476 spinlock_t seq_lock; 477 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 478 int curr_seq; 479 480 /* 481 * Messages queued for delivery. If delivery fails (out of memory 482 * for instance), They will stay in here to be processed later in a 483 * periodic timer interrupt. The tasklet is for handling received 484 * messages directly from the handler. 485 */ 486 spinlock_t waiting_rcv_msgs_lock; 487 struct list_head waiting_rcv_msgs; 488 atomic_t watchdog_pretimeouts_to_deliver; 489 struct tasklet_struct recv_tasklet; 490 491 spinlock_t xmit_msgs_lock; 492 struct list_head xmit_msgs; 493 struct ipmi_smi_msg *curr_msg; 494 struct list_head hp_xmit_msgs; 495 496 /* 497 * The list of command receivers that are registered for commands 498 * on this interface. 499 */ 500 struct mutex cmd_rcvrs_mutex; 501 struct list_head cmd_rcvrs; 502 503 /* 504 * Events that were queues because no one was there to receive 505 * them. 506 */ 507 spinlock_t events_lock; /* For dealing with event stuff. */ 508 struct list_head waiting_events; 509 unsigned int waiting_events_count; /* How many events in queue? */ 510 char delivering_events; 511 char event_msg_printed; 512 513 /* How many users are waiting for events? */ 514 atomic_t event_waiters; 515 unsigned int ticks_to_req_ev; 516 517 spinlock_t watch_lock; /* For dealing with watch stuff below. */ 518 519 /* How many users are waiting for commands? */ 520 unsigned int command_waiters; 521 522 /* How many users are waiting for watchdogs? */ 523 unsigned int watchdog_waiters; 524 525 /* How many users are waiting for message responses? */ 526 unsigned int response_waiters; 527 528 /* 529 * Tells what the lower layer has last been asked to watch for, 530 * messages and/or watchdogs. Protected by watch_lock. 531 */ 532 unsigned int last_watch_mask; 533 534 /* 535 * The event receiver for my BMC, only really used at panic 536 * shutdown as a place to store this. 537 */ 538 unsigned char event_receiver; 539 unsigned char event_receiver_lun; 540 unsigned char local_sel_device; 541 unsigned char local_event_generator; 542 543 /* For handling of maintenance mode. */ 544 int maintenance_mode; 545 bool maintenance_mode_enable; 546 int auto_maintenance_timeout; 547 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 548 549 /* 550 * If we are doing maintenance on something on IPMB, extend 551 * the timeout time to avoid timeouts writing firmware and 552 * such. 553 */ 554 int ipmb_maintenance_mode_timeout; 555 556 /* 557 * A cheap hack, if this is non-null and a message to an 558 * interface comes in with a NULL user, call this routine with 559 * it. Note that the message will still be freed by the 560 * caller. This only works on the system interface. 561 * 562 * Protected by bmc_reg_mutex. 563 */ 564 void (*null_user_handler)(struct ipmi_smi *intf, 565 struct ipmi_recv_msg *msg); 566 567 /* 568 * When we are scanning the channels for an SMI, this will 569 * tell which channel we are scanning. 570 */ 571 int curr_channel; 572 573 /* Channel information */ 574 struct ipmi_channel_set *channel_list; 575 unsigned int curr_working_cset; /* First index into the following. */ 576 struct ipmi_channel_set wchannels[2]; 577 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS]; 578 bool channels_ready; 579 580 atomic_t stats[IPMI_NUM_STATS]; 581 582 /* 583 * run_to_completion duplicate of smb_info, smi_info 584 * and ipmi_serial_info structures. Used to decrease numbers of 585 * parameters passed by "low" level IPMI code. 586 */ 587 int run_to_completion; 588 }; 589 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 590 591 static void __get_guid(struct ipmi_smi *intf); 592 static void __ipmi_bmc_unregister(struct ipmi_smi *intf); 593 static int __ipmi_bmc_register(struct ipmi_smi *intf, 594 struct ipmi_device_id *id, 595 bool guid_set, guid_t *guid, int intf_num); 596 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id); 597 598 599 /** 600 * The driver model view of the IPMI messaging driver. 601 */ 602 static struct platform_driver ipmidriver = { 603 .driver = { 604 .name = "ipmi", 605 .bus = &platform_bus_type 606 } 607 }; 608 /* 609 * This mutex keeps us from adding the same BMC twice. 610 */ 611 static DEFINE_MUTEX(ipmidriver_mutex); 612 613 static LIST_HEAD(ipmi_interfaces); 614 static DEFINE_MUTEX(ipmi_interfaces_mutex); 615 #define ipmi_interfaces_mutex_held() \ 616 lockdep_is_held(&ipmi_interfaces_mutex) 617 static struct srcu_struct ipmi_interfaces_srcu; 618 619 /* 620 * List of watchers that want to know when smi's are added and deleted. 621 */ 622 static LIST_HEAD(smi_watchers); 623 static DEFINE_MUTEX(smi_watchers_mutex); 624 625 #define ipmi_inc_stat(intf, stat) \ 626 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 627 #define ipmi_get_stat(intf, stat) \ 628 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 629 630 static const char * const addr_src_to_str[] = { 631 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI", 632 "device-tree", "platform" 633 }; 634 635 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 636 { 637 if (src >= SI_LAST) 638 src = 0; /* Invalid */ 639 return addr_src_to_str[src]; 640 } 641 EXPORT_SYMBOL(ipmi_addr_src_to_str); 642 643 static int is_lan_addr(struct ipmi_addr *addr) 644 { 645 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 646 } 647 648 static int is_ipmb_addr(struct ipmi_addr *addr) 649 { 650 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 651 } 652 653 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 654 { 655 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 656 } 657 658 static int is_ipmb_direct_addr(struct ipmi_addr *addr) 659 { 660 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE; 661 } 662 663 static void free_recv_msg_list(struct list_head *q) 664 { 665 struct ipmi_recv_msg *msg, *msg2; 666 667 list_for_each_entry_safe(msg, msg2, q, link) { 668 list_del(&msg->link); 669 ipmi_free_recv_msg(msg); 670 } 671 } 672 673 static void free_smi_msg_list(struct list_head *q) 674 { 675 struct ipmi_smi_msg *msg, *msg2; 676 677 list_for_each_entry_safe(msg, msg2, q, link) { 678 list_del(&msg->link); 679 ipmi_free_smi_msg(msg); 680 } 681 } 682 683 static void clean_up_interface_data(struct ipmi_smi *intf) 684 { 685 int i; 686 struct cmd_rcvr *rcvr, *rcvr2; 687 struct list_head list; 688 689 tasklet_kill(&intf->recv_tasklet); 690 691 free_smi_msg_list(&intf->waiting_rcv_msgs); 692 free_recv_msg_list(&intf->waiting_events); 693 694 /* 695 * Wholesale remove all the entries from the list in the 696 * interface and wait for RCU to know that none are in use. 697 */ 698 mutex_lock(&intf->cmd_rcvrs_mutex); 699 INIT_LIST_HEAD(&list); 700 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 701 mutex_unlock(&intf->cmd_rcvrs_mutex); 702 703 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 704 kfree(rcvr); 705 706 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 707 if ((intf->seq_table[i].inuse) 708 && (intf->seq_table[i].recv_msg)) 709 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 710 } 711 } 712 713 static void intf_free(struct kref *ref) 714 { 715 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount); 716 717 clean_up_interface_data(intf); 718 kfree(intf); 719 } 720 721 struct watcher_entry { 722 int intf_num; 723 struct ipmi_smi *intf; 724 struct list_head link; 725 }; 726 727 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 728 { 729 struct ipmi_smi *intf; 730 int index, rv; 731 732 /* 733 * Make sure the driver is actually initialized, this handles 734 * problems with initialization order. 735 */ 736 rv = ipmi_init_msghandler(); 737 if (rv) 738 return rv; 739 740 mutex_lock(&smi_watchers_mutex); 741 742 list_add(&watcher->link, &smi_watchers); 743 744 index = srcu_read_lock(&ipmi_interfaces_srcu); 745 list_for_each_entry_rcu(intf, &ipmi_interfaces, link, 746 lockdep_is_held(&smi_watchers_mutex)) { 747 int intf_num = READ_ONCE(intf->intf_num); 748 749 if (intf_num == -1) 750 continue; 751 watcher->new_smi(intf_num, intf->si_dev); 752 } 753 srcu_read_unlock(&ipmi_interfaces_srcu, index); 754 755 mutex_unlock(&smi_watchers_mutex); 756 757 return 0; 758 } 759 EXPORT_SYMBOL(ipmi_smi_watcher_register); 760 761 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 762 { 763 mutex_lock(&smi_watchers_mutex); 764 list_del(&watcher->link); 765 mutex_unlock(&smi_watchers_mutex); 766 return 0; 767 } 768 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 769 770 /* 771 * Must be called with smi_watchers_mutex held. 772 */ 773 static void 774 call_smi_watchers(int i, struct device *dev) 775 { 776 struct ipmi_smi_watcher *w; 777 778 mutex_lock(&smi_watchers_mutex); 779 list_for_each_entry(w, &smi_watchers, link) { 780 if (try_module_get(w->owner)) { 781 w->new_smi(i, dev); 782 module_put(w->owner); 783 } 784 } 785 mutex_unlock(&smi_watchers_mutex); 786 } 787 788 static int 789 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 790 { 791 if (addr1->addr_type != addr2->addr_type) 792 return 0; 793 794 if (addr1->channel != addr2->channel) 795 return 0; 796 797 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 798 struct ipmi_system_interface_addr *smi_addr1 799 = (struct ipmi_system_interface_addr *) addr1; 800 struct ipmi_system_interface_addr *smi_addr2 801 = (struct ipmi_system_interface_addr *) addr2; 802 return (smi_addr1->lun == smi_addr2->lun); 803 } 804 805 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 806 struct ipmi_ipmb_addr *ipmb_addr1 807 = (struct ipmi_ipmb_addr *) addr1; 808 struct ipmi_ipmb_addr *ipmb_addr2 809 = (struct ipmi_ipmb_addr *) addr2; 810 811 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 812 && (ipmb_addr1->lun == ipmb_addr2->lun)); 813 } 814 815 if (is_ipmb_direct_addr(addr1)) { 816 struct ipmi_ipmb_direct_addr *daddr1 817 = (struct ipmi_ipmb_direct_addr *) addr1; 818 struct ipmi_ipmb_direct_addr *daddr2 819 = (struct ipmi_ipmb_direct_addr *) addr2; 820 821 return daddr1->slave_addr == daddr2->slave_addr && 822 daddr1->rq_lun == daddr2->rq_lun && 823 daddr1->rs_lun == daddr2->rs_lun; 824 } 825 826 if (is_lan_addr(addr1)) { 827 struct ipmi_lan_addr *lan_addr1 828 = (struct ipmi_lan_addr *) addr1; 829 struct ipmi_lan_addr *lan_addr2 830 = (struct ipmi_lan_addr *) addr2; 831 832 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 833 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 834 && (lan_addr1->session_handle 835 == lan_addr2->session_handle) 836 && (lan_addr1->lun == lan_addr2->lun)); 837 } 838 839 return 1; 840 } 841 842 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 843 { 844 if (len < sizeof(struct ipmi_system_interface_addr)) 845 return -EINVAL; 846 847 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 848 if (addr->channel != IPMI_BMC_CHANNEL) 849 return -EINVAL; 850 return 0; 851 } 852 853 if ((addr->channel == IPMI_BMC_CHANNEL) 854 || (addr->channel >= IPMI_MAX_CHANNELS) 855 || (addr->channel < 0)) 856 return -EINVAL; 857 858 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 859 if (len < sizeof(struct ipmi_ipmb_addr)) 860 return -EINVAL; 861 return 0; 862 } 863 864 if (is_ipmb_direct_addr(addr)) { 865 struct ipmi_ipmb_direct_addr *daddr = (void *) addr; 866 867 if (addr->channel != 0) 868 return -EINVAL; 869 if (len < sizeof(struct ipmi_ipmb_direct_addr)) 870 return -EINVAL; 871 872 if (daddr->slave_addr & 0x01) 873 return -EINVAL; 874 if (daddr->rq_lun >= 4) 875 return -EINVAL; 876 if (daddr->rs_lun >= 4) 877 return -EINVAL; 878 return 0; 879 } 880 881 if (is_lan_addr(addr)) { 882 if (len < sizeof(struct ipmi_lan_addr)) 883 return -EINVAL; 884 return 0; 885 } 886 887 return -EINVAL; 888 } 889 EXPORT_SYMBOL(ipmi_validate_addr); 890 891 unsigned int ipmi_addr_length(int addr_type) 892 { 893 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 894 return sizeof(struct ipmi_system_interface_addr); 895 896 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 897 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 898 return sizeof(struct ipmi_ipmb_addr); 899 900 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE) 901 return sizeof(struct ipmi_ipmb_direct_addr); 902 903 if (addr_type == IPMI_LAN_ADDR_TYPE) 904 return sizeof(struct ipmi_lan_addr); 905 906 return 0; 907 } 908 EXPORT_SYMBOL(ipmi_addr_length); 909 910 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 911 { 912 int rv = 0; 913 914 if (!msg->user) { 915 /* Special handling for NULL users. */ 916 if (intf->null_user_handler) { 917 intf->null_user_handler(intf, msg); 918 } else { 919 /* No handler, so give up. */ 920 rv = -EINVAL; 921 } 922 ipmi_free_recv_msg(msg); 923 } else if (oops_in_progress) { 924 /* 925 * If we are running in the panic context, calling the 926 * receive handler doesn't much meaning and has a deadlock 927 * risk. At this moment, simply skip it in that case. 928 */ 929 ipmi_free_recv_msg(msg); 930 } else { 931 int index; 932 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index); 933 934 if (user) { 935 user->handler->ipmi_recv_hndl(msg, user->handler_data); 936 release_ipmi_user(user, index); 937 } else { 938 /* User went away, give up. */ 939 ipmi_free_recv_msg(msg); 940 rv = -EINVAL; 941 } 942 } 943 944 return rv; 945 } 946 947 static void deliver_local_response(struct ipmi_smi *intf, 948 struct ipmi_recv_msg *msg) 949 { 950 if (deliver_response(intf, msg)) 951 ipmi_inc_stat(intf, unhandled_local_responses); 952 else 953 ipmi_inc_stat(intf, handled_local_responses); 954 } 955 956 static void deliver_err_response(struct ipmi_smi *intf, 957 struct ipmi_recv_msg *msg, int err) 958 { 959 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 960 msg->msg_data[0] = err; 961 msg->msg.netfn |= 1; /* Convert to a response. */ 962 msg->msg.data_len = 1; 963 msg->msg.data = msg->msg_data; 964 deliver_local_response(intf, msg); 965 } 966 967 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags) 968 { 969 unsigned long iflags; 970 971 if (!intf->handlers->set_need_watch) 972 return; 973 974 spin_lock_irqsave(&intf->watch_lock, iflags); 975 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 976 intf->response_waiters++; 977 978 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 979 intf->watchdog_waiters++; 980 981 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 982 intf->command_waiters++; 983 984 if ((intf->last_watch_mask & flags) != flags) { 985 intf->last_watch_mask |= flags; 986 intf->handlers->set_need_watch(intf->send_info, 987 intf->last_watch_mask); 988 } 989 spin_unlock_irqrestore(&intf->watch_lock, iflags); 990 } 991 992 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags) 993 { 994 unsigned long iflags; 995 996 if (!intf->handlers->set_need_watch) 997 return; 998 999 spin_lock_irqsave(&intf->watch_lock, iflags); 1000 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 1001 intf->response_waiters--; 1002 1003 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 1004 intf->watchdog_waiters--; 1005 1006 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 1007 intf->command_waiters--; 1008 1009 flags = 0; 1010 if (intf->response_waiters) 1011 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES; 1012 if (intf->watchdog_waiters) 1013 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG; 1014 if (intf->command_waiters) 1015 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS; 1016 1017 if (intf->last_watch_mask != flags) { 1018 intf->last_watch_mask = flags; 1019 intf->handlers->set_need_watch(intf->send_info, 1020 intf->last_watch_mask); 1021 } 1022 spin_unlock_irqrestore(&intf->watch_lock, iflags); 1023 } 1024 1025 /* 1026 * Find the next sequence number not being used and add the given 1027 * message with the given timeout to the sequence table. This must be 1028 * called with the interface's seq_lock held. 1029 */ 1030 static int intf_next_seq(struct ipmi_smi *intf, 1031 struct ipmi_recv_msg *recv_msg, 1032 unsigned long timeout, 1033 int retries, 1034 int broadcast, 1035 unsigned char *seq, 1036 long *seqid) 1037 { 1038 int rv = 0; 1039 unsigned int i; 1040 1041 if (timeout == 0) 1042 timeout = default_retry_ms; 1043 if (retries < 0) 1044 retries = default_max_retries; 1045 1046 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 1047 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 1048 if (!intf->seq_table[i].inuse) 1049 break; 1050 } 1051 1052 if (!intf->seq_table[i].inuse) { 1053 intf->seq_table[i].recv_msg = recv_msg; 1054 1055 /* 1056 * Start with the maximum timeout, when the send response 1057 * comes in we will start the real timer. 1058 */ 1059 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 1060 intf->seq_table[i].orig_timeout = timeout; 1061 intf->seq_table[i].retries_left = retries; 1062 intf->seq_table[i].broadcast = broadcast; 1063 intf->seq_table[i].inuse = 1; 1064 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 1065 *seq = i; 1066 *seqid = intf->seq_table[i].seqid; 1067 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 1068 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1069 need_waiter(intf); 1070 } else { 1071 rv = -EAGAIN; 1072 } 1073 1074 return rv; 1075 } 1076 1077 /* 1078 * Return the receive message for the given sequence number and 1079 * release the sequence number so it can be reused. Some other data 1080 * is passed in to be sure the message matches up correctly (to help 1081 * guard against message coming in after their timeout and the 1082 * sequence number being reused). 1083 */ 1084 static int intf_find_seq(struct ipmi_smi *intf, 1085 unsigned char seq, 1086 short channel, 1087 unsigned char cmd, 1088 unsigned char netfn, 1089 struct ipmi_addr *addr, 1090 struct ipmi_recv_msg **recv_msg) 1091 { 1092 int rv = -ENODEV; 1093 unsigned long flags; 1094 1095 if (seq >= IPMI_IPMB_NUM_SEQ) 1096 return -EINVAL; 1097 1098 spin_lock_irqsave(&intf->seq_lock, flags); 1099 if (intf->seq_table[seq].inuse) { 1100 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 1101 1102 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 1103 && (msg->msg.netfn == netfn) 1104 && (ipmi_addr_equal(addr, &msg->addr))) { 1105 *recv_msg = msg; 1106 intf->seq_table[seq].inuse = 0; 1107 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1108 rv = 0; 1109 } 1110 } 1111 spin_unlock_irqrestore(&intf->seq_lock, flags); 1112 1113 return rv; 1114 } 1115 1116 1117 /* Start the timer for a specific sequence table entry. */ 1118 static int intf_start_seq_timer(struct ipmi_smi *intf, 1119 long msgid) 1120 { 1121 int rv = -ENODEV; 1122 unsigned long flags; 1123 unsigned char seq; 1124 unsigned long seqid; 1125 1126 1127 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1128 1129 spin_lock_irqsave(&intf->seq_lock, flags); 1130 /* 1131 * We do this verification because the user can be deleted 1132 * while a message is outstanding. 1133 */ 1134 if ((intf->seq_table[seq].inuse) 1135 && (intf->seq_table[seq].seqid == seqid)) { 1136 struct seq_table *ent = &intf->seq_table[seq]; 1137 ent->timeout = ent->orig_timeout; 1138 rv = 0; 1139 } 1140 spin_unlock_irqrestore(&intf->seq_lock, flags); 1141 1142 return rv; 1143 } 1144 1145 /* Got an error for the send message for a specific sequence number. */ 1146 static int intf_err_seq(struct ipmi_smi *intf, 1147 long msgid, 1148 unsigned int err) 1149 { 1150 int rv = -ENODEV; 1151 unsigned long flags; 1152 unsigned char seq; 1153 unsigned long seqid; 1154 struct ipmi_recv_msg *msg = NULL; 1155 1156 1157 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1158 1159 spin_lock_irqsave(&intf->seq_lock, flags); 1160 /* 1161 * We do this verification because the user can be deleted 1162 * while a message is outstanding. 1163 */ 1164 if ((intf->seq_table[seq].inuse) 1165 && (intf->seq_table[seq].seqid == seqid)) { 1166 struct seq_table *ent = &intf->seq_table[seq]; 1167 1168 ent->inuse = 0; 1169 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1170 msg = ent->recv_msg; 1171 rv = 0; 1172 } 1173 spin_unlock_irqrestore(&intf->seq_lock, flags); 1174 1175 if (msg) 1176 deliver_err_response(intf, msg, err); 1177 1178 return rv; 1179 } 1180 1181 static void free_user_work(struct work_struct *work) 1182 { 1183 struct ipmi_user *user = container_of(work, struct ipmi_user, 1184 remove_work); 1185 1186 cleanup_srcu_struct(&user->release_barrier); 1187 vfree(user); 1188 } 1189 1190 int ipmi_create_user(unsigned int if_num, 1191 const struct ipmi_user_hndl *handler, 1192 void *handler_data, 1193 struct ipmi_user **user) 1194 { 1195 unsigned long flags; 1196 struct ipmi_user *new_user; 1197 int rv, index; 1198 struct ipmi_smi *intf; 1199 1200 /* 1201 * There is no module usecount here, because it's not 1202 * required. Since this can only be used by and called from 1203 * other modules, they will implicitly use this module, and 1204 * thus this can't be removed unless the other modules are 1205 * removed. 1206 */ 1207 1208 if (handler == NULL) 1209 return -EINVAL; 1210 1211 /* 1212 * Make sure the driver is actually initialized, this handles 1213 * problems with initialization order. 1214 */ 1215 rv = ipmi_init_msghandler(); 1216 if (rv) 1217 return rv; 1218 1219 new_user = vzalloc(sizeof(*new_user)); 1220 if (!new_user) 1221 return -ENOMEM; 1222 1223 index = srcu_read_lock(&ipmi_interfaces_srcu); 1224 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1225 if (intf->intf_num == if_num) 1226 goto found; 1227 } 1228 /* Not found, return an error */ 1229 rv = -EINVAL; 1230 goto out_kfree; 1231 1232 found: 1233 INIT_WORK(&new_user->remove_work, free_user_work); 1234 1235 rv = init_srcu_struct(&new_user->release_barrier); 1236 if (rv) 1237 goto out_kfree; 1238 1239 if (!try_module_get(intf->owner)) { 1240 rv = -ENODEV; 1241 goto out_kfree; 1242 } 1243 1244 /* Note that each existing user holds a refcount to the interface. */ 1245 kref_get(&intf->refcount); 1246 1247 kref_init(&new_user->refcount); 1248 new_user->handler = handler; 1249 new_user->handler_data = handler_data; 1250 new_user->intf = intf; 1251 new_user->gets_events = false; 1252 1253 rcu_assign_pointer(new_user->self, new_user); 1254 spin_lock_irqsave(&intf->seq_lock, flags); 1255 list_add_rcu(&new_user->link, &intf->users); 1256 spin_unlock_irqrestore(&intf->seq_lock, flags); 1257 if (handler->ipmi_watchdog_pretimeout) 1258 /* User wants pretimeouts, so make sure to watch for them. */ 1259 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1260 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1261 *user = new_user; 1262 return 0; 1263 1264 out_kfree: 1265 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1266 vfree(new_user); 1267 return rv; 1268 } 1269 EXPORT_SYMBOL(ipmi_create_user); 1270 1271 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1272 { 1273 int rv, index; 1274 struct ipmi_smi *intf; 1275 1276 index = srcu_read_lock(&ipmi_interfaces_srcu); 1277 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1278 if (intf->intf_num == if_num) 1279 goto found; 1280 } 1281 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1282 1283 /* Not found, return an error */ 1284 return -EINVAL; 1285 1286 found: 1287 if (!intf->handlers->get_smi_info) 1288 rv = -ENOTTY; 1289 else 1290 rv = intf->handlers->get_smi_info(intf->send_info, data); 1291 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1292 1293 return rv; 1294 } 1295 EXPORT_SYMBOL(ipmi_get_smi_info); 1296 1297 static void free_user(struct kref *ref) 1298 { 1299 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount); 1300 1301 /* SRCU cleanup must happen in task context. */ 1302 queue_work(remove_work_wq, &user->remove_work); 1303 } 1304 1305 static void _ipmi_destroy_user(struct ipmi_user *user) 1306 { 1307 struct ipmi_smi *intf = user->intf; 1308 int i; 1309 unsigned long flags; 1310 struct cmd_rcvr *rcvr; 1311 struct cmd_rcvr *rcvrs = NULL; 1312 1313 if (!acquire_ipmi_user(user, &i)) { 1314 /* 1315 * The user has already been cleaned up, just make sure 1316 * nothing is using it and return. 1317 */ 1318 synchronize_srcu(&user->release_barrier); 1319 return; 1320 } 1321 1322 rcu_assign_pointer(user->self, NULL); 1323 release_ipmi_user(user, i); 1324 1325 synchronize_srcu(&user->release_barrier); 1326 1327 if (user->handler->shutdown) 1328 user->handler->shutdown(user->handler_data); 1329 1330 if (user->handler->ipmi_watchdog_pretimeout) 1331 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1332 1333 if (user->gets_events) 1334 atomic_dec(&intf->event_waiters); 1335 1336 /* Remove the user from the interface's sequence table. */ 1337 spin_lock_irqsave(&intf->seq_lock, flags); 1338 list_del_rcu(&user->link); 1339 1340 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1341 if (intf->seq_table[i].inuse 1342 && (intf->seq_table[i].recv_msg->user == user)) { 1343 intf->seq_table[i].inuse = 0; 1344 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1345 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1346 } 1347 } 1348 spin_unlock_irqrestore(&intf->seq_lock, flags); 1349 1350 /* 1351 * Remove the user from the command receiver's table. First 1352 * we build a list of everything (not using the standard link, 1353 * since other things may be using it till we do 1354 * synchronize_srcu()) then free everything in that list. 1355 */ 1356 mutex_lock(&intf->cmd_rcvrs_mutex); 1357 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1358 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1359 if (rcvr->user == user) { 1360 list_del_rcu(&rcvr->link); 1361 rcvr->next = rcvrs; 1362 rcvrs = rcvr; 1363 } 1364 } 1365 mutex_unlock(&intf->cmd_rcvrs_mutex); 1366 synchronize_rcu(); 1367 while (rcvrs) { 1368 rcvr = rcvrs; 1369 rcvrs = rcvr->next; 1370 kfree(rcvr); 1371 } 1372 1373 kref_put(&intf->refcount, intf_free); 1374 module_put(intf->owner); 1375 } 1376 1377 int ipmi_destroy_user(struct ipmi_user *user) 1378 { 1379 _ipmi_destroy_user(user); 1380 1381 kref_put(&user->refcount, free_user); 1382 1383 return 0; 1384 } 1385 EXPORT_SYMBOL(ipmi_destroy_user); 1386 1387 int ipmi_get_version(struct ipmi_user *user, 1388 unsigned char *major, 1389 unsigned char *minor) 1390 { 1391 struct ipmi_device_id id; 1392 int rv, index; 1393 1394 user = acquire_ipmi_user(user, &index); 1395 if (!user) 1396 return -ENODEV; 1397 1398 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL); 1399 if (!rv) { 1400 *major = ipmi_version_major(&id); 1401 *minor = ipmi_version_minor(&id); 1402 } 1403 release_ipmi_user(user, index); 1404 1405 return rv; 1406 } 1407 EXPORT_SYMBOL(ipmi_get_version); 1408 1409 int ipmi_set_my_address(struct ipmi_user *user, 1410 unsigned int channel, 1411 unsigned char address) 1412 { 1413 int index, rv = 0; 1414 1415 user = acquire_ipmi_user(user, &index); 1416 if (!user) 1417 return -ENODEV; 1418 1419 if (channel >= IPMI_MAX_CHANNELS) { 1420 rv = -EINVAL; 1421 } else { 1422 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1423 user->intf->addrinfo[channel].address = address; 1424 } 1425 release_ipmi_user(user, index); 1426 1427 return rv; 1428 } 1429 EXPORT_SYMBOL(ipmi_set_my_address); 1430 1431 int ipmi_get_my_address(struct ipmi_user *user, 1432 unsigned int channel, 1433 unsigned char *address) 1434 { 1435 int index, rv = 0; 1436 1437 user = acquire_ipmi_user(user, &index); 1438 if (!user) 1439 return -ENODEV; 1440 1441 if (channel >= IPMI_MAX_CHANNELS) { 1442 rv = -EINVAL; 1443 } else { 1444 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1445 *address = user->intf->addrinfo[channel].address; 1446 } 1447 release_ipmi_user(user, index); 1448 1449 return rv; 1450 } 1451 EXPORT_SYMBOL(ipmi_get_my_address); 1452 1453 int ipmi_set_my_LUN(struct ipmi_user *user, 1454 unsigned int channel, 1455 unsigned char LUN) 1456 { 1457 int index, rv = 0; 1458 1459 user = acquire_ipmi_user(user, &index); 1460 if (!user) 1461 return -ENODEV; 1462 1463 if (channel >= IPMI_MAX_CHANNELS) { 1464 rv = -EINVAL; 1465 } else { 1466 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1467 user->intf->addrinfo[channel].lun = LUN & 0x3; 1468 } 1469 release_ipmi_user(user, index); 1470 1471 return rv; 1472 } 1473 EXPORT_SYMBOL(ipmi_set_my_LUN); 1474 1475 int ipmi_get_my_LUN(struct ipmi_user *user, 1476 unsigned int channel, 1477 unsigned char *address) 1478 { 1479 int index, rv = 0; 1480 1481 user = acquire_ipmi_user(user, &index); 1482 if (!user) 1483 return -ENODEV; 1484 1485 if (channel >= IPMI_MAX_CHANNELS) { 1486 rv = -EINVAL; 1487 } else { 1488 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1489 *address = user->intf->addrinfo[channel].lun; 1490 } 1491 release_ipmi_user(user, index); 1492 1493 return rv; 1494 } 1495 EXPORT_SYMBOL(ipmi_get_my_LUN); 1496 1497 int ipmi_get_maintenance_mode(struct ipmi_user *user) 1498 { 1499 int mode, index; 1500 unsigned long flags; 1501 1502 user = acquire_ipmi_user(user, &index); 1503 if (!user) 1504 return -ENODEV; 1505 1506 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1507 mode = user->intf->maintenance_mode; 1508 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1509 release_ipmi_user(user, index); 1510 1511 return mode; 1512 } 1513 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1514 1515 static void maintenance_mode_update(struct ipmi_smi *intf) 1516 { 1517 if (intf->handlers->set_maintenance_mode) 1518 intf->handlers->set_maintenance_mode( 1519 intf->send_info, intf->maintenance_mode_enable); 1520 } 1521 1522 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode) 1523 { 1524 int rv = 0, index; 1525 unsigned long flags; 1526 struct ipmi_smi *intf = user->intf; 1527 1528 user = acquire_ipmi_user(user, &index); 1529 if (!user) 1530 return -ENODEV; 1531 1532 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1533 if (intf->maintenance_mode != mode) { 1534 switch (mode) { 1535 case IPMI_MAINTENANCE_MODE_AUTO: 1536 intf->maintenance_mode_enable 1537 = (intf->auto_maintenance_timeout > 0); 1538 break; 1539 1540 case IPMI_MAINTENANCE_MODE_OFF: 1541 intf->maintenance_mode_enable = false; 1542 break; 1543 1544 case IPMI_MAINTENANCE_MODE_ON: 1545 intf->maintenance_mode_enable = true; 1546 break; 1547 1548 default: 1549 rv = -EINVAL; 1550 goto out_unlock; 1551 } 1552 intf->maintenance_mode = mode; 1553 1554 maintenance_mode_update(intf); 1555 } 1556 out_unlock: 1557 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1558 release_ipmi_user(user, index); 1559 1560 return rv; 1561 } 1562 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1563 1564 int ipmi_set_gets_events(struct ipmi_user *user, bool val) 1565 { 1566 unsigned long flags; 1567 struct ipmi_smi *intf = user->intf; 1568 struct ipmi_recv_msg *msg, *msg2; 1569 struct list_head msgs; 1570 int index; 1571 1572 user = acquire_ipmi_user(user, &index); 1573 if (!user) 1574 return -ENODEV; 1575 1576 INIT_LIST_HEAD(&msgs); 1577 1578 spin_lock_irqsave(&intf->events_lock, flags); 1579 if (user->gets_events == val) 1580 goto out; 1581 1582 user->gets_events = val; 1583 1584 if (val) { 1585 if (atomic_inc_return(&intf->event_waiters) == 1) 1586 need_waiter(intf); 1587 } else { 1588 atomic_dec(&intf->event_waiters); 1589 } 1590 1591 if (intf->delivering_events) 1592 /* 1593 * Another thread is delivering events for this, so 1594 * let it handle any new events. 1595 */ 1596 goto out; 1597 1598 /* Deliver any queued events. */ 1599 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1600 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1601 list_move_tail(&msg->link, &msgs); 1602 intf->waiting_events_count = 0; 1603 if (intf->event_msg_printed) { 1604 dev_warn(intf->si_dev, "Event queue no longer full\n"); 1605 intf->event_msg_printed = 0; 1606 } 1607 1608 intf->delivering_events = 1; 1609 spin_unlock_irqrestore(&intf->events_lock, flags); 1610 1611 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1612 msg->user = user; 1613 kref_get(&user->refcount); 1614 deliver_local_response(intf, msg); 1615 } 1616 1617 spin_lock_irqsave(&intf->events_lock, flags); 1618 intf->delivering_events = 0; 1619 } 1620 1621 out: 1622 spin_unlock_irqrestore(&intf->events_lock, flags); 1623 release_ipmi_user(user, index); 1624 1625 return 0; 1626 } 1627 EXPORT_SYMBOL(ipmi_set_gets_events); 1628 1629 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf, 1630 unsigned char netfn, 1631 unsigned char cmd, 1632 unsigned char chan) 1633 { 1634 struct cmd_rcvr *rcvr; 1635 1636 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1637 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1638 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1639 && (rcvr->chans & (1 << chan))) 1640 return rcvr; 1641 } 1642 return NULL; 1643 } 1644 1645 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf, 1646 unsigned char netfn, 1647 unsigned char cmd, 1648 unsigned int chans) 1649 { 1650 struct cmd_rcvr *rcvr; 1651 1652 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1653 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1654 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1655 && (rcvr->chans & chans)) 1656 return 0; 1657 } 1658 return 1; 1659 } 1660 1661 int ipmi_register_for_cmd(struct ipmi_user *user, 1662 unsigned char netfn, 1663 unsigned char cmd, 1664 unsigned int chans) 1665 { 1666 struct ipmi_smi *intf = user->intf; 1667 struct cmd_rcvr *rcvr; 1668 int rv = 0, index; 1669 1670 user = acquire_ipmi_user(user, &index); 1671 if (!user) 1672 return -ENODEV; 1673 1674 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1675 if (!rcvr) { 1676 rv = -ENOMEM; 1677 goto out_release; 1678 } 1679 rcvr->cmd = cmd; 1680 rcvr->netfn = netfn; 1681 rcvr->chans = chans; 1682 rcvr->user = user; 1683 1684 mutex_lock(&intf->cmd_rcvrs_mutex); 1685 /* Make sure the command/netfn is not already registered. */ 1686 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1687 rv = -EBUSY; 1688 goto out_unlock; 1689 } 1690 1691 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1692 1693 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1694 1695 out_unlock: 1696 mutex_unlock(&intf->cmd_rcvrs_mutex); 1697 if (rv) 1698 kfree(rcvr); 1699 out_release: 1700 release_ipmi_user(user, index); 1701 1702 return rv; 1703 } 1704 EXPORT_SYMBOL(ipmi_register_for_cmd); 1705 1706 int ipmi_unregister_for_cmd(struct ipmi_user *user, 1707 unsigned char netfn, 1708 unsigned char cmd, 1709 unsigned int chans) 1710 { 1711 struct ipmi_smi *intf = user->intf; 1712 struct cmd_rcvr *rcvr; 1713 struct cmd_rcvr *rcvrs = NULL; 1714 int i, rv = -ENOENT, index; 1715 1716 user = acquire_ipmi_user(user, &index); 1717 if (!user) 1718 return -ENODEV; 1719 1720 mutex_lock(&intf->cmd_rcvrs_mutex); 1721 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1722 if (((1 << i) & chans) == 0) 1723 continue; 1724 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1725 if (rcvr == NULL) 1726 continue; 1727 if (rcvr->user == user) { 1728 rv = 0; 1729 rcvr->chans &= ~chans; 1730 if (rcvr->chans == 0) { 1731 list_del_rcu(&rcvr->link); 1732 rcvr->next = rcvrs; 1733 rcvrs = rcvr; 1734 } 1735 } 1736 } 1737 mutex_unlock(&intf->cmd_rcvrs_mutex); 1738 synchronize_rcu(); 1739 release_ipmi_user(user, index); 1740 while (rcvrs) { 1741 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1742 rcvr = rcvrs; 1743 rcvrs = rcvr->next; 1744 kfree(rcvr); 1745 } 1746 1747 return rv; 1748 } 1749 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1750 1751 unsigned char 1752 ipmb_checksum(unsigned char *data, int size) 1753 { 1754 unsigned char csum = 0; 1755 1756 for (; size > 0; size--, data++) 1757 csum += *data; 1758 1759 return -csum; 1760 } 1761 EXPORT_SYMBOL(ipmb_checksum); 1762 1763 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1764 struct kernel_ipmi_msg *msg, 1765 struct ipmi_ipmb_addr *ipmb_addr, 1766 long msgid, 1767 unsigned char ipmb_seq, 1768 int broadcast, 1769 unsigned char source_address, 1770 unsigned char source_lun) 1771 { 1772 int i = broadcast; 1773 1774 /* Format the IPMB header data. */ 1775 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1776 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1777 smi_msg->data[2] = ipmb_addr->channel; 1778 if (broadcast) 1779 smi_msg->data[3] = 0; 1780 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1781 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1782 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2); 1783 smi_msg->data[i+6] = source_address; 1784 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1785 smi_msg->data[i+8] = msg->cmd; 1786 1787 /* Now tack on the data to the message. */ 1788 if (msg->data_len > 0) 1789 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len); 1790 smi_msg->data_size = msg->data_len + 9; 1791 1792 /* Now calculate the checksum and tack it on. */ 1793 smi_msg->data[i+smi_msg->data_size] 1794 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6); 1795 1796 /* 1797 * Add on the checksum size and the offset from the 1798 * broadcast. 1799 */ 1800 smi_msg->data_size += 1 + i; 1801 1802 smi_msg->msgid = msgid; 1803 } 1804 1805 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1806 struct kernel_ipmi_msg *msg, 1807 struct ipmi_lan_addr *lan_addr, 1808 long msgid, 1809 unsigned char ipmb_seq, 1810 unsigned char source_lun) 1811 { 1812 /* Format the IPMB header data. */ 1813 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1814 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1815 smi_msg->data[2] = lan_addr->channel; 1816 smi_msg->data[3] = lan_addr->session_handle; 1817 smi_msg->data[4] = lan_addr->remote_SWID; 1818 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1819 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2); 1820 smi_msg->data[7] = lan_addr->local_SWID; 1821 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1822 smi_msg->data[9] = msg->cmd; 1823 1824 /* Now tack on the data to the message. */ 1825 if (msg->data_len > 0) 1826 memcpy(&smi_msg->data[10], msg->data, msg->data_len); 1827 smi_msg->data_size = msg->data_len + 10; 1828 1829 /* Now calculate the checksum and tack it on. */ 1830 smi_msg->data[smi_msg->data_size] 1831 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7); 1832 1833 /* 1834 * Add on the checksum size and the offset from the 1835 * broadcast. 1836 */ 1837 smi_msg->data_size += 1; 1838 1839 smi_msg->msgid = msgid; 1840 } 1841 1842 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf, 1843 struct ipmi_smi_msg *smi_msg, 1844 int priority) 1845 { 1846 if (intf->curr_msg) { 1847 if (priority > 0) 1848 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1849 else 1850 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1851 smi_msg = NULL; 1852 } else { 1853 intf->curr_msg = smi_msg; 1854 } 1855 1856 return smi_msg; 1857 } 1858 1859 static void smi_send(struct ipmi_smi *intf, 1860 const struct ipmi_smi_handlers *handlers, 1861 struct ipmi_smi_msg *smi_msg, int priority) 1862 { 1863 int run_to_completion = intf->run_to_completion; 1864 unsigned long flags = 0; 1865 1866 if (!run_to_completion) 1867 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1868 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1869 1870 if (!run_to_completion) 1871 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1872 1873 if (smi_msg) 1874 handlers->sender(intf->send_info, smi_msg); 1875 } 1876 1877 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg) 1878 { 1879 return (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1880 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1881 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1882 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)); 1883 } 1884 1885 static int i_ipmi_req_sysintf(struct ipmi_smi *intf, 1886 struct ipmi_addr *addr, 1887 long msgid, 1888 struct kernel_ipmi_msg *msg, 1889 struct ipmi_smi_msg *smi_msg, 1890 struct ipmi_recv_msg *recv_msg, 1891 int retries, 1892 unsigned int retry_time_ms) 1893 { 1894 struct ipmi_system_interface_addr *smi_addr; 1895 1896 if (msg->netfn & 1) 1897 /* Responses are not allowed to the SMI. */ 1898 return -EINVAL; 1899 1900 smi_addr = (struct ipmi_system_interface_addr *) addr; 1901 if (smi_addr->lun > 3) { 1902 ipmi_inc_stat(intf, sent_invalid_commands); 1903 return -EINVAL; 1904 } 1905 1906 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1907 1908 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1909 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1910 || (msg->cmd == IPMI_GET_MSG_CMD) 1911 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1912 /* 1913 * We don't let the user do these, since we manage 1914 * the sequence numbers. 1915 */ 1916 ipmi_inc_stat(intf, sent_invalid_commands); 1917 return -EINVAL; 1918 } 1919 1920 if (is_maintenance_mode_cmd(msg)) { 1921 unsigned long flags; 1922 1923 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1924 intf->auto_maintenance_timeout 1925 = maintenance_mode_timeout_ms; 1926 if (!intf->maintenance_mode 1927 && !intf->maintenance_mode_enable) { 1928 intf->maintenance_mode_enable = true; 1929 maintenance_mode_update(intf); 1930 } 1931 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1932 flags); 1933 } 1934 1935 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) { 1936 ipmi_inc_stat(intf, sent_invalid_commands); 1937 return -EMSGSIZE; 1938 } 1939 1940 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1941 smi_msg->data[1] = msg->cmd; 1942 smi_msg->msgid = msgid; 1943 smi_msg->user_data = recv_msg; 1944 if (msg->data_len > 0) 1945 memcpy(&smi_msg->data[2], msg->data, msg->data_len); 1946 smi_msg->data_size = msg->data_len + 2; 1947 ipmi_inc_stat(intf, sent_local_commands); 1948 1949 return 0; 1950 } 1951 1952 static int i_ipmi_req_ipmb(struct ipmi_smi *intf, 1953 struct ipmi_addr *addr, 1954 long msgid, 1955 struct kernel_ipmi_msg *msg, 1956 struct ipmi_smi_msg *smi_msg, 1957 struct ipmi_recv_msg *recv_msg, 1958 unsigned char source_address, 1959 unsigned char source_lun, 1960 int retries, 1961 unsigned int retry_time_ms) 1962 { 1963 struct ipmi_ipmb_addr *ipmb_addr; 1964 unsigned char ipmb_seq; 1965 long seqid; 1966 int broadcast = 0; 1967 struct ipmi_channel *chans; 1968 int rv = 0; 1969 1970 if (addr->channel >= IPMI_MAX_CHANNELS) { 1971 ipmi_inc_stat(intf, sent_invalid_commands); 1972 return -EINVAL; 1973 } 1974 1975 chans = READ_ONCE(intf->channel_list)->c; 1976 1977 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) { 1978 ipmi_inc_stat(intf, sent_invalid_commands); 1979 return -EINVAL; 1980 } 1981 1982 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1983 /* 1984 * Broadcasts add a zero at the beginning of the 1985 * message, but otherwise is the same as an IPMB 1986 * address. 1987 */ 1988 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1989 broadcast = 1; 1990 retries = 0; /* Don't retry broadcasts. */ 1991 } 1992 1993 /* 1994 * 9 for the header and 1 for the checksum, plus 1995 * possibly one for the broadcast. 1996 */ 1997 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1998 ipmi_inc_stat(intf, sent_invalid_commands); 1999 return -EMSGSIZE; 2000 } 2001 2002 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 2003 if (ipmb_addr->lun > 3) { 2004 ipmi_inc_stat(intf, sent_invalid_commands); 2005 return -EINVAL; 2006 } 2007 2008 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 2009 2010 if (recv_msg->msg.netfn & 0x1) { 2011 /* 2012 * It's a response, so use the user's sequence 2013 * from msgid. 2014 */ 2015 ipmi_inc_stat(intf, sent_ipmb_responses); 2016 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 2017 msgid, broadcast, 2018 source_address, source_lun); 2019 2020 /* 2021 * Save the receive message so we can use it 2022 * to deliver the response. 2023 */ 2024 smi_msg->user_data = recv_msg; 2025 } else { 2026 /* It's a command, so get a sequence for it. */ 2027 unsigned long flags; 2028 2029 spin_lock_irqsave(&intf->seq_lock, flags); 2030 2031 if (is_maintenance_mode_cmd(msg)) 2032 intf->ipmb_maintenance_mode_timeout = 2033 maintenance_mode_timeout_ms; 2034 2035 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0) 2036 /* Different default in maintenance mode */ 2037 retry_time_ms = default_maintenance_retry_ms; 2038 2039 /* 2040 * Create a sequence number with a 1 second 2041 * timeout and 4 retries. 2042 */ 2043 rv = intf_next_seq(intf, 2044 recv_msg, 2045 retry_time_ms, 2046 retries, 2047 broadcast, 2048 &ipmb_seq, 2049 &seqid); 2050 if (rv) 2051 /* 2052 * We have used up all the sequence numbers, 2053 * probably, so abort. 2054 */ 2055 goto out_err; 2056 2057 ipmi_inc_stat(intf, sent_ipmb_commands); 2058 2059 /* 2060 * Store the sequence number in the message, 2061 * so that when the send message response 2062 * comes back we can start the timer. 2063 */ 2064 format_ipmb_msg(smi_msg, msg, ipmb_addr, 2065 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2066 ipmb_seq, broadcast, 2067 source_address, source_lun); 2068 2069 /* 2070 * Copy the message into the recv message data, so we 2071 * can retransmit it later if necessary. 2072 */ 2073 memcpy(recv_msg->msg_data, smi_msg->data, 2074 smi_msg->data_size); 2075 recv_msg->msg.data = recv_msg->msg_data; 2076 recv_msg->msg.data_len = smi_msg->data_size; 2077 2078 /* 2079 * We don't unlock until here, because we need 2080 * to copy the completed message into the 2081 * recv_msg before we release the lock. 2082 * Otherwise, race conditions may bite us. I 2083 * know that's pretty paranoid, but I prefer 2084 * to be correct. 2085 */ 2086 out_err: 2087 spin_unlock_irqrestore(&intf->seq_lock, flags); 2088 } 2089 2090 return rv; 2091 } 2092 2093 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf, 2094 struct ipmi_addr *addr, 2095 long msgid, 2096 struct kernel_ipmi_msg *msg, 2097 struct ipmi_smi_msg *smi_msg, 2098 struct ipmi_recv_msg *recv_msg, 2099 unsigned char source_lun) 2100 { 2101 struct ipmi_ipmb_direct_addr *daddr; 2102 bool is_cmd = !(recv_msg->msg.netfn & 0x1); 2103 2104 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT)) 2105 return -EAFNOSUPPORT; 2106 2107 /* Responses must have a completion code. */ 2108 if (!is_cmd && msg->data_len < 1) { 2109 ipmi_inc_stat(intf, sent_invalid_commands); 2110 return -EINVAL; 2111 } 2112 2113 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) { 2114 ipmi_inc_stat(intf, sent_invalid_commands); 2115 return -EMSGSIZE; 2116 } 2117 2118 daddr = (struct ipmi_ipmb_direct_addr *) addr; 2119 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) { 2120 ipmi_inc_stat(intf, sent_invalid_commands); 2121 return -EINVAL; 2122 } 2123 2124 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT; 2125 smi_msg->msgid = msgid; 2126 2127 if (is_cmd) { 2128 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun; 2129 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun; 2130 } else { 2131 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun; 2132 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun; 2133 } 2134 smi_msg->data[1] = daddr->slave_addr; 2135 smi_msg->data[3] = msg->cmd; 2136 2137 memcpy(smi_msg->data + 4, msg->data, msg->data_len); 2138 smi_msg->data_size = msg->data_len + 4; 2139 2140 smi_msg->user_data = recv_msg; 2141 2142 return 0; 2143 } 2144 2145 static int i_ipmi_req_lan(struct ipmi_smi *intf, 2146 struct ipmi_addr *addr, 2147 long msgid, 2148 struct kernel_ipmi_msg *msg, 2149 struct ipmi_smi_msg *smi_msg, 2150 struct ipmi_recv_msg *recv_msg, 2151 unsigned char source_lun, 2152 int retries, 2153 unsigned int retry_time_ms) 2154 { 2155 struct ipmi_lan_addr *lan_addr; 2156 unsigned char ipmb_seq; 2157 long seqid; 2158 struct ipmi_channel *chans; 2159 int rv = 0; 2160 2161 if (addr->channel >= IPMI_MAX_CHANNELS) { 2162 ipmi_inc_stat(intf, sent_invalid_commands); 2163 return -EINVAL; 2164 } 2165 2166 chans = READ_ONCE(intf->channel_list)->c; 2167 2168 if ((chans[addr->channel].medium 2169 != IPMI_CHANNEL_MEDIUM_8023LAN) 2170 && (chans[addr->channel].medium 2171 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 2172 ipmi_inc_stat(intf, sent_invalid_commands); 2173 return -EINVAL; 2174 } 2175 2176 /* 11 for the header and 1 for the checksum. */ 2177 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 2178 ipmi_inc_stat(intf, sent_invalid_commands); 2179 return -EMSGSIZE; 2180 } 2181 2182 lan_addr = (struct ipmi_lan_addr *) addr; 2183 if (lan_addr->lun > 3) { 2184 ipmi_inc_stat(intf, sent_invalid_commands); 2185 return -EINVAL; 2186 } 2187 2188 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 2189 2190 if (recv_msg->msg.netfn & 0x1) { 2191 /* 2192 * It's a response, so use the user's sequence 2193 * from msgid. 2194 */ 2195 ipmi_inc_stat(intf, sent_lan_responses); 2196 format_lan_msg(smi_msg, msg, lan_addr, msgid, 2197 msgid, source_lun); 2198 2199 /* 2200 * Save the receive message so we can use it 2201 * to deliver the response. 2202 */ 2203 smi_msg->user_data = recv_msg; 2204 } else { 2205 /* It's a command, so get a sequence for it. */ 2206 unsigned long flags; 2207 2208 spin_lock_irqsave(&intf->seq_lock, flags); 2209 2210 /* 2211 * Create a sequence number with a 1 second 2212 * timeout and 4 retries. 2213 */ 2214 rv = intf_next_seq(intf, 2215 recv_msg, 2216 retry_time_ms, 2217 retries, 2218 0, 2219 &ipmb_seq, 2220 &seqid); 2221 if (rv) 2222 /* 2223 * We have used up all the sequence numbers, 2224 * probably, so abort. 2225 */ 2226 goto out_err; 2227 2228 ipmi_inc_stat(intf, sent_lan_commands); 2229 2230 /* 2231 * Store the sequence number in the message, 2232 * so that when the send message response 2233 * comes back we can start the timer. 2234 */ 2235 format_lan_msg(smi_msg, msg, lan_addr, 2236 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2237 ipmb_seq, source_lun); 2238 2239 /* 2240 * Copy the message into the recv message data, so we 2241 * can retransmit it later if necessary. 2242 */ 2243 memcpy(recv_msg->msg_data, smi_msg->data, 2244 smi_msg->data_size); 2245 recv_msg->msg.data = recv_msg->msg_data; 2246 recv_msg->msg.data_len = smi_msg->data_size; 2247 2248 /* 2249 * We don't unlock until here, because we need 2250 * to copy the completed message into the 2251 * recv_msg before we release the lock. 2252 * Otherwise, race conditions may bite us. I 2253 * know that's pretty paranoid, but I prefer 2254 * to be correct. 2255 */ 2256 out_err: 2257 spin_unlock_irqrestore(&intf->seq_lock, flags); 2258 } 2259 2260 return rv; 2261 } 2262 2263 /* 2264 * Separate from ipmi_request so that the user does not have to be 2265 * supplied in certain circumstances (mainly at panic time). If 2266 * messages are supplied, they will be freed, even if an error 2267 * occurs. 2268 */ 2269 static int i_ipmi_request(struct ipmi_user *user, 2270 struct ipmi_smi *intf, 2271 struct ipmi_addr *addr, 2272 long msgid, 2273 struct kernel_ipmi_msg *msg, 2274 void *user_msg_data, 2275 void *supplied_smi, 2276 struct ipmi_recv_msg *supplied_recv, 2277 int priority, 2278 unsigned char source_address, 2279 unsigned char source_lun, 2280 int retries, 2281 unsigned int retry_time_ms) 2282 { 2283 struct ipmi_smi_msg *smi_msg; 2284 struct ipmi_recv_msg *recv_msg; 2285 int rv = 0; 2286 2287 if (supplied_recv) 2288 recv_msg = supplied_recv; 2289 else { 2290 recv_msg = ipmi_alloc_recv_msg(); 2291 if (recv_msg == NULL) { 2292 rv = -ENOMEM; 2293 goto out; 2294 } 2295 } 2296 recv_msg->user_msg_data = user_msg_data; 2297 2298 if (supplied_smi) 2299 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 2300 else { 2301 smi_msg = ipmi_alloc_smi_msg(); 2302 if (smi_msg == NULL) { 2303 if (!supplied_recv) 2304 ipmi_free_recv_msg(recv_msg); 2305 rv = -ENOMEM; 2306 goto out; 2307 } 2308 } 2309 2310 rcu_read_lock(); 2311 if (intf->in_shutdown) { 2312 rv = -ENODEV; 2313 goto out_err; 2314 } 2315 2316 recv_msg->user = user; 2317 if (user) 2318 /* The put happens when the message is freed. */ 2319 kref_get(&user->refcount); 2320 recv_msg->msgid = msgid; 2321 /* 2322 * Store the message to send in the receive message so timeout 2323 * responses can get the proper response data. 2324 */ 2325 recv_msg->msg = *msg; 2326 2327 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 2328 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg, 2329 recv_msg, retries, retry_time_ms); 2330 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 2331 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg, 2332 source_address, source_lun, 2333 retries, retry_time_ms); 2334 } else if (is_ipmb_direct_addr(addr)) { 2335 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg, 2336 recv_msg, source_lun); 2337 } else if (is_lan_addr(addr)) { 2338 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg, 2339 source_lun, retries, retry_time_ms); 2340 } else { 2341 /* Unknown address type. */ 2342 ipmi_inc_stat(intf, sent_invalid_commands); 2343 rv = -EINVAL; 2344 } 2345 2346 if (rv) { 2347 out_err: 2348 ipmi_free_smi_msg(smi_msg); 2349 ipmi_free_recv_msg(recv_msg); 2350 } else { 2351 pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data); 2352 2353 smi_send(intf, intf->handlers, smi_msg, priority); 2354 } 2355 rcu_read_unlock(); 2356 2357 out: 2358 return rv; 2359 } 2360 2361 static int check_addr(struct ipmi_smi *intf, 2362 struct ipmi_addr *addr, 2363 unsigned char *saddr, 2364 unsigned char *lun) 2365 { 2366 if (addr->channel >= IPMI_MAX_CHANNELS) 2367 return -EINVAL; 2368 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS); 2369 *lun = intf->addrinfo[addr->channel].lun; 2370 *saddr = intf->addrinfo[addr->channel].address; 2371 return 0; 2372 } 2373 2374 int ipmi_request_settime(struct ipmi_user *user, 2375 struct ipmi_addr *addr, 2376 long msgid, 2377 struct kernel_ipmi_msg *msg, 2378 void *user_msg_data, 2379 int priority, 2380 int retries, 2381 unsigned int retry_time_ms) 2382 { 2383 unsigned char saddr = 0, lun = 0; 2384 int rv, index; 2385 2386 if (!user) 2387 return -EINVAL; 2388 2389 user = acquire_ipmi_user(user, &index); 2390 if (!user) 2391 return -ENODEV; 2392 2393 rv = check_addr(user->intf, addr, &saddr, &lun); 2394 if (!rv) 2395 rv = i_ipmi_request(user, 2396 user->intf, 2397 addr, 2398 msgid, 2399 msg, 2400 user_msg_data, 2401 NULL, NULL, 2402 priority, 2403 saddr, 2404 lun, 2405 retries, 2406 retry_time_ms); 2407 2408 release_ipmi_user(user, index); 2409 return rv; 2410 } 2411 EXPORT_SYMBOL(ipmi_request_settime); 2412 2413 int ipmi_request_supply_msgs(struct ipmi_user *user, 2414 struct ipmi_addr *addr, 2415 long msgid, 2416 struct kernel_ipmi_msg *msg, 2417 void *user_msg_data, 2418 void *supplied_smi, 2419 struct ipmi_recv_msg *supplied_recv, 2420 int priority) 2421 { 2422 unsigned char saddr = 0, lun = 0; 2423 int rv, index; 2424 2425 if (!user) 2426 return -EINVAL; 2427 2428 user = acquire_ipmi_user(user, &index); 2429 if (!user) 2430 return -ENODEV; 2431 2432 rv = check_addr(user->intf, addr, &saddr, &lun); 2433 if (!rv) 2434 rv = i_ipmi_request(user, 2435 user->intf, 2436 addr, 2437 msgid, 2438 msg, 2439 user_msg_data, 2440 supplied_smi, 2441 supplied_recv, 2442 priority, 2443 saddr, 2444 lun, 2445 -1, 0); 2446 2447 release_ipmi_user(user, index); 2448 return rv; 2449 } 2450 EXPORT_SYMBOL(ipmi_request_supply_msgs); 2451 2452 static void bmc_device_id_handler(struct ipmi_smi *intf, 2453 struct ipmi_recv_msg *msg) 2454 { 2455 int rv; 2456 2457 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2458 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2459 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) { 2460 dev_warn(intf->si_dev, 2461 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n", 2462 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd); 2463 return; 2464 } 2465 2466 if (msg->msg.data[0]) { 2467 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n", 2468 msg->msg.data[0]); 2469 intf->bmc->dyn_id_set = 0; 2470 goto out; 2471 } 2472 2473 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd, 2474 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id); 2475 if (rv) { 2476 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv); 2477 /* record completion code when error */ 2478 intf->bmc->cc = msg->msg.data[0]; 2479 intf->bmc->dyn_id_set = 0; 2480 } else { 2481 /* 2482 * Make sure the id data is available before setting 2483 * dyn_id_set. 2484 */ 2485 smp_wmb(); 2486 intf->bmc->dyn_id_set = 1; 2487 } 2488 out: 2489 wake_up(&intf->waitq); 2490 } 2491 2492 static int 2493 send_get_device_id_cmd(struct ipmi_smi *intf) 2494 { 2495 struct ipmi_system_interface_addr si; 2496 struct kernel_ipmi_msg msg; 2497 2498 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2499 si.channel = IPMI_BMC_CHANNEL; 2500 si.lun = 0; 2501 2502 msg.netfn = IPMI_NETFN_APP_REQUEST; 2503 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 2504 msg.data = NULL; 2505 msg.data_len = 0; 2506 2507 return i_ipmi_request(NULL, 2508 intf, 2509 (struct ipmi_addr *) &si, 2510 0, 2511 &msg, 2512 intf, 2513 NULL, 2514 NULL, 2515 0, 2516 intf->addrinfo[0].address, 2517 intf->addrinfo[0].lun, 2518 -1, 0); 2519 } 2520 2521 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc) 2522 { 2523 int rv; 2524 unsigned int retry_count = 0; 2525 2526 intf->null_user_handler = bmc_device_id_handler; 2527 2528 retry: 2529 bmc->cc = 0; 2530 bmc->dyn_id_set = 2; 2531 2532 rv = send_get_device_id_cmd(intf); 2533 if (rv) 2534 goto out_reset_handler; 2535 2536 wait_event(intf->waitq, bmc->dyn_id_set != 2); 2537 2538 if (!bmc->dyn_id_set) { 2539 if (bmc->cc != IPMI_CC_NO_ERROR && 2540 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { 2541 msleep(500); 2542 dev_warn(intf->si_dev, 2543 "BMC returned 0x%2.2x, retry get bmc device id\n", 2544 bmc->cc); 2545 goto retry; 2546 } 2547 2548 rv = -EIO; /* Something went wrong in the fetch. */ 2549 } 2550 2551 /* dyn_id_set makes the id data available. */ 2552 smp_rmb(); 2553 2554 out_reset_handler: 2555 intf->null_user_handler = NULL; 2556 2557 return rv; 2558 } 2559 2560 /* 2561 * Fetch the device id for the bmc/interface. You must pass in either 2562 * bmc or intf, this code will get the other one. If the data has 2563 * been recently fetched, this will just use the cached data. Otherwise 2564 * it will run a new fetch. 2565 * 2566 * Except for the first time this is called (in ipmi_add_smi()), 2567 * this will always return good data; 2568 */ 2569 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2570 struct ipmi_device_id *id, 2571 bool *guid_set, guid_t *guid, int intf_num) 2572 { 2573 int rv = 0; 2574 int prev_dyn_id_set, prev_guid_set; 2575 bool intf_set = intf != NULL; 2576 2577 if (!intf) { 2578 mutex_lock(&bmc->dyn_mutex); 2579 retry_bmc_lock: 2580 if (list_empty(&bmc->intfs)) { 2581 mutex_unlock(&bmc->dyn_mutex); 2582 return -ENOENT; 2583 } 2584 intf = list_first_entry(&bmc->intfs, struct ipmi_smi, 2585 bmc_link); 2586 kref_get(&intf->refcount); 2587 mutex_unlock(&bmc->dyn_mutex); 2588 mutex_lock(&intf->bmc_reg_mutex); 2589 mutex_lock(&bmc->dyn_mutex); 2590 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi, 2591 bmc_link)) { 2592 mutex_unlock(&intf->bmc_reg_mutex); 2593 kref_put(&intf->refcount, intf_free); 2594 goto retry_bmc_lock; 2595 } 2596 } else { 2597 mutex_lock(&intf->bmc_reg_mutex); 2598 bmc = intf->bmc; 2599 mutex_lock(&bmc->dyn_mutex); 2600 kref_get(&intf->refcount); 2601 } 2602 2603 /* If we have a valid and current ID, just return that. */ 2604 if (intf->in_bmc_register || 2605 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry))) 2606 goto out_noprocessing; 2607 2608 prev_guid_set = bmc->dyn_guid_set; 2609 __get_guid(intf); 2610 2611 prev_dyn_id_set = bmc->dyn_id_set; 2612 rv = __get_device_id(intf, bmc); 2613 if (rv) 2614 goto out; 2615 2616 /* 2617 * The guid, device id, manufacturer id, and product id should 2618 * not change on a BMC. If it does we have to do some dancing. 2619 */ 2620 if (!intf->bmc_registered 2621 || (!prev_guid_set && bmc->dyn_guid_set) 2622 || (!prev_dyn_id_set && bmc->dyn_id_set) 2623 || (prev_guid_set && bmc->dyn_guid_set 2624 && !guid_equal(&bmc->guid, &bmc->fetch_guid)) 2625 || bmc->id.device_id != bmc->fetch_id.device_id 2626 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id 2627 || bmc->id.product_id != bmc->fetch_id.product_id) { 2628 struct ipmi_device_id id = bmc->fetch_id; 2629 int guid_set = bmc->dyn_guid_set; 2630 guid_t guid; 2631 2632 guid = bmc->fetch_guid; 2633 mutex_unlock(&bmc->dyn_mutex); 2634 2635 __ipmi_bmc_unregister(intf); 2636 /* Fill in the temporary BMC for good measure. */ 2637 intf->bmc->id = id; 2638 intf->bmc->dyn_guid_set = guid_set; 2639 intf->bmc->guid = guid; 2640 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num)) 2641 need_waiter(intf); /* Retry later on an error. */ 2642 else 2643 __scan_channels(intf, &id); 2644 2645 2646 if (!intf_set) { 2647 /* 2648 * We weren't given the interface on the 2649 * command line, so restart the operation on 2650 * the next interface for the BMC. 2651 */ 2652 mutex_unlock(&intf->bmc_reg_mutex); 2653 mutex_lock(&bmc->dyn_mutex); 2654 goto retry_bmc_lock; 2655 } 2656 2657 /* We have a new BMC, set it up. */ 2658 bmc = intf->bmc; 2659 mutex_lock(&bmc->dyn_mutex); 2660 goto out_noprocessing; 2661 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id))) 2662 /* Version info changes, scan the channels again. */ 2663 __scan_channels(intf, &bmc->fetch_id); 2664 2665 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 2666 2667 out: 2668 if (rv && prev_dyn_id_set) { 2669 rv = 0; /* Ignore failures if we have previous data. */ 2670 bmc->dyn_id_set = prev_dyn_id_set; 2671 } 2672 if (!rv) { 2673 bmc->id = bmc->fetch_id; 2674 if (bmc->dyn_guid_set) 2675 bmc->guid = bmc->fetch_guid; 2676 else if (prev_guid_set) 2677 /* 2678 * The guid used to be valid and it failed to fetch, 2679 * just use the cached value. 2680 */ 2681 bmc->dyn_guid_set = prev_guid_set; 2682 } 2683 out_noprocessing: 2684 if (!rv) { 2685 if (id) 2686 *id = bmc->id; 2687 2688 if (guid_set) 2689 *guid_set = bmc->dyn_guid_set; 2690 2691 if (guid && bmc->dyn_guid_set) 2692 *guid = bmc->guid; 2693 } 2694 2695 mutex_unlock(&bmc->dyn_mutex); 2696 mutex_unlock(&intf->bmc_reg_mutex); 2697 2698 kref_put(&intf->refcount, intf_free); 2699 return rv; 2700 } 2701 2702 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2703 struct ipmi_device_id *id, 2704 bool *guid_set, guid_t *guid) 2705 { 2706 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1); 2707 } 2708 2709 static ssize_t device_id_show(struct device *dev, 2710 struct device_attribute *attr, 2711 char *buf) 2712 { 2713 struct bmc_device *bmc = to_bmc_device(dev); 2714 struct ipmi_device_id id; 2715 int rv; 2716 2717 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2718 if (rv) 2719 return rv; 2720 2721 return sysfs_emit(buf, "%u\n", id.device_id); 2722 } 2723 static DEVICE_ATTR_RO(device_id); 2724 2725 static ssize_t provides_device_sdrs_show(struct device *dev, 2726 struct device_attribute *attr, 2727 char *buf) 2728 { 2729 struct bmc_device *bmc = to_bmc_device(dev); 2730 struct ipmi_device_id id; 2731 int rv; 2732 2733 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2734 if (rv) 2735 return rv; 2736 2737 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7); 2738 } 2739 static DEVICE_ATTR_RO(provides_device_sdrs); 2740 2741 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2742 char *buf) 2743 { 2744 struct bmc_device *bmc = to_bmc_device(dev); 2745 struct ipmi_device_id id; 2746 int rv; 2747 2748 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2749 if (rv) 2750 return rv; 2751 2752 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F); 2753 } 2754 static DEVICE_ATTR_RO(revision); 2755 2756 static ssize_t firmware_revision_show(struct device *dev, 2757 struct device_attribute *attr, 2758 char *buf) 2759 { 2760 struct bmc_device *bmc = to_bmc_device(dev); 2761 struct ipmi_device_id id; 2762 int rv; 2763 2764 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2765 if (rv) 2766 return rv; 2767 2768 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1, 2769 id.firmware_revision_2); 2770 } 2771 static DEVICE_ATTR_RO(firmware_revision); 2772 2773 static ssize_t ipmi_version_show(struct device *dev, 2774 struct device_attribute *attr, 2775 char *buf) 2776 { 2777 struct bmc_device *bmc = to_bmc_device(dev); 2778 struct ipmi_device_id id; 2779 int rv; 2780 2781 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2782 if (rv) 2783 return rv; 2784 2785 return sysfs_emit(buf, "%u.%u\n", 2786 ipmi_version_major(&id), 2787 ipmi_version_minor(&id)); 2788 } 2789 static DEVICE_ATTR_RO(ipmi_version); 2790 2791 static ssize_t add_dev_support_show(struct device *dev, 2792 struct device_attribute *attr, 2793 char *buf) 2794 { 2795 struct bmc_device *bmc = to_bmc_device(dev); 2796 struct ipmi_device_id id; 2797 int rv; 2798 2799 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2800 if (rv) 2801 return rv; 2802 2803 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support); 2804 } 2805 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2806 NULL); 2807 2808 static ssize_t manufacturer_id_show(struct device *dev, 2809 struct device_attribute *attr, 2810 char *buf) 2811 { 2812 struct bmc_device *bmc = to_bmc_device(dev); 2813 struct ipmi_device_id id; 2814 int rv; 2815 2816 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2817 if (rv) 2818 return rv; 2819 2820 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id); 2821 } 2822 static DEVICE_ATTR_RO(manufacturer_id); 2823 2824 static ssize_t product_id_show(struct device *dev, 2825 struct device_attribute *attr, 2826 char *buf) 2827 { 2828 struct bmc_device *bmc = to_bmc_device(dev); 2829 struct ipmi_device_id id; 2830 int rv; 2831 2832 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2833 if (rv) 2834 return rv; 2835 2836 return sysfs_emit(buf, "0x%4.4x\n", id.product_id); 2837 } 2838 static DEVICE_ATTR_RO(product_id); 2839 2840 static ssize_t aux_firmware_rev_show(struct device *dev, 2841 struct device_attribute *attr, 2842 char *buf) 2843 { 2844 struct bmc_device *bmc = to_bmc_device(dev); 2845 struct ipmi_device_id id; 2846 int rv; 2847 2848 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2849 if (rv) 2850 return rv; 2851 2852 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2853 id.aux_firmware_revision[3], 2854 id.aux_firmware_revision[2], 2855 id.aux_firmware_revision[1], 2856 id.aux_firmware_revision[0]); 2857 } 2858 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2859 2860 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2861 char *buf) 2862 { 2863 struct bmc_device *bmc = to_bmc_device(dev); 2864 bool guid_set; 2865 guid_t guid; 2866 int rv; 2867 2868 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid); 2869 if (rv) 2870 return rv; 2871 if (!guid_set) 2872 return -ENOENT; 2873 2874 return sysfs_emit(buf, "%pUl\n", &guid); 2875 } 2876 static DEVICE_ATTR_RO(guid); 2877 2878 static struct attribute *bmc_dev_attrs[] = { 2879 &dev_attr_device_id.attr, 2880 &dev_attr_provides_device_sdrs.attr, 2881 &dev_attr_revision.attr, 2882 &dev_attr_firmware_revision.attr, 2883 &dev_attr_ipmi_version.attr, 2884 &dev_attr_additional_device_support.attr, 2885 &dev_attr_manufacturer_id.attr, 2886 &dev_attr_product_id.attr, 2887 &dev_attr_aux_firmware_revision.attr, 2888 &dev_attr_guid.attr, 2889 NULL 2890 }; 2891 2892 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2893 struct attribute *attr, int idx) 2894 { 2895 struct device *dev = kobj_to_dev(kobj); 2896 struct bmc_device *bmc = to_bmc_device(dev); 2897 umode_t mode = attr->mode; 2898 int rv; 2899 2900 if (attr == &dev_attr_aux_firmware_revision.attr) { 2901 struct ipmi_device_id id; 2902 2903 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2904 return (!rv && id.aux_firmware_revision_set) ? mode : 0; 2905 } 2906 if (attr == &dev_attr_guid.attr) { 2907 bool guid_set; 2908 2909 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL); 2910 return (!rv && guid_set) ? mode : 0; 2911 } 2912 return mode; 2913 } 2914 2915 static const struct attribute_group bmc_dev_attr_group = { 2916 .attrs = bmc_dev_attrs, 2917 .is_visible = bmc_dev_attr_is_visible, 2918 }; 2919 2920 static const struct attribute_group *bmc_dev_attr_groups[] = { 2921 &bmc_dev_attr_group, 2922 NULL 2923 }; 2924 2925 static const struct device_type bmc_device_type = { 2926 .groups = bmc_dev_attr_groups, 2927 }; 2928 2929 static int __find_bmc_guid(struct device *dev, const void *data) 2930 { 2931 const guid_t *guid = data; 2932 struct bmc_device *bmc; 2933 int rv; 2934 2935 if (dev->type != &bmc_device_type) 2936 return 0; 2937 2938 bmc = to_bmc_device(dev); 2939 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid); 2940 if (rv) 2941 rv = kref_get_unless_zero(&bmc->usecount); 2942 return rv; 2943 } 2944 2945 /* 2946 * Returns with the bmc's usecount incremented, if it is non-NULL. 2947 */ 2948 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2949 guid_t *guid) 2950 { 2951 struct device *dev; 2952 struct bmc_device *bmc = NULL; 2953 2954 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2955 if (dev) { 2956 bmc = to_bmc_device(dev); 2957 put_device(dev); 2958 } 2959 return bmc; 2960 } 2961 2962 struct prod_dev_id { 2963 unsigned int product_id; 2964 unsigned char device_id; 2965 }; 2966 2967 static int __find_bmc_prod_dev_id(struct device *dev, const void *data) 2968 { 2969 const struct prod_dev_id *cid = data; 2970 struct bmc_device *bmc; 2971 int rv; 2972 2973 if (dev->type != &bmc_device_type) 2974 return 0; 2975 2976 bmc = to_bmc_device(dev); 2977 rv = (bmc->id.product_id == cid->product_id 2978 && bmc->id.device_id == cid->device_id); 2979 if (rv) 2980 rv = kref_get_unless_zero(&bmc->usecount); 2981 return rv; 2982 } 2983 2984 /* 2985 * Returns with the bmc's usecount incremented, if it is non-NULL. 2986 */ 2987 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2988 struct device_driver *drv, 2989 unsigned int product_id, unsigned char device_id) 2990 { 2991 struct prod_dev_id id = { 2992 .product_id = product_id, 2993 .device_id = device_id, 2994 }; 2995 struct device *dev; 2996 struct bmc_device *bmc = NULL; 2997 2998 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2999 if (dev) { 3000 bmc = to_bmc_device(dev); 3001 put_device(dev); 3002 } 3003 return bmc; 3004 } 3005 3006 static DEFINE_IDA(ipmi_bmc_ida); 3007 3008 static void 3009 release_bmc_device(struct device *dev) 3010 { 3011 kfree(to_bmc_device(dev)); 3012 } 3013 3014 static void cleanup_bmc_work(struct work_struct *work) 3015 { 3016 struct bmc_device *bmc = container_of(work, struct bmc_device, 3017 remove_work); 3018 int id = bmc->pdev.id; /* Unregister overwrites id */ 3019 3020 platform_device_unregister(&bmc->pdev); 3021 ida_simple_remove(&ipmi_bmc_ida, id); 3022 } 3023 3024 static void 3025 cleanup_bmc_device(struct kref *ref) 3026 { 3027 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 3028 3029 /* 3030 * Remove the platform device in a work queue to avoid issues 3031 * with removing the device attributes while reading a device 3032 * attribute. 3033 */ 3034 queue_work(remove_work_wq, &bmc->remove_work); 3035 } 3036 3037 /* 3038 * Must be called with intf->bmc_reg_mutex held. 3039 */ 3040 static void __ipmi_bmc_unregister(struct ipmi_smi *intf) 3041 { 3042 struct bmc_device *bmc = intf->bmc; 3043 3044 if (!intf->bmc_registered) 3045 return; 3046 3047 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3048 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 3049 kfree(intf->my_dev_name); 3050 intf->my_dev_name = NULL; 3051 3052 mutex_lock(&bmc->dyn_mutex); 3053 list_del(&intf->bmc_link); 3054 mutex_unlock(&bmc->dyn_mutex); 3055 intf->bmc = &intf->tmp_bmc; 3056 kref_put(&bmc->usecount, cleanup_bmc_device); 3057 intf->bmc_registered = false; 3058 } 3059 3060 static void ipmi_bmc_unregister(struct ipmi_smi *intf) 3061 { 3062 mutex_lock(&intf->bmc_reg_mutex); 3063 __ipmi_bmc_unregister(intf); 3064 mutex_unlock(&intf->bmc_reg_mutex); 3065 } 3066 3067 /* 3068 * Must be called with intf->bmc_reg_mutex held. 3069 */ 3070 static int __ipmi_bmc_register(struct ipmi_smi *intf, 3071 struct ipmi_device_id *id, 3072 bool guid_set, guid_t *guid, int intf_num) 3073 { 3074 int rv; 3075 struct bmc_device *bmc; 3076 struct bmc_device *old_bmc; 3077 3078 /* 3079 * platform_device_register() can cause bmc_reg_mutex to 3080 * be claimed because of the is_visible functions of 3081 * the attributes. Eliminate possible recursion and 3082 * release the lock. 3083 */ 3084 intf->in_bmc_register = true; 3085 mutex_unlock(&intf->bmc_reg_mutex); 3086 3087 /* 3088 * Try to find if there is an bmc_device struct 3089 * representing the interfaced BMC already 3090 */ 3091 mutex_lock(&ipmidriver_mutex); 3092 if (guid_set) 3093 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid); 3094 else 3095 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 3096 id->product_id, 3097 id->device_id); 3098 3099 /* 3100 * If there is already an bmc_device, free the new one, 3101 * otherwise register the new BMC device 3102 */ 3103 if (old_bmc) { 3104 bmc = old_bmc; 3105 /* 3106 * Note: old_bmc already has usecount incremented by 3107 * the BMC find functions. 3108 */ 3109 intf->bmc = old_bmc; 3110 mutex_lock(&bmc->dyn_mutex); 3111 list_add_tail(&intf->bmc_link, &bmc->intfs); 3112 mutex_unlock(&bmc->dyn_mutex); 3113 3114 dev_info(intf->si_dev, 3115 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3116 bmc->id.manufacturer_id, 3117 bmc->id.product_id, 3118 bmc->id.device_id); 3119 } else { 3120 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL); 3121 if (!bmc) { 3122 rv = -ENOMEM; 3123 goto out; 3124 } 3125 INIT_LIST_HEAD(&bmc->intfs); 3126 mutex_init(&bmc->dyn_mutex); 3127 INIT_WORK(&bmc->remove_work, cleanup_bmc_work); 3128 3129 bmc->id = *id; 3130 bmc->dyn_id_set = 1; 3131 bmc->dyn_guid_set = guid_set; 3132 bmc->guid = *guid; 3133 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 3134 3135 bmc->pdev.name = "ipmi_bmc"; 3136 3137 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL); 3138 if (rv < 0) { 3139 kfree(bmc); 3140 goto out; 3141 } 3142 3143 bmc->pdev.dev.driver = &ipmidriver.driver; 3144 bmc->pdev.id = rv; 3145 bmc->pdev.dev.release = release_bmc_device; 3146 bmc->pdev.dev.type = &bmc_device_type; 3147 kref_init(&bmc->usecount); 3148 3149 intf->bmc = bmc; 3150 mutex_lock(&bmc->dyn_mutex); 3151 list_add_tail(&intf->bmc_link, &bmc->intfs); 3152 mutex_unlock(&bmc->dyn_mutex); 3153 3154 rv = platform_device_register(&bmc->pdev); 3155 if (rv) { 3156 dev_err(intf->si_dev, 3157 "Unable to register bmc device: %d\n", 3158 rv); 3159 goto out_list_del; 3160 } 3161 3162 dev_info(intf->si_dev, 3163 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3164 bmc->id.manufacturer_id, 3165 bmc->id.product_id, 3166 bmc->id.device_id); 3167 } 3168 3169 /* 3170 * create symlink from system interface device to bmc device 3171 * and back. 3172 */ 3173 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 3174 if (rv) { 3175 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv); 3176 goto out_put_bmc; 3177 } 3178 3179 if (intf_num == -1) 3180 intf_num = intf->intf_num; 3181 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num); 3182 if (!intf->my_dev_name) { 3183 rv = -ENOMEM; 3184 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n", 3185 rv); 3186 goto out_unlink1; 3187 } 3188 3189 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 3190 intf->my_dev_name); 3191 if (rv) { 3192 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n", 3193 rv); 3194 goto out_free_my_dev_name; 3195 } 3196 3197 intf->bmc_registered = true; 3198 3199 out: 3200 mutex_unlock(&ipmidriver_mutex); 3201 mutex_lock(&intf->bmc_reg_mutex); 3202 intf->in_bmc_register = false; 3203 return rv; 3204 3205 3206 out_free_my_dev_name: 3207 kfree(intf->my_dev_name); 3208 intf->my_dev_name = NULL; 3209 3210 out_unlink1: 3211 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3212 3213 out_put_bmc: 3214 mutex_lock(&bmc->dyn_mutex); 3215 list_del(&intf->bmc_link); 3216 mutex_unlock(&bmc->dyn_mutex); 3217 intf->bmc = &intf->tmp_bmc; 3218 kref_put(&bmc->usecount, cleanup_bmc_device); 3219 goto out; 3220 3221 out_list_del: 3222 mutex_lock(&bmc->dyn_mutex); 3223 list_del(&intf->bmc_link); 3224 mutex_unlock(&bmc->dyn_mutex); 3225 intf->bmc = &intf->tmp_bmc; 3226 put_device(&bmc->pdev.dev); 3227 goto out; 3228 } 3229 3230 static int 3231 send_guid_cmd(struct ipmi_smi *intf, int chan) 3232 { 3233 struct kernel_ipmi_msg msg; 3234 struct ipmi_system_interface_addr si; 3235 3236 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3237 si.channel = IPMI_BMC_CHANNEL; 3238 si.lun = 0; 3239 3240 msg.netfn = IPMI_NETFN_APP_REQUEST; 3241 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 3242 msg.data = NULL; 3243 msg.data_len = 0; 3244 return i_ipmi_request(NULL, 3245 intf, 3246 (struct ipmi_addr *) &si, 3247 0, 3248 &msg, 3249 intf, 3250 NULL, 3251 NULL, 3252 0, 3253 intf->addrinfo[0].address, 3254 intf->addrinfo[0].lun, 3255 -1, 0); 3256 } 3257 3258 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3259 { 3260 struct bmc_device *bmc = intf->bmc; 3261 3262 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3263 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 3264 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 3265 /* Not for me */ 3266 return; 3267 3268 if (msg->msg.data[0] != 0) { 3269 /* Error from getting the GUID, the BMC doesn't have one. */ 3270 bmc->dyn_guid_set = 0; 3271 goto out; 3272 } 3273 3274 if (msg->msg.data_len < UUID_SIZE + 1) { 3275 bmc->dyn_guid_set = 0; 3276 dev_warn(intf->si_dev, 3277 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n", 3278 msg->msg.data_len, UUID_SIZE + 1); 3279 goto out; 3280 } 3281 3282 import_guid(&bmc->fetch_guid, msg->msg.data + 1); 3283 /* 3284 * Make sure the guid data is available before setting 3285 * dyn_guid_set. 3286 */ 3287 smp_wmb(); 3288 bmc->dyn_guid_set = 1; 3289 out: 3290 wake_up(&intf->waitq); 3291 } 3292 3293 static void __get_guid(struct ipmi_smi *intf) 3294 { 3295 int rv; 3296 struct bmc_device *bmc = intf->bmc; 3297 3298 bmc->dyn_guid_set = 2; 3299 intf->null_user_handler = guid_handler; 3300 rv = send_guid_cmd(intf, 0); 3301 if (rv) 3302 /* Send failed, no GUID available. */ 3303 bmc->dyn_guid_set = 0; 3304 else 3305 wait_event(intf->waitq, bmc->dyn_guid_set != 2); 3306 3307 /* dyn_guid_set makes the guid data available. */ 3308 smp_rmb(); 3309 3310 intf->null_user_handler = NULL; 3311 } 3312 3313 static int 3314 send_channel_info_cmd(struct ipmi_smi *intf, int chan) 3315 { 3316 struct kernel_ipmi_msg msg; 3317 unsigned char data[1]; 3318 struct ipmi_system_interface_addr si; 3319 3320 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3321 si.channel = IPMI_BMC_CHANNEL; 3322 si.lun = 0; 3323 3324 msg.netfn = IPMI_NETFN_APP_REQUEST; 3325 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 3326 msg.data = data; 3327 msg.data_len = 1; 3328 data[0] = chan; 3329 return i_ipmi_request(NULL, 3330 intf, 3331 (struct ipmi_addr *) &si, 3332 0, 3333 &msg, 3334 intf, 3335 NULL, 3336 NULL, 3337 0, 3338 intf->addrinfo[0].address, 3339 intf->addrinfo[0].lun, 3340 -1, 0); 3341 } 3342 3343 static void 3344 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3345 { 3346 int rv = 0; 3347 int ch; 3348 unsigned int set = intf->curr_working_cset; 3349 struct ipmi_channel *chans; 3350 3351 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3352 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 3353 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 3354 /* It's the one we want */ 3355 if (msg->msg.data[0] != 0) { 3356 /* Got an error from the channel, just go on. */ 3357 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 3358 /* 3359 * If the MC does not support this 3360 * command, that is legal. We just 3361 * assume it has one IPMB at channel 3362 * zero. 3363 */ 3364 intf->wchannels[set].c[0].medium 3365 = IPMI_CHANNEL_MEDIUM_IPMB; 3366 intf->wchannels[set].c[0].protocol 3367 = IPMI_CHANNEL_PROTOCOL_IPMB; 3368 3369 intf->channel_list = intf->wchannels + set; 3370 intf->channels_ready = true; 3371 wake_up(&intf->waitq); 3372 goto out; 3373 } 3374 goto next_channel; 3375 } 3376 if (msg->msg.data_len < 4) { 3377 /* Message not big enough, just go on. */ 3378 goto next_channel; 3379 } 3380 ch = intf->curr_channel; 3381 chans = intf->wchannels[set].c; 3382 chans[ch].medium = msg->msg.data[2] & 0x7f; 3383 chans[ch].protocol = msg->msg.data[3] & 0x1f; 3384 3385 next_channel: 3386 intf->curr_channel++; 3387 if (intf->curr_channel >= IPMI_MAX_CHANNELS) { 3388 intf->channel_list = intf->wchannels + set; 3389 intf->channels_ready = true; 3390 wake_up(&intf->waitq); 3391 } else { 3392 intf->channel_list = intf->wchannels + set; 3393 intf->channels_ready = true; 3394 rv = send_channel_info_cmd(intf, intf->curr_channel); 3395 } 3396 3397 if (rv) { 3398 /* Got an error somehow, just give up. */ 3399 dev_warn(intf->si_dev, 3400 "Error sending channel information for channel %d: %d\n", 3401 intf->curr_channel, rv); 3402 3403 intf->channel_list = intf->wchannels + set; 3404 intf->channels_ready = true; 3405 wake_up(&intf->waitq); 3406 } 3407 } 3408 out: 3409 return; 3410 } 3411 3412 /* 3413 * Must be holding intf->bmc_reg_mutex to call this. 3414 */ 3415 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id) 3416 { 3417 int rv; 3418 3419 if (ipmi_version_major(id) > 1 3420 || (ipmi_version_major(id) == 1 3421 && ipmi_version_minor(id) >= 5)) { 3422 unsigned int set; 3423 3424 /* 3425 * Start scanning the channels to see what is 3426 * available. 3427 */ 3428 set = !intf->curr_working_cset; 3429 intf->curr_working_cset = set; 3430 memset(&intf->wchannels[set], 0, 3431 sizeof(struct ipmi_channel_set)); 3432 3433 intf->null_user_handler = channel_handler; 3434 intf->curr_channel = 0; 3435 rv = send_channel_info_cmd(intf, 0); 3436 if (rv) { 3437 dev_warn(intf->si_dev, 3438 "Error sending channel information for channel 0, %d\n", 3439 rv); 3440 intf->null_user_handler = NULL; 3441 return -EIO; 3442 } 3443 3444 /* Wait for the channel info to be read. */ 3445 wait_event(intf->waitq, intf->channels_ready); 3446 intf->null_user_handler = NULL; 3447 } else { 3448 unsigned int set = intf->curr_working_cset; 3449 3450 /* Assume a single IPMB channel at zero. */ 3451 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 3452 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 3453 intf->channel_list = intf->wchannels + set; 3454 intf->channels_ready = true; 3455 } 3456 3457 return 0; 3458 } 3459 3460 static void ipmi_poll(struct ipmi_smi *intf) 3461 { 3462 if (intf->handlers->poll) 3463 intf->handlers->poll(intf->send_info); 3464 /* In case something came in */ 3465 handle_new_recv_msgs(intf); 3466 } 3467 3468 void ipmi_poll_interface(struct ipmi_user *user) 3469 { 3470 ipmi_poll(user->intf); 3471 } 3472 EXPORT_SYMBOL(ipmi_poll_interface); 3473 3474 static void redo_bmc_reg(struct work_struct *work) 3475 { 3476 struct ipmi_smi *intf = container_of(work, struct ipmi_smi, 3477 bmc_reg_work); 3478 3479 if (!intf->in_shutdown) 3480 bmc_get_device_id(intf, NULL, NULL, NULL, NULL); 3481 3482 kref_put(&intf->refcount, intf_free); 3483 } 3484 3485 int ipmi_add_smi(struct module *owner, 3486 const struct ipmi_smi_handlers *handlers, 3487 void *send_info, 3488 struct device *si_dev, 3489 unsigned char slave_addr) 3490 { 3491 int i, j; 3492 int rv; 3493 struct ipmi_smi *intf, *tintf; 3494 struct list_head *link; 3495 struct ipmi_device_id id; 3496 3497 /* 3498 * Make sure the driver is actually initialized, this handles 3499 * problems with initialization order. 3500 */ 3501 rv = ipmi_init_msghandler(); 3502 if (rv) 3503 return rv; 3504 3505 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 3506 if (!intf) 3507 return -ENOMEM; 3508 3509 rv = init_srcu_struct(&intf->users_srcu); 3510 if (rv) { 3511 kfree(intf); 3512 return rv; 3513 } 3514 3515 intf->owner = owner; 3516 intf->bmc = &intf->tmp_bmc; 3517 INIT_LIST_HEAD(&intf->bmc->intfs); 3518 mutex_init(&intf->bmc->dyn_mutex); 3519 INIT_LIST_HEAD(&intf->bmc_link); 3520 mutex_init(&intf->bmc_reg_mutex); 3521 intf->intf_num = -1; /* Mark it invalid for now. */ 3522 kref_init(&intf->refcount); 3523 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg); 3524 intf->si_dev = si_dev; 3525 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 3526 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR; 3527 intf->addrinfo[j].lun = 2; 3528 } 3529 if (slave_addr != 0) 3530 intf->addrinfo[0].address = slave_addr; 3531 INIT_LIST_HEAD(&intf->users); 3532 intf->handlers = handlers; 3533 intf->send_info = send_info; 3534 spin_lock_init(&intf->seq_lock); 3535 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 3536 intf->seq_table[j].inuse = 0; 3537 intf->seq_table[j].seqid = 0; 3538 } 3539 intf->curr_seq = 0; 3540 spin_lock_init(&intf->waiting_rcv_msgs_lock); 3541 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 3542 tasklet_setup(&intf->recv_tasklet, 3543 smi_recv_tasklet); 3544 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 3545 spin_lock_init(&intf->xmit_msgs_lock); 3546 INIT_LIST_HEAD(&intf->xmit_msgs); 3547 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 3548 spin_lock_init(&intf->events_lock); 3549 spin_lock_init(&intf->watch_lock); 3550 atomic_set(&intf->event_waiters, 0); 3551 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 3552 INIT_LIST_HEAD(&intf->waiting_events); 3553 intf->waiting_events_count = 0; 3554 mutex_init(&intf->cmd_rcvrs_mutex); 3555 spin_lock_init(&intf->maintenance_mode_lock); 3556 INIT_LIST_HEAD(&intf->cmd_rcvrs); 3557 init_waitqueue_head(&intf->waitq); 3558 for (i = 0; i < IPMI_NUM_STATS; i++) 3559 atomic_set(&intf->stats[i], 0); 3560 3561 mutex_lock(&ipmi_interfaces_mutex); 3562 /* Look for a hole in the numbers. */ 3563 i = 0; 3564 link = &ipmi_interfaces; 3565 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link, 3566 ipmi_interfaces_mutex_held()) { 3567 if (tintf->intf_num != i) { 3568 link = &tintf->link; 3569 break; 3570 } 3571 i++; 3572 } 3573 /* Add the new interface in numeric order. */ 3574 if (i == 0) 3575 list_add_rcu(&intf->link, &ipmi_interfaces); 3576 else 3577 list_add_tail_rcu(&intf->link, link); 3578 3579 rv = handlers->start_processing(send_info, intf); 3580 if (rv) 3581 goto out_err; 3582 3583 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i); 3584 if (rv) { 3585 dev_err(si_dev, "Unable to get the device id: %d\n", rv); 3586 goto out_err_started; 3587 } 3588 3589 mutex_lock(&intf->bmc_reg_mutex); 3590 rv = __scan_channels(intf, &id); 3591 mutex_unlock(&intf->bmc_reg_mutex); 3592 if (rv) 3593 goto out_err_bmc_reg; 3594 3595 /* 3596 * Keep memory order straight for RCU readers. Make 3597 * sure everything else is committed to memory before 3598 * setting intf_num to mark the interface valid. 3599 */ 3600 smp_wmb(); 3601 intf->intf_num = i; 3602 mutex_unlock(&ipmi_interfaces_mutex); 3603 3604 /* After this point the interface is legal to use. */ 3605 call_smi_watchers(i, intf->si_dev); 3606 3607 return 0; 3608 3609 out_err_bmc_reg: 3610 ipmi_bmc_unregister(intf); 3611 out_err_started: 3612 if (intf->handlers->shutdown) 3613 intf->handlers->shutdown(intf->send_info); 3614 out_err: 3615 list_del_rcu(&intf->link); 3616 mutex_unlock(&ipmi_interfaces_mutex); 3617 synchronize_srcu(&ipmi_interfaces_srcu); 3618 cleanup_srcu_struct(&intf->users_srcu); 3619 kref_put(&intf->refcount, intf_free); 3620 3621 return rv; 3622 } 3623 EXPORT_SYMBOL(ipmi_add_smi); 3624 3625 static void deliver_smi_err_response(struct ipmi_smi *intf, 3626 struct ipmi_smi_msg *msg, 3627 unsigned char err) 3628 { 3629 msg->rsp[0] = msg->data[0] | 4; 3630 msg->rsp[1] = msg->data[1]; 3631 msg->rsp[2] = err; 3632 msg->rsp_size = 3; 3633 /* It's an error, so it will never requeue, no need to check return. */ 3634 handle_one_recv_msg(intf, msg); 3635 } 3636 3637 static void cleanup_smi_msgs(struct ipmi_smi *intf) 3638 { 3639 int i; 3640 struct seq_table *ent; 3641 struct ipmi_smi_msg *msg; 3642 struct list_head *entry; 3643 struct list_head tmplist; 3644 3645 /* Clear out our transmit queues and hold the messages. */ 3646 INIT_LIST_HEAD(&tmplist); 3647 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 3648 list_splice_tail(&intf->xmit_msgs, &tmplist); 3649 3650 /* Current message first, to preserve order */ 3651 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 3652 /* Wait for the message to clear out. */ 3653 schedule_timeout(1); 3654 } 3655 3656 /* No need for locks, the interface is down. */ 3657 3658 /* 3659 * Return errors for all pending messages in queue and in the 3660 * tables waiting for remote responses. 3661 */ 3662 while (!list_empty(&tmplist)) { 3663 entry = tmplist.next; 3664 list_del(entry); 3665 msg = list_entry(entry, struct ipmi_smi_msg, link); 3666 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 3667 } 3668 3669 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 3670 ent = &intf->seq_table[i]; 3671 if (!ent->inuse) 3672 continue; 3673 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED); 3674 } 3675 } 3676 3677 void ipmi_unregister_smi(struct ipmi_smi *intf) 3678 { 3679 struct ipmi_smi_watcher *w; 3680 int intf_num = intf->intf_num, index; 3681 3682 mutex_lock(&ipmi_interfaces_mutex); 3683 intf->intf_num = -1; 3684 intf->in_shutdown = true; 3685 list_del_rcu(&intf->link); 3686 mutex_unlock(&ipmi_interfaces_mutex); 3687 synchronize_srcu(&ipmi_interfaces_srcu); 3688 3689 /* At this point no users can be added to the interface. */ 3690 3691 /* 3692 * Call all the watcher interfaces to tell them that 3693 * an interface is going away. 3694 */ 3695 mutex_lock(&smi_watchers_mutex); 3696 list_for_each_entry(w, &smi_watchers, link) 3697 w->smi_gone(intf_num); 3698 mutex_unlock(&smi_watchers_mutex); 3699 3700 index = srcu_read_lock(&intf->users_srcu); 3701 while (!list_empty(&intf->users)) { 3702 struct ipmi_user *user = 3703 container_of(list_next_rcu(&intf->users), 3704 struct ipmi_user, link); 3705 3706 _ipmi_destroy_user(user); 3707 } 3708 srcu_read_unlock(&intf->users_srcu, index); 3709 3710 if (intf->handlers->shutdown) 3711 intf->handlers->shutdown(intf->send_info); 3712 3713 cleanup_smi_msgs(intf); 3714 3715 ipmi_bmc_unregister(intf); 3716 3717 cleanup_srcu_struct(&intf->users_srcu); 3718 kref_put(&intf->refcount, intf_free); 3719 } 3720 EXPORT_SYMBOL(ipmi_unregister_smi); 3721 3722 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf, 3723 struct ipmi_smi_msg *msg) 3724 { 3725 struct ipmi_ipmb_addr ipmb_addr; 3726 struct ipmi_recv_msg *recv_msg; 3727 3728 /* 3729 * This is 11, not 10, because the response must contain a 3730 * completion code. 3731 */ 3732 if (msg->rsp_size < 11) { 3733 /* Message not big enough, just ignore it. */ 3734 ipmi_inc_stat(intf, invalid_ipmb_responses); 3735 return 0; 3736 } 3737 3738 if (msg->rsp[2] != 0) { 3739 /* An error getting the response, just ignore it. */ 3740 return 0; 3741 } 3742 3743 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3744 ipmb_addr.slave_addr = msg->rsp[6]; 3745 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3746 ipmb_addr.lun = msg->rsp[7] & 3; 3747 3748 /* 3749 * It's a response from a remote entity. Look up the sequence 3750 * number and handle the response. 3751 */ 3752 if (intf_find_seq(intf, 3753 msg->rsp[7] >> 2, 3754 msg->rsp[3] & 0x0f, 3755 msg->rsp[8], 3756 (msg->rsp[4] >> 2) & (~1), 3757 (struct ipmi_addr *) &ipmb_addr, 3758 &recv_msg)) { 3759 /* 3760 * We were unable to find the sequence number, 3761 * so just nuke the message. 3762 */ 3763 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3764 return 0; 3765 } 3766 3767 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9); 3768 /* 3769 * The other fields matched, so no need to set them, except 3770 * for netfn, which needs to be the response that was 3771 * returned, not the request value. 3772 */ 3773 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3774 recv_msg->msg.data = recv_msg->msg_data; 3775 recv_msg->msg.data_len = msg->rsp_size - 10; 3776 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3777 if (deliver_response(intf, recv_msg)) 3778 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3779 else 3780 ipmi_inc_stat(intf, handled_ipmb_responses); 3781 3782 return 0; 3783 } 3784 3785 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf, 3786 struct ipmi_smi_msg *msg) 3787 { 3788 struct cmd_rcvr *rcvr; 3789 int rv = 0; 3790 unsigned char netfn; 3791 unsigned char cmd; 3792 unsigned char chan; 3793 struct ipmi_user *user = NULL; 3794 struct ipmi_ipmb_addr *ipmb_addr; 3795 struct ipmi_recv_msg *recv_msg; 3796 3797 if (msg->rsp_size < 10) { 3798 /* Message not big enough, just ignore it. */ 3799 ipmi_inc_stat(intf, invalid_commands); 3800 return 0; 3801 } 3802 3803 if (msg->rsp[2] != 0) { 3804 /* An error getting the response, just ignore it. */ 3805 return 0; 3806 } 3807 3808 netfn = msg->rsp[4] >> 2; 3809 cmd = msg->rsp[8]; 3810 chan = msg->rsp[3] & 0xf; 3811 3812 rcu_read_lock(); 3813 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3814 if (rcvr) { 3815 user = rcvr->user; 3816 kref_get(&user->refcount); 3817 } else 3818 user = NULL; 3819 rcu_read_unlock(); 3820 3821 if (user == NULL) { 3822 /* We didn't find a user, deliver an error response. */ 3823 ipmi_inc_stat(intf, unhandled_commands); 3824 3825 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3826 msg->data[1] = IPMI_SEND_MSG_CMD; 3827 msg->data[2] = msg->rsp[3]; 3828 msg->data[3] = msg->rsp[6]; 3829 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3830 msg->data[5] = ipmb_checksum(&msg->data[3], 2); 3831 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address; 3832 /* rqseq/lun */ 3833 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3834 msg->data[8] = msg->rsp[8]; /* cmd */ 3835 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3836 msg->data[10] = ipmb_checksum(&msg->data[6], 4); 3837 msg->data_size = 11; 3838 3839 pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data); 3840 3841 rcu_read_lock(); 3842 if (!intf->in_shutdown) { 3843 smi_send(intf, intf->handlers, msg, 0); 3844 /* 3845 * We used the message, so return the value 3846 * that causes it to not be freed or 3847 * queued. 3848 */ 3849 rv = -1; 3850 } 3851 rcu_read_unlock(); 3852 } else { 3853 recv_msg = ipmi_alloc_recv_msg(); 3854 if (!recv_msg) { 3855 /* 3856 * We couldn't allocate memory for the 3857 * message, so requeue it for handling 3858 * later. 3859 */ 3860 rv = 1; 3861 kref_put(&user->refcount, free_user); 3862 } else { 3863 /* Extract the source address from the data. */ 3864 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3865 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3866 ipmb_addr->slave_addr = msg->rsp[6]; 3867 ipmb_addr->lun = msg->rsp[7] & 3; 3868 ipmb_addr->channel = msg->rsp[3] & 0xf; 3869 3870 /* 3871 * Extract the rest of the message information 3872 * from the IPMB header. 3873 */ 3874 recv_msg->user = user; 3875 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3876 recv_msg->msgid = msg->rsp[7] >> 2; 3877 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3878 recv_msg->msg.cmd = msg->rsp[8]; 3879 recv_msg->msg.data = recv_msg->msg_data; 3880 3881 /* 3882 * We chop off 10, not 9 bytes because the checksum 3883 * at the end also needs to be removed. 3884 */ 3885 recv_msg->msg.data_len = msg->rsp_size - 10; 3886 memcpy(recv_msg->msg_data, &msg->rsp[9], 3887 msg->rsp_size - 10); 3888 if (deliver_response(intf, recv_msg)) 3889 ipmi_inc_stat(intf, unhandled_commands); 3890 else 3891 ipmi_inc_stat(intf, handled_commands); 3892 } 3893 } 3894 3895 return rv; 3896 } 3897 3898 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf, 3899 struct ipmi_smi_msg *msg) 3900 { 3901 struct cmd_rcvr *rcvr; 3902 int rv = 0; 3903 struct ipmi_user *user = NULL; 3904 struct ipmi_ipmb_direct_addr *daddr; 3905 struct ipmi_recv_msg *recv_msg; 3906 unsigned char netfn = msg->rsp[0] >> 2; 3907 unsigned char cmd = msg->rsp[3]; 3908 3909 rcu_read_lock(); 3910 /* We always use channel 0 for direct messages. */ 3911 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0); 3912 if (rcvr) { 3913 user = rcvr->user; 3914 kref_get(&user->refcount); 3915 } else 3916 user = NULL; 3917 rcu_read_unlock(); 3918 3919 if (user == NULL) { 3920 /* We didn't find a user, deliver an error response. */ 3921 ipmi_inc_stat(intf, unhandled_commands); 3922 3923 msg->data[0] = (netfn + 1) << 2; 3924 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */ 3925 msg->data[1] = msg->rsp[1]; /* Addr */ 3926 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */ 3927 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */ 3928 msg->data[3] = cmd; 3929 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE; 3930 msg->data_size = 5; 3931 3932 rcu_read_lock(); 3933 if (!intf->in_shutdown) { 3934 smi_send(intf, intf->handlers, msg, 0); 3935 /* 3936 * We used the message, so return the value 3937 * that causes it to not be freed or 3938 * queued. 3939 */ 3940 rv = -1; 3941 } 3942 rcu_read_unlock(); 3943 } else { 3944 recv_msg = ipmi_alloc_recv_msg(); 3945 if (!recv_msg) { 3946 /* 3947 * We couldn't allocate memory for the 3948 * message, so requeue it for handling 3949 * later. 3950 */ 3951 rv = 1; 3952 kref_put(&user->refcount, free_user); 3953 } else { 3954 /* Extract the source address from the data. */ 3955 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr; 3956 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 3957 daddr->channel = 0; 3958 daddr->slave_addr = msg->rsp[1]; 3959 daddr->rs_lun = msg->rsp[0] & 3; 3960 daddr->rq_lun = msg->rsp[2] & 3; 3961 3962 /* 3963 * Extract the rest of the message information 3964 * from the IPMB header. 3965 */ 3966 recv_msg->user = user; 3967 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3968 recv_msg->msgid = (msg->rsp[2] >> 2); 3969 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3970 recv_msg->msg.cmd = msg->rsp[3]; 3971 recv_msg->msg.data = recv_msg->msg_data; 3972 3973 recv_msg->msg.data_len = msg->rsp_size - 4; 3974 memcpy(recv_msg->msg_data, msg->rsp + 4, 3975 msg->rsp_size - 4); 3976 if (deliver_response(intf, recv_msg)) 3977 ipmi_inc_stat(intf, unhandled_commands); 3978 else 3979 ipmi_inc_stat(intf, handled_commands); 3980 } 3981 } 3982 3983 return rv; 3984 } 3985 3986 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf, 3987 struct ipmi_smi_msg *msg) 3988 { 3989 struct ipmi_recv_msg *recv_msg; 3990 struct ipmi_ipmb_direct_addr *daddr; 3991 3992 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3993 if (recv_msg == NULL) { 3994 dev_warn(intf->si_dev, 3995 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 3996 return 0; 3997 } 3998 3999 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4000 recv_msg->msgid = msg->msgid; 4001 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr; 4002 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 4003 daddr->channel = 0; 4004 daddr->slave_addr = msg->rsp[1]; 4005 daddr->rq_lun = msg->rsp[0] & 3; 4006 daddr->rs_lun = msg->rsp[2] & 3; 4007 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4008 recv_msg->msg.cmd = msg->rsp[3]; 4009 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4); 4010 recv_msg->msg.data = recv_msg->msg_data; 4011 recv_msg->msg.data_len = msg->rsp_size - 4; 4012 deliver_local_response(intf, recv_msg); 4013 4014 return 0; 4015 } 4016 4017 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf, 4018 struct ipmi_smi_msg *msg) 4019 { 4020 struct ipmi_lan_addr lan_addr; 4021 struct ipmi_recv_msg *recv_msg; 4022 4023 4024 /* 4025 * This is 13, not 12, because the response must contain a 4026 * completion code. 4027 */ 4028 if (msg->rsp_size < 13) { 4029 /* Message not big enough, just ignore it. */ 4030 ipmi_inc_stat(intf, invalid_lan_responses); 4031 return 0; 4032 } 4033 4034 if (msg->rsp[2] != 0) { 4035 /* An error getting the response, just ignore it. */ 4036 return 0; 4037 } 4038 4039 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 4040 lan_addr.session_handle = msg->rsp[4]; 4041 lan_addr.remote_SWID = msg->rsp[8]; 4042 lan_addr.local_SWID = msg->rsp[5]; 4043 lan_addr.channel = msg->rsp[3] & 0x0f; 4044 lan_addr.privilege = msg->rsp[3] >> 4; 4045 lan_addr.lun = msg->rsp[9] & 3; 4046 4047 /* 4048 * It's a response from a remote entity. Look up the sequence 4049 * number and handle the response. 4050 */ 4051 if (intf_find_seq(intf, 4052 msg->rsp[9] >> 2, 4053 msg->rsp[3] & 0x0f, 4054 msg->rsp[10], 4055 (msg->rsp[6] >> 2) & (~1), 4056 (struct ipmi_addr *) &lan_addr, 4057 &recv_msg)) { 4058 /* 4059 * We were unable to find the sequence number, 4060 * so just nuke the message. 4061 */ 4062 ipmi_inc_stat(intf, unhandled_lan_responses); 4063 return 0; 4064 } 4065 4066 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11); 4067 /* 4068 * The other fields matched, so no need to set them, except 4069 * for netfn, which needs to be the response that was 4070 * returned, not the request value. 4071 */ 4072 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4073 recv_msg->msg.data = recv_msg->msg_data; 4074 recv_msg->msg.data_len = msg->rsp_size - 12; 4075 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4076 if (deliver_response(intf, recv_msg)) 4077 ipmi_inc_stat(intf, unhandled_lan_responses); 4078 else 4079 ipmi_inc_stat(intf, handled_lan_responses); 4080 4081 return 0; 4082 } 4083 4084 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf, 4085 struct ipmi_smi_msg *msg) 4086 { 4087 struct cmd_rcvr *rcvr; 4088 int rv = 0; 4089 unsigned char netfn; 4090 unsigned char cmd; 4091 unsigned char chan; 4092 struct ipmi_user *user = NULL; 4093 struct ipmi_lan_addr *lan_addr; 4094 struct ipmi_recv_msg *recv_msg; 4095 4096 if (msg->rsp_size < 12) { 4097 /* Message not big enough, just ignore it. */ 4098 ipmi_inc_stat(intf, invalid_commands); 4099 return 0; 4100 } 4101 4102 if (msg->rsp[2] != 0) { 4103 /* An error getting the response, just ignore it. */ 4104 return 0; 4105 } 4106 4107 netfn = msg->rsp[6] >> 2; 4108 cmd = msg->rsp[10]; 4109 chan = msg->rsp[3] & 0xf; 4110 4111 rcu_read_lock(); 4112 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4113 if (rcvr) { 4114 user = rcvr->user; 4115 kref_get(&user->refcount); 4116 } else 4117 user = NULL; 4118 rcu_read_unlock(); 4119 4120 if (user == NULL) { 4121 /* We didn't find a user, just give up. */ 4122 ipmi_inc_stat(intf, unhandled_commands); 4123 4124 /* 4125 * Don't do anything with these messages, just allow 4126 * them to be freed. 4127 */ 4128 rv = 0; 4129 } else { 4130 recv_msg = ipmi_alloc_recv_msg(); 4131 if (!recv_msg) { 4132 /* 4133 * We couldn't allocate memory for the 4134 * message, so requeue it for handling later. 4135 */ 4136 rv = 1; 4137 kref_put(&user->refcount, free_user); 4138 } else { 4139 /* Extract the source address from the data. */ 4140 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 4141 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 4142 lan_addr->session_handle = msg->rsp[4]; 4143 lan_addr->remote_SWID = msg->rsp[8]; 4144 lan_addr->local_SWID = msg->rsp[5]; 4145 lan_addr->lun = msg->rsp[9] & 3; 4146 lan_addr->channel = msg->rsp[3] & 0xf; 4147 lan_addr->privilege = msg->rsp[3] >> 4; 4148 4149 /* 4150 * Extract the rest of the message information 4151 * from the IPMB header. 4152 */ 4153 recv_msg->user = user; 4154 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 4155 recv_msg->msgid = msg->rsp[9] >> 2; 4156 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4157 recv_msg->msg.cmd = msg->rsp[10]; 4158 recv_msg->msg.data = recv_msg->msg_data; 4159 4160 /* 4161 * We chop off 12, not 11 bytes because the checksum 4162 * at the end also needs to be removed. 4163 */ 4164 recv_msg->msg.data_len = msg->rsp_size - 12; 4165 memcpy(recv_msg->msg_data, &msg->rsp[11], 4166 msg->rsp_size - 12); 4167 if (deliver_response(intf, recv_msg)) 4168 ipmi_inc_stat(intf, unhandled_commands); 4169 else 4170 ipmi_inc_stat(intf, handled_commands); 4171 } 4172 } 4173 4174 return rv; 4175 } 4176 4177 /* 4178 * This routine will handle "Get Message" command responses with 4179 * channels that use an OEM Medium. The message format belongs to 4180 * the OEM. See IPMI 2.0 specification, Chapter 6 and 4181 * Chapter 22, sections 22.6 and 22.24 for more details. 4182 */ 4183 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf, 4184 struct ipmi_smi_msg *msg) 4185 { 4186 struct cmd_rcvr *rcvr; 4187 int rv = 0; 4188 unsigned char netfn; 4189 unsigned char cmd; 4190 unsigned char chan; 4191 struct ipmi_user *user = NULL; 4192 struct ipmi_system_interface_addr *smi_addr; 4193 struct ipmi_recv_msg *recv_msg; 4194 4195 /* 4196 * We expect the OEM SW to perform error checking 4197 * so we just do some basic sanity checks 4198 */ 4199 if (msg->rsp_size < 4) { 4200 /* Message not big enough, just ignore it. */ 4201 ipmi_inc_stat(intf, invalid_commands); 4202 return 0; 4203 } 4204 4205 if (msg->rsp[2] != 0) { 4206 /* An error getting the response, just ignore it. */ 4207 return 0; 4208 } 4209 4210 /* 4211 * This is an OEM Message so the OEM needs to know how 4212 * handle the message. We do no interpretation. 4213 */ 4214 netfn = msg->rsp[0] >> 2; 4215 cmd = msg->rsp[1]; 4216 chan = msg->rsp[3] & 0xf; 4217 4218 rcu_read_lock(); 4219 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4220 if (rcvr) { 4221 user = rcvr->user; 4222 kref_get(&user->refcount); 4223 } else 4224 user = NULL; 4225 rcu_read_unlock(); 4226 4227 if (user == NULL) { 4228 /* We didn't find a user, just give up. */ 4229 ipmi_inc_stat(intf, unhandled_commands); 4230 4231 /* 4232 * Don't do anything with these messages, just allow 4233 * them to be freed. 4234 */ 4235 4236 rv = 0; 4237 } else { 4238 recv_msg = ipmi_alloc_recv_msg(); 4239 if (!recv_msg) { 4240 /* 4241 * We couldn't allocate memory for the 4242 * message, so requeue it for handling 4243 * later. 4244 */ 4245 rv = 1; 4246 kref_put(&user->refcount, free_user); 4247 } else { 4248 /* 4249 * OEM Messages are expected to be delivered via 4250 * the system interface to SMS software. We might 4251 * need to visit this again depending on OEM 4252 * requirements 4253 */ 4254 smi_addr = ((struct ipmi_system_interface_addr *) 4255 &recv_msg->addr); 4256 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4257 smi_addr->channel = IPMI_BMC_CHANNEL; 4258 smi_addr->lun = msg->rsp[0] & 3; 4259 4260 recv_msg->user = user; 4261 recv_msg->user_msg_data = NULL; 4262 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 4263 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4264 recv_msg->msg.cmd = msg->rsp[1]; 4265 recv_msg->msg.data = recv_msg->msg_data; 4266 4267 /* 4268 * The message starts at byte 4 which follows the 4269 * the Channel Byte in the "GET MESSAGE" command 4270 */ 4271 recv_msg->msg.data_len = msg->rsp_size - 4; 4272 memcpy(recv_msg->msg_data, &msg->rsp[4], 4273 msg->rsp_size - 4); 4274 if (deliver_response(intf, recv_msg)) 4275 ipmi_inc_stat(intf, unhandled_commands); 4276 else 4277 ipmi_inc_stat(intf, handled_commands); 4278 } 4279 } 4280 4281 return rv; 4282 } 4283 4284 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 4285 struct ipmi_smi_msg *msg) 4286 { 4287 struct ipmi_system_interface_addr *smi_addr; 4288 4289 recv_msg->msgid = 0; 4290 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr; 4291 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4292 smi_addr->channel = IPMI_BMC_CHANNEL; 4293 smi_addr->lun = msg->rsp[0] & 3; 4294 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 4295 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4296 recv_msg->msg.cmd = msg->rsp[1]; 4297 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3); 4298 recv_msg->msg.data = recv_msg->msg_data; 4299 recv_msg->msg.data_len = msg->rsp_size - 3; 4300 } 4301 4302 static int handle_read_event_rsp(struct ipmi_smi *intf, 4303 struct ipmi_smi_msg *msg) 4304 { 4305 struct ipmi_recv_msg *recv_msg, *recv_msg2; 4306 struct list_head msgs; 4307 struct ipmi_user *user; 4308 int rv = 0, deliver_count = 0, index; 4309 unsigned long flags; 4310 4311 if (msg->rsp_size < 19) { 4312 /* Message is too small to be an IPMB event. */ 4313 ipmi_inc_stat(intf, invalid_events); 4314 return 0; 4315 } 4316 4317 if (msg->rsp[2] != 0) { 4318 /* An error getting the event, just ignore it. */ 4319 return 0; 4320 } 4321 4322 INIT_LIST_HEAD(&msgs); 4323 4324 spin_lock_irqsave(&intf->events_lock, flags); 4325 4326 ipmi_inc_stat(intf, events); 4327 4328 /* 4329 * Allocate and fill in one message for every user that is 4330 * getting events. 4331 */ 4332 index = srcu_read_lock(&intf->users_srcu); 4333 list_for_each_entry_rcu(user, &intf->users, link) { 4334 if (!user->gets_events) 4335 continue; 4336 4337 recv_msg = ipmi_alloc_recv_msg(); 4338 if (!recv_msg) { 4339 rcu_read_unlock(); 4340 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 4341 link) { 4342 list_del(&recv_msg->link); 4343 ipmi_free_recv_msg(recv_msg); 4344 } 4345 /* 4346 * We couldn't allocate memory for the 4347 * message, so requeue it for handling 4348 * later. 4349 */ 4350 rv = 1; 4351 goto out; 4352 } 4353 4354 deliver_count++; 4355 4356 copy_event_into_recv_msg(recv_msg, msg); 4357 recv_msg->user = user; 4358 kref_get(&user->refcount); 4359 list_add_tail(&recv_msg->link, &msgs); 4360 } 4361 srcu_read_unlock(&intf->users_srcu, index); 4362 4363 if (deliver_count) { 4364 /* Now deliver all the messages. */ 4365 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 4366 list_del(&recv_msg->link); 4367 deliver_local_response(intf, recv_msg); 4368 } 4369 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 4370 /* 4371 * No one to receive the message, put it in queue if there's 4372 * not already too many things in the queue. 4373 */ 4374 recv_msg = ipmi_alloc_recv_msg(); 4375 if (!recv_msg) { 4376 /* 4377 * We couldn't allocate memory for the 4378 * message, so requeue it for handling 4379 * later. 4380 */ 4381 rv = 1; 4382 goto out; 4383 } 4384 4385 copy_event_into_recv_msg(recv_msg, msg); 4386 list_add_tail(&recv_msg->link, &intf->waiting_events); 4387 intf->waiting_events_count++; 4388 } else if (!intf->event_msg_printed) { 4389 /* 4390 * There's too many things in the queue, discard this 4391 * message. 4392 */ 4393 dev_warn(intf->si_dev, 4394 "Event queue full, discarding incoming events\n"); 4395 intf->event_msg_printed = 1; 4396 } 4397 4398 out: 4399 spin_unlock_irqrestore(&intf->events_lock, flags); 4400 4401 return rv; 4402 } 4403 4404 static int handle_bmc_rsp(struct ipmi_smi *intf, 4405 struct ipmi_smi_msg *msg) 4406 { 4407 struct ipmi_recv_msg *recv_msg; 4408 struct ipmi_system_interface_addr *smi_addr; 4409 4410 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 4411 if (recv_msg == NULL) { 4412 dev_warn(intf->si_dev, 4413 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 4414 return 0; 4415 } 4416 4417 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4418 recv_msg->msgid = msg->msgid; 4419 smi_addr = ((struct ipmi_system_interface_addr *) 4420 &recv_msg->addr); 4421 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4422 smi_addr->channel = IPMI_BMC_CHANNEL; 4423 smi_addr->lun = msg->rsp[0] & 3; 4424 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4425 recv_msg->msg.cmd = msg->rsp[1]; 4426 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2); 4427 recv_msg->msg.data = recv_msg->msg_data; 4428 recv_msg->msg.data_len = msg->rsp_size - 2; 4429 deliver_local_response(intf, recv_msg); 4430 4431 return 0; 4432 } 4433 4434 /* 4435 * Handle a received message. Return 1 if the message should be requeued, 4436 * 0 if the message should be freed, or -1 if the message should not 4437 * be freed or requeued. 4438 */ 4439 static int handle_one_recv_msg(struct ipmi_smi *intf, 4440 struct ipmi_smi_msg *msg) 4441 { 4442 int requeue = 0; 4443 int chan; 4444 unsigned char cc; 4445 bool is_cmd = !((msg->rsp[0] >> 2) & 1); 4446 4447 pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp); 4448 4449 if (msg->rsp_size < 2) { 4450 /* Message is too small to be correct. */ 4451 dev_warn(intf->si_dev, 4452 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n", 4453 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 4454 4455 return_unspecified: 4456 /* Generate an error response for the message. */ 4457 msg->rsp[0] = msg->data[0] | (1 << 2); 4458 msg->rsp[1] = msg->data[1]; 4459 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 4460 msg->rsp_size = 3; 4461 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4462 /* commands must have at least 4 bytes, responses 5. */ 4463 if (is_cmd && (msg->rsp_size < 4)) { 4464 ipmi_inc_stat(intf, invalid_commands); 4465 goto out; 4466 } 4467 if (!is_cmd && (msg->rsp_size < 5)) { 4468 ipmi_inc_stat(intf, invalid_ipmb_responses); 4469 /* Construct a valid error response. */ 4470 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */ 4471 msg->rsp[0] |= (1 << 2); /* Make it a response */ 4472 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */ 4473 msg->rsp[1] = msg->data[1]; /* Addr */ 4474 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */ 4475 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */ 4476 msg->rsp[3] = msg->data[3]; /* Cmd */ 4477 msg->rsp[4] = IPMI_ERR_UNSPECIFIED; 4478 msg->rsp_size = 5; 4479 } 4480 } else if ((msg->data_size >= 2) 4481 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 4482 && (msg->data[1] == IPMI_SEND_MSG_CMD) 4483 && (msg->user_data == NULL)) { 4484 4485 if (intf->in_shutdown) 4486 goto out; 4487 4488 /* 4489 * This is the local response to a command send, start 4490 * the timer for these. The user_data will not be 4491 * NULL if this is a response send, and we will let 4492 * response sends just go through. 4493 */ 4494 4495 /* 4496 * Check for errors, if we get certain errors (ones 4497 * that mean basically we can try again later), we 4498 * ignore them and start the timer. Otherwise we 4499 * report the error immediately. 4500 */ 4501 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 4502 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 4503 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 4504 && (msg->rsp[2] != IPMI_BUS_ERR) 4505 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 4506 int ch = msg->rsp[3] & 0xf; 4507 struct ipmi_channel *chans; 4508 4509 /* Got an error sending the message, handle it. */ 4510 4511 chans = READ_ONCE(intf->channel_list)->c; 4512 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN) 4513 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC)) 4514 ipmi_inc_stat(intf, sent_lan_command_errs); 4515 else 4516 ipmi_inc_stat(intf, sent_ipmb_command_errs); 4517 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 4518 } else 4519 /* The message was sent, start the timer. */ 4520 intf_start_seq_timer(intf, msg->msgid); 4521 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 4522 || (msg->rsp[1] != msg->data[1])) { 4523 /* 4524 * The NetFN and Command in the response is not even 4525 * marginally correct. 4526 */ 4527 dev_warn(intf->si_dev, 4528 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n", 4529 (msg->data[0] >> 2) | 1, msg->data[1], 4530 msg->rsp[0] >> 2, msg->rsp[1]); 4531 4532 goto return_unspecified; 4533 } 4534 4535 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4536 if ((msg->data[0] >> 2) & 1) { 4537 /* It's a response to a sent response. */ 4538 chan = 0; 4539 cc = msg->rsp[4]; 4540 goto process_response_response; 4541 } 4542 if (is_cmd) 4543 requeue = handle_ipmb_direct_rcv_cmd(intf, msg); 4544 else 4545 requeue = handle_ipmb_direct_rcv_rsp(intf, msg); 4546 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4547 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 4548 && (msg->user_data != NULL)) { 4549 /* 4550 * It's a response to a response we sent. For this we 4551 * deliver a send message response to the user. 4552 */ 4553 struct ipmi_recv_msg *recv_msg; 4554 4555 chan = msg->data[2] & 0x0f; 4556 if (chan >= IPMI_MAX_CHANNELS) 4557 /* Invalid channel number */ 4558 goto out; 4559 cc = msg->rsp[2]; 4560 4561 process_response_response: 4562 recv_msg = msg->user_data; 4563 4564 requeue = 0; 4565 if (!recv_msg) 4566 goto out; 4567 4568 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 4569 recv_msg->msg.data = recv_msg->msg_data; 4570 recv_msg->msg_data[0] = cc; 4571 recv_msg->msg.data_len = 1; 4572 deliver_local_response(intf, recv_msg); 4573 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4574 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 4575 struct ipmi_channel *chans; 4576 4577 /* It's from the receive queue. */ 4578 chan = msg->rsp[3] & 0xf; 4579 if (chan >= IPMI_MAX_CHANNELS) { 4580 /* Invalid channel number */ 4581 requeue = 0; 4582 goto out; 4583 } 4584 4585 /* 4586 * We need to make sure the channels have been initialized. 4587 * The channel_handler routine will set the "curr_channel" 4588 * equal to or greater than IPMI_MAX_CHANNELS when all the 4589 * channels for this interface have been initialized. 4590 */ 4591 if (!intf->channels_ready) { 4592 requeue = 0; /* Throw the message away */ 4593 goto out; 4594 } 4595 4596 chans = READ_ONCE(intf->channel_list)->c; 4597 4598 switch (chans[chan].medium) { 4599 case IPMI_CHANNEL_MEDIUM_IPMB: 4600 if (msg->rsp[4] & 0x04) { 4601 /* 4602 * It's a response, so find the 4603 * requesting message and send it up. 4604 */ 4605 requeue = handle_ipmb_get_msg_rsp(intf, msg); 4606 } else { 4607 /* 4608 * It's a command to the SMS from some other 4609 * entity. Handle that. 4610 */ 4611 requeue = handle_ipmb_get_msg_cmd(intf, msg); 4612 } 4613 break; 4614 4615 case IPMI_CHANNEL_MEDIUM_8023LAN: 4616 case IPMI_CHANNEL_MEDIUM_ASYNC: 4617 if (msg->rsp[6] & 0x04) { 4618 /* 4619 * It's a response, so find the 4620 * requesting message and send it up. 4621 */ 4622 requeue = handle_lan_get_msg_rsp(intf, msg); 4623 } else { 4624 /* 4625 * It's a command to the SMS from some other 4626 * entity. Handle that. 4627 */ 4628 requeue = handle_lan_get_msg_cmd(intf, msg); 4629 } 4630 break; 4631 4632 default: 4633 /* Check for OEM Channels. Clients had better 4634 register for these commands. */ 4635 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 4636 && (chans[chan].medium 4637 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 4638 requeue = handle_oem_get_msg_cmd(intf, msg); 4639 } else { 4640 /* 4641 * We don't handle the channel type, so just 4642 * free the message. 4643 */ 4644 requeue = 0; 4645 } 4646 } 4647 4648 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4649 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 4650 /* It's an asynchronous event. */ 4651 requeue = handle_read_event_rsp(intf, msg); 4652 } else { 4653 /* It's a response from the local BMC. */ 4654 requeue = handle_bmc_rsp(intf, msg); 4655 } 4656 4657 out: 4658 return requeue; 4659 } 4660 4661 /* 4662 * If there are messages in the queue or pretimeouts, handle them. 4663 */ 4664 static void handle_new_recv_msgs(struct ipmi_smi *intf) 4665 { 4666 struct ipmi_smi_msg *smi_msg; 4667 unsigned long flags = 0; 4668 int rv; 4669 int run_to_completion = intf->run_to_completion; 4670 4671 /* See if any waiting messages need to be processed. */ 4672 if (!run_to_completion) 4673 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4674 while (!list_empty(&intf->waiting_rcv_msgs)) { 4675 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 4676 struct ipmi_smi_msg, link); 4677 list_del(&smi_msg->link); 4678 if (!run_to_completion) 4679 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4680 flags); 4681 rv = handle_one_recv_msg(intf, smi_msg); 4682 if (!run_to_completion) 4683 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4684 if (rv > 0) { 4685 /* 4686 * To preserve message order, quit if we 4687 * can't handle a message. Add the message 4688 * back at the head, this is safe because this 4689 * tasklet is the only thing that pulls the 4690 * messages. 4691 */ 4692 list_add(&smi_msg->link, &intf->waiting_rcv_msgs); 4693 break; 4694 } else { 4695 if (rv == 0) 4696 /* Message handled */ 4697 ipmi_free_smi_msg(smi_msg); 4698 /* If rv < 0, fatal error, del but don't free. */ 4699 } 4700 } 4701 if (!run_to_completion) 4702 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 4703 4704 /* 4705 * If the pretimout count is non-zero, decrement one from it and 4706 * deliver pretimeouts to all the users. 4707 */ 4708 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 4709 struct ipmi_user *user; 4710 int index; 4711 4712 index = srcu_read_lock(&intf->users_srcu); 4713 list_for_each_entry_rcu(user, &intf->users, link) { 4714 if (user->handler->ipmi_watchdog_pretimeout) 4715 user->handler->ipmi_watchdog_pretimeout( 4716 user->handler_data); 4717 } 4718 srcu_read_unlock(&intf->users_srcu, index); 4719 } 4720 } 4721 4722 static void smi_recv_tasklet(struct tasklet_struct *t) 4723 { 4724 unsigned long flags = 0; /* keep us warning-free. */ 4725 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet); 4726 int run_to_completion = intf->run_to_completion; 4727 struct ipmi_smi_msg *newmsg = NULL; 4728 4729 /* 4730 * Start the next message if available. 4731 * 4732 * Do this here, not in the actual receiver, because we may deadlock 4733 * because the lower layer is allowed to hold locks while calling 4734 * message delivery. 4735 */ 4736 4737 rcu_read_lock(); 4738 4739 if (!run_to_completion) 4740 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4741 if (intf->curr_msg == NULL && !intf->in_shutdown) { 4742 struct list_head *entry = NULL; 4743 4744 /* Pick the high priority queue first. */ 4745 if (!list_empty(&intf->hp_xmit_msgs)) 4746 entry = intf->hp_xmit_msgs.next; 4747 else if (!list_empty(&intf->xmit_msgs)) 4748 entry = intf->xmit_msgs.next; 4749 4750 if (entry) { 4751 list_del(entry); 4752 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 4753 intf->curr_msg = newmsg; 4754 } 4755 } 4756 4757 if (!run_to_completion) 4758 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4759 if (newmsg) 4760 intf->handlers->sender(intf->send_info, newmsg); 4761 4762 rcu_read_unlock(); 4763 4764 handle_new_recv_msgs(intf); 4765 } 4766 4767 /* Handle a new message from the lower layer. */ 4768 void ipmi_smi_msg_received(struct ipmi_smi *intf, 4769 struct ipmi_smi_msg *msg) 4770 { 4771 unsigned long flags = 0; /* keep us warning-free. */ 4772 int run_to_completion = intf->run_to_completion; 4773 4774 /* 4775 * To preserve message order, we keep a queue and deliver from 4776 * a tasklet. 4777 */ 4778 if (!run_to_completion) 4779 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4780 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 4781 if (!run_to_completion) 4782 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4783 flags); 4784 4785 if (!run_to_completion) 4786 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4787 /* 4788 * We can get an asynchronous event or receive message in addition 4789 * to commands we send. 4790 */ 4791 if (msg == intf->curr_msg) 4792 intf->curr_msg = NULL; 4793 if (!run_to_completion) 4794 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4795 4796 if (run_to_completion) 4797 smi_recv_tasklet(&intf->recv_tasklet); 4798 else 4799 tasklet_schedule(&intf->recv_tasklet); 4800 } 4801 EXPORT_SYMBOL(ipmi_smi_msg_received); 4802 4803 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf) 4804 { 4805 if (intf->in_shutdown) 4806 return; 4807 4808 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 4809 tasklet_schedule(&intf->recv_tasklet); 4810 } 4811 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 4812 4813 static struct ipmi_smi_msg * 4814 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, 4815 unsigned char seq, long seqid) 4816 { 4817 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 4818 if (!smi_msg) 4819 /* 4820 * If we can't allocate the message, then just return, we 4821 * get 4 retries, so this should be ok. 4822 */ 4823 return NULL; 4824 4825 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4826 smi_msg->data_size = recv_msg->msg.data_len; 4827 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4828 4829 pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data); 4830 4831 return smi_msg; 4832 } 4833 4834 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent, 4835 struct list_head *timeouts, 4836 unsigned long timeout_period, 4837 int slot, unsigned long *flags, 4838 bool *need_timer) 4839 { 4840 struct ipmi_recv_msg *msg; 4841 4842 if (intf->in_shutdown) 4843 return; 4844 4845 if (!ent->inuse) 4846 return; 4847 4848 if (timeout_period < ent->timeout) { 4849 ent->timeout -= timeout_period; 4850 *need_timer = true; 4851 return; 4852 } 4853 4854 if (ent->retries_left == 0) { 4855 /* The message has used all its retries. */ 4856 ent->inuse = 0; 4857 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 4858 msg = ent->recv_msg; 4859 list_add_tail(&msg->link, timeouts); 4860 if (ent->broadcast) 4861 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4862 else if (is_lan_addr(&ent->recv_msg->addr)) 4863 ipmi_inc_stat(intf, timed_out_lan_commands); 4864 else 4865 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4866 } else { 4867 struct ipmi_smi_msg *smi_msg; 4868 /* More retries, send again. */ 4869 4870 *need_timer = true; 4871 4872 /* 4873 * Start with the max timer, set to normal timer after 4874 * the message is sent. 4875 */ 4876 ent->timeout = MAX_MSG_TIMEOUT; 4877 ent->retries_left--; 4878 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4879 ent->seqid); 4880 if (!smi_msg) { 4881 if (is_lan_addr(&ent->recv_msg->addr)) 4882 ipmi_inc_stat(intf, 4883 dropped_rexmit_lan_commands); 4884 else 4885 ipmi_inc_stat(intf, 4886 dropped_rexmit_ipmb_commands); 4887 return; 4888 } 4889 4890 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4891 4892 /* 4893 * Send the new message. We send with a zero 4894 * priority. It timed out, I doubt time is that 4895 * critical now, and high priority messages are really 4896 * only for messages to the local MC, which don't get 4897 * resent. 4898 */ 4899 if (intf->handlers) { 4900 if (is_lan_addr(&ent->recv_msg->addr)) 4901 ipmi_inc_stat(intf, 4902 retransmitted_lan_commands); 4903 else 4904 ipmi_inc_stat(intf, 4905 retransmitted_ipmb_commands); 4906 4907 smi_send(intf, intf->handlers, smi_msg, 0); 4908 } else 4909 ipmi_free_smi_msg(smi_msg); 4910 4911 spin_lock_irqsave(&intf->seq_lock, *flags); 4912 } 4913 } 4914 4915 static bool ipmi_timeout_handler(struct ipmi_smi *intf, 4916 unsigned long timeout_period) 4917 { 4918 struct list_head timeouts; 4919 struct ipmi_recv_msg *msg, *msg2; 4920 unsigned long flags; 4921 int i; 4922 bool need_timer = false; 4923 4924 if (!intf->bmc_registered) { 4925 kref_get(&intf->refcount); 4926 if (!schedule_work(&intf->bmc_reg_work)) { 4927 kref_put(&intf->refcount, intf_free); 4928 need_timer = true; 4929 } 4930 } 4931 4932 /* 4933 * Go through the seq table and find any messages that 4934 * have timed out, putting them in the timeouts 4935 * list. 4936 */ 4937 INIT_LIST_HEAD(&timeouts); 4938 spin_lock_irqsave(&intf->seq_lock, flags); 4939 if (intf->ipmb_maintenance_mode_timeout) { 4940 if (intf->ipmb_maintenance_mode_timeout <= timeout_period) 4941 intf->ipmb_maintenance_mode_timeout = 0; 4942 else 4943 intf->ipmb_maintenance_mode_timeout -= timeout_period; 4944 } 4945 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4946 check_msg_timeout(intf, &intf->seq_table[i], 4947 &timeouts, timeout_period, i, 4948 &flags, &need_timer); 4949 spin_unlock_irqrestore(&intf->seq_lock, flags); 4950 4951 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4952 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE); 4953 4954 /* 4955 * Maintenance mode handling. Check the timeout 4956 * optimistically before we claim the lock. It may 4957 * mean a timeout gets missed occasionally, but that 4958 * only means the timeout gets extended by one period 4959 * in that case. No big deal, and it avoids the lock 4960 * most of the time. 4961 */ 4962 if (intf->auto_maintenance_timeout > 0) { 4963 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4964 if (intf->auto_maintenance_timeout > 0) { 4965 intf->auto_maintenance_timeout 4966 -= timeout_period; 4967 if (!intf->maintenance_mode 4968 && (intf->auto_maintenance_timeout <= 0)) { 4969 intf->maintenance_mode_enable = false; 4970 maintenance_mode_update(intf); 4971 } 4972 } 4973 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4974 flags); 4975 } 4976 4977 tasklet_schedule(&intf->recv_tasklet); 4978 4979 return need_timer; 4980 } 4981 4982 static void ipmi_request_event(struct ipmi_smi *intf) 4983 { 4984 /* No event requests when in maintenance mode. */ 4985 if (intf->maintenance_mode_enable) 4986 return; 4987 4988 if (!intf->in_shutdown) 4989 intf->handlers->request_events(intf->send_info); 4990 } 4991 4992 static struct timer_list ipmi_timer; 4993 4994 static atomic_t stop_operation; 4995 4996 static void ipmi_timeout(struct timer_list *unused) 4997 { 4998 struct ipmi_smi *intf; 4999 bool need_timer = false; 5000 int index; 5001 5002 if (atomic_read(&stop_operation)) 5003 return; 5004 5005 index = srcu_read_lock(&ipmi_interfaces_srcu); 5006 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 5007 if (atomic_read(&intf->event_waiters)) { 5008 intf->ticks_to_req_ev--; 5009 if (intf->ticks_to_req_ev == 0) { 5010 ipmi_request_event(intf); 5011 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 5012 } 5013 need_timer = true; 5014 } 5015 5016 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 5017 } 5018 srcu_read_unlock(&ipmi_interfaces_srcu, index); 5019 5020 if (need_timer) 5021 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5022 } 5023 5024 static void need_waiter(struct ipmi_smi *intf) 5025 { 5026 /* Racy, but worst case we start the timer twice. */ 5027 if (!timer_pending(&ipmi_timer)) 5028 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5029 } 5030 5031 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 5032 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 5033 5034 static void free_smi_msg(struct ipmi_smi_msg *msg) 5035 { 5036 atomic_dec(&smi_msg_inuse_count); 5037 /* Try to keep as much stuff out of the panic path as possible. */ 5038 if (!oops_in_progress) 5039 kfree(msg); 5040 } 5041 5042 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 5043 { 5044 struct ipmi_smi_msg *rv; 5045 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 5046 if (rv) { 5047 rv->done = free_smi_msg; 5048 rv->user_data = NULL; 5049 rv->type = IPMI_SMI_MSG_TYPE_NORMAL; 5050 atomic_inc(&smi_msg_inuse_count); 5051 } 5052 return rv; 5053 } 5054 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 5055 5056 static void free_recv_msg(struct ipmi_recv_msg *msg) 5057 { 5058 atomic_dec(&recv_msg_inuse_count); 5059 /* Try to keep as much stuff out of the panic path as possible. */ 5060 if (!oops_in_progress) 5061 kfree(msg); 5062 } 5063 5064 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 5065 { 5066 struct ipmi_recv_msg *rv; 5067 5068 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 5069 if (rv) { 5070 rv->user = NULL; 5071 rv->done = free_recv_msg; 5072 atomic_inc(&recv_msg_inuse_count); 5073 } 5074 return rv; 5075 } 5076 5077 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 5078 { 5079 if (msg->user && !oops_in_progress) 5080 kref_put(&msg->user->refcount, free_user); 5081 msg->done(msg); 5082 } 5083 EXPORT_SYMBOL(ipmi_free_recv_msg); 5084 5085 static atomic_t panic_done_count = ATOMIC_INIT(0); 5086 5087 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 5088 { 5089 atomic_dec(&panic_done_count); 5090 } 5091 5092 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 5093 { 5094 atomic_dec(&panic_done_count); 5095 } 5096 5097 /* 5098 * Inside a panic, send a message and wait for a response. 5099 */ 5100 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf, 5101 struct ipmi_addr *addr, 5102 struct kernel_ipmi_msg *msg) 5103 { 5104 struct ipmi_smi_msg smi_msg; 5105 struct ipmi_recv_msg recv_msg; 5106 int rv; 5107 5108 smi_msg.done = dummy_smi_done_handler; 5109 recv_msg.done = dummy_recv_done_handler; 5110 atomic_add(2, &panic_done_count); 5111 rv = i_ipmi_request(NULL, 5112 intf, 5113 addr, 5114 0, 5115 msg, 5116 intf, 5117 &smi_msg, 5118 &recv_msg, 5119 0, 5120 intf->addrinfo[0].address, 5121 intf->addrinfo[0].lun, 5122 0, 1); /* Don't retry, and don't wait. */ 5123 if (rv) 5124 atomic_sub(2, &panic_done_count); 5125 else if (intf->handlers->flush_messages) 5126 intf->handlers->flush_messages(intf->send_info); 5127 5128 while (atomic_read(&panic_done_count) != 0) 5129 ipmi_poll(intf); 5130 } 5131 5132 static void event_receiver_fetcher(struct ipmi_smi *intf, 5133 struct ipmi_recv_msg *msg) 5134 { 5135 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5136 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 5137 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 5138 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5139 /* A get event receiver command, save it. */ 5140 intf->event_receiver = msg->msg.data[1]; 5141 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 5142 } 5143 } 5144 5145 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 5146 { 5147 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5148 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 5149 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 5150 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5151 /* 5152 * A get device id command, save if we are an event 5153 * receiver or generator. 5154 */ 5155 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 5156 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 5157 } 5158 } 5159 5160 static void send_panic_events(struct ipmi_smi *intf, char *str) 5161 { 5162 struct kernel_ipmi_msg msg; 5163 unsigned char data[16]; 5164 struct ipmi_system_interface_addr *si; 5165 struct ipmi_addr addr; 5166 char *p = str; 5167 struct ipmi_ipmb_addr *ipmb; 5168 int j; 5169 5170 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE) 5171 return; 5172 5173 si = (struct ipmi_system_interface_addr *) &addr; 5174 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5175 si->channel = IPMI_BMC_CHANNEL; 5176 si->lun = 0; 5177 5178 /* Fill in an event telling that we have failed. */ 5179 msg.netfn = 0x04; /* Sensor or Event. */ 5180 msg.cmd = 2; /* Platform event command. */ 5181 msg.data = data; 5182 msg.data_len = 8; 5183 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 5184 data[1] = 0x03; /* This is for IPMI 1.0. */ 5185 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 5186 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 5187 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 5188 5189 /* 5190 * Put a few breadcrumbs in. Hopefully later we can add more things 5191 * to make the panic events more useful. 5192 */ 5193 if (str) { 5194 data[3] = str[0]; 5195 data[6] = str[1]; 5196 data[7] = str[2]; 5197 } 5198 5199 /* Send the event announcing the panic. */ 5200 ipmi_panic_request_and_wait(intf, &addr, &msg); 5201 5202 /* 5203 * On every interface, dump a bunch of OEM event holding the 5204 * string. 5205 */ 5206 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str) 5207 return; 5208 5209 /* 5210 * intf_num is used as an marker to tell if the 5211 * interface is valid. Thus we need a read barrier to 5212 * make sure data fetched before checking intf_num 5213 * won't be used. 5214 */ 5215 smp_rmb(); 5216 5217 /* 5218 * First job here is to figure out where to send the 5219 * OEM events. There's no way in IPMI to send OEM 5220 * events using an event send command, so we have to 5221 * find the SEL to put them in and stick them in 5222 * there. 5223 */ 5224 5225 /* Get capabilities from the get device id. */ 5226 intf->local_sel_device = 0; 5227 intf->local_event_generator = 0; 5228 intf->event_receiver = 0; 5229 5230 /* Request the device info from the local MC. */ 5231 msg.netfn = IPMI_NETFN_APP_REQUEST; 5232 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 5233 msg.data = NULL; 5234 msg.data_len = 0; 5235 intf->null_user_handler = device_id_fetcher; 5236 ipmi_panic_request_and_wait(intf, &addr, &msg); 5237 5238 if (intf->local_event_generator) { 5239 /* Request the event receiver from the local MC. */ 5240 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 5241 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 5242 msg.data = NULL; 5243 msg.data_len = 0; 5244 intf->null_user_handler = event_receiver_fetcher; 5245 ipmi_panic_request_and_wait(intf, &addr, &msg); 5246 } 5247 intf->null_user_handler = NULL; 5248 5249 /* 5250 * Validate the event receiver. The low bit must not 5251 * be 1 (it must be a valid IPMB address), it cannot 5252 * be zero, and it must not be my address. 5253 */ 5254 if (((intf->event_receiver & 1) == 0) 5255 && (intf->event_receiver != 0) 5256 && (intf->event_receiver != intf->addrinfo[0].address)) { 5257 /* 5258 * The event receiver is valid, send an IPMB 5259 * message. 5260 */ 5261 ipmb = (struct ipmi_ipmb_addr *) &addr; 5262 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 5263 ipmb->channel = 0; /* FIXME - is this right? */ 5264 ipmb->lun = intf->event_receiver_lun; 5265 ipmb->slave_addr = intf->event_receiver; 5266 } else if (intf->local_sel_device) { 5267 /* 5268 * The event receiver was not valid (or was 5269 * me), but I am an SEL device, just dump it 5270 * in my SEL. 5271 */ 5272 si = (struct ipmi_system_interface_addr *) &addr; 5273 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5274 si->channel = IPMI_BMC_CHANNEL; 5275 si->lun = 0; 5276 } else 5277 return; /* No where to send the event. */ 5278 5279 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 5280 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 5281 msg.data = data; 5282 msg.data_len = 16; 5283 5284 j = 0; 5285 while (*p) { 5286 int size = strlen(p); 5287 5288 if (size > 11) 5289 size = 11; 5290 data[0] = 0; 5291 data[1] = 0; 5292 data[2] = 0xf0; /* OEM event without timestamp. */ 5293 data[3] = intf->addrinfo[0].address; 5294 data[4] = j++; /* sequence # */ 5295 /* 5296 * Always give 11 bytes, so strncpy will fill 5297 * it with zeroes for me. 5298 */ 5299 strncpy(data+5, p, 11); 5300 p += size; 5301 5302 ipmi_panic_request_and_wait(intf, &addr, &msg); 5303 } 5304 } 5305 5306 static int has_panicked; 5307 5308 static int panic_event(struct notifier_block *this, 5309 unsigned long event, 5310 void *ptr) 5311 { 5312 struct ipmi_smi *intf; 5313 struct ipmi_user *user; 5314 5315 if (has_panicked) 5316 return NOTIFY_DONE; 5317 has_panicked = 1; 5318 5319 /* For every registered interface, set it to run to completion. */ 5320 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 5321 if (!intf->handlers || intf->intf_num == -1) 5322 /* Interface is not ready. */ 5323 continue; 5324 5325 if (!intf->handlers->poll) 5326 continue; 5327 5328 /* 5329 * If we were interrupted while locking xmit_msgs_lock or 5330 * waiting_rcv_msgs_lock, the corresponding list may be 5331 * corrupted. In this case, drop items on the list for 5332 * the safety. 5333 */ 5334 if (!spin_trylock(&intf->xmit_msgs_lock)) { 5335 INIT_LIST_HEAD(&intf->xmit_msgs); 5336 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 5337 } else 5338 spin_unlock(&intf->xmit_msgs_lock); 5339 5340 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 5341 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 5342 else 5343 spin_unlock(&intf->waiting_rcv_msgs_lock); 5344 5345 intf->run_to_completion = 1; 5346 if (intf->handlers->set_run_to_completion) 5347 intf->handlers->set_run_to_completion(intf->send_info, 5348 1); 5349 5350 list_for_each_entry_rcu(user, &intf->users, link) { 5351 if (user->handler->ipmi_panic_handler) 5352 user->handler->ipmi_panic_handler( 5353 user->handler_data); 5354 } 5355 5356 send_panic_events(intf, ptr); 5357 } 5358 5359 return NOTIFY_DONE; 5360 } 5361 5362 /* Must be called with ipmi_interfaces_mutex held. */ 5363 static int ipmi_register_driver(void) 5364 { 5365 int rv; 5366 5367 if (drvregistered) 5368 return 0; 5369 5370 rv = driver_register(&ipmidriver.driver); 5371 if (rv) 5372 pr_err("Could not register IPMI driver\n"); 5373 else 5374 drvregistered = true; 5375 return rv; 5376 } 5377 5378 static struct notifier_block panic_block = { 5379 .notifier_call = panic_event, 5380 .next = NULL, 5381 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 5382 }; 5383 5384 static int ipmi_init_msghandler(void) 5385 { 5386 int rv; 5387 5388 mutex_lock(&ipmi_interfaces_mutex); 5389 rv = ipmi_register_driver(); 5390 if (rv) 5391 goto out; 5392 if (initialized) 5393 goto out; 5394 5395 rv = init_srcu_struct(&ipmi_interfaces_srcu); 5396 if (rv) 5397 goto out; 5398 5399 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq"); 5400 if (!remove_work_wq) { 5401 pr_err("unable to create ipmi-msghandler-remove-wq workqueue"); 5402 rv = -ENOMEM; 5403 goto out_wq; 5404 } 5405 5406 timer_setup(&ipmi_timer, ipmi_timeout, 0); 5407 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5408 5409 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 5410 5411 initialized = true; 5412 5413 out_wq: 5414 if (rv) 5415 cleanup_srcu_struct(&ipmi_interfaces_srcu); 5416 out: 5417 mutex_unlock(&ipmi_interfaces_mutex); 5418 return rv; 5419 } 5420 5421 static int __init ipmi_init_msghandler_mod(void) 5422 { 5423 int rv; 5424 5425 pr_info("version " IPMI_DRIVER_VERSION "\n"); 5426 5427 mutex_lock(&ipmi_interfaces_mutex); 5428 rv = ipmi_register_driver(); 5429 mutex_unlock(&ipmi_interfaces_mutex); 5430 5431 return rv; 5432 } 5433 5434 static void __exit cleanup_ipmi(void) 5435 { 5436 int count; 5437 5438 if (initialized) { 5439 destroy_workqueue(remove_work_wq); 5440 5441 atomic_notifier_chain_unregister(&panic_notifier_list, 5442 &panic_block); 5443 5444 /* 5445 * This can't be called if any interfaces exist, so no worry 5446 * about shutting down the interfaces. 5447 */ 5448 5449 /* 5450 * Tell the timer to stop, then wait for it to stop. This 5451 * avoids problems with race conditions removing the timer 5452 * here. 5453 */ 5454 atomic_set(&stop_operation, 1); 5455 del_timer_sync(&ipmi_timer); 5456 5457 initialized = false; 5458 5459 /* Check for buffer leaks. */ 5460 count = atomic_read(&smi_msg_inuse_count); 5461 if (count != 0) 5462 pr_warn("SMI message count %d at exit\n", count); 5463 count = atomic_read(&recv_msg_inuse_count); 5464 if (count != 0) 5465 pr_warn("recv message count %d at exit\n", count); 5466 5467 cleanup_srcu_struct(&ipmi_interfaces_srcu); 5468 } 5469 if (drvregistered) 5470 driver_unregister(&ipmidriver.driver); 5471 } 5472 module_exit(cleanup_ipmi); 5473 5474 module_init(ipmi_init_msghandler_mod); 5475 MODULE_LICENSE("GPL"); 5476 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 5477 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface."); 5478 MODULE_VERSION(IPMI_DRIVER_VERSION); 5479 MODULE_SOFTDEP("post: ipmi_devintf"); 5480