1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <linux/poll.h> 37 #include <linux/sched.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/interrupt.h> 49 50 #define PFX "IPMI message handler: " 51 52 #define IPMI_DRIVER_VERSION "39.2" 53 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 55 static int ipmi_init_msghandler(void); 56 static void smi_recv_tasklet(unsigned long); 57 static void handle_new_recv_msgs(ipmi_smi_t intf); 58 static void need_waiter(ipmi_smi_t intf); 59 static int handle_one_recv_msg(ipmi_smi_t intf, 60 struct ipmi_smi_msg *msg); 61 62 static int initialized; 63 64 #ifdef CONFIG_PROC_FS 65 static struct proc_dir_entry *proc_ipmi_root; 66 #endif /* CONFIG_PROC_FS */ 67 68 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 70 71 #define MAX_EVENTS_IN_QUEUE 25 72 73 /* 74 * Don't let a message sit in a queue forever, always time it with at lest 75 * the max message timer. This is in milliseconds. 76 */ 77 #define MAX_MSG_TIMEOUT 60000 78 79 /* Call every ~1000 ms. */ 80 #define IPMI_TIMEOUT_TIME 1000 81 82 /* How many jiffies does it take to get to the timeout time. */ 83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 84 85 /* 86 * Request events from the queue every second (this is the number of 87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 88 * future, IPMI will add a way to know immediately if an event is in 89 * the queue and this silliness can go away. 90 */ 91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 92 93 /* 94 * The main "user" data structure. 95 */ 96 struct ipmi_user { 97 struct list_head link; 98 99 /* Set to false when the user is destroyed. */ 100 bool valid; 101 102 struct kref refcount; 103 104 /* The upper layer that handles receive messages. */ 105 struct ipmi_user_hndl *handler; 106 void *handler_data; 107 108 /* The interface this user is bound to. */ 109 ipmi_smi_t intf; 110 111 /* Does this interface receive IPMI events? */ 112 bool gets_events; 113 }; 114 115 struct cmd_rcvr { 116 struct list_head link; 117 118 ipmi_user_t user; 119 unsigned char netfn; 120 unsigned char cmd; 121 unsigned int chans; 122 123 /* 124 * This is used to form a linked lised during mass deletion. 125 * Since this is in an RCU list, we cannot use the link above 126 * or change any data until the RCU period completes. So we 127 * use this next variable during mass deletion so we can have 128 * a list and don't have to wait and restart the search on 129 * every individual deletion of a command. 130 */ 131 struct cmd_rcvr *next; 132 }; 133 134 struct seq_table { 135 unsigned int inuse : 1; 136 unsigned int broadcast : 1; 137 138 unsigned long timeout; 139 unsigned long orig_timeout; 140 unsigned int retries_left; 141 142 /* 143 * To verify on an incoming send message response that this is 144 * the message that the response is for, we keep a sequence id 145 * and increment it every time we send a message. 146 */ 147 long seqid; 148 149 /* 150 * This is held so we can properly respond to the message on a 151 * timeout, and it is used to hold the temporary data for 152 * retransmission, too. 153 */ 154 struct ipmi_recv_msg *recv_msg; 155 }; 156 157 /* 158 * Store the information in a msgid (long) to allow us to find a 159 * sequence table entry from the msgid. 160 */ 161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 162 163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 164 do { \ 165 seq = ((msgid >> 26) & 0x3f); \ 166 seqid = (msgid & 0x3fffff); \ 167 } while (0) 168 169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 170 171 struct ipmi_channel { 172 unsigned char medium; 173 unsigned char protocol; 174 175 /* 176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 177 * but may be changed by the user. 178 */ 179 unsigned char address; 180 181 /* 182 * My LUN. This should generally stay the SMS LUN, but just in 183 * case... 184 */ 185 unsigned char lun; 186 }; 187 188 #ifdef CONFIG_PROC_FS 189 struct ipmi_proc_entry { 190 char *name; 191 struct ipmi_proc_entry *next; 192 }; 193 #endif 194 195 struct bmc_device { 196 struct platform_device pdev; 197 struct ipmi_device_id id; 198 unsigned char guid[16]; 199 int guid_set; 200 char name[16]; 201 struct kref usecount; 202 }; 203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 204 205 /* 206 * Various statistics for IPMI, these index stats[] in the ipmi_smi 207 * structure. 208 */ 209 enum ipmi_stat_indexes { 210 /* Commands we got from the user that were invalid. */ 211 IPMI_STAT_sent_invalid_commands = 0, 212 213 /* Commands we sent to the MC. */ 214 IPMI_STAT_sent_local_commands, 215 216 /* Responses from the MC that were delivered to a user. */ 217 IPMI_STAT_handled_local_responses, 218 219 /* Responses from the MC that were not delivered to a user. */ 220 IPMI_STAT_unhandled_local_responses, 221 222 /* Commands we sent out to the IPMB bus. */ 223 IPMI_STAT_sent_ipmb_commands, 224 225 /* Commands sent on the IPMB that had errors on the SEND CMD */ 226 IPMI_STAT_sent_ipmb_command_errs, 227 228 /* Each retransmit increments this count. */ 229 IPMI_STAT_retransmitted_ipmb_commands, 230 231 /* 232 * When a message times out (runs out of retransmits) this is 233 * incremented. 234 */ 235 IPMI_STAT_timed_out_ipmb_commands, 236 237 /* 238 * This is like above, but for broadcasts. Broadcasts are 239 * *not* included in the above count (they are expected to 240 * time out). 241 */ 242 IPMI_STAT_timed_out_ipmb_broadcasts, 243 244 /* Responses I have sent to the IPMB bus. */ 245 IPMI_STAT_sent_ipmb_responses, 246 247 /* The response was delivered to the user. */ 248 IPMI_STAT_handled_ipmb_responses, 249 250 /* The response had invalid data in it. */ 251 IPMI_STAT_invalid_ipmb_responses, 252 253 /* The response didn't have anyone waiting for it. */ 254 IPMI_STAT_unhandled_ipmb_responses, 255 256 /* Commands we sent out to the IPMB bus. */ 257 IPMI_STAT_sent_lan_commands, 258 259 /* Commands sent on the IPMB that had errors on the SEND CMD */ 260 IPMI_STAT_sent_lan_command_errs, 261 262 /* Each retransmit increments this count. */ 263 IPMI_STAT_retransmitted_lan_commands, 264 265 /* 266 * When a message times out (runs out of retransmits) this is 267 * incremented. 268 */ 269 IPMI_STAT_timed_out_lan_commands, 270 271 /* Responses I have sent to the IPMB bus. */ 272 IPMI_STAT_sent_lan_responses, 273 274 /* The response was delivered to the user. */ 275 IPMI_STAT_handled_lan_responses, 276 277 /* The response had invalid data in it. */ 278 IPMI_STAT_invalid_lan_responses, 279 280 /* The response didn't have anyone waiting for it. */ 281 IPMI_STAT_unhandled_lan_responses, 282 283 /* The command was delivered to the user. */ 284 IPMI_STAT_handled_commands, 285 286 /* The command had invalid data in it. */ 287 IPMI_STAT_invalid_commands, 288 289 /* The command didn't have anyone waiting for it. */ 290 IPMI_STAT_unhandled_commands, 291 292 /* Invalid data in an event. */ 293 IPMI_STAT_invalid_events, 294 295 /* Events that were received with the proper format. */ 296 IPMI_STAT_events, 297 298 /* Retransmissions on IPMB that failed. */ 299 IPMI_STAT_dropped_rexmit_ipmb_commands, 300 301 /* Retransmissions on LAN that failed. */ 302 IPMI_STAT_dropped_rexmit_lan_commands, 303 304 /* This *must* remain last, add new values above this. */ 305 IPMI_NUM_STATS 306 }; 307 308 309 #define IPMI_IPMB_NUM_SEQ 64 310 #define IPMI_MAX_CHANNELS 16 311 struct ipmi_smi { 312 /* What interface number are we? */ 313 int intf_num; 314 315 struct kref refcount; 316 317 /* Set when the interface is being unregistered. */ 318 bool in_shutdown; 319 320 /* Used for a list of interfaces. */ 321 struct list_head link; 322 323 /* 324 * The list of upper layers that are using me. seq_lock 325 * protects this. 326 */ 327 struct list_head users; 328 329 /* Information to supply to users. */ 330 unsigned char ipmi_version_major; 331 unsigned char ipmi_version_minor; 332 333 /* Used for wake ups at startup. */ 334 wait_queue_head_t waitq; 335 336 struct bmc_device *bmc; 337 char *my_dev_name; 338 339 /* 340 * This is the lower-layer's sender routine. Note that you 341 * must either be holding the ipmi_interfaces_mutex or be in 342 * an umpreemptible region to use this. You must fetch the 343 * value into a local variable and make sure it is not NULL. 344 */ 345 const struct ipmi_smi_handlers *handlers; 346 void *send_info; 347 348 #ifdef CONFIG_PROC_FS 349 /* A list of proc entries for this interface. */ 350 struct mutex proc_entry_lock; 351 struct ipmi_proc_entry *proc_entries; 352 #endif 353 354 /* Driver-model device for the system interface. */ 355 struct device *si_dev; 356 357 /* 358 * A table of sequence numbers for this interface. We use the 359 * sequence numbers for IPMB messages that go out of the 360 * interface to match them up with their responses. A routine 361 * is called periodically to time the items in this list. 362 */ 363 spinlock_t seq_lock; 364 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 365 int curr_seq; 366 367 /* 368 * Messages queued for delivery. If delivery fails (out of memory 369 * for instance), They will stay in here to be processed later in a 370 * periodic timer interrupt. The tasklet is for handling received 371 * messages directly from the handler. 372 */ 373 spinlock_t waiting_rcv_msgs_lock; 374 struct list_head waiting_rcv_msgs; 375 atomic_t watchdog_pretimeouts_to_deliver; 376 struct tasklet_struct recv_tasklet; 377 378 spinlock_t xmit_msgs_lock; 379 struct list_head xmit_msgs; 380 struct ipmi_smi_msg *curr_msg; 381 struct list_head hp_xmit_msgs; 382 383 /* 384 * The list of command receivers that are registered for commands 385 * on this interface. 386 */ 387 struct mutex cmd_rcvrs_mutex; 388 struct list_head cmd_rcvrs; 389 390 /* 391 * Events that were queues because no one was there to receive 392 * them. 393 */ 394 spinlock_t events_lock; /* For dealing with event stuff. */ 395 struct list_head waiting_events; 396 unsigned int waiting_events_count; /* How many events in queue? */ 397 char delivering_events; 398 char event_msg_printed; 399 atomic_t event_waiters; 400 unsigned int ticks_to_req_ev; 401 int last_needs_timer; 402 403 /* 404 * The event receiver for my BMC, only really used at panic 405 * shutdown as a place to store this. 406 */ 407 unsigned char event_receiver; 408 unsigned char event_receiver_lun; 409 unsigned char local_sel_device; 410 unsigned char local_event_generator; 411 412 /* For handling of maintenance mode. */ 413 int maintenance_mode; 414 bool maintenance_mode_enable; 415 int auto_maintenance_timeout; 416 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 417 418 /* 419 * A cheap hack, if this is non-null and a message to an 420 * interface comes in with a NULL user, call this routine with 421 * it. Note that the message will still be freed by the 422 * caller. This only works on the system interface. 423 */ 424 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 425 426 /* 427 * When we are scanning the channels for an SMI, this will 428 * tell which channel we are scanning. 429 */ 430 int curr_channel; 431 432 /* Channel information */ 433 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 434 435 /* Proc FS stuff. */ 436 struct proc_dir_entry *proc_dir; 437 char proc_dir_name[10]; 438 439 atomic_t stats[IPMI_NUM_STATS]; 440 441 /* 442 * run_to_completion duplicate of smb_info, smi_info 443 * and ipmi_serial_info structures. Used to decrease numbers of 444 * parameters passed by "low" level IPMI code. 445 */ 446 int run_to_completion; 447 }; 448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 449 450 /** 451 * The driver model view of the IPMI messaging driver. 452 */ 453 static struct platform_driver ipmidriver = { 454 .driver = { 455 .name = "ipmi", 456 .bus = &platform_bus_type 457 } 458 }; 459 static DEFINE_MUTEX(ipmidriver_mutex); 460 461 static LIST_HEAD(ipmi_interfaces); 462 static DEFINE_MUTEX(ipmi_interfaces_mutex); 463 464 /* 465 * List of watchers that want to know when smi's are added and deleted. 466 */ 467 static LIST_HEAD(smi_watchers); 468 static DEFINE_MUTEX(smi_watchers_mutex); 469 470 #define ipmi_inc_stat(intf, stat) \ 471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 472 #define ipmi_get_stat(intf, stat) \ 473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 474 475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI", 476 "ACPI", "SMBIOS", "PCI", 477 "device-tree", "default" }; 478 479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 480 { 481 if (src > SI_DEFAULT) 482 src = 0; /* Invalid */ 483 return addr_src_to_str[src]; 484 } 485 EXPORT_SYMBOL(ipmi_addr_src_to_str); 486 487 static int is_lan_addr(struct ipmi_addr *addr) 488 { 489 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 490 } 491 492 static int is_ipmb_addr(struct ipmi_addr *addr) 493 { 494 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 495 } 496 497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 498 { 499 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 500 } 501 502 static void free_recv_msg_list(struct list_head *q) 503 { 504 struct ipmi_recv_msg *msg, *msg2; 505 506 list_for_each_entry_safe(msg, msg2, q, link) { 507 list_del(&msg->link); 508 ipmi_free_recv_msg(msg); 509 } 510 } 511 512 static void free_smi_msg_list(struct list_head *q) 513 { 514 struct ipmi_smi_msg *msg, *msg2; 515 516 list_for_each_entry_safe(msg, msg2, q, link) { 517 list_del(&msg->link); 518 ipmi_free_smi_msg(msg); 519 } 520 } 521 522 static void clean_up_interface_data(ipmi_smi_t intf) 523 { 524 int i; 525 struct cmd_rcvr *rcvr, *rcvr2; 526 struct list_head list; 527 528 tasklet_kill(&intf->recv_tasklet); 529 530 free_smi_msg_list(&intf->waiting_rcv_msgs); 531 free_recv_msg_list(&intf->waiting_events); 532 533 /* 534 * Wholesale remove all the entries from the list in the 535 * interface and wait for RCU to know that none are in use. 536 */ 537 mutex_lock(&intf->cmd_rcvrs_mutex); 538 INIT_LIST_HEAD(&list); 539 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 540 mutex_unlock(&intf->cmd_rcvrs_mutex); 541 542 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 543 kfree(rcvr); 544 545 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 546 if ((intf->seq_table[i].inuse) 547 && (intf->seq_table[i].recv_msg)) 548 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 549 } 550 } 551 552 static void intf_free(struct kref *ref) 553 { 554 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 555 556 clean_up_interface_data(intf); 557 kfree(intf); 558 } 559 560 struct watcher_entry { 561 int intf_num; 562 ipmi_smi_t intf; 563 struct list_head link; 564 }; 565 566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 567 { 568 ipmi_smi_t intf; 569 LIST_HEAD(to_deliver); 570 struct watcher_entry *e, *e2; 571 572 mutex_lock(&smi_watchers_mutex); 573 574 mutex_lock(&ipmi_interfaces_mutex); 575 576 /* Build a list of things to deliver. */ 577 list_for_each_entry(intf, &ipmi_interfaces, link) { 578 if (intf->intf_num == -1) 579 continue; 580 e = kmalloc(sizeof(*e), GFP_KERNEL); 581 if (!e) 582 goto out_err; 583 kref_get(&intf->refcount); 584 e->intf = intf; 585 e->intf_num = intf->intf_num; 586 list_add_tail(&e->link, &to_deliver); 587 } 588 589 /* We will succeed, so add it to the list. */ 590 list_add(&watcher->link, &smi_watchers); 591 592 mutex_unlock(&ipmi_interfaces_mutex); 593 594 list_for_each_entry_safe(e, e2, &to_deliver, link) { 595 list_del(&e->link); 596 watcher->new_smi(e->intf_num, e->intf->si_dev); 597 kref_put(&e->intf->refcount, intf_free); 598 kfree(e); 599 } 600 601 mutex_unlock(&smi_watchers_mutex); 602 603 return 0; 604 605 out_err: 606 mutex_unlock(&ipmi_interfaces_mutex); 607 mutex_unlock(&smi_watchers_mutex); 608 list_for_each_entry_safe(e, e2, &to_deliver, link) { 609 list_del(&e->link); 610 kref_put(&e->intf->refcount, intf_free); 611 kfree(e); 612 } 613 return -ENOMEM; 614 } 615 EXPORT_SYMBOL(ipmi_smi_watcher_register); 616 617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 618 { 619 mutex_lock(&smi_watchers_mutex); 620 list_del(&(watcher->link)); 621 mutex_unlock(&smi_watchers_mutex); 622 return 0; 623 } 624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 625 626 /* 627 * Must be called with smi_watchers_mutex held. 628 */ 629 static void 630 call_smi_watchers(int i, struct device *dev) 631 { 632 struct ipmi_smi_watcher *w; 633 634 list_for_each_entry(w, &smi_watchers, link) { 635 if (try_module_get(w->owner)) { 636 w->new_smi(i, dev); 637 module_put(w->owner); 638 } 639 } 640 } 641 642 static int 643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 644 { 645 if (addr1->addr_type != addr2->addr_type) 646 return 0; 647 648 if (addr1->channel != addr2->channel) 649 return 0; 650 651 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 652 struct ipmi_system_interface_addr *smi_addr1 653 = (struct ipmi_system_interface_addr *) addr1; 654 struct ipmi_system_interface_addr *smi_addr2 655 = (struct ipmi_system_interface_addr *) addr2; 656 return (smi_addr1->lun == smi_addr2->lun); 657 } 658 659 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 660 struct ipmi_ipmb_addr *ipmb_addr1 661 = (struct ipmi_ipmb_addr *) addr1; 662 struct ipmi_ipmb_addr *ipmb_addr2 663 = (struct ipmi_ipmb_addr *) addr2; 664 665 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 666 && (ipmb_addr1->lun == ipmb_addr2->lun)); 667 } 668 669 if (is_lan_addr(addr1)) { 670 struct ipmi_lan_addr *lan_addr1 671 = (struct ipmi_lan_addr *) addr1; 672 struct ipmi_lan_addr *lan_addr2 673 = (struct ipmi_lan_addr *) addr2; 674 675 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 676 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 677 && (lan_addr1->session_handle 678 == lan_addr2->session_handle) 679 && (lan_addr1->lun == lan_addr2->lun)); 680 } 681 682 return 1; 683 } 684 685 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 686 { 687 if (len < sizeof(struct ipmi_system_interface_addr)) 688 return -EINVAL; 689 690 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 691 if (addr->channel != IPMI_BMC_CHANNEL) 692 return -EINVAL; 693 return 0; 694 } 695 696 if ((addr->channel == IPMI_BMC_CHANNEL) 697 || (addr->channel >= IPMI_MAX_CHANNELS) 698 || (addr->channel < 0)) 699 return -EINVAL; 700 701 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 702 if (len < sizeof(struct ipmi_ipmb_addr)) 703 return -EINVAL; 704 return 0; 705 } 706 707 if (is_lan_addr(addr)) { 708 if (len < sizeof(struct ipmi_lan_addr)) 709 return -EINVAL; 710 return 0; 711 } 712 713 return -EINVAL; 714 } 715 EXPORT_SYMBOL(ipmi_validate_addr); 716 717 unsigned int ipmi_addr_length(int addr_type) 718 { 719 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 720 return sizeof(struct ipmi_system_interface_addr); 721 722 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 723 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 724 return sizeof(struct ipmi_ipmb_addr); 725 726 if (addr_type == IPMI_LAN_ADDR_TYPE) 727 return sizeof(struct ipmi_lan_addr); 728 729 return 0; 730 } 731 EXPORT_SYMBOL(ipmi_addr_length); 732 733 static void deliver_response(struct ipmi_recv_msg *msg) 734 { 735 if (!msg->user) { 736 ipmi_smi_t intf = msg->user_msg_data; 737 738 /* Special handling for NULL users. */ 739 if (intf->null_user_handler) { 740 intf->null_user_handler(intf, msg); 741 ipmi_inc_stat(intf, handled_local_responses); 742 } else { 743 /* No handler, so give up. */ 744 ipmi_inc_stat(intf, unhandled_local_responses); 745 } 746 ipmi_free_recv_msg(msg); 747 } else if (!oops_in_progress) { 748 /* 749 * If we are running in the panic context, calling the 750 * receive handler doesn't much meaning and has a deadlock 751 * risk. At this moment, simply skip it in that case. 752 */ 753 754 ipmi_user_t user = msg->user; 755 user->handler->ipmi_recv_hndl(msg, user->handler_data); 756 } 757 } 758 759 static void 760 deliver_err_response(struct ipmi_recv_msg *msg, int err) 761 { 762 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 763 msg->msg_data[0] = err; 764 msg->msg.netfn |= 1; /* Convert to a response. */ 765 msg->msg.data_len = 1; 766 msg->msg.data = msg->msg_data; 767 deliver_response(msg); 768 } 769 770 /* 771 * Find the next sequence number not being used and add the given 772 * message with the given timeout to the sequence table. This must be 773 * called with the interface's seq_lock held. 774 */ 775 static int intf_next_seq(ipmi_smi_t intf, 776 struct ipmi_recv_msg *recv_msg, 777 unsigned long timeout, 778 int retries, 779 int broadcast, 780 unsigned char *seq, 781 long *seqid) 782 { 783 int rv = 0; 784 unsigned int i; 785 786 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 787 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 788 if (!intf->seq_table[i].inuse) 789 break; 790 } 791 792 if (!intf->seq_table[i].inuse) { 793 intf->seq_table[i].recv_msg = recv_msg; 794 795 /* 796 * Start with the maximum timeout, when the send response 797 * comes in we will start the real timer. 798 */ 799 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 800 intf->seq_table[i].orig_timeout = timeout; 801 intf->seq_table[i].retries_left = retries; 802 intf->seq_table[i].broadcast = broadcast; 803 intf->seq_table[i].inuse = 1; 804 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 805 *seq = i; 806 *seqid = intf->seq_table[i].seqid; 807 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 808 need_waiter(intf); 809 } else { 810 rv = -EAGAIN; 811 } 812 813 return rv; 814 } 815 816 /* 817 * Return the receive message for the given sequence number and 818 * release the sequence number so it can be reused. Some other data 819 * is passed in to be sure the message matches up correctly (to help 820 * guard against message coming in after their timeout and the 821 * sequence number being reused). 822 */ 823 static int intf_find_seq(ipmi_smi_t intf, 824 unsigned char seq, 825 short channel, 826 unsigned char cmd, 827 unsigned char netfn, 828 struct ipmi_addr *addr, 829 struct ipmi_recv_msg **recv_msg) 830 { 831 int rv = -ENODEV; 832 unsigned long flags; 833 834 if (seq >= IPMI_IPMB_NUM_SEQ) 835 return -EINVAL; 836 837 spin_lock_irqsave(&(intf->seq_lock), flags); 838 if (intf->seq_table[seq].inuse) { 839 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 840 841 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 842 && (msg->msg.netfn == netfn) 843 && (ipmi_addr_equal(addr, &(msg->addr)))) { 844 *recv_msg = msg; 845 intf->seq_table[seq].inuse = 0; 846 rv = 0; 847 } 848 } 849 spin_unlock_irqrestore(&(intf->seq_lock), flags); 850 851 return rv; 852 } 853 854 855 /* Start the timer for a specific sequence table entry. */ 856 static int intf_start_seq_timer(ipmi_smi_t intf, 857 long msgid) 858 { 859 int rv = -ENODEV; 860 unsigned long flags; 861 unsigned char seq; 862 unsigned long seqid; 863 864 865 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 866 867 spin_lock_irqsave(&(intf->seq_lock), flags); 868 /* 869 * We do this verification because the user can be deleted 870 * while a message is outstanding. 871 */ 872 if ((intf->seq_table[seq].inuse) 873 && (intf->seq_table[seq].seqid == seqid)) { 874 struct seq_table *ent = &(intf->seq_table[seq]); 875 ent->timeout = ent->orig_timeout; 876 rv = 0; 877 } 878 spin_unlock_irqrestore(&(intf->seq_lock), flags); 879 880 return rv; 881 } 882 883 /* Got an error for the send message for a specific sequence number. */ 884 static int intf_err_seq(ipmi_smi_t intf, 885 long msgid, 886 unsigned int err) 887 { 888 int rv = -ENODEV; 889 unsigned long flags; 890 unsigned char seq; 891 unsigned long seqid; 892 struct ipmi_recv_msg *msg = NULL; 893 894 895 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 896 897 spin_lock_irqsave(&(intf->seq_lock), flags); 898 /* 899 * We do this verification because the user can be deleted 900 * while a message is outstanding. 901 */ 902 if ((intf->seq_table[seq].inuse) 903 && (intf->seq_table[seq].seqid == seqid)) { 904 struct seq_table *ent = &(intf->seq_table[seq]); 905 906 ent->inuse = 0; 907 msg = ent->recv_msg; 908 rv = 0; 909 } 910 spin_unlock_irqrestore(&(intf->seq_lock), flags); 911 912 if (msg) 913 deliver_err_response(msg, err); 914 915 return rv; 916 } 917 918 919 int ipmi_create_user(unsigned int if_num, 920 struct ipmi_user_hndl *handler, 921 void *handler_data, 922 ipmi_user_t *user) 923 { 924 unsigned long flags; 925 ipmi_user_t new_user; 926 int rv = 0; 927 ipmi_smi_t intf; 928 929 /* 930 * There is no module usecount here, because it's not 931 * required. Since this can only be used by and called from 932 * other modules, they will implicitly use this module, and 933 * thus this can't be removed unless the other modules are 934 * removed. 935 */ 936 937 if (handler == NULL) 938 return -EINVAL; 939 940 /* 941 * Make sure the driver is actually initialized, this handles 942 * problems with initialization order. 943 */ 944 if (!initialized) { 945 rv = ipmi_init_msghandler(); 946 if (rv) 947 return rv; 948 949 /* 950 * The init code doesn't return an error if it was turned 951 * off, but it won't initialize. Check that. 952 */ 953 if (!initialized) 954 return -ENODEV; 955 } 956 957 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 958 if (!new_user) 959 return -ENOMEM; 960 961 mutex_lock(&ipmi_interfaces_mutex); 962 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 963 if (intf->intf_num == if_num) 964 goto found; 965 } 966 /* Not found, return an error */ 967 rv = -EINVAL; 968 goto out_kfree; 969 970 found: 971 /* Note that each existing user holds a refcount to the interface. */ 972 kref_get(&intf->refcount); 973 974 kref_init(&new_user->refcount); 975 new_user->handler = handler; 976 new_user->handler_data = handler_data; 977 new_user->intf = intf; 978 new_user->gets_events = false; 979 980 if (!try_module_get(intf->handlers->owner)) { 981 rv = -ENODEV; 982 goto out_kref; 983 } 984 985 if (intf->handlers->inc_usecount) { 986 rv = intf->handlers->inc_usecount(intf->send_info); 987 if (rv) { 988 module_put(intf->handlers->owner); 989 goto out_kref; 990 } 991 } 992 993 /* 994 * Hold the lock so intf->handlers is guaranteed to be good 995 * until now 996 */ 997 mutex_unlock(&ipmi_interfaces_mutex); 998 999 new_user->valid = true; 1000 spin_lock_irqsave(&intf->seq_lock, flags); 1001 list_add_rcu(&new_user->link, &intf->users); 1002 spin_unlock_irqrestore(&intf->seq_lock, flags); 1003 if (handler->ipmi_watchdog_pretimeout) { 1004 /* User wants pretimeouts, so make sure to watch for them. */ 1005 if (atomic_inc_return(&intf->event_waiters) == 1) 1006 need_waiter(intf); 1007 } 1008 *user = new_user; 1009 return 0; 1010 1011 out_kref: 1012 kref_put(&intf->refcount, intf_free); 1013 out_kfree: 1014 mutex_unlock(&ipmi_interfaces_mutex); 1015 kfree(new_user); 1016 return rv; 1017 } 1018 EXPORT_SYMBOL(ipmi_create_user); 1019 1020 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1021 { 1022 int rv = 0; 1023 ipmi_smi_t intf; 1024 const struct ipmi_smi_handlers *handlers; 1025 1026 mutex_lock(&ipmi_interfaces_mutex); 1027 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1028 if (intf->intf_num == if_num) 1029 goto found; 1030 } 1031 /* Not found, return an error */ 1032 rv = -EINVAL; 1033 mutex_unlock(&ipmi_interfaces_mutex); 1034 return rv; 1035 1036 found: 1037 handlers = intf->handlers; 1038 rv = -ENOSYS; 1039 if (handlers->get_smi_info) 1040 rv = handlers->get_smi_info(intf->send_info, data); 1041 mutex_unlock(&ipmi_interfaces_mutex); 1042 1043 return rv; 1044 } 1045 EXPORT_SYMBOL(ipmi_get_smi_info); 1046 1047 static void free_user(struct kref *ref) 1048 { 1049 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1050 kfree(user); 1051 } 1052 1053 int ipmi_destroy_user(ipmi_user_t user) 1054 { 1055 ipmi_smi_t intf = user->intf; 1056 int i; 1057 unsigned long flags; 1058 struct cmd_rcvr *rcvr; 1059 struct cmd_rcvr *rcvrs = NULL; 1060 1061 user->valid = false; 1062 1063 if (user->handler->ipmi_watchdog_pretimeout) 1064 atomic_dec(&intf->event_waiters); 1065 1066 if (user->gets_events) 1067 atomic_dec(&intf->event_waiters); 1068 1069 /* Remove the user from the interface's sequence table. */ 1070 spin_lock_irqsave(&intf->seq_lock, flags); 1071 list_del_rcu(&user->link); 1072 1073 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1074 if (intf->seq_table[i].inuse 1075 && (intf->seq_table[i].recv_msg->user == user)) { 1076 intf->seq_table[i].inuse = 0; 1077 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1078 } 1079 } 1080 spin_unlock_irqrestore(&intf->seq_lock, flags); 1081 1082 /* 1083 * Remove the user from the command receiver's table. First 1084 * we build a list of everything (not using the standard link, 1085 * since other things may be using it till we do 1086 * synchronize_rcu()) then free everything in that list. 1087 */ 1088 mutex_lock(&intf->cmd_rcvrs_mutex); 1089 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1090 if (rcvr->user == user) { 1091 list_del_rcu(&rcvr->link); 1092 rcvr->next = rcvrs; 1093 rcvrs = rcvr; 1094 } 1095 } 1096 mutex_unlock(&intf->cmd_rcvrs_mutex); 1097 synchronize_rcu(); 1098 while (rcvrs) { 1099 rcvr = rcvrs; 1100 rcvrs = rcvr->next; 1101 kfree(rcvr); 1102 } 1103 1104 mutex_lock(&ipmi_interfaces_mutex); 1105 if (intf->handlers) { 1106 module_put(intf->handlers->owner); 1107 if (intf->handlers->dec_usecount) 1108 intf->handlers->dec_usecount(intf->send_info); 1109 } 1110 mutex_unlock(&ipmi_interfaces_mutex); 1111 1112 kref_put(&intf->refcount, intf_free); 1113 1114 kref_put(&user->refcount, free_user); 1115 1116 return 0; 1117 } 1118 EXPORT_SYMBOL(ipmi_destroy_user); 1119 1120 void ipmi_get_version(ipmi_user_t user, 1121 unsigned char *major, 1122 unsigned char *minor) 1123 { 1124 *major = user->intf->ipmi_version_major; 1125 *minor = user->intf->ipmi_version_minor; 1126 } 1127 EXPORT_SYMBOL(ipmi_get_version); 1128 1129 int ipmi_set_my_address(ipmi_user_t user, 1130 unsigned int channel, 1131 unsigned char address) 1132 { 1133 if (channel >= IPMI_MAX_CHANNELS) 1134 return -EINVAL; 1135 user->intf->channels[channel].address = address; 1136 return 0; 1137 } 1138 EXPORT_SYMBOL(ipmi_set_my_address); 1139 1140 int ipmi_get_my_address(ipmi_user_t user, 1141 unsigned int channel, 1142 unsigned char *address) 1143 { 1144 if (channel >= IPMI_MAX_CHANNELS) 1145 return -EINVAL; 1146 *address = user->intf->channels[channel].address; 1147 return 0; 1148 } 1149 EXPORT_SYMBOL(ipmi_get_my_address); 1150 1151 int ipmi_set_my_LUN(ipmi_user_t user, 1152 unsigned int channel, 1153 unsigned char LUN) 1154 { 1155 if (channel >= IPMI_MAX_CHANNELS) 1156 return -EINVAL; 1157 user->intf->channels[channel].lun = LUN & 0x3; 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(ipmi_set_my_LUN); 1161 1162 int ipmi_get_my_LUN(ipmi_user_t user, 1163 unsigned int channel, 1164 unsigned char *address) 1165 { 1166 if (channel >= IPMI_MAX_CHANNELS) 1167 return -EINVAL; 1168 *address = user->intf->channels[channel].lun; 1169 return 0; 1170 } 1171 EXPORT_SYMBOL(ipmi_get_my_LUN); 1172 1173 int ipmi_get_maintenance_mode(ipmi_user_t user) 1174 { 1175 int mode; 1176 unsigned long flags; 1177 1178 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1179 mode = user->intf->maintenance_mode; 1180 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1181 1182 return mode; 1183 } 1184 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1185 1186 static void maintenance_mode_update(ipmi_smi_t intf) 1187 { 1188 if (intf->handlers->set_maintenance_mode) 1189 intf->handlers->set_maintenance_mode( 1190 intf->send_info, intf->maintenance_mode_enable); 1191 } 1192 1193 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1194 { 1195 int rv = 0; 1196 unsigned long flags; 1197 ipmi_smi_t intf = user->intf; 1198 1199 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1200 if (intf->maintenance_mode != mode) { 1201 switch (mode) { 1202 case IPMI_MAINTENANCE_MODE_AUTO: 1203 intf->maintenance_mode_enable 1204 = (intf->auto_maintenance_timeout > 0); 1205 break; 1206 1207 case IPMI_MAINTENANCE_MODE_OFF: 1208 intf->maintenance_mode_enable = false; 1209 break; 1210 1211 case IPMI_MAINTENANCE_MODE_ON: 1212 intf->maintenance_mode_enable = true; 1213 break; 1214 1215 default: 1216 rv = -EINVAL; 1217 goto out_unlock; 1218 } 1219 intf->maintenance_mode = mode; 1220 1221 maintenance_mode_update(intf); 1222 } 1223 out_unlock: 1224 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1225 1226 return rv; 1227 } 1228 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1229 1230 int ipmi_set_gets_events(ipmi_user_t user, bool val) 1231 { 1232 unsigned long flags; 1233 ipmi_smi_t intf = user->intf; 1234 struct ipmi_recv_msg *msg, *msg2; 1235 struct list_head msgs; 1236 1237 INIT_LIST_HEAD(&msgs); 1238 1239 spin_lock_irqsave(&intf->events_lock, flags); 1240 if (user->gets_events == val) 1241 goto out; 1242 1243 user->gets_events = val; 1244 1245 if (val) { 1246 if (atomic_inc_return(&intf->event_waiters) == 1) 1247 need_waiter(intf); 1248 } else { 1249 atomic_dec(&intf->event_waiters); 1250 } 1251 1252 if (intf->delivering_events) 1253 /* 1254 * Another thread is delivering events for this, so 1255 * let it handle any new events. 1256 */ 1257 goto out; 1258 1259 /* Deliver any queued events. */ 1260 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1261 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1262 list_move_tail(&msg->link, &msgs); 1263 intf->waiting_events_count = 0; 1264 if (intf->event_msg_printed) { 1265 printk(KERN_WARNING PFX "Event queue no longer" 1266 " full\n"); 1267 intf->event_msg_printed = 0; 1268 } 1269 1270 intf->delivering_events = 1; 1271 spin_unlock_irqrestore(&intf->events_lock, flags); 1272 1273 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1274 msg->user = user; 1275 kref_get(&user->refcount); 1276 deliver_response(msg); 1277 } 1278 1279 spin_lock_irqsave(&intf->events_lock, flags); 1280 intf->delivering_events = 0; 1281 } 1282 1283 out: 1284 spin_unlock_irqrestore(&intf->events_lock, flags); 1285 1286 return 0; 1287 } 1288 EXPORT_SYMBOL(ipmi_set_gets_events); 1289 1290 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1291 unsigned char netfn, 1292 unsigned char cmd, 1293 unsigned char chan) 1294 { 1295 struct cmd_rcvr *rcvr; 1296 1297 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1298 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1299 && (rcvr->chans & (1 << chan))) 1300 return rcvr; 1301 } 1302 return NULL; 1303 } 1304 1305 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1306 unsigned char netfn, 1307 unsigned char cmd, 1308 unsigned int chans) 1309 { 1310 struct cmd_rcvr *rcvr; 1311 1312 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1313 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1314 && (rcvr->chans & chans)) 1315 return 0; 1316 } 1317 return 1; 1318 } 1319 1320 int ipmi_register_for_cmd(ipmi_user_t user, 1321 unsigned char netfn, 1322 unsigned char cmd, 1323 unsigned int chans) 1324 { 1325 ipmi_smi_t intf = user->intf; 1326 struct cmd_rcvr *rcvr; 1327 int rv = 0; 1328 1329 1330 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1331 if (!rcvr) 1332 return -ENOMEM; 1333 rcvr->cmd = cmd; 1334 rcvr->netfn = netfn; 1335 rcvr->chans = chans; 1336 rcvr->user = user; 1337 1338 mutex_lock(&intf->cmd_rcvrs_mutex); 1339 /* Make sure the command/netfn is not already registered. */ 1340 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1341 rv = -EBUSY; 1342 goto out_unlock; 1343 } 1344 1345 if (atomic_inc_return(&intf->event_waiters) == 1) 1346 need_waiter(intf); 1347 1348 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1349 1350 out_unlock: 1351 mutex_unlock(&intf->cmd_rcvrs_mutex); 1352 if (rv) 1353 kfree(rcvr); 1354 1355 return rv; 1356 } 1357 EXPORT_SYMBOL(ipmi_register_for_cmd); 1358 1359 int ipmi_unregister_for_cmd(ipmi_user_t user, 1360 unsigned char netfn, 1361 unsigned char cmd, 1362 unsigned int chans) 1363 { 1364 ipmi_smi_t intf = user->intf; 1365 struct cmd_rcvr *rcvr; 1366 struct cmd_rcvr *rcvrs = NULL; 1367 int i, rv = -ENOENT; 1368 1369 mutex_lock(&intf->cmd_rcvrs_mutex); 1370 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1371 if (((1 << i) & chans) == 0) 1372 continue; 1373 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1374 if (rcvr == NULL) 1375 continue; 1376 if (rcvr->user == user) { 1377 rv = 0; 1378 rcvr->chans &= ~chans; 1379 if (rcvr->chans == 0) { 1380 list_del_rcu(&rcvr->link); 1381 rcvr->next = rcvrs; 1382 rcvrs = rcvr; 1383 } 1384 } 1385 } 1386 mutex_unlock(&intf->cmd_rcvrs_mutex); 1387 synchronize_rcu(); 1388 while (rcvrs) { 1389 atomic_dec(&intf->event_waiters); 1390 rcvr = rcvrs; 1391 rcvrs = rcvr->next; 1392 kfree(rcvr); 1393 } 1394 return rv; 1395 } 1396 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1397 1398 static unsigned char 1399 ipmb_checksum(unsigned char *data, int size) 1400 { 1401 unsigned char csum = 0; 1402 1403 for (; size > 0; size--, data++) 1404 csum += *data; 1405 1406 return -csum; 1407 } 1408 1409 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1410 struct kernel_ipmi_msg *msg, 1411 struct ipmi_ipmb_addr *ipmb_addr, 1412 long msgid, 1413 unsigned char ipmb_seq, 1414 int broadcast, 1415 unsigned char source_address, 1416 unsigned char source_lun) 1417 { 1418 int i = broadcast; 1419 1420 /* Format the IPMB header data. */ 1421 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1422 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1423 smi_msg->data[2] = ipmb_addr->channel; 1424 if (broadcast) 1425 smi_msg->data[3] = 0; 1426 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1427 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1428 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1429 smi_msg->data[i+6] = source_address; 1430 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1431 smi_msg->data[i+8] = msg->cmd; 1432 1433 /* Now tack on the data to the message. */ 1434 if (msg->data_len > 0) 1435 memcpy(&(smi_msg->data[i+9]), msg->data, 1436 msg->data_len); 1437 smi_msg->data_size = msg->data_len + 9; 1438 1439 /* Now calculate the checksum and tack it on. */ 1440 smi_msg->data[i+smi_msg->data_size] 1441 = ipmb_checksum(&(smi_msg->data[i+6]), 1442 smi_msg->data_size-6); 1443 1444 /* 1445 * Add on the checksum size and the offset from the 1446 * broadcast. 1447 */ 1448 smi_msg->data_size += 1 + i; 1449 1450 smi_msg->msgid = msgid; 1451 } 1452 1453 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1454 struct kernel_ipmi_msg *msg, 1455 struct ipmi_lan_addr *lan_addr, 1456 long msgid, 1457 unsigned char ipmb_seq, 1458 unsigned char source_lun) 1459 { 1460 /* Format the IPMB header data. */ 1461 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1462 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1463 smi_msg->data[2] = lan_addr->channel; 1464 smi_msg->data[3] = lan_addr->session_handle; 1465 smi_msg->data[4] = lan_addr->remote_SWID; 1466 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1467 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1468 smi_msg->data[7] = lan_addr->local_SWID; 1469 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1470 smi_msg->data[9] = msg->cmd; 1471 1472 /* Now tack on the data to the message. */ 1473 if (msg->data_len > 0) 1474 memcpy(&(smi_msg->data[10]), msg->data, 1475 msg->data_len); 1476 smi_msg->data_size = msg->data_len + 10; 1477 1478 /* Now calculate the checksum and tack it on. */ 1479 smi_msg->data[smi_msg->data_size] 1480 = ipmb_checksum(&(smi_msg->data[7]), 1481 smi_msg->data_size-7); 1482 1483 /* 1484 * Add on the checksum size and the offset from the 1485 * broadcast. 1486 */ 1487 smi_msg->data_size += 1; 1488 1489 smi_msg->msgid = msgid; 1490 } 1491 1492 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf, 1493 struct ipmi_smi_msg *smi_msg, 1494 int priority) 1495 { 1496 if (intf->curr_msg) { 1497 if (priority > 0) 1498 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1499 else 1500 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1501 smi_msg = NULL; 1502 } else { 1503 intf->curr_msg = smi_msg; 1504 } 1505 1506 return smi_msg; 1507 } 1508 1509 1510 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers, 1511 struct ipmi_smi_msg *smi_msg, int priority) 1512 { 1513 int run_to_completion = intf->run_to_completion; 1514 1515 if (run_to_completion) { 1516 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1517 } else { 1518 unsigned long flags; 1519 1520 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1521 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1522 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1523 } 1524 1525 if (smi_msg) 1526 handlers->sender(intf->send_info, smi_msg); 1527 } 1528 1529 /* 1530 * Separate from ipmi_request so that the user does not have to be 1531 * supplied in certain circumstances (mainly at panic time). If 1532 * messages are supplied, they will be freed, even if an error 1533 * occurs. 1534 */ 1535 static int i_ipmi_request(ipmi_user_t user, 1536 ipmi_smi_t intf, 1537 struct ipmi_addr *addr, 1538 long msgid, 1539 struct kernel_ipmi_msg *msg, 1540 void *user_msg_data, 1541 void *supplied_smi, 1542 struct ipmi_recv_msg *supplied_recv, 1543 int priority, 1544 unsigned char source_address, 1545 unsigned char source_lun, 1546 int retries, 1547 unsigned int retry_time_ms) 1548 { 1549 int rv = 0; 1550 struct ipmi_smi_msg *smi_msg; 1551 struct ipmi_recv_msg *recv_msg; 1552 unsigned long flags; 1553 1554 1555 if (supplied_recv) 1556 recv_msg = supplied_recv; 1557 else { 1558 recv_msg = ipmi_alloc_recv_msg(); 1559 if (recv_msg == NULL) 1560 return -ENOMEM; 1561 } 1562 recv_msg->user_msg_data = user_msg_data; 1563 1564 if (supplied_smi) 1565 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1566 else { 1567 smi_msg = ipmi_alloc_smi_msg(); 1568 if (smi_msg == NULL) { 1569 ipmi_free_recv_msg(recv_msg); 1570 return -ENOMEM; 1571 } 1572 } 1573 1574 rcu_read_lock(); 1575 if (intf->in_shutdown) { 1576 rv = -ENODEV; 1577 goto out_err; 1578 } 1579 1580 recv_msg->user = user; 1581 if (user) 1582 kref_get(&user->refcount); 1583 recv_msg->msgid = msgid; 1584 /* 1585 * Store the message to send in the receive message so timeout 1586 * responses can get the proper response data. 1587 */ 1588 recv_msg->msg = *msg; 1589 1590 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1591 struct ipmi_system_interface_addr *smi_addr; 1592 1593 if (msg->netfn & 1) { 1594 /* Responses are not allowed to the SMI. */ 1595 rv = -EINVAL; 1596 goto out_err; 1597 } 1598 1599 smi_addr = (struct ipmi_system_interface_addr *) addr; 1600 if (smi_addr->lun > 3) { 1601 ipmi_inc_stat(intf, sent_invalid_commands); 1602 rv = -EINVAL; 1603 goto out_err; 1604 } 1605 1606 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1607 1608 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1609 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1610 || (msg->cmd == IPMI_GET_MSG_CMD) 1611 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1612 /* 1613 * We don't let the user do these, since we manage 1614 * the sequence numbers. 1615 */ 1616 ipmi_inc_stat(intf, sent_invalid_commands); 1617 rv = -EINVAL; 1618 goto out_err; 1619 } 1620 1621 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1622 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1623 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1624 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1625 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1626 intf->auto_maintenance_timeout 1627 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1628 if (!intf->maintenance_mode 1629 && !intf->maintenance_mode_enable) { 1630 intf->maintenance_mode_enable = true; 1631 maintenance_mode_update(intf); 1632 } 1633 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1634 flags); 1635 } 1636 1637 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1638 ipmi_inc_stat(intf, sent_invalid_commands); 1639 rv = -EMSGSIZE; 1640 goto out_err; 1641 } 1642 1643 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1644 smi_msg->data[1] = msg->cmd; 1645 smi_msg->msgid = msgid; 1646 smi_msg->user_data = recv_msg; 1647 if (msg->data_len > 0) 1648 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1649 smi_msg->data_size = msg->data_len + 2; 1650 ipmi_inc_stat(intf, sent_local_commands); 1651 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1652 struct ipmi_ipmb_addr *ipmb_addr; 1653 unsigned char ipmb_seq; 1654 long seqid; 1655 int broadcast = 0; 1656 1657 if (addr->channel >= IPMI_MAX_CHANNELS) { 1658 ipmi_inc_stat(intf, sent_invalid_commands); 1659 rv = -EINVAL; 1660 goto out_err; 1661 } 1662 1663 if (intf->channels[addr->channel].medium 1664 != IPMI_CHANNEL_MEDIUM_IPMB) { 1665 ipmi_inc_stat(intf, sent_invalid_commands); 1666 rv = -EINVAL; 1667 goto out_err; 1668 } 1669 1670 if (retries < 0) { 1671 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1672 retries = 0; /* Don't retry broadcasts. */ 1673 else 1674 retries = 4; 1675 } 1676 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1677 /* 1678 * Broadcasts add a zero at the beginning of the 1679 * message, but otherwise is the same as an IPMB 1680 * address. 1681 */ 1682 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1683 broadcast = 1; 1684 } 1685 1686 1687 /* Default to 1 second retries. */ 1688 if (retry_time_ms == 0) 1689 retry_time_ms = 1000; 1690 1691 /* 1692 * 9 for the header and 1 for the checksum, plus 1693 * possibly one for the broadcast. 1694 */ 1695 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1696 ipmi_inc_stat(intf, sent_invalid_commands); 1697 rv = -EMSGSIZE; 1698 goto out_err; 1699 } 1700 1701 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1702 if (ipmb_addr->lun > 3) { 1703 ipmi_inc_stat(intf, sent_invalid_commands); 1704 rv = -EINVAL; 1705 goto out_err; 1706 } 1707 1708 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1709 1710 if (recv_msg->msg.netfn & 0x1) { 1711 /* 1712 * It's a response, so use the user's sequence 1713 * from msgid. 1714 */ 1715 ipmi_inc_stat(intf, sent_ipmb_responses); 1716 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1717 msgid, broadcast, 1718 source_address, source_lun); 1719 1720 /* 1721 * Save the receive message so we can use it 1722 * to deliver the response. 1723 */ 1724 smi_msg->user_data = recv_msg; 1725 } else { 1726 /* It's a command, so get a sequence for it. */ 1727 1728 spin_lock_irqsave(&(intf->seq_lock), flags); 1729 1730 /* 1731 * Create a sequence number with a 1 second 1732 * timeout and 4 retries. 1733 */ 1734 rv = intf_next_seq(intf, 1735 recv_msg, 1736 retry_time_ms, 1737 retries, 1738 broadcast, 1739 &ipmb_seq, 1740 &seqid); 1741 if (rv) { 1742 /* 1743 * We have used up all the sequence numbers, 1744 * probably, so abort. 1745 */ 1746 spin_unlock_irqrestore(&(intf->seq_lock), 1747 flags); 1748 goto out_err; 1749 } 1750 1751 ipmi_inc_stat(intf, sent_ipmb_commands); 1752 1753 /* 1754 * Store the sequence number in the message, 1755 * so that when the send message response 1756 * comes back we can start the timer. 1757 */ 1758 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1759 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1760 ipmb_seq, broadcast, 1761 source_address, source_lun); 1762 1763 /* 1764 * Copy the message into the recv message data, so we 1765 * can retransmit it later if necessary. 1766 */ 1767 memcpy(recv_msg->msg_data, smi_msg->data, 1768 smi_msg->data_size); 1769 recv_msg->msg.data = recv_msg->msg_data; 1770 recv_msg->msg.data_len = smi_msg->data_size; 1771 1772 /* 1773 * We don't unlock until here, because we need 1774 * to copy the completed message into the 1775 * recv_msg before we release the lock. 1776 * Otherwise, race conditions may bite us. I 1777 * know that's pretty paranoid, but I prefer 1778 * to be correct. 1779 */ 1780 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1781 } 1782 } else if (is_lan_addr(addr)) { 1783 struct ipmi_lan_addr *lan_addr; 1784 unsigned char ipmb_seq; 1785 long seqid; 1786 1787 if (addr->channel >= IPMI_MAX_CHANNELS) { 1788 ipmi_inc_stat(intf, sent_invalid_commands); 1789 rv = -EINVAL; 1790 goto out_err; 1791 } 1792 1793 if ((intf->channels[addr->channel].medium 1794 != IPMI_CHANNEL_MEDIUM_8023LAN) 1795 && (intf->channels[addr->channel].medium 1796 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1797 ipmi_inc_stat(intf, sent_invalid_commands); 1798 rv = -EINVAL; 1799 goto out_err; 1800 } 1801 1802 retries = 4; 1803 1804 /* Default to 1 second retries. */ 1805 if (retry_time_ms == 0) 1806 retry_time_ms = 1000; 1807 1808 /* 11 for the header and 1 for the checksum. */ 1809 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1810 ipmi_inc_stat(intf, sent_invalid_commands); 1811 rv = -EMSGSIZE; 1812 goto out_err; 1813 } 1814 1815 lan_addr = (struct ipmi_lan_addr *) addr; 1816 if (lan_addr->lun > 3) { 1817 ipmi_inc_stat(intf, sent_invalid_commands); 1818 rv = -EINVAL; 1819 goto out_err; 1820 } 1821 1822 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1823 1824 if (recv_msg->msg.netfn & 0x1) { 1825 /* 1826 * It's a response, so use the user's sequence 1827 * from msgid. 1828 */ 1829 ipmi_inc_stat(intf, sent_lan_responses); 1830 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1831 msgid, source_lun); 1832 1833 /* 1834 * Save the receive message so we can use it 1835 * to deliver the response. 1836 */ 1837 smi_msg->user_data = recv_msg; 1838 } else { 1839 /* It's a command, so get a sequence for it. */ 1840 1841 spin_lock_irqsave(&(intf->seq_lock), flags); 1842 1843 /* 1844 * Create a sequence number with a 1 second 1845 * timeout and 4 retries. 1846 */ 1847 rv = intf_next_seq(intf, 1848 recv_msg, 1849 retry_time_ms, 1850 retries, 1851 0, 1852 &ipmb_seq, 1853 &seqid); 1854 if (rv) { 1855 /* 1856 * We have used up all the sequence numbers, 1857 * probably, so abort. 1858 */ 1859 spin_unlock_irqrestore(&(intf->seq_lock), 1860 flags); 1861 goto out_err; 1862 } 1863 1864 ipmi_inc_stat(intf, sent_lan_commands); 1865 1866 /* 1867 * Store the sequence number in the message, 1868 * so that when the send message response 1869 * comes back we can start the timer. 1870 */ 1871 format_lan_msg(smi_msg, msg, lan_addr, 1872 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1873 ipmb_seq, source_lun); 1874 1875 /* 1876 * Copy the message into the recv message data, so we 1877 * can retransmit it later if necessary. 1878 */ 1879 memcpy(recv_msg->msg_data, smi_msg->data, 1880 smi_msg->data_size); 1881 recv_msg->msg.data = recv_msg->msg_data; 1882 recv_msg->msg.data_len = smi_msg->data_size; 1883 1884 /* 1885 * We don't unlock until here, because we need 1886 * to copy the completed message into the 1887 * recv_msg before we release the lock. 1888 * Otherwise, race conditions may bite us. I 1889 * know that's pretty paranoid, but I prefer 1890 * to be correct. 1891 */ 1892 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1893 } 1894 } else { 1895 /* Unknown address type. */ 1896 ipmi_inc_stat(intf, sent_invalid_commands); 1897 rv = -EINVAL; 1898 goto out_err; 1899 } 1900 1901 #ifdef DEBUG_MSGING 1902 { 1903 int m; 1904 for (m = 0; m < smi_msg->data_size; m++) 1905 printk(" %2.2x", smi_msg->data[m]); 1906 printk("\n"); 1907 } 1908 #endif 1909 1910 smi_send(intf, intf->handlers, smi_msg, priority); 1911 rcu_read_unlock(); 1912 1913 return 0; 1914 1915 out_err: 1916 rcu_read_unlock(); 1917 ipmi_free_smi_msg(smi_msg); 1918 ipmi_free_recv_msg(recv_msg); 1919 return rv; 1920 } 1921 1922 static int check_addr(ipmi_smi_t intf, 1923 struct ipmi_addr *addr, 1924 unsigned char *saddr, 1925 unsigned char *lun) 1926 { 1927 if (addr->channel >= IPMI_MAX_CHANNELS) 1928 return -EINVAL; 1929 *lun = intf->channels[addr->channel].lun; 1930 *saddr = intf->channels[addr->channel].address; 1931 return 0; 1932 } 1933 1934 int ipmi_request_settime(ipmi_user_t user, 1935 struct ipmi_addr *addr, 1936 long msgid, 1937 struct kernel_ipmi_msg *msg, 1938 void *user_msg_data, 1939 int priority, 1940 int retries, 1941 unsigned int retry_time_ms) 1942 { 1943 unsigned char saddr = 0, lun = 0; 1944 int rv; 1945 1946 if (!user) 1947 return -EINVAL; 1948 rv = check_addr(user->intf, addr, &saddr, &lun); 1949 if (rv) 1950 return rv; 1951 return i_ipmi_request(user, 1952 user->intf, 1953 addr, 1954 msgid, 1955 msg, 1956 user_msg_data, 1957 NULL, NULL, 1958 priority, 1959 saddr, 1960 lun, 1961 retries, 1962 retry_time_ms); 1963 } 1964 EXPORT_SYMBOL(ipmi_request_settime); 1965 1966 int ipmi_request_supply_msgs(ipmi_user_t user, 1967 struct ipmi_addr *addr, 1968 long msgid, 1969 struct kernel_ipmi_msg *msg, 1970 void *user_msg_data, 1971 void *supplied_smi, 1972 struct ipmi_recv_msg *supplied_recv, 1973 int priority) 1974 { 1975 unsigned char saddr = 0, lun = 0; 1976 int rv; 1977 1978 if (!user) 1979 return -EINVAL; 1980 rv = check_addr(user->intf, addr, &saddr, &lun); 1981 if (rv) 1982 return rv; 1983 return i_ipmi_request(user, 1984 user->intf, 1985 addr, 1986 msgid, 1987 msg, 1988 user_msg_data, 1989 supplied_smi, 1990 supplied_recv, 1991 priority, 1992 saddr, 1993 lun, 1994 -1, 0); 1995 } 1996 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1997 1998 #ifdef CONFIG_PROC_FS 1999 static int smi_ipmb_proc_show(struct seq_file *m, void *v) 2000 { 2001 ipmi_smi_t intf = m->private; 2002 int i; 2003 2004 seq_printf(m, "%x", intf->channels[0].address); 2005 for (i = 1; i < IPMI_MAX_CHANNELS; i++) 2006 seq_printf(m, " %x", intf->channels[i].address); 2007 seq_putc(m, '\n'); 2008 2009 return 0; 2010 } 2011 2012 static int smi_ipmb_proc_open(struct inode *inode, struct file *file) 2013 { 2014 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode)); 2015 } 2016 2017 static const struct file_operations smi_ipmb_proc_ops = { 2018 .open = smi_ipmb_proc_open, 2019 .read = seq_read, 2020 .llseek = seq_lseek, 2021 .release = single_release, 2022 }; 2023 2024 static int smi_version_proc_show(struct seq_file *m, void *v) 2025 { 2026 ipmi_smi_t intf = m->private; 2027 2028 seq_printf(m, "%u.%u\n", 2029 ipmi_version_major(&intf->bmc->id), 2030 ipmi_version_minor(&intf->bmc->id)); 2031 2032 return 0; 2033 } 2034 2035 static int smi_version_proc_open(struct inode *inode, struct file *file) 2036 { 2037 return single_open(file, smi_version_proc_show, PDE_DATA(inode)); 2038 } 2039 2040 static const struct file_operations smi_version_proc_ops = { 2041 .open = smi_version_proc_open, 2042 .read = seq_read, 2043 .llseek = seq_lseek, 2044 .release = single_release, 2045 }; 2046 2047 static int smi_stats_proc_show(struct seq_file *m, void *v) 2048 { 2049 ipmi_smi_t intf = m->private; 2050 2051 seq_printf(m, "sent_invalid_commands: %u\n", 2052 ipmi_get_stat(intf, sent_invalid_commands)); 2053 seq_printf(m, "sent_local_commands: %u\n", 2054 ipmi_get_stat(intf, sent_local_commands)); 2055 seq_printf(m, "handled_local_responses: %u\n", 2056 ipmi_get_stat(intf, handled_local_responses)); 2057 seq_printf(m, "unhandled_local_responses: %u\n", 2058 ipmi_get_stat(intf, unhandled_local_responses)); 2059 seq_printf(m, "sent_ipmb_commands: %u\n", 2060 ipmi_get_stat(intf, sent_ipmb_commands)); 2061 seq_printf(m, "sent_ipmb_command_errs: %u\n", 2062 ipmi_get_stat(intf, sent_ipmb_command_errs)); 2063 seq_printf(m, "retransmitted_ipmb_commands: %u\n", 2064 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 2065 seq_printf(m, "timed_out_ipmb_commands: %u\n", 2066 ipmi_get_stat(intf, timed_out_ipmb_commands)); 2067 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n", 2068 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 2069 seq_printf(m, "sent_ipmb_responses: %u\n", 2070 ipmi_get_stat(intf, sent_ipmb_responses)); 2071 seq_printf(m, "handled_ipmb_responses: %u\n", 2072 ipmi_get_stat(intf, handled_ipmb_responses)); 2073 seq_printf(m, "invalid_ipmb_responses: %u\n", 2074 ipmi_get_stat(intf, invalid_ipmb_responses)); 2075 seq_printf(m, "unhandled_ipmb_responses: %u\n", 2076 ipmi_get_stat(intf, unhandled_ipmb_responses)); 2077 seq_printf(m, "sent_lan_commands: %u\n", 2078 ipmi_get_stat(intf, sent_lan_commands)); 2079 seq_printf(m, "sent_lan_command_errs: %u\n", 2080 ipmi_get_stat(intf, sent_lan_command_errs)); 2081 seq_printf(m, "retransmitted_lan_commands: %u\n", 2082 ipmi_get_stat(intf, retransmitted_lan_commands)); 2083 seq_printf(m, "timed_out_lan_commands: %u\n", 2084 ipmi_get_stat(intf, timed_out_lan_commands)); 2085 seq_printf(m, "sent_lan_responses: %u\n", 2086 ipmi_get_stat(intf, sent_lan_responses)); 2087 seq_printf(m, "handled_lan_responses: %u\n", 2088 ipmi_get_stat(intf, handled_lan_responses)); 2089 seq_printf(m, "invalid_lan_responses: %u\n", 2090 ipmi_get_stat(intf, invalid_lan_responses)); 2091 seq_printf(m, "unhandled_lan_responses: %u\n", 2092 ipmi_get_stat(intf, unhandled_lan_responses)); 2093 seq_printf(m, "handled_commands: %u\n", 2094 ipmi_get_stat(intf, handled_commands)); 2095 seq_printf(m, "invalid_commands: %u\n", 2096 ipmi_get_stat(intf, invalid_commands)); 2097 seq_printf(m, "unhandled_commands: %u\n", 2098 ipmi_get_stat(intf, unhandled_commands)); 2099 seq_printf(m, "invalid_events: %u\n", 2100 ipmi_get_stat(intf, invalid_events)); 2101 seq_printf(m, "events: %u\n", 2102 ipmi_get_stat(intf, events)); 2103 seq_printf(m, "failed rexmit LAN msgs: %u\n", 2104 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 2105 seq_printf(m, "failed rexmit IPMB msgs: %u\n", 2106 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 2107 return 0; 2108 } 2109 2110 static int smi_stats_proc_open(struct inode *inode, struct file *file) 2111 { 2112 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 2113 } 2114 2115 static const struct file_operations smi_stats_proc_ops = { 2116 .open = smi_stats_proc_open, 2117 .read = seq_read, 2118 .llseek = seq_lseek, 2119 .release = single_release, 2120 }; 2121 #endif /* CONFIG_PROC_FS */ 2122 2123 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 2124 const struct file_operations *proc_ops, 2125 void *data) 2126 { 2127 int rv = 0; 2128 #ifdef CONFIG_PROC_FS 2129 struct proc_dir_entry *file; 2130 struct ipmi_proc_entry *entry; 2131 2132 /* Create a list element. */ 2133 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2134 if (!entry) 2135 return -ENOMEM; 2136 entry->name = kstrdup(name, GFP_KERNEL); 2137 if (!entry->name) { 2138 kfree(entry); 2139 return -ENOMEM; 2140 } 2141 2142 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data); 2143 if (!file) { 2144 kfree(entry->name); 2145 kfree(entry); 2146 rv = -ENOMEM; 2147 } else { 2148 mutex_lock(&smi->proc_entry_lock); 2149 /* Stick it on the list. */ 2150 entry->next = smi->proc_entries; 2151 smi->proc_entries = entry; 2152 mutex_unlock(&smi->proc_entry_lock); 2153 } 2154 #endif /* CONFIG_PROC_FS */ 2155 2156 return rv; 2157 } 2158 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2159 2160 static int add_proc_entries(ipmi_smi_t smi, int num) 2161 { 2162 int rv = 0; 2163 2164 #ifdef CONFIG_PROC_FS 2165 sprintf(smi->proc_dir_name, "%d", num); 2166 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2167 if (!smi->proc_dir) 2168 rv = -ENOMEM; 2169 2170 if (rv == 0) 2171 rv = ipmi_smi_add_proc_entry(smi, "stats", 2172 &smi_stats_proc_ops, 2173 smi); 2174 2175 if (rv == 0) 2176 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2177 &smi_ipmb_proc_ops, 2178 smi); 2179 2180 if (rv == 0) 2181 rv = ipmi_smi_add_proc_entry(smi, "version", 2182 &smi_version_proc_ops, 2183 smi); 2184 #endif /* CONFIG_PROC_FS */ 2185 2186 return rv; 2187 } 2188 2189 static void remove_proc_entries(ipmi_smi_t smi) 2190 { 2191 #ifdef CONFIG_PROC_FS 2192 struct ipmi_proc_entry *entry; 2193 2194 mutex_lock(&smi->proc_entry_lock); 2195 while (smi->proc_entries) { 2196 entry = smi->proc_entries; 2197 smi->proc_entries = entry->next; 2198 2199 remove_proc_entry(entry->name, smi->proc_dir); 2200 kfree(entry->name); 2201 kfree(entry); 2202 } 2203 mutex_unlock(&smi->proc_entry_lock); 2204 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2205 #endif /* CONFIG_PROC_FS */ 2206 } 2207 2208 static int __find_bmc_guid(struct device *dev, void *data) 2209 { 2210 unsigned char *id = data; 2211 struct bmc_device *bmc = to_bmc_device(dev); 2212 return memcmp(bmc->guid, id, 16) == 0; 2213 } 2214 2215 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2216 unsigned char *guid) 2217 { 2218 struct device *dev; 2219 2220 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2221 if (dev) 2222 return to_bmc_device(dev); 2223 else 2224 return NULL; 2225 } 2226 2227 struct prod_dev_id { 2228 unsigned int product_id; 2229 unsigned char device_id; 2230 }; 2231 2232 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2233 { 2234 struct prod_dev_id *id = data; 2235 struct bmc_device *bmc = to_bmc_device(dev); 2236 2237 return (bmc->id.product_id == id->product_id 2238 && bmc->id.device_id == id->device_id); 2239 } 2240 2241 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2242 struct device_driver *drv, 2243 unsigned int product_id, unsigned char device_id) 2244 { 2245 struct prod_dev_id id = { 2246 .product_id = product_id, 2247 .device_id = device_id, 2248 }; 2249 struct device *dev; 2250 2251 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2252 if (dev) 2253 return to_bmc_device(dev); 2254 else 2255 return NULL; 2256 } 2257 2258 static ssize_t device_id_show(struct device *dev, 2259 struct device_attribute *attr, 2260 char *buf) 2261 { 2262 struct bmc_device *bmc = to_bmc_device(dev); 2263 2264 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2265 } 2266 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL); 2267 2268 static ssize_t provides_device_sdrs_show(struct device *dev, 2269 struct device_attribute *attr, 2270 char *buf) 2271 { 2272 struct bmc_device *bmc = to_bmc_device(dev); 2273 2274 return snprintf(buf, 10, "%u\n", 2275 (bmc->id.device_revision & 0x80) >> 7); 2276 } 2277 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show, 2278 NULL); 2279 2280 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2281 char *buf) 2282 { 2283 struct bmc_device *bmc = to_bmc_device(dev); 2284 2285 return snprintf(buf, 20, "%u\n", 2286 bmc->id.device_revision & 0x0F); 2287 } 2288 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL); 2289 2290 static ssize_t firmware_revision_show(struct device *dev, 2291 struct device_attribute *attr, 2292 char *buf) 2293 { 2294 struct bmc_device *bmc = to_bmc_device(dev); 2295 2296 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2297 bmc->id.firmware_revision_2); 2298 } 2299 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL); 2300 2301 static ssize_t ipmi_version_show(struct device *dev, 2302 struct device_attribute *attr, 2303 char *buf) 2304 { 2305 struct bmc_device *bmc = to_bmc_device(dev); 2306 2307 return snprintf(buf, 20, "%u.%u\n", 2308 ipmi_version_major(&bmc->id), 2309 ipmi_version_minor(&bmc->id)); 2310 } 2311 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL); 2312 2313 static ssize_t add_dev_support_show(struct device *dev, 2314 struct device_attribute *attr, 2315 char *buf) 2316 { 2317 struct bmc_device *bmc = to_bmc_device(dev); 2318 2319 return snprintf(buf, 10, "0x%02x\n", 2320 bmc->id.additional_device_support); 2321 } 2322 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2323 NULL); 2324 2325 static ssize_t manufacturer_id_show(struct device *dev, 2326 struct device_attribute *attr, 2327 char *buf) 2328 { 2329 struct bmc_device *bmc = to_bmc_device(dev); 2330 2331 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2332 } 2333 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL); 2334 2335 static ssize_t product_id_show(struct device *dev, 2336 struct device_attribute *attr, 2337 char *buf) 2338 { 2339 struct bmc_device *bmc = to_bmc_device(dev); 2340 2341 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2342 } 2343 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL); 2344 2345 static ssize_t aux_firmware_rev_show(struct device *dev, 2346 struct device_attribute *attr, 2347 char *buf) 2348 { 2349 struct bmc_device *bmc = to_bmc_device(dev); 2350 2351 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2352 bmc->id.aux_firmware_revision[3], 2353 bmc->id.aux_firmware_revision[2], 2354 bmc->id.aux_firmware_revision[1], 2355 bmc->id.aux_firmware_revision[0]); 2356 } 2357 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2358 2359 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2360 char *buf) 2361 { 2362 struct bmc_device *bmc = to_bmc_device(dev); 2363 2364 return snprintf(buf, 100, "%Lx%Lx\n", 2365 (long long) bmc->guid[0], 2366 (long long) bmc->guid[8]); 2367 } 2368 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL); 2369 2370 static struct attribute *bmc_dev_attrs[] = { 2371 &dev_attr_device_id.attr, 2372 &dev_attr_provides_device_sdrs.attr, 2373 &dev_attr_revision.attr, 2374 &dev_attr_firmware_revision.attr, 2375 &dev_attr_ipmi_version.attr, 2376 &dev_attr_additional_device_support.attr, 2377 &dev_attr_manufacturer_id.attr, 2378 &dev_attr_product_id.attr, 2379 &dev_attr_aux_firmware_revision.attr, 2380 &dev_attr_guid.attr, 2381 NULL 2382 }; 2383 2384 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2385 struct attribute *attr, int idx) 2386 { 2387 struct device *dev = kobj_to_dev(kobj); 2388 struct bmc_device *bmc = to_bmc_device(dev); 2389 umode_t mode = attr->mode; 2390 2391 if (attr == &dev_attr_aux_firmware_revision.attr) 2392 return bmc->id.aux_firmware_revision_set ? mode : 0; 2393 if (attr == &dev_attr_guid.attr) 2394 return bmc->guid_set ? mode : 0; 2395 return mode; 2396 } 2397 2398 static struct attribute_group bmc_dev_attr_group = { 2399 .attrs = bmc_dev_attrs, 2400 .is_visible = bmc_dev_attr_is_visible, 2401 }; 2402 2403 static const struct attribute_group *bmc_dev_attr_groups[] = { 2404 &bmc_dev_attr_group, 2405 NULL 2406 }; 2407 2408 static struct device_type bmc_device_type = { 2409 .groups = bmc_dev_attr_groups, 2410 }; 2411 2412 static void 2413 release_bmc_device(struct device *dev) 2414 { 2415 kfree(to_bmc_device(dev)); 2416 } 2417 2418 static void 2419 cleanup_bmc_device(struct kref *ref) 2420 { 2421 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 2422 2423 platform_device_unregister(&bmc->pdev); 2424 } 2425 2426 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2427 { 2428 struct bmc_device *bmc = intf->bmc; 2429 2430 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 2431 if (intf->my_dev_name) { 2432 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 2433 kfree(intf->my_dev_name); 2434 intf->my_dev_name = NULL; 2435 } 2436 2437 mutex_lock(&ipmidriver_mutex); 2438 kref_put(&bmc->usecount, cleanup_bmc_device); 2439 intf->bmc = NULL; 2440 mutex_unlock(&ipmidriver_mutex); 2441 } 2442 2443 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum) 2444 { 2445 int rv; 2446 struct bmc_device *bmc = intf->bmc; 2447 struct bmc_device *old_bmc; 2448 2449 mutex_lock(&ipmidriver_mutex); 2450 2451 /* 2452 * Try to find if there is an bmc_device struct 2453 * representing the interfaced BMC already 2454 */ 2455 if (bmc->guid_set) 2456 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2457 else 2458 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2459 bmc->id.product_id, 2460 bmc->id.device_id); 2461 2462 /* 2463 * If there is already an bmc_device, free the new one, 2464 * otherwise register the new BMC device 2465 */ 2466 if (old_bmc) { 2467 kfree(bmc); 2468 intf->bmc = old_bmc; 2469 bmc = old_bmc; 2470 2471 kref_get(&bmc->usecount); 2472 mutex_unlock(&ipmidriver_mutex); 2473 2474 printk(KERN_INFO 2475 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2476 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2477 bmc->id.manufacturer_id, 2478 bmc->id.product_id, 2479 bmc->id.device_id); 2480 } else { 2481 unsigned char orig_dev_id = bmc->id.device_id; 2482 int warn_printed = 0; 2483 2484 snprintf(bmc->name, sizeof(bmc->name), 2485 "ipmi_bmc.%4.4x", bmc->id.product_id); 2486 bmc->pdev.name = bmc->name; 2487 2488 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2489 bmc->id.product_id, 2490 bmc->id.device_id)) { 2491 if (!warn_printed) { 2492 printk(KERN_WARNING PFX 2493 "This machine has two different BMCs" 2494 " with the same product id and device" 2495 " id. This is an error in the" 2496 " firmware, but incrementing the" 2497 " device id to work around the problem." 2498 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2499 bmc->id.product_id, bmc->id.device_id); 2500 warn_printed = 1; 2501 } 2502 bmc->id.device_id++; /* Wraps at 255 */ 2503 if (bmc->id.device_id == orig_dev_id) { 2504 printk(KERN_ERR PFX 2505 "Out of device ids!\n"); 2506 break; 2507 } 2508 } 2509 2510 bmc->pdev.dev.driver = &ipmidriver.driver; 2511 bmc->pdev.id = bmc->id.device_id; 2512 bmc->pdev.dev.release = release_bmc_device; 2513 bmc->pdev.dev.type = &bmc_device_type; 2514 kref_init(&bmc->usecount); 2515 2516 rv = platform_device_register(&bmc->pdev); 2517 mutex_unlock(&ipmidriver_mutex); 2518 if (rv) { 2519 put_device(&bmc->pdev.dev); 2520 printk(KERN_ERR 2521 "ipmi_msghandler:" 2522 " Unable to register bmc device: %d\n", 2523 rv); 2524 /* 2525 * Don't go to out_err, you can only do that if 2526 * the device is registered already. 2527 */ 2528 return rv; 2529 } 2530 2531 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2532 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2533 bmc->id.manufacturer_id, 2534 bmc->id.product_id, 2535 bmc->id.device_id); 2536 } 2537 2538 /* 2539 * create symlink from system interface device to bmc device 2540 * and back. 2541 */ 2542 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 2543 if (rv) { 2544 printk(KERN_ERR 2545 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2546 rv); 2547 goto out_err; 2548 } 2549 2550 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum); 2551 if (!intf->my_dev_name) { 2552 rv = -ENOMEM; 2553 printk(KERN_ERR 2554 "ipmi_msghandler: allocate link from BMC: %d\n", 2555 rv); 2556 goto out_err; 2557 } 2558 2559 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 2560 intf->my_dev_name); 2561 if (rv) { 2562 kfree(intf->my_dev_name); 2563 intf->my_dev_name = NULL; 2564 printk(KERN_ERR 2565 "ipmi_msghandler:" 2566 " Unable to create symlink to bmc: %d\n", 2567 rv); 2568 goto out_err; 2569 } 2570 2571 return 0; 2572 2573 out_err: 2574 ipmi_bmc_unregister(intf); 2575 return rv; 2576 } 2577 2578 static int 2579 send_guid_cmd(ipmi_smi_t intf, int chan) 2580 { 2581 struct kernel_ipmi_msg msg; 2582 struct ipmi_system_interface_addr si; 2583 2584 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2585 si.channel = IPMI_BMC_CHANNEL; 2586 si.lun = 0; 2587 2588 msg.netfn = IPMI_NETFN_APP_REQUEST; 2589 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2590 msg.data = NULL; 2591 msg.data_len = 0; 2592 return i_ipmi_request(NULL, 2593 intf, 2594 (struct ipmi_addr *) &si, 2595 0, 2596 &msg, 2597 intf, 2598 NULL, 2599 NULL, 2600 0, 2601 intf->channels[0].address, 2602 intf->channels[0].lun, 2603 -1, 0); 2604 } 2605 2606 static void 2607 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2608 { 2609 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2610 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2611 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2612 /* Not for me */ 2613 return; 2614 2615 if (msg->msg.data[0] != 0) { 2616 /* Error from getting the GUID, the BMC doesn't have one. */ 2617 intf->bmc->guid_set = 0; 2618 goto out; 2619 } 2620 2621 if (msg->msg.data_len < 17) { 2622 intf->bmc->guid_set = 0; 2623 printk(KERN_WARNING PFX 2624 "guid_handler: The GUID response from the BMC was too" 2625 " short, it was %d but should have been 17. Assuming" 2626 " GUID is not available.\n", 2627 msg->msg.data_len); 2628 goto out; 2629 } 2630 2631 memcpy(intf->bmc->guid, msg->msg.data, 16); 2632 intf->bmc->guid_set = 1; 2633 out: 2634 wake_up(&intf->waitq); 2635 } 2636 2637 static void 2638 get_guid(ipmi_smi_t intf) 2639 { 2640 int rv; 2641 2642 intf->bmc->guid_set = 0x2; 2643 intf->null_user_handler = guid_handler; 2644 rv = send_guid_cmd(intf, 0); 2645 if (rv) 2646 /* Send failed, no GUID available. */ 2647 intf->bmc->guid_set = 0; 2648 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2649 intf->null_user_handler = NULL; 2650 } 2651 2652 static int 2653 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2654 { 2655 struct kernel_ipmi_msg msg; 2656 unsigned char data[1]; 2657 struct ipmi_system_interface_addr si; 2658 2659 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2660 si.channel = IPMI_BMC_CHANNEL; 2661 si.lun = 0; 2662 2663 msg.netfn = IPMI_NETFN_APP_REQUEST; 2664 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2665 msg.data = data; 2666 msg.data_len = 1; 2667 data[0] = chan; 2668 return i_ipmi_request(NULL, 2669 intf, 2670 (struct ipmi_addr *) &si, 2671 0, 2672 &msg, 2673 intf, 2674 NULL, 2675 NULL, 2676 0, 2677 intf->channels[0].address, 2678 intf->channels[0].lun, 2679 -1, 0); 2680 } 2681 2682 static void 2683 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2684 { 2685 int rv = 0; 2686 int chan; 2687 2688 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2689 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2690 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2691 /* It's the one we want */ 2692 if (msg->msg.data[0] != 0) { 2693 /* Got an error from the channel, just go on. */ 2694 2695 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2696 /* 2697 * If the MC does not support this 2698 * command, that is legal. We just 2699 * assume it has one IPMB at channel 2700 * zero. 2701 */ 2702 intf->channels[0].medium 2703 = IPMI_CHANNEL_MEDIUM_IPMB; 2704 intf->channels[0].protocol 2705 = IPMI_CHANNEL_PROTOCOL_IPMB; 2706 2707 intf->curr_channel = IPMI_MAX_CHANNELS; 2708 wake_up(&intf->waitq); 2709 goto out; 2710 } 2711 goto next_channel; 2712 } 2713 if (msg->msg.data_len < 4) { 2714 /* Message not big enough, just go on. */ 2715 goto next_channel; 2716 } 2717 chan = intf->curr_channel; 2718 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2719 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2720 2721 next_channel: 2722 intf->curr_channel++; 2723 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2724 wake_up(&intf->waitq); 2725 else 2726 rv = send_channel_info_cmd(intf, intf->curr_channel); 2727 2728 if (rv) { 2729 /* Got an error somehow, just give up. */ 2730 printk(KERN_WARNING PFX 2731 "Error sending channel information for channel" 2732 " %d: %d\n", intf->curr_channel, rv); 2733 2734 intf->curr_channel = IPMI_MAX_CHANNELS; 2735 wake_up(&intf->waitq); 2736 } 2737 } 2738 out: 2739 return; 2740 } 2741 2742 static void ipmi_poll(ipmi_smi_t intf) 2743 { 2744 if (intf->handlers->poll) 2745 intf->handlers->poll(intf->send_info); 2746 /* In case something came in */ 2747 handle_new_recv_msgs(intf); 2748 } 2749 2750 void ipmi_poll_interface(ipmi_user_t user) 2751 { 2752 ipmi_poll(user->intf); 2753 } 2754 EXPORT_SYMBOL(ipmi_poll_interface); 2755 2756 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers, 2757 void *send_info, 2758 struct ipmi_device_id *device_id, 2759 struct device *si_dev, 2760 unsigned char slave_addr) 2761 { 2762 int i, j; 2763 int rv; 2764 ipmi_smi_t intf; 2765 ipmi_smi_t tintf; 2766 struct list_head *link; 2767 2768 /* 2769 * Make sure the driver is actually initialized, this handles 2770 * problems with initialization order. 2771 */ 2772 if (!initialized) { 2773 rv = ipmi_init_msghandler(); 2774 if (rv) 2775 return rv; 2776 /* 2777 * The init code doesn't return an error if it was turned 2778 * off, but it won't initialize. Check that. 2779 */ 2780 if (!initialized) 2781 return -ENODEV; 2782 } 2783 2784 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2785 if (!intf) 2786 return -ENOMEM; 2787 2788 intf->ipmi_version_major = ipmi_version_major(device_id); 2789 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2790 2791 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2792 if (!intf->bmc) { 2793 kfree(intf); 2794 return -ENOMEM; 2795 } 2796 intf->intf_num = -1; /* Mark it invalid for now. */ 2797 kref_init(&intf->refcount); 2798 intf->bmc->id = *device_id; 2799 intf->si_dev = si_dev; 2800 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2801 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2802 intf->channels[j].lun = 2; 2803 } 2804 if (slave_addr != 0) 2805 intf->channels[0].address = slave_addr; 2806 INIT_LIST_HEAD(&intf->users); 2807 intf->handlers = handlers; 2808 intf->send_info = send_info; 2809 spin_lock_init(&intf->seq_lock); 2810 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2811 intf->seq_table[j].inuse = 0; 2812 intf->seq_table[j].seqid = 0; 2813 } 2814 intf->curr_seq = 0; 2815 #ifdef CONFIG_PROC_FS 2816 mutex_init(&intf->proc_entry_lock); 2817 #endif 2818 spin_lock_init(&intf->waiting_rcv_msgs_lock); 2819 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 2820 tasklet_init(&intf->recv_tasklet, 2821 smi_recv_tasklet, 2822 (unsigned long) intf); 2823 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 2824 spin_lock_init(&intf->xmit_msgs_lock); 2825 INIT_LIST_HEAD(&intf->xmit_msgs); 2826 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 2827 spin_lock_init(&intf->events_lock); 2828 atomic_set(&intf->event_waiters, 0); 2829 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 2830 INIT_LIST_HEAD(&intf->waiting_events); 2831 intf->waiting_events_count = 0; 2832 mutex_init(&intf->cmd_rcvrs_mutex); 2833 spin_lock_init(&intf->maintenance_mode_lock); 2834 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2835 init_waitqueue_head(&intf->waitq); 2836 for (i = 0; i < IPMI_NUM_STATS; i++) 2837 atomic_set(&intf->stats[i], 0); 2838 2839 intf->proc_dir = NULL; 2840 2841 mutex_lock(&smi_watchers_mutex); 2842 mutex_lock(&ipmi_interfaces_mutex); 2843 /* Look for a hole in the numbers. */ 2844 i = 0; 2845 link = &ipmi_interfaces; 2846 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2847 if (tintf->intf_num != i) { 2848 link = &tintf->link; 2849 break; 2850 } 2851 i++; 2852 } 2853 /* Add the new interface in numeric order. */ 2854 if (i == 0) 2855 list_add_rcu(&intf->link, &ipmi_interfaces); 2856 else 2857 list_add_tail_rcu(&intf->link, link); 2858 2859 rv = handlers->start_processing(send_info, intf); 2860 if (rv) 2861 goto out; 2862 2863 get_guid(intf); 2864 2865 if ((intf->ipmi_version_major > 1) 2866 || ((intf->ipmi_version_major == 1) 2867 && (intf->ipmi_version_minor >= 5))) { 2868 /* 2869 * Start scanning the channels to see what is 2870 * available. 2871 */ 2872 intf->null_user_handler = channel_handler; 2873 intf->curr_channel = 0; 2874 rv = send_channel_info_cmd(intf, 0); 2875 if (rv) { 2876 printk(KERN_WARNING PFX 2877 "Error sending channel information for channel" 2878 " 0, %d\n", rv); 2879 goto out; 2880 } 2881 2882 /* Wait for the channel info to be read. */ 2883 wait_event(intf->waitq, 2884 intf->curr_channel >= IPMI_MAX_CHANNELS); 2885 intf->null_user_handler = NULL; 2886 } else { 2887 /* Assume a single IPMB channel at zero. */ 2888 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2889 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2890 intf->curr_channel = IPMI_MAX_CHANNELS; 2891 } 2892 2893 if (rv == 0) 2894 rv = add_proc_entries(intf, i); 2895 2896 rv = ipmi_bmc_register(intf, i); 2897 2898 out: 2899 if (rv) { 2900 if (intf->proc_dir) 2901 remove_proc_entries(intf); 2902 intf->handlers = NULL; 2903 list_del_rcu(&intf->link); 2904 mutex_unlock(&ipmi_interfaces_mutex); 2905 mutex_unlock(&smi_watchers_mutex); 2906 synchronize_rcu(); 2907 kref_put(&intf->refcount, intf_free); 2908 } else { 2909 /* 2910 * Keep memory order straight for RCU readers. Make 2911 * sure everything else is committed to memory before 2912 * setting intf_num to mark the interface valid. 2913 */ 2914 smp_wmb(); 2915 intf->intf_num = i; 2916 mutex_unlock(&ipmi_interfaces_mutex); 2917 /* After this point the interface is legal to use. */ 2918 call_smi_watchers(i, intf->si_dev); 2919 mutex_unlock(&smi_watchers_mutex); 2920 } 2921 2922 return rv; 2923 } 2924 EXPORT_SYMBOL(ipmi_register_smi); 2925 2926 static void deliver_smi_err_response(ipmi_smi_t intf, 2927 struct ipmi_smi_msg *msg, 2928 unsigned char err) 2929 { 2930 msg->rsp[0] = msg->data[0] | 4; 2931 msg->rsp[1] = msg->data[1]; 2932 msg->rsp[2] = err; 2933 msg->rsp_size = 3; 2934 /* It's an error, so it will never requeue, no need to check return. */ 2935 handle_one_recv_msg(intf, msg); 2936 } 2937 2938 static void cleanup_smi_msgs(ipmi_smi_t intf) 2939 { 2940 int i; 2941 struct seq_table *ent; 2942 struct ipmi_smi_msg *msg; 2943 struct list_head *entry; 2944 struct list_head tmplist; 2945 2946 /* Clear out our transmit queues and hold the messages. */ 2947 INIT_LIST_HEAD(&tmplist); 2948 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 2949 list_splice_tail(&intf->xmit_msgs, &tmplist); 2950 2951 /* Current message first, to preserve order */ 2952 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 2953 /* Wait for the message to clear out. */ 2954 schedule_timeout(1); 2955 } 2956 2957 /* No need for locks, the interface is down. */ 2958 2959 /* 2960 * Return errors for all pending messages in queue and in the 2961 * tables waiting for remote responses. 2962 */ 2963 while (!list_empty(&tmplist)) { 2964 entry = tmplist.next; 2965 list_del(entry); 2966 msg = list_entry(entry, struct ipmi_smi_msg, link); 2967 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 2968 } 2969 2970 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2971 ent = &(intf->seq_table[i]); 2972 if (!ent->inuse) 2973 continue; 2974 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2975 } 2976 } 2977 2978 int ipmi_unregister_smi(ipmi_smi_t intf) 2979 { 2980 struct ipmi_smi_watcher *w; 2981 int intf_num = intf->intf_num; 2982 ipmi_user_t user; 2983 2984 ipmi_bmc_unregister(intf); 2985 2986 mutex_lock(&smi_watchers_mutex); 2987 mutex_lock(&ipmi_interfaces_mutex); 2988 intf->intf_num = -1; 2989 intf->in_shutdown = true; 2990 list_del_rcu(&intf->link); 2991 mutex_unlock(&ipmi_interfaces_mutex); 2992 synchronize_rcu(); 2993 2994 cleanup_smi_msgs(intf); 2995 2996 /* Clean up the effects of users on the lower-level software. */ 2997 mutex_lock(&ipmi_interfaces_mutex); 2998 rcu_read_lock(); 2999 list_for_each_entry_rcu(user, &intf->users, link) { 3000 module_put(intf->handlers->owner); 3001 if (intf->handlers->dec_usecount) 3002 intf->handlers->dec_usecount(intf->send_info); 3003 } 3004 rcu_read_unlock(); 3005 intf->handlers = NULL; 3006 mutex_unlock(&ipmi_interfaces_mutex); 3007 3008 remove_proc_entries(intf); 3009 3010 /* 3011 * Call all the watcher interfaces to tell them that 3012 * an interface is gone. 3013 */ 3014 list_for_each_entry(w, &smi_watchers, link) 3015 w->smi_gone(intf_num); 3016 mutex_unlock(&smi_watchers_mutex); 3017 3018 kref_put(&intf->refcount, intf_free); 3019 return 0; 3020 } 3021 EXPORT_SYMBOL(ipmi_unregister_smi); 3022 3023 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 3024 struct ipmi_smi_msg *msg) 3025 { 3026 struct ipmi_ipmb_addr ipmb_addr; 3027 struct ipmi_recv_msg *recv_msg; 3028 3029 /* 3030 * This is 11, not 10, because the response must contain a 3031 * completion code. 3032 */ 3033 if (msg->rsp_size < 11) { 3034 /* Message not big enough, just ignore it. */ 3035 ipmi_inc_stat(intf, invalid_ipmb_responses); 3036 return 0; 3037 } 3038 3039 if (msg->rsp[2] != 0) { 3040 /* An error getting the response, just ignore it. */ 3041 return 0; 3042 } 3043 3044 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3045 ipmb_addr.slave_addr = msg->rsp[6]; 3046 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3047 ipmb_addr.lun = msg->rsp[7] & 3; 3048 3049 /* 3050 * It's a response from a remote entity. Look up the sequence 3051 * number and handle the response. 3052 */ 3053 if (intf_find_seq(intf, 3054 msg->rsp[7] >> 2, 3055 msg->rsp[3] & 0x0f, 3056 msg->rsp[8], 3057 (msg->rsp[4] >> 2) & (~1), 3058 (struct ipmi_addr *) &(ipmb_addr), 3059 &recv_msg)) { 3060 /* 3061 * We were unable to find the sequence number, 3062 * so just nuke the message. 3063 */ 3064 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3065 return 0; 3066 } 3067 3068 memcpy(recv_msg->msg_data, 3069 &(msg->rsp[9]), 3070 msg->rsp_size - 9); 3071 /* 3072 * The other fields matched, so no need to set them, except 3073 * for netfn, which needs to be the response that was 3074 * returned, not the request value. 3075 */ 3076 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3077 recv_msg->msg.data = recv_msg->msg_data; 3078 recv_msg->msg.data_len = msg->rsp_size - 10; 3079 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3080 ipmi_inc_stat(intf, handled_ipmb_responses); 3081 deliver_response(recv_msg); 3082 3083 return 0; 3084 } 3085 3086 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3087 struct ipmi_smi_msg *msg) 3088 { 3089 struct cmd_rcvr *rcvr; 3090 int rv = 0; 3091 unsigned char netfn; 3092 unsigned char cmd; 3093 unsigned char chan; 3094 ipmi_user_t user = NULL; 3095 struct ipmi_ipmb_addr *ipmb_addr; 3096 struct ipmi_recv_msg *recv_msg; 3097 3098 if (msg->rsp_size < 10) { 3099 /* Message not big enough, just ignore it. */ 3100 ipmi_inc_stat(intf, invalid_commands); 3101 return 0; 3102 } 3103 3104 if (msg->rsp[2] != 0) { 3105 /* An error getting the response, just ignore it. */ 3106 return 0; 3107 } 3108 3109 netfn = msg->rsp[4] >> 2; 3110 cmd = msg->rsp[8]; 3111 chan = msg->rsp[3] & 0xf; 3112 3113 rcu_read_lock(); 3114 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3115 if (rcvr) { 3116 user = rcvr->user; 3117 kref_get(&user->refcount); 3118 } else 3119 user = NULL; 3120 rcu_read_unlock(); 3121 3122 if (user == NULL) { 3123 /* We didn't find a user, deliver an error response. */ 3124 ipmi_inc_stat(intf, unhandled_commands); 3125 3126 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3127 msg->data[1] = IPMI_SEND_MSG_CMD; 3128 msg->data[2] = msg->rsp[3]; 3129 msg->data[3] = msg->rsp[6]; 3130 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3131 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3132 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3133 /* rqseq/lun */ 3134 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3135 msg->data[8] = msg->rsp[8]; /* cmd */ 3136 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3137 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3138 msg->data_size = 11; 3139 3140 #ifdef DEBUG_MSGING 3141 { 3142 int m; 3143 printk("Invalid command:"); 3144 for (m = 0; m < msg->data_size; m++) 3145 printk(" %2.2x", msg->data[m]); 3146 printk("\n"); 3147 } 3148 #endif 3149 rcu_read_lock(); 3150 if (!intf->in_shutdown) { 3151 smi_send(intf, intf->handlers, msg, 0); 3152 /* 3153 * We used the message, so return the value 3154 * that causes it to not be freed or 3155 * queued. 3156 */ 3157 rv = -1; 3158 } 3159 rcu_read_unlock(); 3160 } else { 3161 /* Deliver the message to the user. */ 3162 ipmi_inc_stat(intf, handled_commands); 3163 3164 recv_msg = ipmi_alloc_recv_msg(); 3165 if (!recv_msg) { 3166 /* 3167 * We couldn't allocate memory for the 3168 * message, so requeue it for handling 3169 * later. 3170 */ 3171 rv = 1; 3172 kref_put(&user->refcount, free_user); 3173 } else { 3174 /* Extract the source address from the data. */ 3175 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3176 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3177 ipmb_addr->slave_addr = msg->rsp[6]; 3178 ipmb_addr->lun = msg->rsp[7] & 3; 3179 ipmb_addr->channel = msg->rsp[3] & 0xf; 3180 3181 /* 3182 * Extract the rest of the message information 3183 * from the IPMB header. 3184 */ 3185 recv_msg->user = user; 3186 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3187 recv_msg->msgid = msg->rsp[7] >> 2; 3188 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3189 recv_msg->msg.cmd = msg->rsp[8]; 3190 recv_msg->msg.data = recv_msg->msg_data; 3191 3192 /* 3193 * We chop off 10, not 9 bytes because the checksum 3194 * at the end also needs to be removed. 3195 */ 3196 recv_msg->msg.data_len = msg->rsp_size - 10; 3197 memcpy(recv_msg->msg_data, 3198 &(msg->rsp[9]), 3199 msg->rsp_size - 10); 3200 deliver_response(recv_msg); 3201 } 3202 } 3203 3204 return rv; 3205 } 3206 3207 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3208 struct ipmi_smi_msg *msg) 3209 { 3210 struct ipmi_lan_addr lan_addr; 3211 struct ipmi_recv_msg *recv_msg; 3212 3213 3214 /* 3215 * This is 13, not 12, because the response must contain a 3216 * completion code. 3217 */ 3218 if (msg->rsp_size < 13) { 3219 /* Message not big enough, just ignore it. */ 3220 ipmi_inc_stat(intf, invalid_lan_responses); 3221 return 0; 3222 } 3223 3224 if (msg->rsp[2] != 0) { 3225 /* An error getting the response, just ignore it. */ 3226 return 0; 3227 } 3228 3229 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3230 lan_addr.session_handle = msg->rsp[4]; 3231 lan_addr.remote_SWID = msg->rsp[8]; 3232 lan_addr.local_SWID = msg->rsp[5]; 3233 lan_addr.channel = msg->rsp[3] & 0x0f; 3234 lan_addr.privilege = msg->rsp[3] >> 4; 3235 lan_addr.lun = msg->rsp[9] & 3; 3236 3237 /* 3238 * It's a response from a remote entity. Look up the sequence 3239 * number and handle the response. 3240 */ 3241 if (intf_find_seq(intf, 3242 msg->rsp[9] >> 2, 3243 msg->rsp[3] & 0x0f, 3244 msg->rsp[10], 3245 (msg->rsp[6] >> 2) & (~1), 3246 (struct ipmi_addr *) &(lan_addr), 3247 &recv_msg)) { 3248 /* 3249 * We were unable to find the sequence number, 3250 * so just nuke the message. 3251 */ 3252 ipmi_inc_stat(intf, unhandled_lan_responses); 3253 return 0; 3254 } 3255 3256 memcpy(recv_msg->msg_data, 3257 &(msg->rsp[11]), 3258 msg->rsp_size - 11); 3259 /* 3260 * The other fields matched, so no need to set them, except 3261 * for netfn, which needs to be the response that was 3262 * returned, not the request value. 3263 */ 3264 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3265 recv_msg->msg.data = recv_msg->msg_data; 3266 recv_msg->msg.data_len = msg->rsp_size - 12; 3267 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3268 ipmi_inc_stat(intf, handled_lan_responses); 3269 deliver_response(recv_msg); 3270 3271 return 0; 3272 } 3273 3274 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3275 struct ipmi_smi_msg *msg) 3276 { 3277 struct cmd_rcvr *rcvr; 3278 int rv = 0; 3279 unsigned char netfn; 3280 unsigned char cmd; 3281 unsigned char chan; 3282 ipmi_user_t user = NULL; 3283 struct ipmi_lan_addr *lan_addr; 3284 struct ipmi_recv_msg *recv_msg; 3285 3286 if (msg->rsp_size < 12) { 3287 /* Message not big enough, just ignore it. */ 3288 ipmi_inc_stat(intf, invalid_commands); 3289 return 0; 3290 } 3291 3292 if (msg->rsp[2] != 0) { 3293 /* An error getting the response, just ignore it. */ 3294 return 0; 3295 } 3296 3297 netfn = msg->rsp[6] >> 2; 3298 cmd = msg->rsp[10]; 3299 chan = msg->rsp[3] & 0xf; 3300 3301 rcu_read_lock(); 3302 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3303 if (rcvr) { 3304 user = rcvr->user; 3305 kref_get(&user->refcount); 3306 } else 3307 user = NULL; 3308 rcu_read_unlock(); 3309 3310 if (user == NULL) { 3311 /* We didn't find a user, just give up. */ 3312 ipmi_inc_stat(intf, unhandled_commands); 3313 3314 /* 3315 * Don't do anything with these messages, just allow 3316 * them to be freed. 3317 */ 3318 rv = 0; 3319 } else { 3320 /* Deliver the message to the user. */ 3321 ipmi_inc_stat(intf, handled_commands); 3322 3323 recv_msg = ipmi_alloc_recv_msg(); 3324 if (!recv_msg) { 3325 /* 3326 * We couldn't allocate memory for the 3327 * message, so requeue it for handling later. 3328 */ 3329 rv = 1; 3330 kref_put(&user->refcount, free_user); 3331 } else { 3332 /* Extract the source address from the data. */ 3333 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3334 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3335 lan_addr->session_handle = msg->rsp[4]; 3336 lan_addr->remote_SWID = msg->rsp[8]; 3337 lan_addr->local_SWID = msg->rsp[5]; 3338 lan_addr->lun = msg->rsp[9] & 3; 3339 lan_addr->channel = msg->rsp[3] & 0xf; 3340 lan_addr->privilege = msg->rsp[3] >> 4; 3341 3342 /* 3343 * Extract the rest of the message information 3344 * from the IPMB header. 3345 */ 3346 recv_msg->user = user; 3347 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3348 recv_msg->msgid = msg->rsp[9] >> 2; 3349 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3350 recv_msg->msg.cmd = msg->rsp[10]; 3351 recv_msg->msg.data = recv_msg->msg_data; 3352 3353 /* 3354 * We chop off 12, not 11 bytes because the checksum 3355 * at the end also needs to be removed. 3356 */ 3357 recv_msg->msg.data_len = msg->rsp_size - 12; 3358 memcpy(recv_msg->msg_data, 3359 &(msg->rsp[11]), 3360 msg->rsp_size - 12); 3361 deliver_response(recv_msg); 3362 } 3363 } 3364 3365 return rv; 3366 } 3367 3368 /* 3369 * This routine will handle "Get Message" command responses with 3370 * channels that use an OEM Medium. The message format belongs to 3371 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3372 * Chapter 22, sections 22.6 and 22.24 for more details. 3373 */ 3374 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3375 struct ipmi_smi_msg *msg) 3376 { 3377 struct cmd_rcvr *rcvr; 3378 int rv = 0; 3379 unsigned char netfn; 3380 unsigned char cmd; 3381 unsigned char chan; 3382 ipmi_user_t user = NULL; 3383 struct ipmi_system_interface_addr *smi_addr; 3384 struct ipmi_recv_msg *recv_msg; 3385 3386 /* 3387 * We expect the OEM SW to perform error checking 3388 * so we just do some basic sanity checks 3389 */ 3390 if (msg->rsp_size < 4) { 3391 /* Message not big enough, just ignore it. */ 3392 ipmi_inc_stat(intf, invalid_commands); 3393 return 0; 3394 } 3395 3396 if (msg->rsp[2] != 0) { 3397 /* An error getting the response, just ignore it. */ 3398 return 0; 3399 } 3400 3401 /* 3402 * This is an OEM Message so the OEM needs to know how 3403 * handle the message. We do no interpretation. 3404 */ 3405 netfn = msg->rsp[0] >> 2; 3406 cmd = msg->rsp[1]; 3407 chan = msg->rsp[3] & 0xf; 3408 3409 rcu_read_lock(); 3410 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3411 if (rcvr) { 3412 user = rcvr->user; 3413 kref_get(&user->refcount); 3414 } else 3415 user = NULL; 3416 rcu_read_unlock(); 3417 3418 if (user == NULL) { 3419 /* We didn't find a user, just give up. */ 3420 ipmi_inc_stat(intf, unhandled_commands); 3421 3422 /* 3423 * Don't do anything with these messages, just allow 3424 * them to be freed. 3425 */ 3426 3427 rv = 0; 3428 } else { 3429 /* Deliver the message to the user. */ 3430 ipmi_inc_stat(intf, handled_commands); 3431 3432 recv_msg = ipmi_alloc_recv_msg(); 3433 if (!recv_msg) { 3434 /* 3435 * We couldn't allocate memory for the 3436 * message, so requeue it for handling 3437 * later. 3438 */ 3439 rv = 1; 3440 kref_put(&user->refcount, free_user); 3441 } else { 3442 /* 3443 * OEM Messages are expected to be delivered via 3444 * the system interface to SMS software. We might 3445 * need to visit this again depending on OEM 3446 * requirements 3447 */ 3448 smi_addr = ((struct ipmi_system_interface_addr *) 3449 &(recv_msg->addr)); 3450 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3451 smi_addr->channel = IPMI_BMC_CHANNEL; 3452 smi_addr->lun = msg->rsp[0] & 3; 3453 3454 recv_msg->user = user; 3455 recv_msg->user_msg_data = NULL; 3456 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3457 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3458 recv_msg->msg.cmd = msg->rsp[1]; 3459 recv_msg->msg.data = recv_msg->msg_data; 3460 3461 /* 3462 * The message starts at byte 4 which follows the 3463 * the Channel Byte in the "GET MESSAGE" command 3464 */ 3465 recv_msg->msg.data_len = msg->rsp_size - 4; 3466 memcpy(recv_msg->msg_data, 3467 &(msg->rsp[4]), 3468 msg->rsp_size - 4); 3469 deliver_response(recv_msg); 3470 } 3471 } 3472 3473 return rv; 3474 } 3475 3476 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3477 struct ipmi_smi_msg *msg) 3478 { 3479 struct ipmi_system_interface_addr *smi_addr; 3480 3481 recv_msg->msgid = 0; 3482 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3483 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3484 smi_addr->channel = IPMI_BMC_CHANNEL; 3485 smi_addr->lun = msg->rsp[0] & 3; 3486 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3487 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3488 recv_msg->msg.cmd = msg->rsp[1]; 3489 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3490 recv_msg->msg.data = recv_msg->msg_data; 3491 recv_msg->msg.data_len = msg->rsp_size - 3; 3492 } 3493 3494 static int handle_read_event_rsp(ipmi_smi_t intf, 3495 struct ipmi_smi_msg *msg) 3496 { 3497 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3498 struct list_head msgs; 3499 ipmi_user_t user; 3500 int rv = 0; 3501 int deliver_count = 0; 3502 unsigned long flags; 3503 3504 if (msg->rsp_size < 19) { 3505 /* Message is too small to be an IPMB event. */ 3506 ipmi_inc_stat(intf, invalid_events); 3507 return 0; 3508 } 3509 3510 if (msg->rsp[2] != 0) { 3511 /* An error getting the event, just ignore it. */ 3512 return 0; 3513 } 3514 3515 INIT_LIST_HEAD(&msgs); 3516 3517 spin_lock_irqsave(&intf->events_lock, flags); 3518 3519 ipmi_inc_stat(intf, events); 3520 3521 /* 3522 * Allocate and fill in one message for every user that is 3523 * getting events. 3524 */ 3525 rcu_read_lock(); 3526 list_for_each_entry_rcu(user, &intf->users, link) { 3527 if (!user->gets_events) 3528 continue; 3529 3530 recv_msg = ipmi_alloc_recv_msg(); 3531 if (!recv_msg) { 3532 rcu_read_unlock(); 3533 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3534 link) { 3535 list_del(&recv_msg->link); 3536 ipmi_free_recv_msg(recv_msg); 3537 } 3538 /* 3539 * We couldn't allocate memory for the 3540 * message, so requeue it for handling 3541 * later. 3542 */ 3543 rv = 1; 3544 goto out; 3545 } 3546 3547 deliver_count++; 3548 3549 copy_event_into_recv_msg(recv_msg, msg); 3550 recv_msg->user = user; 3551 kref_get(&user->refcount); 3552 list_add_tail(&(recv_msg->link), &msgs); 3553 } 3554 rcu_read_unlock(); 3555 3556 if (deliver_count) { 3557 /* Now deliver all the messages. */ 3558 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3559 list_del(&recv_msg->link); 3560 deliver_response(recv_msg); 3561 } 3562 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3563 /* 3564 * No one to receive the message, put it in queue if there's 3565 * not already too many things in the queue. 3566 */ 3567 recv_msg = ipmi_alloc_recv_msg(); 3568 if (!recv_msg) { 3569 /* 3570 * We couldn't allocate memory for the 3571 * message, so requeue it for handling 3572 * later. 3573 */ 3574 rv = 1; 3575 goto out; 3576 } 3577 3578 copy_event_into_recv_msg(recv_msg, msg); 3579 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3580 intf->waiting_events_count++; 3581 } else if (!intf->event_msg_printed) { 3582 /* 3583 * There's too many things in the queue, discard this 3584 * message. 3585 */ 3586 printk(KERN_WARNING PFX "Event queue full, discarding" 3587 " incoming events\n"); 3588 intf->event_msg_printed = 1; 3589 } 3590 3591 out: 3592 spin_unlock_irqrestore(&(intf->events_lock), flags); 3593 3594 return rv; 3595 } 3596 3597 static int handle_bmc_rsp(ipmi_smi_t intf, 3598 struct ipmi_smi_msg *msg) 3599 { 3600 struct ipmi_recv_msg *recv_msg; 3601 struct ipmi_user *user; 3602 3603 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3604 if (recv_msg == NULL) { 3605 printk(KERN_WARNING 3606 "IPMI message received with no owner. This\n" 3607 "could be because of a malformed message, or\n" 3608 "because of a hardware error. Contact your\n" 3609 "hardware vender for assistance\n"); 3610 return 0; 3611 } 3612 3613 user = recv_msg->user; 3614 /* Make sure the user still exists. */ 3615 if (user && !user->valid) { 3616 /* The user for the message went away, so give up. */ 3617 ipmi_inc_stat(intf, unhandled_local_responses); 3618 ipmi_free_recv_msg(recv_msg); 3619 } else { 3620 struct ipmi_system_interface_addr *smi_addr; 3621 3622 ipmi_inc_stat(intf, handled_local_responses); 3623 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3624 recv_msg->msgid = msg->msgid; 3625 smi_addr = ((struct ipmi_system_interface_addr *) 3626 &(recv_msg->addr)); 3627 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3628 smi_addr->channel = IPMI_BMC_CHANNEL; 3629 smi_addr->lun = msg->rsp[0] & 3; 3630 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3631 recv_msg->msg.cmd = msg->rsp[1]; 3632 memcpy(recv_msg->msg_data, 3633 &(msg->rsp[2]), 3634 msg->rsp_size - 2); 3635 recv_msg->msg.data = recv_msg->msg_data; 3636 recv_msg->msg.data_len = msg->rsp_size - 2; 3637 deliver_response(recv_msg); 3638 } 3639 3640 return 0; 3641 } 3642 3643 /* 3644 * Handle a received message. Return 1 if the message should be requeued, 3645 * 0 if the message should be freed, or -1 if the message should not 3646 * be freed or requeued. 3647 */ 3648 static int handle_one_recv_msg(ipmi_smi_t intf, 3649 struct ipmi_smi_msg *msg) 3650 { 3651 int requeue; 3652 int chan; 3653 3654 #ifdef DEBUG_MSGING 3655 int m; 3656 printk("Recv:"); 3657 for (m = 0; m < msg->rsp_size; m++) 3658 printk(" %2.2x", msg->rsp[m]); 3659 printk("\n"); 3660 #endif 3661 if (msg->rsp_size < 2) { 3662 /* Message is too small to be correct. */ 3663 printk(KERN_WARNING PFX "BMC returned to small a message" 3664 " for netfn %x cmd %x, got %d bytes\n", 3665 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3666 3667 /* Generate an error response for the message. */ 3668 msg->rsp[0] = msg->data[0] | (1 << 2); 3669 msg->rsp[1] = msg->data[1]; 3670 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3671 msg->rsp_size = 3; 3672 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3673 || (msg->rsp[1] != msg->data[1])) { 3674 /* 3675 * The NetFN and Command in the response is not even 3676 * marginally correct. 3677 */ 3678 printk(KERN_WARNING PFX "BMC returned incorrect response," 3679 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3680 (msg->data[0] >> 2) | 1, msg->data[1], 3681 msg->rsp[0] >> 2, msg->rsp[1]); 3682 3683 /* Generate an error response for the message. */ 3684 msg->rsp[0] = msg->data[0] | (1 << 2); 3685 msg->rsp[1] = msg->data[1]; 3686 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3687 msg->rsp_size = 3; 3688 } 3689 3690 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3691 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3692 && (msg->user_data != NULL)) { 3693 /* 3694 * It's a response to a response we sent. For this we 3695 * deliver a send message response to the user. 3696 */ 3697 struct ipmi_recv_msg *recv_msg = msg->user_data; 3698 3699 requeue = 0; 3700 if (msg->rsp_size < 2) 3701 /* Message is too small to be correct. */ 3702 goto out; 3703 3704 chan = msg->data[2] & 0x0f; 3705 if (chan >= IPMI_MAX_CHANNELS) 3706 /* Invalid channel number */ 3707 goto out; 3708 3709 if (!recv_msg) 3710 goto out; 3711 3712 /* Make sure the user still exists. */ 3713 if (!recv_msg->user || !recv_msg->user->valid) 3714 goto out; 3715 3716 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3717 recv_msg->msg.data = recv_msg->msg_data; 3718 recv_msg->msg.data_len = 1; 3719 recv_msg->msg_data[0] = msg->rsp[2]; 3720 deliver_response(recv_msg); 3721 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3722 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3723 /* It's from the receive queue. */ 3724 chan = msg->rsp[3] & 0xf; 3725 if (chan >= IPMI_MAX_CHANNELS) { 3726 /* Invalid channel number */ 3727 requeue = 0; 3728 goto out; 3729 } 3730 3731 /* 3732 * We need to make sure the channels have been initialized. 3733 * The channel_handler routine will set the "curr_channel" 3734 * equal to or greater than IPMI_MAX_CHANNELS when all the 3735 * channels for this interface have been initialized. 3736 */ 3737 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3738 requeue = 0; /* Throw the message away */ 3739 goto out; 3740 } 3741 3742 switch (intf->channels[chan].medium) { 3743 case IPMI_CHANNEL_MEDIUM_IPMB: 3744 if (msg->rsp[4] & 0x04) { 3745 /* 3746 * It's a response, so find the 3747 * requesting message and send it up. 3748 */ 3749 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3750 } else { 3751 /* 3752 * It's a command to the SMS from some other 3753 * entity. Handle that. 3754 */ 3755 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3756 } 3757 break; 3758 3759 case IPMI_CHANNEL_MEDIUM_8023LAN: 3760 case IPMI_CHANNEL_MEDIUM_ASYNC: 3761 if (msg->rsp[6] & 0x04) { 3762 /* 3763 * It's a response, so find the 3764 * requesting message and send it up. 3765 */ 3766 requeue = handle_lan_get_msg_rsp(intf, msg); 3767 } else { 3768 /* 3769 * It's a command to the SMS from some other 3770 * entity. Handle that. 3771 */ 3772 requeue = handle_lan_get_msg_cmd(intf, msg); 3773 } 3774 break; 3775 3776 default: 3777 /* Check for OEM Channels. Clients had better 3778 register for these commands. */ 3779 if ((intf->channels[chan].medium 3780 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3781 && (intf->channels[chan].medium 3782 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3783 requeue = handle_oem_get_msg_cmd(intf, msg); 3784 } else { 3785 /* 3786 * We don't handle the channel type, so just 3787 * free the message. 3788 */ 3789 requeue = 0; 3790 } 3791 } 3792 3793 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3794 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3795 /* It's an asynchronous event. */ 3796 requeue = handle_read_event_rsp(intf, msg); 3797 } else { 3798 /* It's a response from the local BMC. */ 3799 requeue = handle_bmc_rsp(intf, msg); 3800 } 3801 3802 out: 3803 return requeue; 3804 } 3805 3806 /* 3807 * If there are messages in the queue or pretimeouts, handle them. 3808 */ 3809 static void handle_new_recv_msgs(ipmi_smi_t intf) 3810 { 3811 struct ipmi_smi_msg *smi_msg; 3812 unsigned long flags = 0; 3813 int rv; 3814 int run_to_completion = intf->run_to_completion; 3815 3816 /* See if any waiting messages need to be processed. */ 3817 if (!run_to_completion) 3818 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3819 while (!list_empty(&intf->waiting_rcv_msgs)) { 3820 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 3821 struct ipmi_smi_msg, link); 3822 if (!run_to_completion) 3823 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3824 flags); 3825 rv = handle_one_recv_msg(intf, smi_msg); 3826 if (!run_to_completion) 3827 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3828 if (rv > 0) { 3829 /* 3830 * To preserve message order, quit if we 3831 * can't handle a message. 3832 */ 3833 break; 3834 } else { 3835 list_del(&smi_msg->link); 3836 if (rv == 0) 3837 /* Message handled */ 3838 ipmi_free_smi_msg(smi_msg); 3839 /* If rv < 0, fatal error, del but don't free. */ 3840 } 3841 } 3842 if (!run_to_completion) 3843 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 3844 3845 /* 3846 * If the pretimout count is non-zero, decrement one from it and 3847 * deliver pretimeouts to all the users. 3848 */ 3849 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 3850 ipmi_user_t user; 3851 3852 rcu_read_lock(); 3853 list_for_each_entry_rcu(user, &intf->users, link) { 3854 if (user->handler->ipmi_watchdog_pretimeout) 3855 user->handler->ipmi_watchdog_pretimeout( 3856 user->handler_data); 3857 } 3858 rcu_read_unlock(); 3859 } 3860 } 3861 3862 static void smi_recv_tasklet(unsigned long val) 3863 { 3864 unsigned long flags = 0; /* keep us warning-free. */ 3865 ipmi_smi_t intf = (ipmi_smi_t) val; 3866 int run_to_completion = intf->run_to_completion; 3867 struct ipmi_smi_msg *newmsg = NULL; 3868 3869 /* 3870 * Start the next message if available. 3871 * 3872 * Do this here, not in the actual receiver, because we may deadlock 3873 * because the lower layer is allowed to hold locks while calling 3874 * message delivery. 3875 */ 3876 if (!run_to_completion) 3877 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3878 if (intf->curr_msg == NULL && !intf->in_shutdown) { 3879 struct list_head *entry = NULL; 3880 3881 /* Pick the high priority queue first. */ 3882 if (!list_empty(&intf->hp_xmit_msgs)) 3883 entry = intf->hp_xmit_msgs.next; 3884 else if (!list_empty(&intf->xmit_msgs)) 3885 entry = intf->xmit_msgs.next; 3886 3887 if (entry) { 3888 list_del(entry); 3889 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 3890 intf->curr_msg = newmsg; 3891 } 3892 } 3893 if (!run_to_completion) 3894 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3895 if (newmsg) 3896 intf->handlers->sender(intf->send_info, newmsg); 3897 3898 handle_new_recv_msgs(intf); 3899 } 3900 3901 /* Handle a new message from the lower layer. */ 3902 void ipmi_smi_msg_received(ipmi_smi_t intf, 3903 struct ipmi_smi_msg *msg) 3904 { 3905 unsigned long flags = 0; /* keep us warning-free. */ 3906 int run_to_completion = intf->run_to_completion; 3907 3908 if ((msg->data_size >= 2) 3909 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3910 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3911 && (msg->user_data == NULL)) { 3912 3913 if (intf->in_shutdown) 3914 goto free_msg; 3915 3916 /* 3917 * This is the local response to a command send, start 3918 * the timer for these. The user_data will not be 3919 * NULL if this is a response send, and we will let 3920 * response sends just go through. 3921 */ 3922 3923 /* 3924 * Check for errors, if we get certain errors (ones 3925 * that mean basically we can try again later), we 3926 * ignore them and start the timer. Otherwise we 3927 * report the error immediately. 3928 */ 3929 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3930 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3931 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3932 && (msg->rsp[2] != IPMI_BUS_ERR) 3933 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3934 int chan = msg->rsp[3] & 0xf; 3935 3936 /* Got an error sending the message, handle it. */ 3937 if (chan >= IPMI_MAX_CHANNELS) 3938 ; /* This shouldn't happen */ 3939 else if ((intf->channels[chan].medium 3940 == IPMI_CHANNEL_MEDIUM_8023LAN) 3941 || (intf->channels[chan].medium 3942 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3943 ipmi_inc_stat(intf, sent_lan_command_errs); 3944 else 3945 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3946 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3947 } else 3948 /* The message was sent, start the timer. */ 3949 intf_start_seq_timer(intf, msg->msgid); 3950 3951 free_msg: 3952 ipmi_free_smi_msg(msg); 3953 } else { 3954 /* 3955 * To preserve message order, we keep a queue and deliver from 3956 * a tasklet. 3957 */ 3958 if (!run_to_completion) 3959 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 3960 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 3961 if (!run_to_completion) 3962 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 3963 flags); 3964 } 3965 3966 if (!run_to_completion) 3967 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 3968 /* 3969 * We can get an asynchronous event or receive message in addition 3970 * to commands we send. 3971 */ 3972 if (msg == intf->curr_msg) 3973 intf->curr_msg = NULL; 3974 if (!run_to_completion) 3975 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 3976 3977 if (run_to_completion) 3978 smi_recv_tasklet((unsigned long) intf); 3979 else 3980 tasklet_schedule(&intf->recv_tasklet); 3981 } 3982 EXPORT_SYMBOL(ipmi_smi_msg_received); 3983 3984 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3985 { 3986 if (intf->in_shutdown) 3987 return; 3988 3989 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 3990 tasklet_schedule(&intf->recv_tasklet); 3991 } 3992 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3993 3994 static struct ipmi_smi_msg * 3995 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3996 unsigned char seq, long seqid) 3997 { 3998 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3999 if (!smi_msg) 4000 /* 4001 * If we can't allocate the message, then just return, we 4002 * get 4 retries, so this should be ok. 4003 */ 4004 return NULL; 4005 4006 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4007 smi_msg->data_size = recv_msg->msg.data_len; 4008 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4009 4010 #ifdef DEBUG_MSGING 4011 { 4012 int m; 4013 printk("Resend: "); 4014 for (m = 0; m < smi_msg->data_size; m++) 4015 printk(" %2.2x", smi_msg->data[m]); 4016 printk("\n"); 4017 } 4018 #endif 4019 return smi_msg; 4020 } 4021 4022 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 4023 struct list_head *timeouts, long timeout_period, 4024 int slot, unsigned long *flags, 4025 unsigned int *waiting_msgs) 4026 { 4027 struct ipmi_recv_msg *msg; 4028 const struct ipmi_smi_handlers *handlers; 4029 4030 if (intf->in_shutdown) 4031 return; 4032 4033 if (!ent->inuse) 4034 return; 4035 4036 ent->timeout -= timeout_period; 4037 if (ent->timeout > 0) { 4038 (*waiting_msgs)++; 4039 return; 4040 } 4041 4042 if (ent->retries_left == 0) { 4043 /* The message has used all its retries. */ 4044 ent->inuse = 0; 4045 msg = ent->recv_msg; 4046 list_add_tail(&msg->link, timeouts); 4047 if (ent->broadcast) 4048 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4049 else if (is_lan_addr(&ent->recv_msg->addr)) 4050 ipmi_inc_stat(intf, timed_out_lan_commands); 4051 else 4052 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4053 } else { 4054 struct ipmi_smi_msg *smi_msg; 4055 /* More retries, send again. */ 4056 4057 (*waiting_msgs)++; 4058 4059 /* 4060 * Start with the max timer, set to normal timer after 4061 * the message is sent. 4062 */ 4063 ent->timeout = MAX_MSG_TIMEOUT; 4064 ent->retries_left--; 4065 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4066 ent->seqid); 4067 if (!smi_msg) { 4068 if (is_lan_addr(&ent->recv_msg->addr)) 4069 ipmi_inc_stat(intf, 4070 dropped_rexmit_lan_commands); 4071 else 4072 ipmi_inc_stat(intf, 4073 dropped_rexmit_ipmb_commands); 4074 return; 4075 } 4076 4077 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4078 4079 /* 4080 * Send the new message. We send with a zero 4081 * priority. It timed out, I doubt time is that 4082 * critical now, and high priority messages are really 4083 * only for messages to the local MC, which don't get 4084 * resent. 4085 */ 4086 handlers = intf->handlers; 4087 if (handlers) { 4088 if (is_lan_addr(&ent->recv_msg->addr)) 4089 ipmi_inc_stat(intf, 4090 retransmitted_lan_commands); 4091 else 4092 ipmi_inc_stat(intf, 4093 retransmitted_ipmb_commands); 4094 4095 smi_send(intf, handlers, smi_msg, 0); 4096 } else 4097 ipmi_free_smi_msg(smi_msg); 4098 4099 spin_lock_irqsave(&intf->seq_lock, *flags); 4100 } 4101 } 4102 4103 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period) 4104 { 4105 struct list_head timeouts; 4106 struct ipmi_recv_msg *msg, *msg2; 4107 unsigned long flags; 4108 int i; 4109 unsigned int waiting_msgs = 0; 4110 4111 /* 4112 * Go through the seq table and find any messages that 4113 * have timed out, putting them in the timeouts 4114 * list. 4115 */ 4116 INIT_LIST_HEAD(&timeouts); 4117 spin_lock_irqsave(&intf->seq_lock, flags); 4118 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4119 check_msg_timeout(intf, &(intf->seq_table[i]), 4120 &timeouts, timeout_period, i, 4121 &flags, &waiting_msgs); 4122 spin_unlock_irqrestore(&intf->seq_lock, flags); 4123 4124 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4125 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4126 4127 /* 4128 * Maintenance mode handling. Check the timeout 4129 * optimistically before we claim the lock. It may 4130 * mean a timeout gets missed occasionally, but that 4131 * only means the timeout gets extended by one period 4132 * in that case. No big deal, and it avoids the lock 4133 * most of the time. 4134 */ 4135 if (intf->auto_maintenance_timeout > 0) { 4136 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4137 if (intf->auto_maintenance_timeout > 0) { 4138 intf->auto_maintenance_timeout 4139 -= timeout_period; 4140 if (!intf->maintenance_mode 4141 && (intf->auto_maintenance_timeout <= 0)) { 4142 intf->maintenance_mode_enable = false; 4143 maintenance_mode_update(intf); 4144 } 4145 } 4146 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4147 flags); 4148 } 4149 4150 tasklet_schedule(&intf->recv_tasklet); 4151 4152 return waiting_msgs; 4153 } 4154 4155 static void ipmi_request_event(ipmi_smi_t intf) 4156 { 4157 /* No event requests when in maintenance mode. */ 4158 if (intf->maintenance_mode_enable) 4159 return; 4160 4161 if (!intf->in_shutdown) 4162 intf->handlers->request_events(intf->send_info); 4163 } 4164 4165 static struct timer_list ipmi_timer; 4166 4167 static atomic_t stop_operation; 4168 4169 static void ipmi_timeout(unsigned long data) 4170 { 4171 ipmi_smi_t intf; 4172 int nt = 0; 4173 4174 if (atomic_read(&stop_operation)) 4175 return; 4176 4177 rcu_read_lock(); 4178 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4179 int lnt = 0; 4180 4181 if (atomic_read(&intf->event_waiters)) { 4182 intf->ticks_to_req_ev--; 4183 if (intf->ticks_to_req_ev == 0) { 4184 ipmi_request_event(intf); 4185 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4186 } 4187 lnt++; 4188 } 4189 4190 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 4191 4192 lnt = !!lnt; 4193 if (lnt != intf->last_needs_timer && 4194 intf->handlers->set_need_watch) 4195 intf->handlers->set_need_watch(intf->send_info, lnt); 4196 intf->last_needs_timer = lnt; 4197 4198 nt += lnt; 4199 } 4200 rcu_read_unlock(); 4201 4202 if (nt) 4203 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4204 } 4205 4206 static void need_waiter(ipmi_smi_t intf) 4207 { 4208 /* Racy, but worst case we start the timer twice. */ 4209 if (!timer_pending(&ipmi_timer)) 4210 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4211 } 4212 4213 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4214 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4215 4216 static void free_smi_msg(struct ipmi_smi_msg *msg) 4217 { 4218 atomic_dec(&smi_msg_inuse_count); 4219 kfree(msg); 4220 } 4221 4222 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4223 { 4224 struct ipmi_smi_msg *rv; 4225 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4226 if (rv) { 4227 rv->done = free_smi_msg; 4228 rv->user_data = NULL; 4229 atomic_inc(&smi_msg_inuse_count); 4230 } 4231 return rv; 4232 } 4233 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4234 4235 static void free_recv_msg(struct ipmi_recv_msg *msg) 4236 { 4237 atomic_dec(&recv_msg_inuse_count); 4238 kfree(msg); 4239 } 4240 4241 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4242 { 4243 struct ipmi_recv_msg *rv; 4244 4245 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4246 if (rv) { 4247 rv->user = NULL; 4248 rv->done = free_recv_msg; 4249 atomic_inc(&recv_msg_inuse_count); 4250 } 4251 return rv; 4252 } 4253 4254 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4255 { 4256 if (msg->user) 4257 kref_put(&msg->user->refcount, free_user); 4258 msg->done(msg); 4259 } 4260 EXPORT_SYMBOL(ipmi_free_recv_msg); 4261 4262 #ifdef CONFIG_IPMI_PANIC_EVENT 4263 4264 static atomic_t panic_done_count = ATOMIC_INIT(0); 4265 4266 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4267 { 4268 atomic_dec(&panic_done_count); 4269 } 4270 4271 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4272 { 4273 atomic_dec(&panic_done_count); 4274 } 4275 4276 /* 4277 * Inside a panic, send a message and wait for a response. 4278 */ 4279 static void ipmi_panic_request_and_wait(ipmi_smi_t intf, 4280 struct ipmi_addr *addr, 4281 struct kernel_ipmi_msg *msg) 4282 { 4283 struct ipmi_smi_msg smi_msg; 4284 struct ipmi_recv_msg recv_msg; 4285 int rv; 4286 4287 smi_msg.done = dummy_smi_done_handler; 4288 recv_msg.done = dummy_recv_done_handler; 4289 atomic_add(2, &panic_done_count); 4290 rv = i_ipmi_request(NULL, 4291 intf, 4292 addr, 4293 0, 4294 msg, 4295 intf, 4296 &smi_msg, 4297 &recv_msg, 4298 0, 4299 intf->channels[0].address, 4300 intf->channels[0].lun, 4301 0, 1); /* Don't retry, and don't wait. */ 4302 if (rv) 4303 atomic_sub(2, &panic_done_count); 4304 else if (intf->handlers->flush_messages) 4305 intf->handlers->flush_messages(intf->send_info); 4306 4307 while (atomic_read(&panic_done_count) != 0) 4308 ipmi_poll(intf); 4309 } 4310 4311 #ifdef CONFIG_IPMI_PANIC_STRING 4312 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4313 { 4314 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4315 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4316 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4317 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4318 /* A get event receiver command, save it. */ 4319 intf->event_receiver = msg->msg.data[1]; 4320 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4321 } 4322 } 4323 4324 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4325 { 4326 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4327 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4328 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4329 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4330 /* 4331 * A get device id command, save if we are an event 4332 * receiver or generator. 4333 */ 4334 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4335 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4336 } 4337 } 4338 #endif 4339 4340 static void send_panic_events(char *str) 4341 { 4342 struct kernel_ipmi_msg msg; 4343 ipmi_smi_t intf; 4344 unsigned char data[16]; 4345 struct ipmi_system_interface_addr *si; 4346 struct ipmi_addr addr; 4347 4348 si = (struct ipmi_system_interface_addr *) &addr; 4349 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4350 si->channel = IPMI_BMC_CHANNEL; 4351 si->lun = 0; 4352 4353 /* Fill in an event telling that we have failed. */ 4354 msg.netfn = 0x04; /* Sensor or Event. */ 4355 msg.cmd = 2; /* Platform event command. */ 4356 msg.data = data; 4357 msg.data_len = 8; 4358 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4359 data[1] = 0x03; /* This is for IPMI 1.0. */ 4360 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4361 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4362 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4363 4364 /* 4365 * Put a few breadcrumbs in. Hopefully later we can add more things 4366 * to make the panic events more useful. 4367 */ 4368 if (str) { 4369 data[3] = str[0]; 4370 data[6] = str[1]; 4371 data[7] = str[2]; 4372 } 4373 4374 /* For every registered interface, send the event. */ 4375 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4376 if (!intf->handlers) 4377 /* Interface is not ready. */ 4378 continue; 4379 4380 /* Send the event announcing the panic. */ 4381 ipmi_panic_request_and_wait(intf, &addr, &msg); 4382 } 4383 4384 #ifdef CONFIG_IPMI_PANIC_STRING 4385 /* 4386 * On every interface, dump a bunch of OEM event holding the 4387 * string. 4388 */ 4389 if (!str) 4390 return; 4391 4392 /* For every registered interface, send the event. */ 4393 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4394 char *p = str; 4395 struct ipmi_ipmb_addr *ipmb; 4396 int j; 4397 4398 if (intf->intf_num == -1) 4399 /* Interface was not ready yet. */ 4400 continue; 4401 4402 /* 4403 * intf_num is used as an marker to tell if the 4404 * interface is valid. Thus we need a read barrier to 4405 * make sure data fetched before checking intf_num 4406 * won't be used. 4407 */ 4408 smp_rmb(); 4409 4410 /* 4411 * First job here is to figure out where to send the 4412 * OEM events. There's no way in IPMI to send OEM 4413 * events using an event send command, so we have to 4414 * find the SEL to put them in and stick them in 4415 * there. 4416 */ 4417 4418 /* Get capabilities from the get device id. */ 4419 intf->local_sel_device = 0; 4420 intf->local_event_generator = 0; 4421 intf->event_receiver = 0; 4422 4423 /* Request the device info from the local MC. */ 4424 msg.netfn = IPMI_NETFN_APP_REQUEST; 4425 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4426 msg.data = NULL; 4427 msg.data_len = 0; 4428 intf->null_user_handler = device_id_fetcher; 4429 ipmi_panic_request_and_wait(intf, &addr, &msg); 4430 4431 if (intf->local_event_generator) { 4432 /* Request the event receiver from the local MC. */ 4433 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4434 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4435 msg.data = NULL; 4436 msg.data_len = 0; 4437 intf->null_user_handler = event_receiver_fetcher; 4438 ipmi_panic_request_and_wait(intf, &addr, &msg); 4439 } 4440 intf->null_user_handler = NULL; 4441 4442 /* 4443 * Validate the event receiver. The low bit must not 4444 * be 1 (it must be a valid IPMB address), it cannot 4445 * be zero, and it must not be my address. 4446 */ 4447 if (((intf->event_receiver & 1) == 0) 4448 && (intf->event_receiver != 0) 4449 && (intf->event_receiver != intf->channels[0].address)) { 4450 /* 4451 * The event receiver is valid, send an IPMB 4452 * message. 4453 */ 4454 ipmb = (struct ipmi_ipmb_addr *) &addr; 4455 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4456 ipmb->channel = 0; /* FIXME - is this right? */ 4457 ipmb->lun = intf->event_receiver_lun; 4458 ipmb->slave_addr = intf->event_receiver; 4459 } else if (intf->local_sel_device) { 4460 /* 4461 * The event receiver was not valid (or was 4462 * me), but I am an SEL device, just dump it 4463 * in my SEL. 4464 */ 4465 si = (struct ipmi_system_interface_addr *) &addr; 4466 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4467 si->channel = IPMI_BMC_CHANNEL; 4468 si->lun = 0; 4469 } else 4470 continue; /* No where to send the event. */ 4471 4472 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4473 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4474 msg.data = data; 4475 msg.data_len = 16; 4476 4477 j = 0; 4478 while (*p) { 4479 int size = strlen(p); 4480 4481 if (size > 11) 4482 size = 11; 4483 data[0] = 0; 4484 data[1] = 0; 4485 data[2] = 0xf0; /* OEM event without timestamp. */ 4486 data[3] = intf->channels[0].address; 4487 data[4] = j++; /* sequence # */ 4488 /* 4489 * Always give 11 bytes, so strncpy will fill 4490 * it with zeroes for me. 4491 */ 4492 strncpy(data+5, p, 11); 4493 p += size; 4494 4495 ipmi_panic_request_and_wait(intf, &addr, &msg); 4496 } 4497 } 4498 #endif /* CONFIG_IPMI_PANIC_STRING */ 4499 } 4500 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4501 4502 static int has_panicked; 4503 4504 static int panic_event(struct notifier_block *this, 4505 unsigned long event, 4506 void *ptr) 4507 { 4508 ipmi_smi_t intf; 4509 4510 if (has_panicked) 4511 return NOTIFY_DONE; 4512 has_panicked = 1; 4513 4514 /* For every registered interface, set it to run to completion. */ 4515 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4516 if (!intf->handlers) 4517 /* Interface is not ready. */ 4518 continue; 4519 4520 /* 4521 * If we were interrupted while locking xmit_msgs_lock or 4522 * waiting_rcv_msgs_lock, the corresponding list may be 4523 * corrupted. In this case, drop items on the list for 4524 * the safety. 4525 */ 4526 if (!spin_trylock(&intf->xmit_msgs_lock)) { 4527 INIT_LIST_HEAD(&intf->xmit_msgs); 4528 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 4529 } else 4530 spin_unlock(&intf->xmit_msgs_lock); 4531 4532 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 4533 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 4534 else 4535 spin_unlock(&intf->waiting_rcv_msgs_lock); 4536 4537 intf->run_to_completion = 1; 4538 intf->handlers->set_run_to_completion(intf->send_info, 1); 4539 } 4540 4541 #ifdef CONFIG_IPMI_PANIC_EVENT 4542 send_panic_events(ptr); 4543 #endif 4544 4545 return NOTIFY_DONE; 4546 } 4547 4548 static struct notifier_block panic_block = { 4549 .notifier_call = panic_event, 4550 .next = NULL, 4551 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4552 }; 4553 4554 static int ipmi_init_msghandler(void) 4555 { 4556 int rv; 4557 4558 if (initialized) 4559 return 0; 4560 4561 rv = driver_register(&ipmidriver.driver); 4562 if (rv) { 4563 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4564 return rv; 4565 } 4566 4567 printk(KERN_INFO "ipmi message handler version " 4568 IPMI_DRIVER_VERSION "\n"); 4569 4570 #ifdef CONFIG_PROC_FS 4571 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4572 if (!proc_ipmi_root) { 4573 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4574 driver_unregister(&ipmidriver.driver); 4575 return -ENOMEM; 4576 } 4577 4578 #endif /* CONFIG_PROC_FS */ 4579 4580 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4581 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4582 4583 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4584 4585 initialized = 1; 4586 4587 return 0; 4588 } 4589 4590 static int __init ipmi_init_msghandler_mod(void) 4591 { 4592 ipmi_init_msghandler(); 4593 return 0; 4594 } 4595 4596 static void __exit cleanup_ipmi(void) 4597 { 4598 int count; 4599 4600 if (!initialized) 4601 return; 4602 4603 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4604 4605 /* 4606 * This can't be called if any interfaces exist, so no worry 4607 * about shutting down the interfaces. 4608 */ 4609 4610 /* 4611 * Tell the timer to stop, then wait for it to stop. This 4612 * avoids problems with race conditions removing the timer 4613 * here. 4614 */ 4615 atomic_inc(&stop_operation); 4616 del_timer_sync(&ipmi_timer); 4617 4618 #ifdef CONFIG_PROC_FS 4619 proc_remove(proc_ipmi_root); 4620 #endif /* CONFIG_PROC_FS */ 4621 4622 driver_unregister(&ipmidriver.driver); 4623 4624 initialized = 0; 4625 4626 /* Check for buffer leaks. */ 4627 count = atomic_read(&smi_msg_inuse_count); 4628 if (count != 0) 4629 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4630 count); 4631 count = atomic_read(&recv_msg_inuse_count); 4632 if (count != 0) 4633 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4634 count); 4635 } 4636 module_exit(cleanup_ipmi); 4637 4638 module_init(ipmi_init_msghandler_mod); 4639 MODULE_LICENSE("GPL"); 4640 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4641 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4642 " interface."); 4643 MODULE_VERSION(IPMI_DRIVER_VERSION); 4644