xref: /openbmc/linux/drivers/char/ipmi/ipmi_msghandler.c (revision 1830dad34c070161fda2ff1db77b39ffa78aa380)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/errno.h>
16 #include <linux/poll.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/slab.h>
22 #include <linux/ipmi.h>
23 #include <linux/ipmi_smi.h>
24 #include <linux/notifier.h>
25 #include <linux/init.h>
26 #include <linux/proc_fs.h>
27 #include <linux/rcupdate.h>
28 #include <linux/interrupt.h>
29 #include <linux/moduleparam.h>
30 #include <linux/workqueue.h>
31 #include <linux/uuid.h>
32 
33 #define PFX "IPMI message handler: "
34 
35 #define IPMI_DRIVER_VERSION "39.2"
36 
37 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
38 static int ipmi_init_msghandler(void);
39 static void smi_recv_tasklet(unsigned long);
40 static void handle_new_recv_msgs(struct ipmi_smi *intf);
41 static void need_waiter(struct ipmi_smi *intf);
42 static int handle_one_recv_msg(struct ipmi_smi *intf,
43 			       struct ipmi_smi_msg *msg);
44 
45 #ifdef DEBUG
46 static void ipmi_debug_msg(const char *title, unsigned char *data,
47 			   unsigned int len)
48 {
49 	int i, pos;
50 	char buf[100];
51 
52 	pos = snprintf(buf, sizeof(buf), "%s: ", title);
53 	for (i = 0; i < len; i++)
54 		pos += snprintf(buf + pos, sizeof(buf) - pos,
55 				" %2.2x", data[i]);
56 	pr_debug("%s\n", buf);
57 }
58 #else
59 static void ipmi_debug_msg(const char *title, unsigned char *data,
60 			   unsigned int len)
61 { }
62 #endif
63 
64 static int initialized;
65 
66 enum ipmi_panic_event_op {
67 	IPMI_SEND_PANIC_EVENT_NONE,
68 	IPMI_SEND_PANIC_EVENT,
69 	IPMI_SEND_PANIC_EVENT_STRING
70 };
71 #ifdef CONFIG_IPMI_PANIC_STRING
72 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
73 #elif defined(CONFIG_IPMI_PANIC_EVENT)
74 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
75 #else
76 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
77 #endif
78 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
79 
80 static int panic_op_write_handler(const char *val,
81 				  const struct kernel_param *kp)
82 {
83 	char valcp[16];
84 	char *s;
85 
86 	strncpy(valcp, val, 15);
87 	valcp[15] = '\0';
88 
89 	s = strstrip(valcp);
90 
91 	if (strcmp(s, "none") == 0)
92 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
93 	else if (strcmp(s, "event") == 0)
94 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
95 	else if (strcmp(s, "string") == 0)
96 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
97 	else
98 		return -EINVAL;
99 
100 	return 0;
101 }
102 
103 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
104 {
105 	switch (ipmi_send_panic_event) {
106 	case IPMI_SEND_PANIC_EVENT_NONE:
107 		strcpy(buffer, "none");
108 		break;
109 
110 	case IPMI_SEND_PANIC_EVENT:
111 		strcpy(buffer, "event");
112 		break;
113 
114 	case IPMI_SEND_PANIC_EVENT_STRING:
115 		strcpy(buffer, "string");
116 		break;
117 
118 	default:
119 		strcpy(buffer, "???");
120 		break;
121 	}
122 
123 	return strlen(buffer);
124 }
125 
126 static const struct kernel_param_ops panic_op_ops = {
127 	.set = panic_op_write_handler,
128 	.get = panic_op_read_handler
129 };
130 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
131 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
132 
133 
134 #define MAX_EVENTS_IN_QUEUE	25
135 
136 /* Remain in auto-maintenance mode for this amount of time (in ms). */
137 static unsigned long maintenance_mode_timeout_ms = 30000;
138 module_param(maintenance_mode_timeout_ms, ulong, 0644);
139 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
140 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
141 
142 /*
143  * Don't let a message sit in a queue forever, always time it with at lest
144  * the max message timer.  This is in milliseconds.
145  */
146 #define MAX_MSG_TIMEOUT		60000
147 
148 /*
149  * Timeout times below are in milliseconds, and are done off a 1
150  * second timer.  So setting the value to 1000 would mean anything
151  * between 0 and 1000ms.  So really the only reasonable minimum
152  * setting it 2000ms, which is between 1 and 2 seconds.
153  */
154 
155 /* The default timeout for message retries. */
156 static unsigned long default_retry_ms = 2000;
157 module_param(default_retry_ms, ulong, 0644);
158 MODULE_PARM_DESC(default_retry_ms,
159 		 "The time (milliseconds) between retry sends");
160 
161 /* The default timeout for maintenance mode message retries. */
162 static unsigned long default_maintenance_retry_ms = 3000;
163 module_param(default_maintenance_retry_ms, ulong, 0644);
164 MODULE_PARM_DESC(default_maintenance_retry_ms,
165 		 "The time (milliseconds) between retry sends in maintenance mode");
166 
167 /* The default maximum number of retries */
168 static unsigned int default_max_retries = 4;
169 module_param(default_max_retries, uint, 0644);
170 MODULE_PARM_DESC(default_max_retries,
171 		 "The time (milliseconds) between retry sends in maintenance mode");
172 
173 /* Call every ~1000 ms. */
174 #define IPMI_TIMEOUT_TIME	1000
175 
176 /* How many jiffies does it take to get to the timeout time. */
177 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
178 
179 /*
180  * Request events from the queue every second (this is the number of
181  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
182  * future, IPMI will add a way to know immediately if an event is in
183  * the queue and this silliness can go away.
184  */
185 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
186 
187 /* How long should we cache dynamic device IDs? */
188 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
189 
190 /*
191  * The main "user" data structure.
192  */
193 struct ipmi_user {
194 	struct list_head link;
195 
196 	/*
197 	 * Set to NULL when the user is destroyed, a pointer to myself
198 	 * so srcu_dereference can be used on it.
199 	 */
200 	struct ipmi_user *self;
201 	struct srcu_struct release_barrier;
202 
203 	struct kref refcount;
204 
205 	/* The upper layer that handles receive messages. */
206 	const struct ipmi_user_hndl *handler;
207 	void             *handler_data;
208 
209 	/* The interface this user is bound to. */
210 	struct ipmi_smi *intf;
211 
212 	/* Does this interface receive IPMI events? */
213 	bool gets_events;
214 };
215 
216 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
217 	__acquires(user->release_barrier)
218 {
219 	struct ipmi_user *ruser;
220 
221 	*index = srcu_read_lock(&user->release_barrier);
222 	ruser = srcu_dereference(user->self, &user->release_barrier);
223 	if (!ruser)
224 		srcu_read_unlock(&user->release_barrier, *index);
225 	return ruser;
226 }
227 
228 static void release_ipmi_user(struct ipmi_user *user, int index)
229 {
230 	srcu_read_unlock(&user->release_barrier, index);
231 }
232 
233 struct cmd_rcvr {
234 	struct list_head link;
235 
236 	struct ipmi_user *user;
237 	unsigned char netfn;
238 	unsigned char cmd;
239 	unsigned int  chans;
240 
241 	/*
242 	 * This is used to form a linked lised during mass deletion.
243 	 * Since this is in an RCU list, we cannot use the link above
244 	 * or change any data until the RCU period completes.  So we
245 	 * use this next variable during mass deletion so we can have
246 	 * a list and don't have to wait and restart the search on
247 	 * every individual deletion of a command.
248 	 */
249 	struct cmd_rcvr *next;
250 };
251 
252 struct seq_table {
253 	unsigned int         inuse : 1;
254 	unsigned int         broadcast : 1;
255 
256 	unsigned long        timeout;
257 	unsigned long        orig_timeout;
258 	unsigned int         retries_left;
259 
260 	/*
261 	 * To verify on an incoming send message response that this is
262 	 * the message that the response is for, we keep a sequence id
263 	 * and increment it every time we send a message.
264 	 */
265 	long                 seqid;
266 
267 	/*
268 	 * This is held so we can properly respond to the message on a
269 	 * timeout, and it is used to hold the temporary data for
270 	 * retransmission, too.
271 	 */
272 	struct ipmi_recv_msg *recv_msg;
273 };
274 
275 /*
276  * Store the information in a msgid (long) to allow us to find a
277  * sequence table entry from the msgid.
278  */
279 #define STORE_SEQ_IN_MSGID(seq, seqid) \
280 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
281 
282 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
283 	do {								\
284 		seq = (((msgid) >> 26) & 0x3f);				\
285 		seqid = ((msgid) & 0x3ffffff);				\
286 	} while (0)
287 
288 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
289 
290 #define IPMI_MAX_CHANNELS       16
291 struct ipmi_channel {
292 	unsigned char medium;
293 	unsigned char protocol;
294 };
295 
296 struct ipmi_channel_set {
297 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
298 };
299 
300 struct ipmi_my_addrinfo {
301 	/*
302 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
303 	 * but may be changed by the user.
304 	 */
305 	unsigned char address;
306 
307 	/*
308 	 * My LUN.  This should generally stay the SMS LUN, but just in
309 	 * case...
310 	 */
311 	unsigned char lun;
312 };
313 
314 /*
315  * Note that the product id, manufacturer id, guid, and device id are
316  * immutable in this structure, so dyn_mutex is not required for
317  * accessing those.  If those change on a BMC, a new BMC is allocated.
318  */
319 struct bmc_device {
320 	struct platform_device pdev;
321 	struct list_head       intfs; /* Interfaces on this BMC. */
322 	struct ipmi_device_id  id;
323 	struct ipmi_device_id  fetch_id;
324 	int                    dyn_id_set;
325 	unsigned long          dyn_id_expiry;
326 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
327 	guid_t                 guid;
328 	guid_t                 fetch_guid;
329 	int                    dyn_guid_set;
330 	struct kref	       usecount;
331 	struct work_struct     remove_work;
332 };
333 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
334 
335 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
336 			     struct ipmi_device_id *id,
337 			     bool *guid_set, guid_t *guid);
338 
339 /*
340  * Various statistics for IPMI, these index stats[] in the ipmi_smi
341  * structure.
342  */
343 enum ipmi_stat_indexes {
344 	/* Commands we got from the user that were invalid. */
345 	IPMI_STAT_sent_invalid_commands = 0,
346 
347 	/* Commands we sent to the MC. */
348 	IPMI_STAT_sent_local_commands,
349 
350 	/* Responses from the MC that were delivered to a user. */
351 	IPMI_STAT_handled_local_responses,
352 
353 	/* Responses from the MC that were not delivered to a user. */
354 	IPMI_STAT_unhandled_local_responses,
355 
356 	/* Commands we sent out to the IPMB bus. */
357 	IPMI_STAT_sent_ipmb_commands,
358 
359 	/* Commands sent on the IPMB that had errors on the SEND CMD */
360 	IPMI_STAT_sent_ipmb_command_errs,
361 
362 	/* Each retransmit increments this count. */
363 	IPMI_STAT_retransmitted_ipmb_commands,
364 
365 	/*
366 	 * When a message times out (runs out of retransmits) this is
367 	 * incremented.
368 	 */
369 	IPMI_STAT_timed_out_ipmb_commands,
370 
371 	/*
372 	 * This is like above, but for broadcasts.  Broadcasts are
373 	 * *not* included in the above count (they are expected to
374 	 * time out).
375 	 */
376 	IPMI_STAT_timed_out_ipmb_broadcasts,
377 
378 	/* Responses I have sent to the IPMB bus. */
379 	IPMI_STAT_sent_ipmb_responses,
380 
381 	/* The response was delivered to the user. */
382 	IPMI_STAT_handled_ipmb_responses,
383 
384 	/* The response had invalid data in it. */
385 	IPMI_STAT_invalid_ipmb_responses,
386 
387 	/* The response didn't have anyone waiting for it. */
388 	IPMI_STAT_unhandled_ipmb_responses,
389 
390 	/* Commands we sent out to the IPMB bus. */
391 	IPMI_STAT_sent_lan_commands,
392 
393 	/* Commands sent on the IPMB that had errors on the SEND CMD */
394 	IPMI_STAT_sent_lan_command_errs,
395 
396 	/* Each retransmit increments this count. */
397 	IPMI_STAT_retransmitted_lan_commands,
398 
399 	/*
400 	 * When a message times out (runs out of retransmits) this is
401 	 * incremented.
402 	 */
403 	IPMI_STAT_timed_out_lan_commands,
404 
405 	/* Responses I have sent to the IPMB bus. */
406 	IPMI_STAT_sent_lan_responses,
407 
408 	/* The response was delivered to the user. */
409 	IPMI_STAT_handled_lan_responses,
410 
411 	/* The response had invalid data in it. */
412 	IPMI_STAT_invalid_lan_responses,
413 
414 	/* The response didn't have anyone waiting for it. */
415 	IPMI_STAT_unhandled_lan_responses,
416 
417 	/* The command was delivered to the user. */
418 	IPMI_STAT_handled_commands,
419 
420 	/* The command had invalid data in it. */
421 	IPMI_STAT_invalid_commands,
422 
423 	/* The command didn't have anyone waiting for it. */
424 	IPMI_STAT_unhandled_commands,
425 
426 	/* Invalid data in an event. */
427 	IPMI_STAT_invalid_events,
428 
429 	/* Events that were received with the proper format. */
430 	IPMI_STAT_events,
431 
432 	/* Retransmissions on IPMB that failed. */
433 	IPMI_STAT_dropped_rexmit_ipmb_commands,
434 
435 	/* Retransmissions on LAN that failed. */
436 	IPMI_STAT_dropped_rexmit_lan_commands,
437 
438 	/* This *must* remain last, add new values above this. */
439 	IPMI_NUM_STATS
440 };
441 
442 
443 #define IPMI_IPMB_NUM_SEQ	64
444 struct ipmi_smi {
445 	/* What interface number are we? */
446 	int intf_num;
447 
448 	struct kref refcount;
449 
450 	/* Set when the interface is being unregistered. */
451 	bool in_shutdown;
452 
453 	/* Used for a list of interfaces. */
454 	struct list_head link;
455 
456 	/*
457 	 * The list of upper layers that are using me.  seq_lock write
458 	 * protects this.  Read protection is with srcu.
459 	 */
460 	struct list_head users;
461 	struct srcu_struct users_srcu;
462 
463 	/* Used for wake ups at startup. */
464 	wait_queue_head_t waitq;
465 
466 	/*
467 	 * Prevents the interface from being unregistered when the
468 	 * interface is used by being looked up through the BMC
469 	 * structure.
470 	 */
471 	struct mutex bmc_reg_mutex;
472 
473 	struct bmc_device tmp_bmc;
474 	struct bmc_device *bmc;
475 	bool bmc_registered;
476 	struct list_head bmc_link;
477 	char *my_dev_name;
478 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
479 	struct work_struct bmc_reg_work;
480 
481 	const struct ipmi_smi_handlers *handlers;
482 	void                     *send_info;
483 
484 	/* Driver-model device for the system interface. */
485 	struct device          *si_dev;
486 
487 	/*
488 	 * A table of sequence numbers for this interface.  We use the
489 	 * sequence numbers for IPMB messages that go out of the
490 	 * interface to match them up with their responses.  A routine
491 	 * is called periodically to time the items in this list.
492 	 */
493 	spinlock_t       seq_lock;
494 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
495 	int curr_seq;
496 
497 	/*
498 	 * Messages queued for delivery.  If delivery fails (out of memory
499 	 * for instance), They will stay in here to be processed later in a
500 	 * periodic timer interrupt.  The tasklet is for handling received
501 	 * messages directly from the handler.
502 	 */
503 	spinlock_t       waiting_rcv_msgs_lock;
504 	struct list_head waiting_rcv_msgs;
505 	atomic_t	 watchdog_pretimeouts_to_deliver;
506 	struct tasklet_struct recv_tasklet;
507 
508 	spinlock_t             xmit_msgs_lock;
509 	struct list_head       xmit_msgs;
510 	struct ipmi_smi_msg    *curr_msg;
511 	struct list_head       hp_xmit_msgs;
512 
513 	/*
514 	 * The list of command receivers that are registered for commands
515 	 * on this interface.
516 	 */
517 	struct mutex     cmd_rcvrs_mutex;
518 	struct list_head cmd_rcvrs;
519 
520 	/*
521 	 * Events that were queues because no one was there to receive
522 	 * them.
523 	 */
524 	spinlock_t       events_lock; /* For dealing with event stuff. */
525 	struct list_head waiting_events;
526 	unsigned int     waiting_events_count; /* How many events in queue? */
527 	char             delivering_events;
528 	char             event_msg_printed;
529 	atomic_t         event_waiters;
530 	unsigned int     ticks_to_req_ev;
531 	int              last_needs_timer;
532 
533 	/*
534 	 * The event receiver for my BMC, only really used at panic
535 	 * shutdown as a place to store this.
536 	 */
537 	unsigned char event_receiver;
538 	unsigned char event_receiver_lun;
539 	unsigned char local_sel_device;
540 	unsigned char local_event_generator;
541 
542 	/* For handling of maintenance mode. */
543 	int maintenance_mode;
544 	bool maintenance_mode_enable;
545 	int auto_maintenance_timeout;
546 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
547 
548 	/*
549 	 * If we are doing maintenance on something on IPMB, extend
550 	 * the timeout time to avoid timeouts writing firmware and
551 	 * such.
552 	 */
553 	int ipmb_maintenance_mode_timeout;
554 
555 	/*
556 	 * A cheap hack, if this is non-null and a message to an
557 	 * interface comes in with a NULL user, call this routine with
558 	 * it.  Note that the message will still be freed by the
559 	 * caller.  This only works on the system interface.
560 	 *
561 	 * Protected by bmc_reg_mutex.
562 	 */
563 	void (*null_user_handler)(struct ipmi_smi *intf,
564 				  struct ipmi_recv_msg *msg);
565 
566 	/*
567 	 * When we are scanning the channels for an SMI, this will
568 	 * tell which channel we are scanning.
569 	 */
570 	int curr_channel;
571 
572 	/* Channel information */
573 	struct ipmi_channel_set *channel_list;
574 	unsigned int curr_working_cset; /* First index into the following. */
575 	struct ipmi_channel_set wchannels[2];
576 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
577 	bool channels_ready;
578 
579 	atomic_t stats[IPMI_NUM_STATS];
580 
581 	/*
582 	 * run_to_completion duplicate of smb_info, smi_info
583 	 * and ipmi_serial_info structures. Used to decrease numbers of
584 	 * parameters passed by "low" level IPMI code.
585 	 */
586 	int run_to_completion;
587 };
588 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
589 
590 static void __get_guid(struct ipmi_smi *intf);
591 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
592 static int __ipmi_bmc_register(struct ipmi_smi *intf,
593 			       struct ipmi_device_id *id,
594 			       bool guid_set, guid_t *guid, int intf_num);
595 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
596 
597 
598 /**
599  * The driver model view of the IPMI messaging driver.
600  */
601 static struct platform_driver ipmidriver = {
602 	.driver = {
603 		.name = "ipmi",
604 		.bus = &platform_bus_type
605 	}
606 };
607 /*
608  * This mutex keeps us from adding the same BMC twice.
609  */
610 static DEFINE_MUTEX(ipmidriver_mutex);
611 
612 static LIST_HEAD(ipmi_interfaces);
613 static DEFINE_MUTEX(ipmi_interfaces_mutex);
614 DEFINE_STATIC_SRCU(ipmi_interfaces_srcu);
615 
616 /*
617  * List of watchers that want to know when smi's are added and deleted.
618  */
619 static LIST_HEAD(smi_watchers);
620 static DEFINE_MUTEX(smi_watchers_mutex);
621 
622 #define ipmi_inc_stat(intf, stat) \
623 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
624 #define ipmi_get_stat(intf, stat) \
625 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
626 
627 static const char * const addr_src_to_str[] = {
628 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
629 	"device-tree", "platform"
630 };
631 
632 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
633 {
634 	if (src >= SI_LAST)
635 		src = 0; /* Invalid */
636 	return addr_src_to_str[src];
637 }
638 EXPORT_SYMBOL(ipmi_addr_src_to_str);
639 
640 static int is_lan_addr(struct ipmi_addr *addr)
641 {
642 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
643 }
644 
645 static int is_ipmb_addr(struct ipmi_addr *addr)
646 {
647 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
648 }
649 
650 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
651 {
652 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
653 }
654 
655 static void free_recv_msg_list(struct list_head *q)
656 {
657 	struct ipmi_recv_msg *msg, *msg2;
658 
659 	list_for_each_entry_safe(msg, msg2, q, link) {
660 		list_del(&msg->link);
661 		ipmi_free_recv_msg(msg);
662 	}
663 }
664 
665 static void free_smi_msg_list(struct list_head *q)
666 {
667 	struct ipmi_smi_msg *msg, *msg2;
668 
669 	list_for_each_entry_safe(msg, msg2, q, link) {
670 		list_del(&msg->link);
671 		ipmi_free_smi_msg(msg);
672 	}
673 }
674 
675 static void clean_up_interface_data(struct ipmi_smi *intf)
676 {
677 	int              i;
678 	struct cmd_rcvr  *rcvr, *rcvr2;
679 	struct list_head list;
680 
681 	tasklet_kill(&intf->recv_tasklet);
682 
683 	free_smi_msg_list(&intf->waiting_rcv_msgs);
684 	free_recv_msg_list(&intf->waiting_events);
685 
686 	/*
687 	 * Wholesale remove all the entries from the list in the
688 	 * interface and wait for RCU to know that none are in use.
689 	 */
690 	mutex_lock(&intf->cmd_rcvrs_mutex);
691 	INIT_LIST_HEAD(&list);
692 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
693 	mutex_unlock(&intf->cmd_rcvrs_mutex);
694 
695 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
696 		kfree(rcvr);
697 
698 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
699 		if ((intf->seq_table[i].inuse)
700 					&& (intf->seq_table[i].recv_msg))
701 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
702 	}
703 }
704 
705 static void intf_free(struct kref *ref)
706 {
707 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
708 
709 	clean_up_interface_data(intf);
710 	kfree(intf);
711 }
712 
713 struct watcher_entry {
714 	int              intf_num;
715 	struct ipmi_smi  *intf;
716 	struct list_head link;
717 };
718 
719 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
720 {
721 	struct ipmi_smi *intf;
722 	int index;
723 
724 	mutex_lock(&smi_watchers_mutex);
725 
726 	list_add(&watcher->link, &smi_watchers);
727 
728 	index = srcu_read_lock(&ipmi_interfaces_srcu);
729 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
730 		int intf_num = READ_ONCE(intf->intf_num);
731 
732 		if (intf_num == -1)
733 			continue;
734 		watcher->new_smi(intf_num, intf->si_dev);
735 	}
736 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
737 
738 	mutex_unlock(&smi_watchers_mutex);
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(ipmi_smi_watcher_register);
743 
744 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
745 {
746 	mutex_lock(&smi_watchers_mutex);
747 	list_del(&watcher->link);
748 	mutex_unlock(&smi_watchers_mutex);
749 	return 0;
750 }
751 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
752 
753 /*
754  * Must be called with smi_watchers_mutex held.
755  */
756 static void
757 call_smi_watchers(int i, struct device *dev)
758 {
759 	struct ipmi_smi_watcher *w;
760 
761 	mutex_lock(&smi_watchers_mutex);
762 	list_for_each_entry(w, &smi_watchers, link) {
763 		if (try_module_get(w->owner)) {
764 			w->new_smi(i, dev);
765 			module_put(w->owner);
766 		}
767 	}
768 	mutex_unlock(&smi_watchers_mutex);
769 }
770 
771 static int
772 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
773 {
774 	if (addr1->addr_type != addr2->addr_type)
775 		return 0;
776 
777 	if (addr1->channel != addr2->channel)
778 		return 0;
779 
780 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
781 		struct ipmi_system_interface_addr *smi_addr1
782 		    = (struct ipmi_system_interface_addr *) addr1;
783 		struct ipmi_system_interface_addr *smi_addr2
784 		    = (struct ipmi_system_interface_addr *) addr2;
785 		return (smi_addr1->lun == smi_addr2->lun);
786 	}
787 
788 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
789 		struct ipmi_ipmb_addr *ipmb_addr1
790 		    = (struct ipmi_ipmb_addr *) addr1;
791 		struct ipmi_ipmb_addr *ipmb_addr2
792 		    = (struct ipmi_ipmb_addr *) addr2;
793 
794 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
795 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
796 	}
797 
798 	if (is_lan_addr(addr1)) {
799 		struct ipmi_lan_addr *lan_addr1
800 			= (struct ipmi_lan_addr *) addr1;
801 		struct ipmi_lan_addr *lan_addr2
802 		    = (struct ipmi_lan_addr *) addr2;
803 
804 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
805 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
806 			&& (lan_addr1->session_handle
807 			    == lan_addr2->session_handle)
808 			&& (lan_addr1->lun == lan_addr2->lun));
809 	}
810 
811 	return 1;
812 }
813 
814 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
815 {
816 	if (len < sizeof(struct ipmi_system_interface_addr))
817 		return -EINVAL;
818 
819 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
820 		if (addr->channel != IPMI_BMC_CHANNEL)
821 			return -EINVAL;
822 		return 0;
823 	}
824 
825 	if ((addr->channel == IPMI_BMC_CHANNEL)
826 	    || (addr->channel >= IPMI_MAX_CHANNELS)
827 	    || (addr->channel < 0))
828 		return -EINVAL;
829 
830 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
831 		if (len < sizeof(struct ipmi_ipmb_addr))
832 			return -EINVAL;
833 		return 0;
834 	}
835 
836 	if (is_lan_addr(addr)) {
837 		if (len < sizeof(struct ipmi_lan_addr))
838 			return -EINVAL;
839 		return 0;
840 	}
841 
842 	return -EINVAL;
843 }
844 EXPORT_SYMBOL(ipmi_validate_addr);
845 
846 unsigned int ipmi_addr_length(int addr_type)
847 {
848 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
849 		return sizeof(struct ipmi_system_interface_addr);
850 
851 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
852 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
853 		return sizeof(struct ipmi_ipmb_addr);
854 
855 	if (addr_type == IPMI_LAN_ADDR_TYPE)
856 		return sizeof(struct ipmi_lan_addr);
857 
858 	return 0;
859 }
860 EXPORT_SYMBOL(ipmi_addr_length);
861 
862 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
863 {
864 	int rv = 0;
865 
866 	if (!msg->user) {
867 		/* Special handling for NULL users. */
868 		if (intf->null_user_handler) {
869 			intf->null_user_handler(intf, msg);
870 		} else {
871 			/* No handler, so give up. */
872 			rv = -EINVAL;
873 		}
874 		ipmi_free_recv_msg(msg);
875 	} else if (!oops_in_progress) {
876 		/*
877 		 * If we are running in the panic context, calling the
878 		 * receive handler doesn't much meaning and has a deadlock
879 		 * risk.  At this moment, simply skip it in that case.
880 		 */
881 		int index;
882 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
883 
884 		if (user) {
885 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
886 			release_ipmi_user(msg->user, index);
887 		} else {
888 			/* User went away, give up. */
889 			ipmi_free_recv_msg(msg);
890 			rv = -EINVAL;
891 		}
892 	}
893 
894 	return rv;
895 }
896 
897 static void deliver_local_response(struct ipmi_smi *intf,
898 				   struct ipmi_recv_msg *msg)
899 {
900 	if (deliver_response(intf, msg))
901 		ipmi_inc_stat(intf, unhandled_local_responses);
902 	else
903 		ipmi_inc_stat(intf, handled_local_responses);
904 }
905 
906 static void deliver_err_response(struct ipmi_smi *intf,
907 				 struct ipmi_recv_msg *msg, int err)
908 {
909 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
910 	msg->msg_data[0] = err;
911 	msg->msg.netfn |= 1; /* Convert to a response. */
912 	msg->msg.data_len = 1;
913 	msg->msg.data = msg->msg_data;
914 	deliver_local_response(intf, msg);
915 }
916 
917 /*
918  * Find the next sequence number not being used and add the given
919  * message with the given timeout to the sequence table.  This must be
920  * called with the interface's seq_lock held.
921  */
922 static int intf_next_seq(struct ipmi_smi      *intf,
923 			 struct ipmi_recv_msg *recv_msg,
924 			 unsigned long        timeout,
925 			 int                  retries,
926 			 int                  broadcast,
927 			 unsigned char        *seq,
928 			 long                 *seqid)
929 {
930 	int          rv = 0;
931 	unsigned int i;
932 
933 	if (timeout == 0)
934 		timeout = default_retry_ms;
935 	if (retries < 0)
936 		retries = default_max_retries;
937 
938 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
939 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
940 		if (!intf->seq_table[i].inuse)
941 			break;
942 	}
943 
944 	if (!intf->seq_table[i].inuse) {
945 		intf->seq_table[i].recv_msg = recv_msg;
946 
947 		/*
948 		 * Start with the maximum timeout, when the send response
949 		 * comes in we will start the real timer.
950 		 */
951 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
952 		intf->seq_table[i].orig_timeout = timeout;
953 		intf->seq_table[i].retries_left = retries;
954 		intf->seq_table[i].broadcast = broadcast;
955 		intf->seq_table[i].inuse = 1;
956 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
957 		*seq = i;
958 		*seqid = intf->seq_table[i].seqid;
959 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
960 		need_waiter(intf);
961 	} else {
962 		rv = -EAGAIN;
963 	}
964 
965 	return rv;
966 }
967 
968 /*
969  * Return the receive message for the given sequence number and
970  * release the sequence number so it can be reused.  Some other data
971  * is passed in to be sure the message matches up correctly (to help
972  * guard against message coming in after their timeout and the
973  * sequence number being reused).
974  */
975 static int intf_find_seq(struct ipmi_smi      *intf,
976 			 unsigned char        seq,
977 			 short                channel,
978 			 unsigned char        cmd,
979 			 unsigned char        netfn,
980 			 struct ipmi_addr     *addr,
981 			 struct ipmi_recv_msg **recv_msg)
982 {
983 	int           rv = -ENODEV;
984 	unsigned long flags;
985 
986 	if (seq >= IPMI_IPMB_NUM_SEQ)
987 		return -EINVAL;
988 
989 	spin_lock_irqsave(&intf->seq_lock, flags);
990 	if (intf->seq_table[seq].inuse) {
991 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
992 
993 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
994 				&& (msg->msg.netfn == netfn)
995 				&& (ipmi_addr_equal(addr, &msg->addr))) {
996 			*recv_msg = msg;
997 			intf->seq_table[seq].inuse = 0;
998 			rv = 0;
999 		}
1000 	}
1001 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1002 
1003 	return rv;
1004 }
1005 
1006 
1007 /* Start the timer for a specific sequence table entry. */
1008 static int intf_start_seq_timer(struct ipmi_smi *intf,
1009 				long       msgid)
1010 {
1011 	int           rv = -ENODEV;
1012 	unsigned long flags;
1013 	unsigned char seq;
1014 	unsigned long seqid;
1015 
1016 
1017 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1018 
1019 	spin_lock_irqsave(&intf->seq_lock, flags);
1020 	/*
1021 	 * We do this verification because the user can be deleted
1022 	 * while a message is outstanding.
1023 	 */
1024 	if ((intf->seq_table[seq].inuse)
1025 				&& (intf->seq_table[seq].seqid == seqid)) {
1026 		struct seq_table *ent = &intf->seq_table[seq];
1027 		ent->timeout = ent->orig_timeout;
1028 		rv = 0;
1029 	}
1030 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1031 
1032 	return rv;
1033 }
1034 
1035 /* Got an error for the send message for a specific sequence number. */
1036 static int intf_err_seq(struct ipmi_smi *intf,
1037 			long         msgid,
1038 			unsigned int err)
1039 {
1040 	int                  rv = -ENODEV;
1041 	unsigned long        flags;
1042 	unsigned char        seq;
1043 	unsigned long        seqid;
1044 	struct ipmi_recv_msg *msg = NULL;
1045 
1046 
1047 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1048 
1049 	spin_lock_irqsave(&intf->seq_lock, flags);
1050 	/*
1051 	 * We do this verification because the user can be deleted
1052 	 * while a message is outstanding.
1053 	 */
1054 	if ((intf->seq_table[seq].inuse)
1055 				&& (intf->seq_table[seq].seqid == seqid)) {
1056 		struct seq_table *ent = &intf->seq_table[seq];
1057 
1058 		ent->inuse = 0;
1059 		msg = ent->recv_msg;
1060 		rv = 0;
1061 	}
1062 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1063 
1064 	if (msg)
1065 		deliver_err_response(intf, msg, err);
1066 
1067 	return rv;
1068 }
1069 
1070 
1071 int ipmi_create_user(unsigned int          if_num,
1072 		     const struct ipmi_user_hndl *handler,
1073 		     void                  *handler_data,
1074 		     struct ipmi_user      **user)
1075 {
1076 	unsigned long flags;
1077 	struct ipmi_user *new_user;
1078 	int           rv = 0, index;
1079 	struct ipmi_smi *intf;
1080 
1081 	/*
1082 	 * There is no module usecount here, because it's not
1083 	 * required.  Since this can only be used by and called from
1084 	 * other modules, they will implicitly use this module, and
1085 	 * thus this can't be removed unless the other modules are
1086 	 * removed.
1087 	 */
1088 
1089 	if (handler == NULL)
1090 		return -EINVAL;
1091 
1092 	/*
1093 	 * Make sure the driver is actually initialized, this handles
1094 	 * problems with initialization order.
1095 	 */
1096 	if (!initialized) {
1097 		rv = ipmi_init_msghandler();
1098 		if (rv)
1099 			return rv;
1100 
1101 		/*
1102 		 * The init code doesn't return an error if it was turned
1103 		 * off, but it won't initialize.  Check that.
1104 		 */
1105 		if (!initialized)
1106 			return -ENODEV;
1107 	}
1108 
1109 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1110 	if (!new_user)
1111 		return -ENOMEM;
1112 
1113 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1114 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1115 		if (intf->intf_num == if_num)
1116 			goto found;
1117 	}
1118 	/* Not found, return an error */
1119 	rv = -EINVAL;
1120 	goto out_kfree;
1121 
1122  found:
1123 	rv = init_srcu_struct(&new_user->release_barrier);
1124 	if (rv)
1125 		goto out_kfree;
1126 
1127 	/* Note that each existing user holds a refcount to the interface. */
1128 	kref_get(&intf->refcount);
1129 
1130 	kref_init(&new_user->refcount);
1131 	new_user->handler = handler;
1132 	new_user->handler_data = handler_data;
1133 	new_user->intf = intf;
1134 	new_user->gets_events = false;
1135 
1136 	rcu_assign_pointer(new_user->self, new_user);
1137 	spin_lock_irqsave(&intf->seq_lock, flags);
1138 	list_add_rcu(&new_user->link, &intf->users);
1139 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1140 	if (handler->ipmi_watchdog_pretimeout) {
1141 		/* User wants pretimeouts, so make sure to watch for them. */
1142 		if (atomic_inc_return(&intf->event_waiters) == 1)
1143 			need_waiter(intf);
1144 	}
1145 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1146 	*user = new_user;
1147 	return 0;
1148 
1149 out_kfree:
1150 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1151 	kfree(new_user);
1152 	return rv;
1153 }
1154 EXPORT_SYMBOL(ipmi_create_user);
1155 
1156 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1157 {
1158 	int rv, index;
1159 	struct ipmi_smi *intf;
1160 
1161 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1162 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1163 		if (intf->intf_num == if_num)
1164 			goto found;
1165 	}
1166 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1167 
1168 	/* Not found, return an error */
1169 	return -EINVAL;
1170 
1171 found:
1172 	if (!intf->handlers->get_smi_info)
1173 		rv = -ENOTTY;
1174 	else
1175 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1176 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1177 
1178 	return rv;
1179 }
1180 EXPORT_SYMBOL(ipmi_get_smi_info);
1181 
1182 static void free_user(struct kref *ref)
1183 {
1184 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1185 	kfree(user);
1186 }
1187 
1188 static void _ipmi_destroy_user(struct ipmi_user *user)
1189 {
1190 	struct ipmi_smi  *intf = user->intf;
1191 	int              i;
1192 	unsigned long    flags;
1193 	struct cmd_rcvr  *rcvr;
1194 	struct cmd_rcvr  *rcvrs = NULL;
1195 
1196 	if (!acquire_ipmi_user(user, &i)) {
1197 		/*
1198 		 * The user has already been cleaned up, just make sure
1199 		 * nothing is using it and return.
1200 		 */
1201 		synchronize_srcu(&user->release_barrier);
1202 		return;
1203 	}
1204 
1205 	rcu_assign_pointer(user->self, NULL);
1206 	release_ipmi_user(user, i);
1207 
1208 	synchronize_srcu(&user->release_barrier);
1209 
1210 	if (user->handler->shutdown)
1211 		user->handler->shutdown(user->handler_data);
1212 
1213 	if (user->handler->ipmi_watchdog_pretimeout)
1214 		atomic_dec(&intf->event_waiters);
1215 
1216 	if (user->gets_events)
1217 		atomic_dec(&intf->event_waiters);
1218 
1219 	/* Remove the user from the interface's sequence table. */
1220 	spin_lock_irqsave(&intf->seq_lock, flags);
1221 	list_del_rcu(&user->link);
1222 
1223 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1224 		if (intf->seq_table[i].inuse
1225 		    && (intf->seq_table[i].recv_msg->user == user)) {
1226 			intf->seq_table[i].inuse = 0;
1227 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1228 		}
1229 	}
1230 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1231 
1232 	/*
1233 	 * Remove the user from the command receiver's table.  First
1234 	 * we build a list of everything (not using the standard link,
1235 	 * since other things may be using it till we do
1236 	 * synchronize_srcu()) then free everything in that list.
1237 	 */
1238 	mutex_lock(&intf->cmd_rcvrs_mutex);
1239 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1240 		if (rcvr->user == user) {
1241 			list_del_rcu(&rcvr->link);
1242 			rcvr->next = rcvrs;
1243 			rcvrs = rcvr;
1244 		}
1245 	}
1246 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1247 	synchronize_rcu();
1248 	while (rcvrs) {
1249 		rcvr = rcvrs;
1250 		rcvrs = rcvr->next;
1251 		kfree(rcvr);
1252 	}
1253 
1254 	kref_put(&intf->refcount, intf_free);
1255 }
1256 
1257 int ipmi_destroy_user(struct ipmi_user *user)
1258 {
1259 	_ipmi_destroy_user(user);
1260 
1261 	cleanup_srcu_struct(&user->release_barrier);
1262 	kref_put(&user->refcount, free_user);
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(ipmi_destroy_user);
1267 
1268 int ipmi_get_version(struct ipmi_user *user,
1269 		     unsigned char *major,
1270 		     unsigned char *minor)
1271 {
1272 	struct ipmi_device_id id;
1273 	int rv, index;
1274 
1275 	user = acquire_ipmi_user(user, &index);
1276 	if (!user)
1277 		return -ENODEV;
1278 
1279 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1280 	if (!rv) {
1281 		*major = ipmi_version_major(&id);
1282 		*minor = ipmi_version_minor(&id);
1283 	}
1284 	release_ipmi_user(user, index);
1285 
1286 	return rv;
1287 }
1288 EXPORT_SYMBOL(ipmi_get_version);
1289 
1290 int ipmi_set_my_address(struct ipmi_user *user,
1291 			unsigned int  channel,
1292 			unsigned char address)
1293 {
1294 	int index, rv = 0;
1295 
1296 	user = acquire_ipmi_user(user, &index);
1297 	if (!user)
1298 		return -ENODEV;
1299 
1300 	if (channel >= IPMI_MAX_CHANNELS)
1301 		rv = -EINVAL;
1302 	else
1303 		user->intf->addrinfo[channel].address = address;
1304 	release_ipmi_user(user, index);
1305 
1306 	return rv;
1307 }
1308 EXPORT_SYMBOL(ipmi_set_my_address);
1309 
1310 int ipmi_get_my_address(struct ipmi_user *user,
1311 			unsigned int  channel,
1312 			unsigned char *address)
1313 {
1314 	int index, rv = 0;
1315 
1316 	user = acquire_ipmi_user(user, &index);
1317 	if (!user)
1318 		return -ENODEV;
1319 
1320 	if (channel >= IPMI_MAX_CHANNELS)
1321 		rv = -EINVAL;
1322 	else
1323 		*address = user->intf->addrinfo[channel].address;
1324 	release_ipmi_user(user, index);
1325 
1326 	return rv;
1327 }
1328 EXPORT_SYMBOL(ipmi_get_my_address);
1329 
1330 int ipmi_set_my_LUN(struct ipmi_user *user,
1331 		    unsigned int  channel,
1332 		    unsigned char LUN)
1333 {
1334 	int index, rv = 0;
1335 
1336 	user = acquire_ipmi_user(user, &index);
1337 	if (!user)
1338 		return -ENODEV;
1339 
1340 	if (channel >= IPMI_MAX_CHANNELS)
1341 		rv = -EINVAL;
1342 	else
1343 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1344 	release_ipmi_user(user, index);
1345 
1346 	return 0;
1347 }
1348 EXPORT_SYMBOL(ipmi_set_my_LUN);
1349 
1350 int ipmi_get_my_LUN(struct ipmi_user *user,
1351 		    unsigned int  channel,
1352 		    unsigned char *address)
1353 {
1354 	int index, rv = 0;
1355 
1356 	user = acquire_ipmi_user(user, &index);
1357 	if (!user)
1358 		return -ENODEV;
1359 
1360 	if (channel >= IPMI_MAX_CHANNELS)
1361 		rv = -EINVAL;
1362 	else
1363 		*address = user->intf->addrinfo[channel].lun;
1364 	release_ipmi_user(user, index);
1365 
1366 	return rv;
1367 }
1368 EXPORT_SYMBOL(ipmi_get_my_LUN);
1369 
1370 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1371 {
1372 	int mode, index;
1373 	unsigned long flags;
1374 
1375 	user = acquire_ipmi_user(user, &index);
1376 	if (!user)
1377 		return -ENODEV;
1378 
1379 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1380 	mode = user->intf->maintenance_mode;
1381 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1382 	release_ipmi_user(user, index);
1383 
1384 	return mode;
1385 }
1386 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1387 
1388 static void maintenance_mode_update(struct ipmi_smi *intf)
1389 {
1390 	if (intf->handlers->set_maintenance_mode)
1391 		intf->handlers->set_maintenance_mode(
1392 			intf->send_info, intf->maintenance_mode_enable);
1393 }
1394 
1395 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1396 {
1397 	int rv = 0, index;
1398 	unsigned long flags;
1399 	struct ipmi_smi *intf = user->intf;
1400 
1401 	user = acquire_ipmi_user(user, &index);
1402 	if (!user)
1403 		return -ENODEV;
1404 
1405 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1406 	if (intf->maintenance_mode != mode) {
1407 		switch (mode) {
1408 		case IPMI_MAINTENANCE_MODE_AUTO:
1409 			intf->maintenance_mode_enable
1410 				= (intf->auto_maintenance_timeout > 0);
1411 			break;
1412 
1413 		case IPMI_MAINTENANCE_MODE_OFF:
1414 			intf->maintenance_mode_enable = false;
1415 			break;
1416 
1417 		case IPMI_MAINTENANCE_MODE_ON:
1418 			intf->maintenance_mode_enable = true;
1419 			break;
1420 
1421 		default:
1422 			rv = -EINVAL;
1423 			goto out_unlock;
1424 		}
1425 		intf->maintenance_mode = mode;
1426 
1427 		maintenance_mode_update(intf);
1428 	}
1429  out_unlock:
1430 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1431 	release_ipmi_user(user, index);
1432 
1433 	return rv;
1434 }
1435 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1436 
1437 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1438 {
1439 	unsigned long        flags;
1440 	struct ipmi_smi      *intf = user->intf;
1441 	struct ipmi_recv_msg *msg, *msg2;
1442 	struct list_head     msgs;
1443 	int index;
1444 
1445 	user = acquire_ipmi_user(user, &index);
1446 	if (!user)
1447 		return -ENODEV;
1448 
1449 	INIT_LIST_HEAD(&msgs);
1450 
1451 	spin_lock_irqsave(&intf->events_lock, flags);
1452 	if (user->gets_events == val)
1453 		goto out;
1454 
1455 	user->gets_events = val;
1456 
1457 	if (val) {
1458 		if (atomic_inc_return(&intf->event_waiters) == 1)
1459 			need_waiter(intf);
1460 	} else {
1461 		atomic_dec(&intf->event_waiters);
1462 	}
1463 
1464 	if (intf->delivering_events)
1465 		/*
1466 		 * Another thread is delivering events for this, so
1467 		 * let it handle any new events.
1468 		 */
1469 		goto out;
1470 
1471 	/* Deliver any queued events. */
1472 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1473 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1474 			list_move_tail(&msg->link, &msgs);
1475 		intf->waiting_events_count = 0;
1476 		if (intf->event_msg_printed) {
1477 			dev_warn(intf->si_dev,
1478 				 PFX "Event queue no longer full\n");
1479 			intf->event_msg_printed = 0;
1480 		}
1481 
1482 		intf->delivering_events = 1;
1483 		spin_unlock_irqrestore(&intf->events_lock, flags);
1484 
1485 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1486 			msg->user = user;
1487 			kref_get(&user->refcount);
1488 			deliver_local_response(intf, msg);
1489 		}
1490 
1491 		spin_lock_irqsave(&intf->events_lock, flags);
1492 		intf->delivering_events = 0;
1493 	}
1494 
1495  out:
1496 	spin_unlock_irqrestore(&intf->events_lock, flags);
1497 	release_ipmi_user(user, index);
1498 
1499 	return 0;
1500 }
1501 EXPORT_SYMBOL(ipmi_set_gets_events);
1502 
1503 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1504 				      unsigned char netfn,
1505 				      unsigned char cmd,
1506 				      unsigned char chan)
1507 {
1508 	struct cmd_rcvr *rcvr;
1509 
1510 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1511 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1512 					&& (rcvr->chans & (1 << chan)))
1513 			return rcvr;
1514 	}
1515 	return NULL;
1516 }
1517 
1518 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1519 				 unsigned char netfn,
1520 				 unsigned char cmd,
1521 				 unsigned int  chans)
1522 {
1523 	struct cmd_rcvr *rcvr;
1524 
1525 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1526 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1527 					&& (rcvr->chans & chans))
1528 			return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 int ipmi_register_for_cmd(struct ipmi_user *user,
1534 			  unsigned char netfn,
1535 			  unsigned char cmd,
1536 			  unsigned int  chans)
1537 {
1538 	struct ipmi_smi *intf = user->intf;
1539 	struct cmd_rcvr *rcvr;
1540 	int rv = 0, index;
1541 
1542 	user = acquire_ipmi_user(user, &index);
1543 	if (!user)
1544 		return -ENODEV;
1545 
1546 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1547 	if (!rcvr) {
1548 		rv = -ENOMEM;
1549 		goto out_release;
1550 	}
1551 	rcvr->cmd = cmd;
1552 	rcvr->netfn = netfn;
1553 	rcvr->chans = chans;
1554 	rcvr->user = user;
1555 
1556 	mutex_lock(&intf->cmd_rcvrs_mutex);
1557 	/* Make sure the command/netfn is not already registered. */
1558 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1559 		rv = -EBUSY;
1560 		goto out_unlock;
1561 	}
1562 
1563 	if (atomic_inc_return(&intf->event_waiters) == 1)
1564 		need_waiter(intf);
1565 
1566 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1567 
1568 out_unlock:
1569 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1570 	if (rv)
1571 		kfree(rcvr);
1572 out_release:
1573 	release_ipmi_user(user, index);
1574 
1575 	return rv;
1576 }
1577 EXPORT_SYMBOL(ipmi_register_for_cmd);
1578 
1579 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1580 			    unsigned char netfn,
1581 			    unsigned char cmd,
1582 			    unsigned int  chans)
1583 {
1584 	struct ipmi_smi *intf = user->intf;
1585 	struct cmd_rcvr *rcvr;
1586 	struct cmd_rcvr *rcvrs = NULL;
1587 	int i, rv = -ENOENT, index;
1588 
1589 	user = acquire_ipmi_user(user, &index);
1590 	if (!user)
1591 		return -ENODEV;
1592 
1593 	mutex_lock(&intf->cmd_rcvrs_mutex);
1594 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1595 		if (((1 << i) & chans) == 0)
1596 			continue;
1597 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1598 		if (rcvr == NULL)
1599 			continue;
1600 		if (rcvr->user == user) {
1601 			rv = 0;
1602 			rcvr->chans &= ~chans;
1603 			if (rcvr->chans == 0) {
1604 				list_del_rcu(&rcvr->link);
1605 				rcvr->next = rcvrs;
1606 				rcvrs = rcvr;
1607 			}
1608 		}
1609 	}
1610 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1611 	synchronize_rcu();
1612 	release_ipmi_user(user, index);
1613 	while (rcvrs) {
1614 		atomic_dec(&intf->event_waiters);
1615 		rcvr = rcvrs;
1616 		rcvrs = rcvr->next;
1617 		kfree(rcvr);
1618 	}
1619 
1620 	return rv;
1621 }
1622 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1623 
1624 static unsigned char
1625 ipmb_checksum(unsigned char *data, int size)
1626 {
1627 	unsigned char csum = 0;
1628 
1629 	for (; size > 0; size--, data++)
1630 		csum += *data;
1631 
1632 	return -csum;
1633 }
1634 
1635 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1636 				   struct kernel_ipmi_msg *msg,
1637 				   struct ipmi_ipmb_addr *ipmb_addr,
1638 				   long                  msgid,
1639 				   unsigned char         ipmb_seq,
1640 				   int                   broadcast,
1641 				   unsigned char         source_address,
1642 				   unsigned char         source_lun)
1643 {
1644 	int i = broadcast;
1645 
1646 	/* Format the IPMB header data. */
1647 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1648 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1649 	smi_msg->data[2] = ipmb_addr->channel;
1650 	if (broadcast)
1651 		smi_msg->data[3] = 0;
1652 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1653 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1654 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1655 	smi_msg->data[i+6] = source_address;
1656 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1657 	smi_msg->data[i+8] = msg->cmd;
1658 
1659 	/* Now tack on the data to the message. */
1660 	if (msg->data_len > 0)
1661 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1662 	smi_msg->data_size = msg->data_len + 9;
1663 
1664 	/* Now calculate the checksum and tack it on. */
1665 	smi_msg->data[i+smi_msg->data_size]
1666 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1667 
1668 	/*
1669 	 * Add on the checksum size and the offset from the
1670 	 * broadcast.
1671 	 */
1672 	smi_msg->data_size += 1 + i;
1673 
1674 	smi_msg->msgid = msgid;
1675 }
1676 
1677 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1678 				  struct kernel_ipmi_msg *msg,
1679 				  struct ipmi_lan_addr  *lan_addr,
1680 				  long                  msgid,
1681 				  unsigned char         ipmb_seq,
1682 				  unsigned char         source_lun)
1683 {
1684 	/* Format the IPMB header data. */
1685 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1686 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1687 	smi_msg->data[2] = lan_addr->channel;
1688 	smi_msg->data[3] = lan_addr->session_handle;
1689 	smi_msg->data[4] = lan_addr->remote_SWID;
1690 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1691 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1692 	smi_msg->data[7] = lan_addr->local_SWID;
1693 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1694 	smi_msg->data[9] = msg->cmd;
1695 
1696 	/* Now tack on the data to the message. */
1697 	if (msg->data_len > 0)
1698 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1699 	smi_msg->data_size = msg->data_len + 10;
1700 
1701 	/* Now calculate the checksum and tack it on. */
1702 	smi_msg->data[smi_msg->data_size]
1703 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1704 
1705 	/*
1706 	 * Add on the checksum size and the offset from the
1707 	 * broadcast.
1708 	 */
1709 	smi_msg->data_size += 1;
1710 
1711 	smi_msg->msgid = msgid;
1712 }
1713 
1714 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1715 					     struct ipmi_smi_msg *smi_msg,
1716 					     int priority)
1717 {
1718 	if (intf->curr_msg) {
1719 		if (priority > 0)
1720 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1721 		else
1722 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1723 		smi_msg = NULL;
1724 	} else {
1725 		intf->curr_msg = smi_msg;
1726 	}
1727 
1728 	return smi_msg;
1729 }
1730 
1731 
1732 static void smi_send(struct ipmi_smi *intf,
1733 		     const struct ipmi_smi_handlers *handlers,
1734 		     struct ipmi_smi_msg *smi_msg, int priority)
1735 {
1736 	int run_to_completion = intf->run_to_completion;
1737 
1738 	if (run_to_completion) {
1739 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1740 	} else {
1741 		unsigned long flags;
1742 
1743 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1744 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1745 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1746 	}
1747 
1748 	if (smi_msg)
1749 		handlers->sender(intf->send_info, smi_msg);
1750 }
1751 
1752 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1753 {
1754 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1755 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1756 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1757 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1758 }
1759 
1760 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1761 			      struct ipmi_addr       *addr,
1762 			      long                   msgid,
1763 			      struct kernel_ipmi_msg *msg,
1764 			      struct ipmi_smi_msg    *smi_msg,
1765 			      struct ipmi_recv_msg   *recv_msg,
1766 			      int                    retries,
1767 			      unsigned int           retry_time_ms)
1768 {
1769 	struct ipmi_system_interface_addr *smi_addr;
1770 
1771 	if (msg->netfn & 1)
1772 		/* Responses are not allowed to the SMI. */
1773 		return -EINVAL;
1774 
1775 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1776 	if (smi_addr->lun > 3) {
1777 		ipmi_inc_stat(intf, sent_invalid_commands);
1778 		return -EINVAL;
1779 	}
1780 
1781 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1782 
1783 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1784 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1785 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1786 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1787 		/*
1788 		 * We don't let the user do these, since we manage
1789 		 * the sequence numbers.
1790 		 */
1791 		ipmi_inc_stat(intf, sent_invalid_commands);
1792 		return -EINVAL;
1793 	}
1794 
1795 	if (is_maintenance_mode_cmd(msg)) {
1796 		unsigned long flags;
1797 
1798 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1799 		intf->auto_maintenance_timeout
1800 			= maintenance_mode_timeout_ms;
1801 		if (!intf->maintenance_mode
1802 		    && !intf->maintenance_mode_enable) {
1803 			intf->maintenance_mode_enable = true;
1804 			maintenance_mode_update(intf);
1805 		}
1806 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1807 				       flags);
1808 	}
1809 
1810 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1811 		ipmi_inc_stat(intf, sent_invalid_commands);
1812 		return -EMSGSIZE;
1813 	}
1814 
1815 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1816 	smi_msg->data[1] = msg->cmd;
1817 	smi_msg->msgid = msgid;
1818 	smi_msg->user_data = recv_msg;
1819 	if (msg->data_len > 0)
1820 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1821 	smi_msg->data_size = msg->data_len + 2;
1822 	ipmi_inc_stat(intf, sent_local_commands);
1823 
1824 	return 0;
1825 }
1826 
1827 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1828 			   struct ipmi_addr       *addr,
1829 			   long                   msgid,
1830 			   struct kernel_ipmi_msg *msg,
1831 			   struct ipmi_smi_msg    *smi_msg,
1832 			   struct ipmi_recv_msg   *recv_msg,
1833 			   unsigned char          source_address,
1834 			   unsigned char          source_lun,
1835 			   int                    retries,
1836 			   unsigned int           retry_time_ms)
1837 {
1838 	struct ipmi_ipmb_addr *ipmb_addr;
1839 	unsigned char ipmb_seq;
1840 	long seqid;
1841 	int broadcast = 0;
1842 	struct ipmi_channel *chans;
1843 	int rv = 0;
1844 
1845 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1846 		ipmi_inc_stat(intf, sent_invalid_commands);
1847 		return -EINVAL;
1848 	}
1849 
1850 	chans = READ_ONCE(intf->channel_list)->c;
1851 
1852 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1853 		ipmi_inc_stat(intf, sent_invalid_commands);
1854 		return -EINVAL;
1855 	}
1856 
1857 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1858 		/*
1859 		 * Broadcasts add a zero at the beginning of the
1860 		 * message, but otherwise is the same as an IPMB
1861 		 * address.
1862 		 */
1863 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1864 		broadcast = 1;
1865 		retries = 0; /* Don't retry broadcasts. */
1866 	}
1867 
1868 	/*
1869 	 * 9 for the header and 1 for the checksum, plus
1870 	 * possibly one for the broadcast.
1871 	 */
1872 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1873 		ipmi_inc_stat(intf, sent_invalid_commands);
1874 		return -EMSGSIZE;
1875 	}
1876 
1877 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1878 	if (ipmb_addr->lun > 3) {
1879 		ipmi_inc_stat(intf, sent_invalid_commands);
1880 		return -EINVAL;
1881 	}
1882 
1883 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1884 
1885 	if (recv_msg->msg.netfn & 0x1) {
1886 		/*
1887 		 * It's a response, so use the user's sequence
1888 		 * from msgid.
1889 		 */
1890 		ipmi_inc_stat(intf, sent_ipmb_responses);
1891 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1892 				msgid, broadcast,
1893 				source_address, source_lun);
1894 
1895 		/*
1896 		 * Save the receive message so we can use it
1897 		 * to deliver the response.
1898 		 */
1899 		smi_msg->user_data = recv_msg;
1900 	} else {
1901 		/* It's a command, so get a sequence for it. */
1902 		unsigned long flags;
1903 
1904 		spin_lock_irqsave(&intf->seq_lock, flags);
1905 
1906 		if (is_maintenance_mode_cmd(msg))
1907 			intf->ipmb_maintenance_mode_timeout =
1908 				maintenance_mode_timeout_ms;
1909 
1910 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1911 			/* Different default in maintenance mode */
1912 			retry_time_ms = default_maintenance_retry_ms;
1913 
1914 		/*
1915 		 * Create a sequence number with a 1 second
1916 		 * timeout and 4 retries.
1917 		 */
1918 		rv = intf_next_seq(intf,
1919 				   recv_msg,
1920 				   retry_time_ms,
1921 				   retries,
1922 				   broadcast,
1923 				   &ipmb_seq,
1924 				   &seqid);
1925 		if (rv)
1926 			/*
1927 			 * We have used up all the sequence numbers,
1928 			 * probably, so abort.
1929 			 */
1930 			goto out_err;
1931 
1932 		ipmi_inc_stat(intf, sent_ipmb_commands);
1933 
1934 		/*
1935 		 * Store the sequence number in the message,
1936 		 * so that when the send message response
1937 		 * comes back we can start the timer.
1938 		 */
1939 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
1940 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1941 				ipmb_seq, broadcast,
1942 				source_address, source_lun);
1943 
1944 		/*
1945 		 * Copy the message into the recv message data, so we
1946 		 * can retransmit it later if necessary.
1947 		 */
1948 		memcpy(recv_msg->msg_data, smi_msg->data,
1949 		       smi_msg->data_size);
1950 		recv_msg->msg.data = recv_msg->msg_data;
1951 		recv_msg->msg.data_len = smi_msg->data_size;
1952 
1953 		/*
1954 		 * We don't unlock until here, because we need
1955 		 * to copy the completed message into the
1956 		 * recv_msg before we release the lock.
1957 		 * Otherwise, race conditions may bite us.  I
1958 		 * know that's pretty paranoid, but I prefer
1959 		 * to be correct.
1960 		 */
1961 out_err:
1962 		spin_unlock_irqrestore(&intf->seq_lock, flags);
1963 	}
1964 
1965 	return rv;
1966 }
1967 
1968 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
1969 			  struct ipmi_addr       *addr,
1970 			  long                   msgid,
1971 			  struct kernel_ipmi_msg *msg,
1972 			  struct ipmi_smi_msg    *smi_msg,
1973 			  struct ipmi_recv_msg   *recv_msg,
1974 			  unsigned char          source_lun,
1975 			  int                    retries,
1976 			  unsigned int           retry_time_ms)
1977 {
1978 	struct ipmi_lan_addr  *lan_addr;
1979 	unsigned char ipmb_seq;
1980 	long seqid;
1981 	struct ipmi_channel *chans;
1982 	int rv = 0;
1983 
1984 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1985 		ipmi_inc_stat(intf, sent_invalid_commands);
1986 		return -EINVAL;
1987 	}
1988 
1989 	chans = READ_ONCE(intf->channel_list)->c;
1990 
1991 	if ((chans[addr->channel].medium
1992 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1993 			&& (chans[addr->channel].medium
1994 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1995 		ipmi_inc_stat(intf, sent_invalid_commands);
1996 		return -EINVAL;
1997 	}
1998 
1999 	/* 11 for the header and 1 for the checksum. */
2000 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2001 		ipmi_inc_stat(intf, sent_invalid_commands);
2002 		return -EMSGSIZE;
2003 	}
2004 
2005 	lan_addr = (struct ipmi_lan_addr *) addr;
2006 	if (lan_addr->lun > 3) {
2007 		ipmi_inc_stat(intf, sent_invalid_commands);
2008 		return -EINVAL;
2009 	}
2010 
2011 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2012 
2013 	if (recv_msg->msg.netfn & 0x1) {
2014 		/*
2015 		 * It's a response, so use the user's sequence
2016 		 * from msgid.
2017 		 */
2018 		ipmi_inc_stat(intf, sent_lan_responses);
2019 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2020 			       msgid, source_lun);
2021 
2022 		/*
2023 		 * Save the receive message so we can use it
2024 		 * to deliver the response.
2025 		 */
2026 		smi_msg->user_data = recv_msg;
2027 	} else {
2028 		/* It's a command, so get a sequence for it. */
2029 		unsigned long flags;
2030 
2031 		spin_lock_irqsave(&intf->seq_lock, flags);
2032 
2033 		/*
2034 		 * Create a sequence number with a 1 second
2035 		 * timeout and 4 retries.
2036 		 */
2037 		rv = intf_next_seq(intf,
2038 				   recv_msg,
2039 				   retry_time_ms,
2040 				   retries,
2041 				   0,
2042 				   &ipmb_seq,
2043 				   &seqid);
2044 		if (rv)
2045 			/*
2046 			 * We have used up all the sequence numbers,
2047 			 * probably, so abort.
2048 			 */
2049 			goto out_err;
2050 
2051 		ipmi_inc_stat(intf, sent_lan_commands);
2052 
2053 		/*
2054 		 * Store the sequence number in the message,
2055 		 * so that when the send message response
2056 		 * comes back we can start the timer.
2057 		 */
2058 		format_lan_msg(smi_msg, msg, lan_addr,
2059 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2060 			       ipmb_seq, source_lun);
2061 
2062 		/*
2063 		 * Copy the message into the recv message data, so we
2064 		 * can retransmit it later if necessary.
2065 		 */
2066 		memcpy(recv_msg->msg_data, smi_msg->data,
2067 		       smi_msg->data_size);
2068 		recv_msg->msg.data = recv_msg->msg_data;
2069 		recv_msg->msg.data_len = smi_msg->data_size;
2070 
2071 		/*
2072 		 * We don't unlock until here, because we need
2073 		 * to copy the completed message into the
2074 		 * recv_msg before we release the lock.
2075 		 * Otherwise, race conditions may bite us.  I
2076 		 * know that's pretty paranoid, but I prefer
2077 		 * to be correct.
2078 		 */
2079 out_err:
2080 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2081 	}
2082 
2083 	return rv;
2084 }
2085 
2086 /*
2087  * Separate from ipmi_request so that the user does not have to be
2088  * supplied in certain circumstances (mainly at panic time).  If
2089  * messages are supplied, they will be freed, even if an error
2090  * occurs.
2091  */
2092 static int i_ipmi_request(struct ipmi_user     *user,
2093 			  struct ipmi_smi      *intf,
2094 			  struct ipmi_addr     *addr,
2095 			  long                 msgid,
2096 			  struct kernel_ipmi_msg *msg,
2097 			  void                 *user_msg_data,
2098 			  void                 *supplied_smi,
2099 			  struct ipmi_recv_msg *supplied_recv,
2100 			  int                  priority,
2101 			  unsigned char        source_address,
2102 			  unsigned char        source_lun,
2103 			  int                  retries,
2104 			  unsigned int         retry_time_ms)
2105 {
2106 	struct ipmi_smi_msg *smi_msg;
2107 	struct ipmi_recv_msg *recv_msg;
2108 	int rv = 0;
2109 
2110 	if (supplied_recv)
2111 		recv_msg = supplied_recv;
2112 	else {
2113 		recv_msg = ipmi_alloc_recv_msg();
2114 		if (recv_msg == NULL) {
2115 			rv = -ENOMEM;
2116 			goto out;
2117 		}
2118 	}
2119 	recv_msg->user_msg_data = user_msg_data;
2120 
2121 	if (supplied_smi)
2122 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2123 	else {
2124 		smi_msg = ipmi_alloc_smi_msg();
2125 		if (smi_msg == NULL) {
2126 			ipmi_free_recv_msg(recv_msg);
2127 			rv = -ENOMEM;
2128 			goto out;
2129 		}
2130 	}
2131 
2132 	rcu_read_lock();
2133 	if (intf->in_shutdown) {
2134 		rv = -ENODEV;
2135 		goto out_err;
2136 	}
2137 
2138 	recv_msg->user = user;
2139 	if (user)
2140 		/* The put happens when the message is freed. */
2141 		kref_get(&user->refcount);
2142 	recv_msg->msgid = msgid;
2143 	/*
2144 	 * Store the message to send in the receive message so timeout
2145 	 * responses can get the proper response data.
2146 	 */
2147 	recv_msg->msg = *msg;
2148 
2149 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2150 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2151 					recv_msg, retries, retry_time_ms);
2152 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2153 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2154 				     source_address, source_lun,
2155 				     retries, retry_time_ms);
2156 	} else if (is_lan_addr(addr)) {
2157 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2158 				    source_lun, retries, retry_time_ms);
2159 	} else {
2160 	    /* Unknown address type. */
2161 		ipmi_inc_stat(intf, sent_invalid_commands);
2162 		rv = -EINVAL;
2163 	}
2164 
2165 	if (rv) {
2166 out_err:
2167 		ipmi_free_smi_msg(smi_msg);
2168 		ipmi_free_recv_msg(recv_msg);
2169 	} else {
2170 		ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2171 
2172 		smi_send(intf, intf->handlers, smi_msg, priority);
2173 	}
2174 	rcu_read_unlock();
2175 
2176 out:
2177 	return rv;
2178 }
2179 
2180 static int check_addr(struct ipmi_smi  *intf,
2181 		      struct ipmi_addr *addr,
2182 		      unsigned char    *saddr,
2183 		      unsigned char    *lun)
2184 {
2185 	if (addr->channel >= IPMI_MAX_CHANNELS)
2186 		return -EINVAL;
2187 	*lun = intf->addrinfo[addr->channel].lun;
2188 	*saddr = intf->addrinfo[addr->channel].address;
2189 	return 0;
2190 }
2191 
2192 int ipmi_request_settime(struct ipmi_user *user,
2193 			 struct ipmi_addr *addr,
2194 			 long             msgid,
2195 			 struct kernel_ipmi_msg  *msg,
2196 			 void             *user_msg_data,
2197 			 int              priority,
2198 			 int              retries,
2199 			 unsigned int     retry_time_ms)
2200 {
2201 	unsigned char saddr = 0, lun = 0;
2202 	int rv, index;
2203 
2204 	if (!user)
2205 		return -EINVAL;
2206 
2207 	user = acquire_ipmi_user(user, &index);
2208 	if (!user)
2209 		return -ENODEV;
2210 
2211 	rv = check_addr(user->intf, addr, &saddr, &lun);
2212 	if (!rv)
2213 		rv = i_ipmi_request(user,
2214 				    user->intf,
2215 				    addr,
2216 				    msgid,
2217 				    msg,
2218 				    user_msg_data,
2219 				    NULL, NULL,
2220 				    priority,
2221 				    saddr,
2222 				    lun,
2223 				    retries,
2224 				    retry_time_ms);
2225 
2226 	release_ipmi_user(user, index);
2227 	return rv;
2228 }
2229 EXPORT_SYMBOL(ipmi_request_settime);
2230 
2231 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2232 			     struct ipmi_addr     *addr,
2233 			     long                 msgid,
2234 			     struct kernel_ipmi_msg *msg,
2235 			     void                 *user_msg_data,
2236 			     void                 *supplied_smi,
2237 			     struct ipmi_recv_msg *supplied_recv,
2238 			     int                  priority)
2239 {
2240 	unsigned char saddr = 0, lun = 0;
2241 	int rv, index;
2242 
2243 	if (!user)
2244 		return -EINVAL;
2245 
2246 	user = acquire_ipmi_user(user, &index);
2247 	if (!user)
2248 		return -ENODEV;
2249 
2250 	rv = check_addr(user->intf, addr, &saddr, &lun);
2251 	if (!rv)
2252 		rv = i_ipmi_request(user,
2253 				    user->intf,
2254 				    addr,
2255 				    msgid,
2256 				    msg,
2257 				    user_msg_data,
2258 				    supplied_smi,
2259 				    supplied_recv,
2260 				    priority,
2261 				    saddr,
2262 				    lun,
2263 				    -1, 0);
2264 
2265 	release_ipmi_user(user, index);
2266 	return rv;
2267 }
2268 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2269 
2270 static void bmc_device_id_handler(struct ipmi_smi *intf,
2271 				  struct ipmi_recv_msg *msg)
2272 {
2273 	int rv;
2274 
2275 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2276 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2277 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2278 		dev_warn(intf->si_dev,
2279 			 PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2280 			msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2281 		return;
2282 	}
2283 
2284 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2285 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2286 	if (rv) {
2287 		dev_warn(intf->si_dev,
2288 			 PFX "device id demangle failed: %d\n", rv);
2289 		intf->bmc->dyn_id_set = 0;
2290 	} else {
2291 		/*
2292 		 * Make sure the id data is available before setting
2293 		 * dyn_id_set.
2294 		 */
2295 		smp_wmb();
2296 		intf->bmc->dyn_id_set = 1;
2297 	}
2298 
2299 	wake_up(&intf->waitq);
2300 }
2301 
2302 static int
2303 send_get_device_id_cmd(struct ipmi_smi *intf)
2304 {
2305 	struct ipmi_system_interface_addr si;
2306 	struct kernel_ipmi_msg msg;
2307 
2308 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2309 	si.channel = IPMI_BMC_CHANNEL;
2310 	si.lun = 0;
2311 
2312 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2313 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2314 	msg.data = NULL;
2315 	msg.data_len = 0;
2316 
2317 	return i_ipmi_request(NULL,
2318 			      intf,
2319 			      (struct ipmi_addr *) &si,
2320 			      0,
2321 			      &msg,
2322 			      intf,
2323 			      NULL,
2324 			      NULL,
2325 			      0,
2326 			      intf->addrinfo[0].address,
2327 			      intf->addrinfo[0].lun,
2328 			      -1, 0);
2329 }
2330 
2331 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2332 {
2333 	int rv;
2334 
2335 	bmc->dyn_id_set = 2;
2336 
2337 	intf->null_user_handler = bmc_device_id_handler;
2338 
2339 	rv = send_get_device_id_cmd(intf);
2340 	if (rv)
2341 		return rv;
2342 
2343 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2344 
2345 	if (!bmc->dyn_id_set)
2346 		rv = -EIO; /* Something went wrong in the fetch. */
2347 
2348 	/* dyn_id_set makes the id data available. */
2349 	smp_rmb();
2350 
2351 	intf->null_user_handler = NULL;
2352 
2353 	return rv;
2354 }
2355 
2356 /*
2357  * Fetch the device id for the bmc/interface.  You must pass in either
2358  * bmc or intf, this code will get the other one.  If the data has
2359  * been recently fetched, this will just use the cached data.  Otherwise
2360  * it will run a new fetch.
2361  *
2362  * Except for the first time this is called (in ipmi_register_smi()),
2363  * this will always return good data;
2364  */
2365 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2366 			       struct ipmi_device_id *id,
2367 			       bool *guid_set, guid_t *guid, int intf_num)
2368 {
2369 	int rv = 0;
2370 	int prev_dyn_id_set, prev_guid_set;
2371 	bool intf_set = intf != NULL;
2372 
2373 	if (!intf) {
2374 		mutex_lock(&bmc->dyn_mutex);
2375 retry_bmc_lock:
2376 		if (list_empty(&bmc->intfs)) {
2377 			mutex_unlock(&bmc->dyn_mutex);
2378 			return -ENOENT;
2379 		}
2380 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2381 					bmc_link);
2382 		kref_get(&intf->refcount);
2383 		mutex_unlock(&bmc->dyn_mutex);
2384 		mutex_lock(&intf->bmc_reg_mutex);
2385 		mutex_lock(&bmc->dyn_mutex);
2386 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2387 					     bmc_link)) {
2388 			mutex_unlock(&intf->bmc_reg_mutex);
2389 			kref_put(&intf->refcount, intf_free);
2390 			goto retry_bmc_lock;
2391 		}
2392 	} else {
2393 		mutex_lock(&intf->bmc_reg_mutex);
2394 		bmc = intf->bmc;
2395 		mutex_lock(&bmc->dyn_mutex);
2396 		kref_get(&intf->refcount);
2397 	}
2398 
2399 	/* If we have a valid and current ID, just return that. */
2400 	if (intf->in_bmc_register ||
2401 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2402 		goto out_noprocessing;
2403 
2404 	prev_guid_set = bmc->dyn_guid_set;
2405 	__get_guid(intf);
2406 
2407 	prev_dyn_id_set = bmc->dyn_id_set;
2408 	rv = __get_device_id(intf, bmc);
2409 	if (rv)
2410 		goto out;
2411 
2412 	/*
2413 	 * The guid, device id, manufacturer id, and product id should
2414 	 * not change on a BMC.  If it does we have to do some dancing.
2415 	 */
2416 	if (!intf->bmc_registered
2417 	    || (!prev_guid_set && bmc->dyn_guid_set)
2418 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2419 	    || (prev_guid_set && bmc->dyn_guid_set
2420 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2421 	    || bmc->id.device_id != bmc->fetch_id.device_id
2422 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2423 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2424 		struct ipmi_device_id id = bmc->fetch_id;
2425 		int guid_set = bmc->dyn_guid_set;
2426 		guid_t guid;
2427 
2428 		guid = bmc->fetch_guid;
2429 		mutex_unlock(&bmc->dyn_mutex);
2430 
2431 		__ipmi_bmc_unregister(intf);
2432 		/* Fill in the temporary BMC for good measure. */
2433 		intf->bmc->id = id;
2434 		intf->bmc->dyn_guid_set = guid_set;
2435 		intf->bmc->guid = guid;
2436 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2437 			need_waiter(intf); /* Retry later on an error. */
2438 		else
2439 			__scan_channels(intf, &id);
2440 
2441 
2442 		if (!intf_set) {
2443 			/*
2444 			 * We weren't given the interface on the
2445 			 * command line, so restart the operation on
2446 			 * the next interface for the BMC.
2447 			 */
2448 			mutex_unlock(&intf->bmc_reg_mutex);
2449 			mutex_lock(&bmc->dyn_mutex);
2450 			goto retry_bmc_lock;
2451 		}
2452 
2453 		/* We have a new BMC, set it up. */
2454 		bmc = intf->bmc;
2455 		mutex_lock(&bmc->dyn_mutex);
2456 		goto out_noprocessing;
2457 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2458 		/* Version info changes, scan the channels again. */
2459 		__scan_channels(intf, &bmc->fetch_id);
2460 
2461 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2462 
2463 out:
2464 	if (rv && prev_dyn_id_set) {
2465 		rv = 0; /* Ignore failures if we have previous data. */
2466 		bmc->dyn_id_set = prev_dyn_id_set;
2467 	}
2468 	if (!rv) {
2469 		bmc->id = bmc->fetch_id;
2470 		if (bmc->dyn_guid_set)
2471 			bmc->guid = bmc->fetch_guid;
2472 		else if (prev_guid_set)
2473 			/*
2474 			 * The guid used to be valid and it failed to fetch,
2475 			 * just use the cached value.
2476 			 */
2477 			bmc->dyn_guid_set = prev_guid_set;
2478 	}
2479 out_noprocessing:
2480 	if (!rv) {
2481 		if (id)
2482 			*id = bmc->id;
2483 
2484 		if (guid_set)
2485 			*guid_set = bmc->dyn_guid_set;
2486 
2487 		if (guid && bmc->dyn_guid_set)
2488 			*guid =  bmc->guid;
2489 	}
2490 
2491 	mutex_unlock(&bmc->dyn_mutex);
2492 	mutex_unlock(&intf->bmc_reg_mutex);
2493 
2494 	kref_put(&intf->refcount, intf_free);
2495 	return rv;
2496 }
2497 
2498 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2499 			     struct ipmi_device_id *id,
2500 			     bool *guid_set, guid_t *guid)
2501 {
2502 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2503 }
2504 
2505 static ssize_t device_id_show(struct device *dev,
2506 			      struct device_attribute *attr,
2507 			      char *buf)
2508 {
2509 	struct bmc_device *bmc = to_bmc_device(dev);
2510 	struct ipmi_device_id id;
2511 	int rv;
2512 
2513 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2514 	if (rv)
2515 		return rv;
2516 
2517 	return snprintf(buf, 10, "%u\n", id.device_id);
2518 }
2519 static DEVICE_ATTR_RO(device_id);
2520 
2521 static ssize_t provides_device_sdrs_show(struct device *dev,
2522 					 struct device_attribute *attr,
2523 					 char *buf)
2524 {
2525 	struct bmc_device *bmc = to_bmc_device(dev);
2526 	struct ipmi_device_id id;
2527 	int rv;
2528 
2529 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2530 	if (rv)
2531 		return rv;
2532 
2533 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2534 }
2535 static DEVICE_ATTR_RO(provides_device_sdrs);
2536 
2537 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2538 			     char *buf)
2539 {
2540 	struct bmc_device *bmc = to_bmc_device(dev);
2541 	struct ipmi_device_id id;
2542 	int rv;
2543 
2544 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2545 	if (rv)
2546 		return rv;
2547 
2548 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2549 }
2550 static DEVICE_ATTR_RO(revision);
2551 
2552 static ssize_t firmware_revision_show(struct device *dev,
2553 				      struct device_attribute *attr,
2554 				      char *buf)
2555 {
2556 	struct bmc_device *bmc = to_bmc_device(dev);
2557 	struct ipmi_device_id id;
2558 	int rv;
2559 
2560 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2561 	if (rv)
2562 		return rv;
2563 
2564 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2565 			id.firmware_revision_2);
2566 }
2567 static DEVICE_ATTR_RO(firmware_revision);
2568 
2569 static ssize_t ipmi_version_show(struct device *dev,
2570 				 struct device_attribute *attr,
2571 				 char *buf)
2572 {
2573 	struct bmc_device *bmc = to_bmc_device(dev);
2574 	struct ipmi_device_id id;
2575 	int rv;
2576 
2577 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2578 	if (rv)
2579 		return rv;
2580 
2581 	return snprintf(buf, 20, "%u.%u\n",
2582 			ipmi_version_major(&id),
2583 			ipmi_version_minor(&id));
2584 }
2585 static DEVICE_ATTR_RO(ipmi_version);
2586 
2587 static ssize_t add_dev_support_show(struct device *dev,
2588 				    struct device_attribute *attr,
2589 				    char *buf)
2590 {
2591 	struct bmc_device *bmc = to_bmc_device(dev);
2592 	struct ipmi_device_id id;
2593 	int rv;
2594 
2595 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2596 	if (rv)
2597 		return rv;
2598 
2599 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2600 }
2601 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2602 		   NULL);
2603 
2604 static ssize_t manufacturer_id_show(struct device *dev,
2605 				    struct device_attribute *attr,
2606 				    char *buf)
2607 {
2608 	struct bmc_device *bmc = to_bmc_device(dev);
2609 	struct ipmi_device_id id;
2610 	int rv;
2611 
2612 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2613 	if (rv)
2614 		return rv;
2615 
2616 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2617 }
2618 static DEVICE_ATTR_RO(manufacturer_id);
2619 
2620 static ssize_t product_id_show(struct device *dev,
2621 			       struct device_attribute *attr,
2622 			       char *buf)
2623 {
2624 	struct bmc_device *bmc = to_bmc_device(dev);
2625 	struct ipmi_device_id id;
2626 	int rv;
2627 
2628 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2629 	if (rv)
2630 		return rv;
2631 
2632 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2633 }
2634 static DEVICE_ATTR_RO(product_id);
2635 
2636 static ssize_t aux_firmware_rev_show(struct device *dev,
2637 				     struct device_attribute *attr,
2638 				     char *buf)
2639 {
2640 	struct bmc_device *bmc = to_bmc_device(dev);
2641 	struct ipmi_device_id id;
2642 	int rv;
2643 
2644 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2645 	if (rv)
2646 		return rv;
2647 
2648 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2649 			id.aux_firmware_revision[3],
2650 			id.aux_firmware_revision[2],
2651 			id.aux_firmware_revision[1],
2652 			id.aux_firmware_revision[0]);
2653 }
2654 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2655 
2656 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2657 			 char *buf)
2658 {
2659 	struct bmc_device *bmc = to_bmc_device(dev);
2660 	bool guid_set;
2661 	guid_t guid;
2662 	int rv;
2663 
2664 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2665 	if (rv)
2666 		return rv;
2667 	if (!guid_set)
2668 		return -ENOENT;
2669 
2670 	return snprintf(buf, 38, "%pUl\n", guid.b);
2671 }
2672 static DEVICE_ATTR_RO(guid);
2673 
2674 static struct attribute *bmc_dev_attrs[] = {
2675 	&dev_attr_device_id.attr,
2676 	&dev_attr_provides_device_sdrs.attr,
2677 	&dev_attr_revision.attr,
2678 	&dev_attr_firmware_revision.attr,
2679 	&dev_attr_ipmi_version.attr,
2680 	&dev_attr_additional_device_support.attr,
2681 	&dev_attr_manufacturer_id.attr,
2682 	&dev_attr_product_id.attr,
2683 	&dev_attr_aux_firmware_revision.attr,
2684 	&dev_attr_guid.attr,
2685 	NULL
2686 };
2687 
2688 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2689 				       struct attribute *attr, int idx)
2690 {
2691 	struct device *dev = kobj_to_dev(kobj);
2692 	struct bmc_device *bmc = to_bmc_device(dev);
2693 	umode_t mode = attr->mode;
2694 	int rv;
2695 
2696 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2697 		struct ipmi_device_id id;
2698 
2699 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2700 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2701 	}
2702 	if (attr == &dev_attr_guid.attr) {
2703 		bool guid_set;
2704 
2705 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2706 		return (!rv && guid_set) ? mode : 0;
2707 	}
2708 	return mode;
2709 }
2710 
2711 static const struct attribute_group bmc_dev_attr_group = {
2712 	.attrs		= bmc_dev_attrs,
2713 	.is_visible	= bmc_dev_attr_is_visible,
2714 };
2715 
2716 static const struct attribute_group *bmc_dev_attr_groups[] = {
2717 	&bmc_dev_attr_group,
2718 	NULL
2719 };
2720 
2721 static const struct device_type bmc_device_type = {
2722 	.groups		= bmc_dev_attr_groups,
2723 };
2724 
2725 static int __find_bmc_guid(struct device *dev, void *data)
2726 {
2727 	guid_t *guid = data;
2728 	struct bmc_device *bmc;
2729 	int rv;
2730 
2731 	if (dev->type != &bmc_device_type)
2732 		return 0;
2733 
2734 	bmc = to_bmc_device(dev);
2735 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2736 	if (rv)
2737 		rv = kref_get_unless_zero(&bmc->usecount);
2738 	return rv;
2739 }
2740 
2741 /*
2742  * Returns with the bmc's usecount incremented, if it is non-NULL.
2743  */
2744 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2745 					     guid_t *guid)
2746 {
2747 	struct device *dev;
2748 	struct bmc_device *bmc = NULL;
2749 
2750 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2751 	if (dev) {
2752 		bmc = to_bmc_device(dev);
2753 		put_device(dev);
2754 	}
2755 	return bmc;
2756 }
2757 
2758 struct prod_dev_id {
2759 	unsigned int  product_id;
2760 	unsigned char device_id;
2761 };
2762 
2763 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2764 {
2765 	struct prod_dev_id *cid = data;
2766 	struct bmc_device *bmc;
2767 	int rv;
2768 
2769 	if (dev->type != &bmc_device_type)
2770 		return 0;
2771 
2772 	bmc = to_bmc_device(dev);
2773 	rv = (bmc->id.product_id == cid->product_id
2774 	      && bmc->id.device_id == cid->device_id);
2775 	if (rv)
2776 		rv = kref_get_unless_zero(&bmc->usecount);
2777 	return rv;
2778 }
2779 
2780 /*
2781  * Returns with the bmc's usecount incremented, if it is non-NULL.
2782  */
2783 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2784 	struct device_driver *drv,
2785 	unsigned int product_id, unsigned char device_id)
2786 {
2787 	struct prod_dev_id id = {
2788 		.product_id = product_id,
2789 		.device_id = device_id,
2790 	};
2791 	struct device *dev;
2792 	struct bmc_device *bmc = NULL;
2793 
2794 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2795 	if (dev) {
2796 		bmc = to_bmc_device(dev);
2797 		put_device(dev);
2798 	}
2799 	return bmc;
2800 }
2801 
2802 static DEFINE_IDA(ipmi_bmc_ida);
2803 
2804 static void
2805 release_bmc_device(struct device *dev)
2806 {
2807 	kfree(to_bmc_device(dev));
2808 }
2809 
2810 static void cleanup_bmc_work(struct work_struct *work)
2811 {
2812 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2813 					      remove_work);
2814 	int id = bmc->pdev.id; /* Unregister overwrites id */
2815 
2816 	platform_device_unregister(&bmc->pdev);
2817 	ida_simple_remove(&ipmi_bmc_ida, id);
2818 }
2819 
2820 static void
2821 cleanup_bmc_device(struct kref *ref)
2822 {
2823 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2824 
2825 	/*
2826 	 * Remove the platform device in a work queue to avoid issues
2827 	 * with removing the device attributes while reading a device
2828 	 * attribute.
2829 	 */
2830 	schedule_work(&bmc->remove_work);
2831 }
2832 
2833 /*
2834  * Must be called with intf->bmc_reg_mutex held.
2835  */
2836 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2837 {
2838 	struct bmc_device *bmc = intf->bmc;
2839 
2840 	if (!intf->bmc_registered)
2841 		return;
2842 
2843 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2844 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2845 	kfree(intf->my_dev_name);
2846 	intf->my_dev_name = NULL;
2847 
2848 	mutex_lock(&bmc->dyn_mutex);
2849 	list_del(&intf->bmc_link);
2850 	mutex_unlock(&bmc->dyn_mutex);
2851 	intf->bmc = &intf->tmp_bmc;
2852 	kref_put(&bmc->usecount, cleanup_bmc_device);
2853 	intf->bmc_registered = false;
2854 }
2855 
2856 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2857 {
2858 	mutex_lock(&intf->bmc_reg_mutex);
2859 	__ipmi_bmc_unregister(intf);
2860 	mutex_unlock(&intf->bmc_reg_mutex);
2861 }
2862 
2863 /*
2864  * Must be called with intf->bmc_reg_mutex held.
2865  */
2866 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2867 			       struct ipmi_device_id *id,
2868 			       bool guid_set, guid_t *guid, int intf_num)
2869 {
2870 	int               rv;
2871 	struct bmc_device *bmc;
2872 	struct bmc_device *old_bmc;
2873 
2874 	/*
2875 	 * platform_device_register() can cause bmc_reg_mutex to
2876 	 * be claimed because of the is_visible functions of
2877 	 * the attributes.  Eliminate possible recursion and
2878 	 * release the lock.
2879 	 */
2880 	intf->in_bmc_register = true;
2881 	mutex_unlock(&intf->bmc_reg_mutex);
2882 
2883 	/*
2884 	 * Try to find if there is an bmc_device struct
2885 	 * representing the interfaced BMC already
2886 	 */
2887 	mutex_lock(&ipmidriver_mutex);
2888 	if (guid_set)
2889 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2890 	else
2891 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2892 						    id->product_id,
2893 						    id->device_id);
2894 
2895 	/*
2896 	 * If there is already an bmc_device, free the new one,
2897 	 * otherwise register the new BMC device
2898 	 */
2899 	if (old_bmc) {
2900 		bmc = old_bmc;
2901 		/*
2902 		 * Note: old_bmc already has usecount incremented by
2903 		 * the BMC find functions.
2904 		 */
2905 		intf->bmc = old_bmc;
2906 		mutex_lock(&bmc->dyn_mutex);
2907 		list_add_tail(&intf->bmc_link, &bmc->intfs);
2908 		mutex_unlock(&bmc->dyn_mutex);
2909 
2910 		dev_info(intf->si_dev,
2911 			 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2912 			 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2913 			 bmc->id.manufacturer_id,
2914 			 bmc->id.product_id,
2915 			 bmc->id.device_id);
2916 	} else {
2917 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2918 		if (!bmc) {
2919 			rv = -ENOMEM;
2920 			goto out;
2921 		}
2922 		INIT_LIST_HEAD(&bmc->intfs);
2923 		mutex_init(&bmc->dyn_mutex);
2924 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
2925 
2926 		bmc->id = *id;
2927 		bmc->dyn_id_set = 1;
2928 		bmc->dyn_guid_set = guid_set;
2929 		bmc->guid = *guid;
2930 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2931 
2932 		bmc->pdev.name = "ipmi_bmc";
2933 
2934 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
2935 		if (rv < 0)
2936 			goto out;
2937 		bmc->pdev.dev.driver = &ipmidriver.driver;
2938 		bmc->pdev.id = rv;
2939 		bmc->pdev.dev.release = release_bmc_device;
2940 		bmc->pdev.dev.type = &bmc_device_type;
2941 		kref_init(&bmc->usecount);
2942 
2943 		intf->bmc = bmc;
2944 		mutex_lock(&bmc->dyn_mutex);
2945 		list_add_tail(&intf->bmc_link, &bmc->intfs);
2946 		mutex_unlock(&bmc->dyn_mutex);
2947 
2948 		rv = platform_device_register(&bmc->pdev);
2949 		if (rv) {
2950 			dev_err(intf->si_dev,
2951 				PFX " Unable to register bmc device: %d\n",
2952 				rv);
2953 			goto out_list_del;
2954 		}
2955 
2956 		dev_info(intf->si_dev,
2957 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2958 			 bmc->id.manufacturer_id,
2959 			 bmc->id.product_id,
2960 			 bmc->id.device_id);
2961 	}
2962 
2963 	/*
2964 	 * create symlink from system interface device to bmc device
2965 	 * and back.
2966 	 */
2967 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2968 	if (rv) {
2969 		dev_err(intf->si_dev,
2970 			PFX "Unable to create bmc symlink: %d\n", rv);
2971 		goto out_put_bmc;
2972 	}
2973 
2974 	if (intf_num == -1)
2975 		intf_num = intf->intf_num;
2976 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
2977 	if (!intf->my_dev_name) {
2978 		rv = -ENOMEM;
2979 		dev_err(intf->si_dev,
2980 			PFX "Unable to allocate link from BMC: %d\n", rv);
2981 		goto out_unlink1;
2982 	}
2983 
2984 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2985 			       intf->my_dev_name);
2986 	if (rv) {
2987 		kfree(intf->my_dev_name);
2988 		intf->my_dev_name = NULL;
2989 		dev_err(intf->si_dev,
2990 			PFX "Unable to create symlink to bmc: %d\n", rv);
2991 		goto out_free_my_dev_name;
2992 	}
2993 
2994 	intf->bmc_registered = true;
2995 
2996 out:
2997 	mutex_unlock(&ipmidriver_mutex);
2998 	mutex_lock(&intf->bmc_reg_mutex);
2999 	intf->in_bmc_register = false;
3000 	return rv;
3001 
3002 
3003 out_free_my_dev_name:
3004 	kfree(intf->my_dev_name);
3005 	intf->my_dev_name = NULL;
3006 
3007 out_unlink1:
3008 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3009 
3010 out_put_bmc:
3011 	mutex_lock(&bmc->dyn_mutex);
3012 	list_del(&intf->bmc_link);
3013 	mutex_unlock(&bmc->dyn_mutex);
3014 	intf->bmc = &intf->tmp_bmc;
3015 	kref_put(&bmc->usecount, cleanup_bmc_device);
3016 	goto out;
3017 
3018 out_list_del:
3019 	mutex_lock(&bmc->dyn_mutex);
3020 	list_del(&intf->bmc_link);
3021 	mutex_unlock(&bmc->dyn_mutex);
3022 	intf->bmc = &intf->tmp_bmc;
3023 	put_device(&bmc->pdev.dev);
3024 	goto out;
3025 }
3026 
3027 static int
3028 send_guid_cmd(struct ipmi_smi *intf, int chan)
3029 {
3030 	struct kernel_ipmi_msg            msg;
3031 	struct ipmi_system_interface_addr si;
3032 
3033 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3034 	si.channel = IPMI_BMC_CHANNEL;
3035 	si.lun = 0;
3036 
3037 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3038 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3039 	msg.data = NULL;
3040 	msg.data_len = 0;
3041 	return i_ipmi_request(NULL,
3042 			      intf,
3043 			      (struct ipmi_addr *) &si,
3044 			      0,
3045 			      &msg,
3046 			      intf,
3047 			      NULL,
3048 			      NULL,
3049 			      0,
3050 			      intf->addrinfo[0].address,
3051 			      intf->addrinfo[0].lun,
3052 			      -1, 0);
3053 }
3054 
3055 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3056 {
3057 	struct bmc_device *bmc = intf->bmc;
3058 
3059 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3060 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3061 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3062 		/* Not for me */
3063 		return;
3064 
3065 	if (msg->msg.data[0] != 0) {
3066 		/* Error from getting the GUID, the BMC doesn't have one. */
3067 		bmc->dyn_guid_set = 0;
3068 		goto out;
3069 	}
3070 
3071 	if (msg->msg.data_len < 17) {
3072 		bmc->dyn_guid_set = 0;
3073 		dev_warn(intf->si_dev,
3074 			 PFX "The GUID response from the BMC was too short, it was %d but should have been 17.  Assuming GUID is not available.\n",
3075 			 msg->msg.data_len);
3076 		goto out;
3077 	}
3078 
3079 	memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3080 	/*
3081 	 * Make sure the guid data is available before setting
3082 	 * dyn_guid_set.
3083 	 */
3084 	smp_wmb();
3085 	bmc->dyn_guid_set = 1;
3086  out:
3087 	wake_up(&intf->waitq);
3088 }
3089 
3090 static void __get_guid(struct ipmi_smi *intf)
3091 {
3092 	int rv;
3093 	struct bmc_device *bmc = intf->bmc;
3094 
3095 	bmc->dyn_guid_set = 2;
3096 	intf->null_user_handler = guid_handler;
3097 	rv = send_guid_cmd(intf, 0);
3098 	if (rv)
3099 		/* Send failed, no GUID available. */
3100 		bmc->dyn_guid_set = 0;
3101 
3102 	wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3103 
3104 	/* dyn_guid_set makes the guid data available. */
3105 	smp_rmb();
3106 
3107 	intf->null_user_handler = NULL;
3108 }
3109 
3110 static int
3111 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3112 {
3113 	struct kernel_ipmi_msg            msg;
3114 	unsigned char                     data[1];
3115 	struct ipmi_system_interface_addr si;
3116 
3117 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3118 	si.channel = IPMI_BMC_CHANNEL;
3119 	si.lun = 0;
3120 
3121 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3122 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3123 	msg.data = data;
3124 	msg.data_len = 1;
3125 	data[0] = chan;
3126 	return i_ipmi_request(NULL,
3127 			      intf,
3128 			      (struct ipmi_addr *) &si,
3129 			      0,
3130 			      &msg,
3131 			      intf,
3132 			      NULL,
3133 			      NULL,
3134 			      0,
3135 			      intf->addrinfo[0].address,
3136 			      intf->addrinfo[0].lun,
3137 			      -1, 0);
3138 }
3139 
3140 static void
3141 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3142 {
3143 	int rv = 0;
3144 	int ch;
3145 	unsigned int set = intf->curr_working_cset;
3146 	struct ipmi_channel *chans;
3147 
3148 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3149 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3150 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3151 		/* It's the one we want */
3152 		if (msg->msg.data[0] != 0) {
3153 			/* Got an error from the channel, just go on. */
3154 
3155 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3156 				/*
3157 				 * If the MC does not support this
3158 				 * command, that is legal.  We just
3159 				 * assume it has one IPMB at channel
3160 				 * zero.
3161 				 */
3162 				intf->wchannels[set].c[0].medium
3163 					= IPMI_CHANNEL_MEDIUM_IPMB;
3164 				intf->wchannels[set].c[0].protocol
3165 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3166 
3167 				intf->channel_list = intf->wchannels + set;
3168 				intf->channels_ready = true;
3169 				wake_up(&intf->waitq);
3170 				goto out;
3171 			}
3172 			goto next_channel;
3173 		}
3174 		if (msg->msg.data_len < 4) {
3175 			/* Message not big enough, just go on. */
3176 			goto next_channel;
3177 		}
3178 		ch = intf->curr_channel;
3179 		chans = intf->wchannels[set].c;
3180 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3181 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3182 
3183  next_channel:
3184 		intf->curr_channel++;
3185 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3186 			intf->channel_list = intf->wchannels + set;
3187 			intf->channels_ready = true;
3188 			wake_up(&intf->waitq);
3189 		} else {
3190 			intf->channel_list = intf->wchannels + set;
3191 			intf->channels_ready = true;
3192 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3193 		}
3194 
3195 		if (rv) {
3196 			/* Got an error somehow, just give up. */
3197 			dev_warn(intf->si_dev,
3198 				 PFX "Error sending channel information for channel %d: %d\n",
3199 				 intf->curr_channel, rv);
3200 
3201 			intf->channel_list = intf->wchannels + set;
3202 			intf->channels_ready = true;
3203 			wake_up(&intf->waitq);
3204 		}
3205 	}
3206  out:
3207 	return;
3208 }
3209 
3210 /*
3211  * Must be holding intf->bmc_reg_mutex to call this.
3212  */
3213 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3214 {
3215 	int rv;
3216 
3217 	if (ipmi_version_major(id) > 1
3218 			|| (ipmi_version_major(id) == 1
3219 			    && ipmi_version_minor(id) >= 5)) {
3220 		unsigned int set;
3221 
3222 		/*
3223 		 * Start scanning the channels to see what is
3224 		 * available.
3225 		 */
3226 		set = !intf->curr_working_cset;
3227 		intf->curr_working_cset = set;
3228 		memset(&intf->wchannels[set], 0,
3229 		       sizeof(struct ipmi_channel_set));
3230 
3231 		intf->null_user_handler = channel_handler;
3232 		intf->curr_channel = 0;
3233 		rv = send_channel_info_cmd(intf, 0);
3234 		if (rv) {
3235 			dev_warn(intf->si_dev,
3236 				 "Error sending channel information for channel 0, %d\n",
3237 				 rv);
3238 			return -EIO;
3239 		}
3240 
3241 		/* Wait for the channel info to be read. */
3242 		wait_event(intf->waitq, intf->channels_ready);
3243 		intf->null_user_handler = NULL;
3244 	} else {
3245 		unsigned int set = intf->curr_working_cset;
3246 
3247 		/* Assume a single IPMB channel at zero. */
3248 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3249 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3250 		intf->channel_list = intf->wchannels + set;
3251 		intf->channels_ready = true;
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 static void ipmi_poll(struct ipmi_smi *intf)
3258 {
3259 	if (intf->handlers->poll)
3260 		intf->handlers->poll(intf->send_info);
3261 	/* In case something came in */
3262 	handle_new_recv_msgs(intf);
3263 }
3264 
3265 void ipmi_poll_interface(struct ipmi_user *user)
3266 {
3267 	ipmi_poll(user->intf);
3268 }
3269 EXPORT_SYMBOL(ipmi_poll_interface);
3270 
3271 static void redo_bmc_reg(struct work_struct *work)
3272 {
3273 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3274 					     bmc_reg_work);
3275 
3276 	if (!intf->in_shutdown)
3277 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3278 
3279 	kref_put(&intf->refcount, intf_free);
3280 }
3281 
3282 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3283 		      void		       *send_info,
3284 		      struct device            *si_dev,
3285 		      unsigned char            slave_addr)
3286 {
3287 	int              i, j;
3288 	int              rv;
3289 	struct ipmi_smi *intf, *tintf;
3290 	struct list_head *link;
3291 	struct ipmi_device_id id;
3292 
3293 	/*
3294 	 * Make sure the driver is actually initialized, this handles
3295 	 * problems with initialization order.
3296 	 */
3297 	if (!initialized) {
3298 		rv = ipmi_init_msghandler();
3299 		if (rv)
3300 			return rv;
3301 		/*
3302 		 * The init code doesn't return an error if it was turned
3303 		 * off, but it won't initialize.  Check that.
3304 		 */
3305 		if (!initialized)
3306 			return -ENODEV;
3307 	}
3308 
3309 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3310 	if (!intf)
3311 		return -ENOMEM;
3312 
3313 	rv = init_srcu_struct(&intf->users_srcu);
3314 	if (rv) {
3315 		kfree(intf);
3316 		return rv;
3317 	}
3318 
3319 
3320 	intf->bmc = &intf->tmp_bmc;
3321 	INIT_LIST_HEAD(&intf->bmc->intfs);
3322 	mutex_init(&intf->bmc->dyn_mutex);
3323 	INIT_LIST_HEAD(&intf->bmc_link);
3324 	mutex_init(&intf->bmc_reg_mutex);
3325 	intf->intf_num = -1; /* Mark it invalid for now. */
3326 	kref_init(&intf->refcount);
3327 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3328 	intf->si_dev = si_dev;
3329 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3330 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3331 		intf->addrinfo[j].lun = 2;
3332 	}
3333 	if (slave_addr != 0)
3334 		intf->addrinfo[0].address = slave_addr;
3335 	INIT_LIST_HEAD(&intf->users);
3336 	intf->handlers = handlers;
3337 	intf->send_info = send_info;
3338 	spin_lock_init(&intf->seq_lock);
3339 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3340 		intf->seq_table[j].inuse = 0;
3341 		intf->seq_table[j].seqid = 0;
3342 	}
3343 	intf->curr_seq = 0;
3344 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3345 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3346 	tasklet_init(&intf->recv_tasklet,
3347 		     smi_recv_tasklet,
3348 		     (unsigned long) intf);
3349 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3350 	spin_lock_init(&intf->xmit_msgs_lock);
3351 	INIT_LIST_HEAD(&intf->xmit_msgs);
3352 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3353 	spin_lock_init(&intf->events_lock);
3354 	atomic_set(&intf->event_waiters, 0);
3355 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3356 	INIT_LIST_HEAD(&intf->waiting_events);
3357 	intf->waiting_events_count = 0;
3358 	mutex_init(&intf->cmd_rcvrs_mutex);
3359 	spin_lock_init(&intf->maintenance_mode_lock);
3360 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3361 	init_waitqueue_head(&intf->waitq);
3362 	for (i = 0; i < IPMI_NUM_STATS; i++)
3363 		atomic_set(&intf->stats[i], 0);
3364 
3365 	mutex_lock(&ipmi_interfaces_mutex);
3366 	/* Look for a hole in the numbers. */
3367 	i = 0;
3368 	link = &ipmi_interfaces;
3369 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3370 		if (tintf->intf_num != i) {
3371 			link = &tintf->link;
3372 			break;
3373 		}
3374 		i++;
3375 	}
3376 	/* Add the new interface in numeric order. */
3377 	if (i == 0)
3378 		list_add_rcu(&intf->link, &ipmi_interfaces);
3379 	else
3380 		list_add_tail_rcu(&intf->link, link);
3381 
3382 	rv = handlers->start_processing(send_info, intf);
3383 	if (rv)
3384 		goto out_err;
3385 
3386 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3387 	if (rv) {
3388 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3389 		goto out_err_started;
3390 	}
3391 
3392 	mutex_lock(&intf->bmc_reg_mutex);
3393 	rv = __scan_channels(intf, &id);
3394 	mutex_unlock(&intf->bmc_reg_mutex);
3395 	if (rv)
3396 		goto out_err_bmc_reg;
3397 
3398 	/*
3399 	 * Keep memory order straight for RCU readers.  Make
3400 	 * sure everything else is committed to memory before
3401 	 * setting intf_num to mark the interface valid.
3402 	 */
3403 	smp_wmb();
3404 	intf->intf_num = i;
3405 	mutex_unlock(&ipmi_interfaces_mutex);
3406 
3407 	/* After this point the interface is legal to use. */
3408 	call_smi_watchers(i, intf->si_dev);
3409 
3410 	return 0;
3411 
3412  out_err_bmc_reg:
3413 	ipmi_bmc_unregister(intf);
3414  out_err_started:
3415 	if (intf->handlers->shutdown)
3416 		intf->handlers->shutdown(intf->send_info);
3417  out_err:
3418 	list_del_rcu(&intf->link);
3419 	mutex_unlock(&ipmi_interfaces_mutex);
3420 	synchronize_srcu(&ipmi_interfaces_srcu);
3421 	cleanup_srcu_struct(&intf->users_srcu);
3422 	kref_put(&intf->refcount, intf_free);
3423 
3424 	return rv;
3425 }
3426 EXPORT_SYMBOL(ipmi_register_smi);
3427 
3428 static void deliver_smi_err_response(struct ipmi_smi *intf,
3429 				     struct ipmi_smi_msg *msg,
3430 				     unsigned char err)
3431 {
3432 	msg->rsp[0] = msg->data[0] | 4;
3433 	msg->rsp[1] = msg->data[1];
3434 	msg->rsp[2] = err;
3435 	msg->rsp_size = 3;
3436 	/* It's an error, so it will never requeue, no need to check return. */
3437 	handle_one_recv_msg(intf, msg);
3438 }
3439 
3440 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3441 {
3442 	int              i;
3443 	struct seq_table *ent;
3444 	struct ipmi_smi_msg *msg;
3445 	struct list_head *entry;
3446 	struct list_head tmplist;
3447 
3448 	/* Clear out our transmit queues and hold the messages. */
3449 	INIT_LIST_HEAD(&tmplist);
3450 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3451 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3452 
3453 	/* Current message first, to preserve order */
3454 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3455 		/* Wait for the message to clear out. */
3456 		schedule_timeout(1);
3457 	}
3458 
3459 	/* No need for locks, the interface is down. */
3460 
3461 	/*
3462 	 * Return errors for all pending messages in queue and in the
3463 	 * tables waiting for remote responses.
3464 	 */
3465 	while (!list_empty(&tmplist)) {
3466 		entry = tmplist.next;
3467 		list_del(entry);
3468 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3469 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3470 	}
3471 
3472 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3473 		ent = &intf->seq_table[i];
3474 		if (!ent->inuse)
3475 			continue;
3476 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3477 	}
3478 }
3479 
3480 void ipmi_unregister_smi(struct ipmi_smi *intf)
3481 {
3482 	struct ipmi_smi_watcher *w;
3483 	int intf_num = intf->intf_num, index;
3484 
3485 	mutex_lock(&ipmi_interfaces_mutex);
3486 	intf->intf_num = -1;
3487 	intf->in_shutdown = true;
3488 	list_del_rcu(&intf->link);
3489 	mutex_unlock(&ipmi_interfaces_mutex);
3490 	synchronize_srcu(&ipmi_interfaces_srcu);
3491 
3492 	/* At this point no users can be added to the interface. */
3493 
3494 	/*
3495 	 * Call all the watcher interfaces to tell them that
3496 	 * an interface is going away.
3497 	 */
3498 	mutex_lock(&smi_watchers_mutex);
3499 	list_for_each_entry(w, &smi_watchers, link)
3500 		w->smi_gone(intf_num);
3501 	mutex_unlock(&smi_watchers_mutex);
3502 
3503 	index = srcu_read_lock(&intf->users_srcu);
3504 	while (!list_empty(&intf->users)) {
3505 		struct ipmi_user *user =
3506 			container_of(list_next_rcu(&intf->users),
3507 				     struct ipmi_user, link);
3508 
3509 		_ipmi_destroy_user(user);
3510 	}
3511 	srcu_read_unlock(&intf->users_srcu, index);
3512 
3513 	if (intf->handlers->shutdown)
3514 		intf->handlers->shutdown(intf->send_info);
3515 
3516 	cleanup_smi_msgs(intf);
3517 
3518 	ipmi_bmc_unregister(intf);
3519 
3520 	cleanup_srcu_struct(&intf->users_srcu);
3521 	kref_put(&intf->refcount, intf_free);
3522 }
3523 EXPORT_SYMBOL(ipmi_unregister_smi);
3524 
3525 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3526 				   struct ipmi_smi_msg *msg)
3527 {
3528 	struct ipmi_ipmb_addr ipmb_addr;
3529 	struct ipmi_recv_msg  *recv_msg;
3530 
3531 	/*
3532 	 * This is 11, not 10, because the response must contain a
3533 	 * completion code.
3534 	 */
3535 	if (msg->rsp_size < 11) {
3536 		/* Message not big enough, just ignore it. */
3537 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3538 		return 0;
3539 	}
3540 
3541 	if (msg->rsp[2] != 0) {
3542 		/* An error getting the response, just ignore it. */
3543 		return 0;
3544 	}
3545 
3546 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3547 	ipmb_addr.slave_addr = msg->rsp[6];
3548 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3549 	ipmb_addr.lun = msg->rsp[7] & 3;
3550 
3551 	/*
3552 	 * It's a response from a remote entity.  Look up the sequence
3553 	 * number and handle the response.
3554 	 */
3555 	if (intf_find_seq(intf,
3556 			  msg->rsp[7] >> 2,
3557 			  msg->rsp[3] & 0x0f,
3558 			  msg->rsp[8],
3559 			  (msg->rsp[4] >> 2) & (~1),
3560 			  (struct ipmi_addr *) &ipmb_addr,
3561 			  &recv_msg)) {
3562 		/*
3563 		 * We were unable to find the sequence number,
3564 		 * so just nuke the message.
3565 		 */
3566 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3567 		return 0;
3568 	}
3569 
3570 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3571 	/*
3572 	 * The other fields matched, so no need to set them, except
3573 	 * for netfn, which needs to be the response that was
3574 	 * returned, not the request value.
3575 	 */
3576 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3577 	recv_msg->msg.data = recv_msg->msg_data;
3578 	recv_msg->msg.data_len = msg->rsp_size - 10;
3579 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3580 	if (deliver_response(intf, recv_msg))
3581 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3582 	else
3583 		ipmi_inc_stat(intf, handled_ipmb_responses);
3584 
3585 	return 0;
3586 }
3587 
3588 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3589 				   struct ipmi_smi_msg *msg)
3590 {
3591 	struct cmd_rcvr          *rcvr;
3592 	int                      rv = 0;
3593 	unsigned char            netfn;
3594 	unsigned char            cmd;
3595 	unsigned char            chan;
3596 	struct ipmi_user         *user = NULL;
3597 	struct ipmi_ipmb_addr    *ipmb_addr;
3598 	struct ipmi_recv_msg     *recv_msg;
3599 
3600 	if (msg->rsp_size < 10) {
3601 		/* Message not big enough, just ignore it. */
3602 		ipmi_inc_stat(intf, invalid_commands);
3603 		return 0;
3604 	}
3605 
3606 	if (msg->rsp[2] != 0) {
3607 		/* An error getting the response, just ignore it. */
3608 		return 0;
3609 	}
3610 
3611 	netfn = msg->rsp[4] >> 2;
3612 	cmd = msg->rsp[8];
3613 	chan = msg->rsp[3] & 0xf;
3614 
3615 	rcu_read_lock();
3616 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3617 	if (rcvr) {
3618 		user = rcvr->user;
3619 		kref_get(&user->refcount);
3620 	} else
3621 		user = NULL;
3622 	rcu_read_unlock();
3623 
3624 	if (user == NULL) {
3625 		/* We didn't find a user, deliver an error response. */
3626 		ipmi_inc_stat(intf, unhandled_commands);
3627 
3628 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3629 		msg->data[1] = IPMI_SEND_MSG_CMD;
3630 		msg->data[2] = msg->rsp[3];
3631 		msg->data[3] = msg->rsp[6];
3632 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3633 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3634 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3635 		/* rqseq/lun */
3636 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3637 		msg->data[8] = msg->rsp[8]; /* cmd */
3638 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3639 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3640 		msg->data_size = 11;
3641 
3642 		ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3643 
3644 		rcu_read_lock();
3645 		if (!intf->in_shutdown) {
3646 			smi_send(intf, intf->handlers, msg, 0);
3647 			/*
3648 			 * We used the message, so return the value
3649 			 * that causes it to not be freed or
3650 			 * queued.
3651 			 */
3652 			rv = -1;
3653 		}
3654 		rcu_read_unlock();
3655 	} else {
3656 		recv_msg = ipmi_alloc_recv_msg();
3657 		if (!recv_msg) {
3658 			/*
3659 			 * We couldn't allocate memory for the
3660 			 * message, so requeue it for handling
3661 			 * later.
3662 			 */
3663 			rv = 1;
3664 			kref_put(&user->refcount, free_user);
3665 		} else {
3666 			/* Extract the source address from the data. */
3667 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3668 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3669 			ipmb_addr->slave_addr = msg->rsp[6];
3670 			ipmb_addr->lun = msg->rsp[7] & 3;
3671 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3672 
3673 			/*
3674 			 * Extract the rest of the message information
3675 			 * from the IPMB header.
3676 			 */
3677 			recv_msg->user = user;
3678 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3679 			recv_msg->msgid = msg->rsp[7] >> 2;
3680 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3681 			recv_msg->msg.cmd = msg->rsp[8];
3682 			recv_msg->msg.data = recv_msg->msg_data;
3683 
3684 			/*
3685 			 * We chop off 10, not 9 bytes because the checksum
3686 			 * at the end also needs to be removed.
3687 			 */
3688 			recv_msg->msg.data_len = msg->rsp_size - 10;
3689 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3690 			       msg->rsp_size - 10);
3691 			if (deliver_response(intf, recv_msg))
3692 				ipmi_inc_stat(intf, unhandled_commands);
3693 			else
3694 				ipmi_inc_stat(intf, handled_commands);
3695 		}
3696 	}
3697 
3698 	return rv;
3699 }
3700 
3701 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3702 				  struct ipmi_smi_msg *msg)
3703 {
3704 	struct ipmi_lan_addr  lan_addr;
3705 	struct ipmi_recv_msg  *recv_msg;
3706 
3707 
3708 	/*
3709 	 * This is 13, not 12, because the response must contain a
3710 	 * completion code.
3711 	 */
3712 	if (msg->rsp_size < 13) {
3713 		/* Message not big enough, just ignore it. */
3714 		ipmi_inc_stat(intf, invalid_lan_responses);
3715 		return 0;
3716 	}
3717 
3718 	if (msg->rsp[2] != 0) {
3719 		/* An error getting the response, just ignore it. */
3720 		return 0;
3721 	}
3722 
3723 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3724 	lan_addr.session_handle = msg->rsp[4];
3725 	lan_addr.remote_SWID = msg->rsp[8];
3726 	lan_addr.local_SWID = msg->rsp[5];
3727 	lan_addr.channel = msg->rsp[3] & 0x0f;
3728 	lan_addr.privilege = msg->rsp[3] >> 4;
3729 	lan_addr.lun = msg->rsp[9] & 3;
3730 
3731 	/*
3732 	 * It's a response from a remote entity.  Look up the sequence
3733 	 * number and handle the response.
3734 	 */
3735 	if (intf_find_seq(intf,
3736 			  msg->rsp[9] >> 2,
3737 			  msg->rsp[3] & 0x0f,
3738 			  msg->rsp[10],
3739 			  (msg->rsp[6] >> 2) & (~1),
3740 			  (struct ipmi_addr *) &lan_addr,
3741 			  &recv_msg)) {
3742 		/*
3743 		 * We were unable to find the sequence number,
3744 		 * so just nuke the message.
3745 		 */
3746 		ipmi_inc_stat(intf, unhandled_lan_responses);
3747 		return 0;
3748 	}
3749 
3750 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3751 	/*
3752 	 * The other fields matched, so no need to set them, except
3753 	 * for netfn, which needs to be the response that was
3754 	 * returned, not the request value.
3755 	 */
3756 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3757 	recv_msg->msg.data = recv_msg->msg_data;
3758 	recv_msg->msg.data_len = msg->rsp_size - 12;
3759 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3760 	if (deliver_response(intf, recv_msg))
3761 		ipmi_inc_stat(intf, unhandled_lan_responses);
3762 	else
3763 		ipmi_inc_stat(intf, handled_lan_responses);
3764 
3765 	return 0;
3766 }
3767 
3768 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3769 				  struct ipmi_smi_msg *msg)
3770 {
3771 	struct cmd_rcvr          *rcvr;
3772 	int                      rv = 0;
3773 	unsigned char            netfn;
3774 	unsigned char            cmd;
3775 	unsigned char            chan;
3776 	struct ipmi_user         *user = NULL;
3777 	struct ipmi_lan_addr     *lan_addr;
3778 	struct ipmi_recv_msg     *recv_msg;
3779 
3780 	if (msg->rsp_size < 12) {
3781 		/* Message not big enough, just ignore it. */
3782 		ipmi_inc_stat(intf, invalid_commands);
3783 		return 0;
3784 	}
3785 
3786 	if (msg->rsp[2] != 0) {
3787 		/* An error getting the response, just ignore it. */
3788 		return 0;
3789 	}
3790 
3791 	netfn = msg->rsp[6] >> 2;
3792 	cmd = msg->rsp[10];
3793 	chan = msg->rsp[3] & 0xf;
3794 
3795 	rcu_read_lock();
3796 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3797 	if (rcvr) {
3798 		user = rcvr->user;
3799 		kref_get(&user->refcount);
3800 	} else
3801 		user = NULL;
3802 	rcu_read_unlock();
3803 
3804 	if (user == NULL) {
3805 		/* We didn't find a user, just give up. */
3806 		ipmi_inc_stat(intf, unhandled_commands);
3807 
3808 		/*
3809 		 * Don't do anything with these messages, just allow
3810 		 * them to be freed.
3811 		 */
3812 		rv = 0;
3813 	} else {
3814 		recv_msg = ipmi_alloc_recv_msg();
3815 		if (!recv_msg) {
3816 			/*
3817 			 * We couldn't allocate memory for the
3818 			 * message, so requeue it for handling later.
3819 			 */
3820 			rv = 1;
3821 			kref_put(&user->refcount, free_user);
3822 		} else {
3823 			/* Extract the source address from the data. */
3824 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3825 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3826 			lan_addr->session_handle = msg->rsp[4];
3827 			lan_addr->remote_SWID = msg->rsp[8];
3828 			lan_addr->local_SWID = msg->rsp[5];
3829 			lan_addr->lun = msg->rsp[9] & 3;
3830 			lan_addr->channel = msg->rsp[3] & 0xf;
3831 			lan_addr->privilege = msg->rsp[3] >> 4;
3832 
3833 			/*
3834 			 * Extract the rest of the message information
3835 			 * from the IPMB header.
3836 			 */
3837 			recv_msg->user = user;
3838 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3839 			recv_msg->msgid = msg->rsp[9] >> 2;
3840 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3841 			recv_msg->msg.cmd = msg->rsp[10];
3842 			recv_msg->msg.data = recv_msg->msg_data;
3843 
3844 			/*
3845 			 * We chop off 12, not 11 bytes because the checksum
3846 			 * at the end also needs to be removed.
3847 			 */
3848 			recv_msg->msg.data_len = msg->rsp_size - 12;
3849 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3850 			       msg->rsp_size - 12);
3851 			if (deliver_response(intf, recv_msg))
3852 				ipmi_inc_stat(intf, unhandled_commands);
3853 			else
3854 				ipmi_inc_stat(intf, handled_commands);
3855 		}
3856 	}
3857 
3858 	return rv;
3859 }
3860 
3861 /*
3862  * This routine will handle "Get Message" command responses with
3863  * channels that use an OEM Medium. The message format belongs to
3864  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3865  * Chapter 22, sections 22.6 and 22.24 for more details.
3866  */
3867 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3868 				  struct ipmi_smi_msg *msg)
3869 {
3870 	struct cmd_rcvr       *rcvr;
3871 	int                   rv = 0;
3872 	unsigned char         netfn;
3873 	unsigned char         cmd;
3874 	unsigned char         chan;
3875 	struct ipmi_user *user = NULL;
3876 	struct ipmi_system_interface_addr *smi_addr;
3877 	struct ipmi_recv_msg  *recv_msg;
3878 
3879 	/*
3880 	 * We expect the OEM SW to perform error checking
3881 	 * so we just do some basic sanity checks
3882 	 */
3883 	if (msg->rsp_size < 4) {
3884 		/* Message not big enough, just ignore it. */
3885 		ipmi_inc_stat(intf, invalid_commands);
3886 		return 0;
3887 	}
3888 
3889 	if (msg->rsp[2] != 0) {
3890 		/* An error getting the response, just ignore it. */
3891 		return 0;
3892 	}
3893 
3894 	/*
3895 	 * This is an OEM Message so the OEM needs to know how
3896 	 * handle the message. We do no interpretation.
3897 	 */
3898 	netfn = msg->rsp[0] >> 2;
3899 	cmd = msg->rsp[1];
3900 	chan = msg->rsp[3] & 0xf;
3901 
3902 	rcu_read_lock();
3903 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3904 	if (rcvr) {
3905 		user = rcvr->user;
3906 		kref_get(&user->refcount);
3907 	} else
3908 		user = NULL;
3909 	rcu_read_unlock();
3910 
3911 	if (user == NULL) {
3912 		/* We didn't find a user, just give up. */
3913 		ipmi_inc_stat(intf, unhandled_commands);
3914 
3915 		/*
3916 		 * Don't do anything with these messages, just allow
3917 		 * them to be freed.
3918 		 */
3919 
3920 		rv = 0;
3921 	} else {
3922 		recv_msg = ipmi_alloc_recv_msg();
3923 		if (!recv_msg) {
3924 			/*
3925 			 * We couldn't allocate memory for the
3926 			 * message, so requeue it for handling
3927 			 * later.
3928 			 */
3929 			rv = 1;
3930 			kref_put(&user->refcount, free_user);
3931 		} else {
3932 			/*
3933 			 * OEM Messages are expected to be delivered via
3934 			 * the system interface to SMS software.  We might
3935 			 * need to visit this again depending on OEM
3936 			 * requirements
3937 			 */
3938 			smi_addr = ((struct ipmi_system_interface_addr *)
3939 				    &recv_msg->addr);
3940 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3941 			smi_addr->channel = IPMI_BMC_CHANNEL;
3942 			smi_addr->lun = msg->rsp[0] & 3;
3943 
3944 			recv_msg->user = user;
3945 			recv_msg->user_msg_data = NULL;
3946 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3947 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3948 			recv_msg->msg.cmd = msg->rsp[1];
3949 			recv_msg->msg.data = recv_msg->msg_data;
3950 
3951 			/*
3952 			 * The message starts at byte 4 which follows the
3953 			 * the Channel Byte in the "GET MESSAGE" command
3954 			 */
3955 			recv_msg->msg.data_len = msg->rsp_size - 4;
3956 			memcpy(recv_msg->msg_data, &msg->rsp[4],
3957 			       msg->rsp_size - 4);
3958 			if (deliver_response(intf, recv_msg))
3959 				ipmi_inc_stat(intf, unhandled_commands);
3960 			else
3961 				ipmi_inc_stat(intf, handled_commands);
3962 		}
3963 	}
3964 
3965 	return rv;
3966 }
3967 
3968 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3969 				     struct ipmi_smi_msg  *msg)
3970 {
3971 	struct ipmi_system_interface_addr *smi_addr;
3972 
3973 	recv_msg->msgid = 0;
3974 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
3975 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3976 	smi_addr->channel = IPMI_BMC_CHANNEL;
3977 	smi_addr->lun = msg->rsp[0] & 3;
3978 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3979 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3980 	recv_msg->msg.cmd = msg->rsp[1];
3981 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
3982 	recv_msg->msg.data = recv_msg->msg_data;
3983 	recv_msg->msg.data_len = msg->rsp_size - 3;
3984 }
3985 
3986 static int handle_read_event_rsp(struct ipmi_smi *intf,
3987 				 struct ipmi_smi_msg *msg)
3988 {
3989 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3990 	struct list_head     msgs;
3991 	struct ipmi_user     *user;
3992 	int rv = 0, deliver_count = 0, index;
3993 	unsigned long        flags;
3994 
3995 	if (msg->rsp_size < 19) {
3996 		/* Message is too small to be an IPMB event. */
3997 		ipmi_inc_stat(intf, invalid_events);
3998 		return 0;
3999 	}
4000 
4001 	if (msg->rsp[2] != 0) {
4002 		/* An error getting the event, just ignore it. */
4003 		return 0;
4004 	}
4005 
4006 	INIT_LIST_HEAD(&msgs);
4007 
4008 	spin_lock_irqsave(&intf->events_lock, flags);
4009 
4010 	ipmi_inc_stat(intf, events);
4011 
4012 	/*
4013 	 * Allocate and fill in one message for every user that is
4014 	 * getting events.
4015 	 */
4016 	index = srcu_read_lock(&intf->users_srcu);
4017 	list_for_each_entry_rcu(user, &intf->users, link) {
4018 		if (!user->gets_events)
4019 			continue;
4020 
4021 		recv_msg = ipmi_alloc_recv_msg();
4022 		if (!recv_msg) {
4023 			rcu_read_unlock();
4024 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4025 						 link) {
4026 				list_del(&recv_msg->link);
4027 				ipmi_free_recv_msg(recv_msg);
4028 			}
4029 			/*
4030 			 * We couldn't allocate memory for the
4031 			 * message, so requeue it for handling
4032 			 * later.
4033 			 */
4034 			rv = 1;
4035 			goto out;
4036 		}
4037 
4038 		deliver_count++;
4039 
4040 		copy_event_into_recv_msg(recv_msg, msg);
4041 		recv_msg->user = user;
4042 		kref_get(&user->refcount);
4043 		list_add_tail(&recv_msg->link, &msgs);
4044 	}
4045 	srcu_read_unlock(&intf->users_srcu, index);
4046 
4047 	if (deliver_count) {
4048 		/* Now deliver all the messages. */
4049 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4050 			list_del(&recv_msg->link);
4051 			deliver_local_response(intf, recv_msg);
4052 		}
4053 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4054 		/*
4055 		 * No one to receive the message, put it in queue if there's
4056 		 * not already too many things in the queue.
4057 		 */
4058 		recv_msg = ipmi_alloc_recv_msg();
4059 		if (!recv_msg) {
4060 			/*
4061 			 * We couldn't allocate memory for the
4062 			 * message, so requeue it for handling
4063 			 * later.
4064 			 */
4065 			rv = 1;
4066 			goto out;
4067 		}
4068 
4069 		copy_event_into_recv_msg(recv_msg, msg);
4070 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4071 		intf->waiting_events_count++;
4072 	} else if (!intf->event_msg_printed) {
4073 		/*
4074 		 * There's too many things in the queue, discard this
4075 		 * message.
4076 		 */
4077 		dev_warn(intf->si_dev,
4078 			 PFX "Event queue full, discarding incoming events\n");
4079 		intf->event_msg_printed = 1;
4080 	}
4081 
4082  out:
4083 	spin_unlock_irqrestore(&intf->events_lock, flags);
4084 
4085 	return rv;
4086 }
4087 
4088 static int handle_bmc_rsp(struct ipmi_smi *intf,
4089 			  struct ipmi_smi_msg *msg)
4090 {
4091 	struct ipmi_recv_msg *recv_msg;
4092 	struct ipmi_system_interface_addr *smi_addr;
4093 
4094 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4095 	if (recv_msg == NULL) {
4096 		dev_warn(intf->si_dev,
4097 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vender for assistance\n");
4098 		return 0;
4099 	}
4100 
4101 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4102 	recv_msg->msgid = msg->msgid;
4103 	smi_addr = ((struct ipmi_system_interface_addr *)
4104 		    &recv_msg->addr);
4105 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4106 	smi_addr->channel = IPMI_BMC_CHANNEL;
4107 	smi_addr->lun = msg->rsp[0] & 3;
4108 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4109 	recv_msg->msg.cmd = msg->rsp[1];
4110 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4111 	recv_msg->msg.data = recv_msg->msg_data;
4112 	recv_msg->msg.data_len = msg->rsp_size - 2;
4113 	deliver_local_response(intf, recv_msg);
4114 
4115 	return 0;
4116 }
4117 
4118 /*
4119  * Handle a received message.  Return 1 if the message should be requeued,
4120  * 0 if the message should be freed, or -1 if the message should not
4121  * be freed or requeued.
4122  */
4123 static int handle_one_recv_msg(struct ipmi_smi *intf,
4124 			       struct ipmi_smi_msg *msg)
4125 {
4126 	int requeue;
4127 	int chan;
4128 
4129 	ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4130 	if (msg->rsp_size < 2) {
4131 		/* Message is too small to be correct. */
4132 		dev_warn(intf->si_dev,
4133 			 PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
4134 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4135 
4136 		/* Generate an error response for the message. */
4137 		msg->rsp[0] = msg->data[0] | (1 << 2);
4138 		msg->rsp[1] = msg->data[1];
4139 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4140 		msg->rsp_size = 3;
4141 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4142 		   || (msg->rsp[1] != msg->data[1])) {
4143 		/*
4144 		 * The NetFN and Command in the response is not even
4145 		 * marginally correct.
4146 		 */
4147 		dev_warn(intf->si_dev,
4148 			 PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4149 			 (msg->data[0] >> 2) | 1, msg->data[1],
4150 			 msg->rsp[0] >> 2, msg->rsp[1]);
4151 
4152 		/* Generate an error response for the message. */
4153 		msg->rsp[0] = msg->data[0] | (1 << 2);
4154 		msg->rsp[1] = msg->data[1];
4155 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4156 		msg->rsp_size = 3;
4157 	}
4158 
4159 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4160 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4161 	    && (msg->user_data != NULL)) {
4162 		/*
4163 		 * It's a response to a response we sent.  For this we
4164 		 * deliver a send message response to the user.
4165 		 */
4166 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4167 
4168 		requeue = 0;
4169 		if (msg->rsp_size < 2)
4170 			/* Message is too small to be correct. */
4171 			goto out;
4172 
4173 		chan = msg->data[2] & 0x0f;
4174 		if (chan >= IPMI_MAX_CHANNELS)
4175 			/* Invalid channel number */
4176 			goto out;
4177 
4178 		if (!recv_msg)
4179 			goto out;
4180 
4181 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4182 		recv_msg->msg.data = recv_msg->msg_data;
4183 		recv_msg->msg.data_len = 1;
4184 		recv_msg->msg_data[0] = msg->rsp[2];
4185 		deliver_local_response(intf, recv_msg);
4186 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4187 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4188 		struct ipmi_channel   *chans;
4189 
4190 		/* It's from the receive queue. */
4191 		chan = msg->rsp[3] & 0xf;
4192 		if (chan >= IPMI_MAX_CHANNELS) {
4193 			/* Invalid channel number */
4194 			requeue = 0;
4195 			goto out;
4196 		}
4197 
4198 		/*
4199 		 * We need to make sure the channels have been initialized.
4200 		 * The channel_handler routine will set the "curr_channel"
4201 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4202 		 * channels for this interface have been initialized.
4203 		 */
4204 		if (!intf->channels_ready) {
4205 			requeue = 0; /* Throw the message away */
4206 			goto out;
4207 		}
4208 
4209 		chans = READ_ONCE(intf->channel_list)->c;
4210 
4211 		switch (chans[chan].medium) {
4212 		case IPMI_CHANNEL_MEDIUM_IPMB:
4213 			if (msg->rsp[4] & 0x04) {
4214 				/*
4215 				 * It's a response, so find the
4216 				 * requesting message and send it up.
4217 				 */
4218 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4219 			} else {
4220 				/*
4221 				 * It's a command to the SMS from some other
4222 				 * entity.  Handle that.
4223 				 */
4224 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4225 			}
4226 			break;
4227 
4228 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4229 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4230 			if (msg->rsp[6] & 0x04) {
4231 				/*
4232 				 * It's a response, so find the
4233 				 * requesting message and send it up.
4234 				 */
4235 				requeue = handle_lan_get_msg_rsp(intf, msg);
4236 			} else {
4237 				/*
4238 				 * It's a command to the SMS from some other
4239 				 * entity.  Handle that.
4240 				 */
4241 				requeue = handle_lan_get_msg_cmd(intf, msg);
4242 			}
4243 			break;
4244 
4245 		default:
4246 			/* Check for OEM Channels.  Clients had better
4247 			   register for these commands. */
4248 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4249 			    && (chans[chan].medium
4250 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4251 				requeue = handle_oem_get_msg_cmd(intf, msg);
4252 			} else {
4253 				/*
4254 				 * We don't handle the channel type, so just
4255 				 * free the message.
4256 				 */
4257 				requeue = 0;
4258 			}
4259 		}
4260 
4261 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4262 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4263 		/* It's an asynchronous event. */
4264 		requeue = handle_read_event_rsp(intf, msg);
4265 	} else {
4266 		/* It's a response from the local BMC. */
4267 		requeue = handle_bmc_rsp(intf, msg);
4268 	}
4269 
4270  out:
4271 	return requeue;
4272 }
4273 
4274 /*
4275  * If there are messages in the queue or pretimeouts, handle them.
4276  */
4277 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4278 {
4279 	struct ipmi_smi_msg  *smi_msg;
4280 	unsigned long        flags = 0;
4281 	int                  rv;
4282 	int                  run_to_completion = intf->run_to_completion;
4283 
4284 	/* See if any waiting messages need to be processed. */
4285 	if (!run_to_completion)
4286 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4287 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4288 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4289 				     struct ipmi_smi_msg, link);
4290 		list_del(&smi_msg->link);
4291 		if (!run_to_completion)
4292 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4293 					       flags);
4294 		rv = handle_one_recv_msg(intf, smi_msg);
4295 		if (!run_to_completion)
4296 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4297 		if (rv > 0) {
4298 			/*
4299 			 * To preserve message order, quit if we
4300 			 * can't handle a message.  Add the message
4301 			 * back at the head, this is safe because this
4302 			 * tasklet is the only thing that pulls the
4303 			 * messages.
4304 			 */
4305 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4306 			break;
4307 		} else {
4308 			if (rv == 0)
4309 				/* Message handled */
4310 				ipmi_free_smi_msg(smi_msg);
4311 			/* If rv < 0, fatal error, del but don't free. */
4312 		}
4313 	}
4314 	if (!run_to_completion)
4315 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4316 
4317 	/*
4318 	 * If the pretimout count is non-zero, decrement one from it and
4319 	 * deliver pretimeouts to all the users.
4320 	 */
4321 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4322 		struct ipmi_user *user;
4323 		int index;
4324 
4325 		index = srcu_read_lock(&intf->users_srcu);
4326 		list_for_each_entry_rcu(user, &intf->users, link) {
4327 			if (user->handler->ipmi_watchdog_pretimeout)
4328 				user->handler->ipmi_watchdog_pretimeout(
4329 					user->handler_data);
4330 		}
4331 		srcu_read_unlock(&intf->users_srcu, index);
4332 	}
4333 }
4334 
4335 static void smi_recv_tasklet(unsigned long val)
4336 {
4337 	unsigned long flags = 0; /* keep us warning-free. */
4338 	struct ipmi_smi *intf = (struct ipmi_smi *) val;
4339 	int run_to_completion = intf->run_to_completion;
4340 	struct ipmi_smi_msg *newmsg = NULL;
4341 
4342 	/*
4343 	 * Start the next message if available.
4344 	 *
4345 	 * Do this here, not in the actual receiver, because we may deadlock
4346 	 * because the lower layer is allowed to hold locks while calling
4347 	 * message delivery.
4348 	 */
4349 
4350 	rcu_read_lock();
4351 
4352 	if (!run_to_completion)
4353 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4354 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4355 		struct list_head *entry = NULL;
4356 
4357 		/* Pick the high priority queue first. */
4358 		if (!list_empty(&intf->hp_xmit_msgs))
4359 			entry = intf->hp_xmit_msgs.next;
4360 		else if (!list_empty(&intf->xmit_msgs))
4361 			entry = intf->xmit_msgs.next;
4362 
4363 		if (entry) {
4364 			list_del(entry);
4365 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4366 			intf->curr_msg = newmsg;
4367 		}
4368 	}
4369 	if (!run_to_completion)
4370 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4371 	if (newmsg)
4372 		intf->handlers->sender(intf->send_info, newmsg);
4373 
4374 	rcu_read_unlock();
4375 
4376 	handle_new_recv_msgs(intf);
4377 }
4378 
4379 /* Handle a new message from the lower layer. */
4380 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4381 			   struct ipmi_smi_msg *msg)
4382 {
4383 	unsigned long flags = 0; /* keep us warning-free. */
4384 	int run_to_completion = intf->run_to_completion;
4385 
4386 	if ((msg->data_size >= 2)
4387 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4388 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4389 	    && (msg->user_data == NULL)) {
4390 
4391 		if (intf->in_shutdown)
4392 			goto free_msg;
4393 
4394 		/*
4395 		 * This is the local response to a command send, start
4396 		 * the timer for these.  The user_data will not be
4397 		 * NULL if this is a response send, and we will let
4398 		 * response sends just go through.
4399 		 */
4400 
4401 		/*
4402 		 * Check for errors, if we get certain errors (ones
4403 		 * that mean basically we can try again later), we
4404 		 * ignore them and start the timer.  Otherwise we
4405 		 * report the error immediately.
4406 		 */
4407 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4408 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4409 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4410 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4411 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4412 			int ch = msg->rsp[3] & 0xf;
4413 			struct ipmi_channel *chans;
4414 
4415 			/* Got an error sending the message, handle it. */
4416 
4417 			chans = READ_ONCE(intf->channel_list)->c;
4418 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4419 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4420 				ipmi_inc_stat(intf, sent_lan_command_errs);
4421 			else
4422 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4423 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4424 		} else
4425 			/* The message was sent, start the timer. */
4426 			intf_start_seq_timer(intf, msg->msgid);
4427 
4428 free_msg:
4429 		ipmi_free_smi_msg(msg);
4430 	} else {
4431 		/*
4432 		 * To preserve message order, we keep a queue and deliver from
4433 		 * a tasklet.
4434 		 */
4435 		if (!run_to_completion)
4436 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4437 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4438 		if (!run_to_completion)
4439 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4440 					       flags);
4441 	}
4442 
4443 	if (!run_to_completion)
4444 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4445 	/*
4446 	 * We can get an asynchronous event or receive message in addition
4447 	 * to commands we send.
4448 	 */
4449 	if (msg == intf->curr_msg)
4450 		intf->curr_msg = NULL;
4451 	if (!run_to_completion)
4452 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4453 
4454 	if (run_to_completion)
4455 		smi_recv_tasklet((unsigned long) intf);
4456 	else
4457 		tasklet_schedule(&intf->recv_tasklet);
4458 }
4459 EXPORT_SYMBOL(ipmi_smi_msg_received);
4460 
4461 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4462 {
4463 	if (intf->in_shutdown)
4464 		return;
4465 
4466 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4467 	tasklet_schedule(&intf->recv_tasklet);
4468 }
4469 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4470 
4471 static struct ipmi_smi_msg *
4472 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4473 		  unsigned char seq, long seqid)
4474 {
4475 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4476 	if (!smi_msg)
4477 		/*
4478 		 * If we can't allocate the message, then just return, we
4479 		 * get 4 retries, so this should be ok.
4480 		 */
4481 		return NULL;
4482 
4483 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4484 	smi_msg->data_size = recv_msg->msg.data_len;
4485 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4486 
4487 	ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4488 
4489 	return smi_msg;
4490 }
4491 
4492 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4493 			      struct list_head *timeouts,
4494 			      unsigned long timeout_period,
4495 			      int slot, unsigned long *flags,
4496 			      unsigned int *waiting_msgs)
4497 {
4498 	struct ipmi_recv_msg *msg;
4499 
4500 	if (intf->in_shutdown)
4501 		return;
4502 
4503 	if (!ent->inuse)
4504 		return;
4505 
4506 	if (timeout_period < ent->timeout) {
4507 		ent->timeout -= timeout_period;
4508 		(*waiting_msgs)++;
4509 		return;
4510 	}
4511 
4512 	if (ent->retries_left == 0) {
4513 		/* The message has used all its retries. */
4514 		ent->inuse = 0;
4515 		msg = ent->recv_msg;
4516 		list_add_tail(&msg->link, timeouts);
4517 		if (ent->broadcast)
4518 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4519 		else if (is_lan_addr(&ent->recv_msg->addr))
4520 			ipmi_inc_stat(intf, timed_out_lan_commands);
4521 		else
4522 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4523 	} else {
4524 		struct ipmi_smi_msg *smi_msg;
4525 		/* More retries, send again. */
4526 
4527 		(*waiting_msgs)++;
4528 
4529 		/*
4530 		 * Start with the max timer, set to normal timer after
4531 		 * the message is sent.
4532 		 */
4533 		ent->timeout = MAX_MSG_TIMEOUT;
4534 		ent->retries_left--;
4535 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4536 					    ent->seqid);
4537 		if (!smi_msg) {
4538 			if (is_lan_addr(&ent->recv_msg->addr))
4539 				ipmi_inc_stat(intf,
4540 					      dropped_rexmit_lan_commands);
4541 			else
4542 				ipmi_inc_stat(intf,
4543 					      dropped_rexmit_ipmb_commands);
4544 			return;
4545 		}
4546 
4547 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4548 
4549 		/*
4550 		 * Send the new message.  We send with a zero
4551 		 * priority.  It timed out, I doubt time is that
4552 		 * critical now, and high priority messages are really
4553 		 * only for messages to the local MC, which don't get
4554 		 * resent.
4555 		 */
4556 		if (intf->handlers) {
4557 			if (is_lan_addr(&ent->recv_msg->addr))
4558 				ipmi_inc_stat(intf,
4559 					      retransmitted_lan_commands);
4560 			else
4561 				ipmi_inc_stat(intf,
4562 					      retransmitted_ipmb_commands);
4563 
4564 			smi_send(intf, intf->handlers, smi_msg, 0);
4565 		} else
4566 			ipmi_free_smi_msg(smi_msg);
4567 
4568 		spin_lock_irqsave(&intf->seq_lock, *flags);
4569 	}
4570 }
4571 
4572 static unsigned int ipmi_timeout_handler(struct ipmi_smi *intf,
4573 					 unsigned long timeout_period)
4574 {
4575 	struct list_head     timeouts;
4576 	struct ipmi_recv_msg *msg, *msg2;
4577 	unsigned long        flags;
4578 	int                  i;
4579 	unsigned int         waiting_msgs = 0;
4580 
4581 	if (!intf->bmc_registered) {
4582 		kref_get(&intf->refcount);
4583 		if (!schedule_work(&intf->bmc_reg_work)) {
4584 			kref_put(&intf->refcount, intf_free);
4585 			waiting_msgs++;
4586 		}
4587 	}
4588 
4589 	/*
4590 	 * Go through the seq table and find any messages that
4591 	 * have timed out, putting them in the timeouts
4592 	 * list.
4593 	 */
4594 	INIT_LIST_HEAD(&timeouts);
4595 	spin_lock_irqsave(&intf->seq_lock, flags);
4596 	if (intf->ipmb_maintenance_mode_timeout) {
4597 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4598 			intf->ipmb_maintenance_mode_timeout = 0;
4599 		else
4600 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4601 	}
4602 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4603 		check_msg_timeout(intf, &intf->seq_table[i],
4604 				  &timeouts, timeout_period, i,
4605 				  &flags, &waiting_msgs);
4606 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4607 
4608 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4609 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4610 
4611 	/*
4612 	 * Maintenance mode handling.  Check the timeout
4613 	 * optimistically before we claim the lock.  It may
4614 	 * mean a timeout gets missed occasionally, but that
4615 	 * only means the timeout gets extended by one period
4616 	 * in that case.  No big deal, and it avoids the lock
4617 	 * most of the time.
4618 	 */
4619 	if (intf->auto_maintenance_timeout > 0) {
4620 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4621 		if (intf->auto_maintenance_timeout > 0) {
4622 			intf->auto_maintenance_timeout
4623 				-= timeout_period;
4624 			if (!intf->maintenance_mode
4625 			    && (intf->auto_maintenance_timeout <= 0)) {
4626 				intf->maintenance_mode_enable = false;
4627 				maintenance_mode_update(intf);
4628 			}
4629 		}
4630 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4631 				       flags);
4632 	}
4633 
4634 	tasklet_schedule(&intf->recv_tasklet);
4635 
4636 	return waiting_msgs;
4637 }
4638 
4639 static void ipmi_request_event(struct ipmi_smi *intf)
4640 {
4641 	/* No event requests when in maintenance mode. */
4642 	if (intf->maintenance_mode_enable)
4643 		return;
4644 
4645 	if (!intf->in_shutdown)
4646 		intf->handlers->request_events(intf->send_info);
4647 }
4648 
4649 static struct timer_list ipmi_timer;
4650 
4651 static atomic_t stop_operation;
4652 
4653 static void ipmi_timeout(struct timer_list *unused)
4654 {
4655 	struct ipmi_smi *intf;
4656 	int nt = 0, index;
4657 
4658 	if (atomic_read(&stop_operation))
4659 		return;
4660 
4661 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4662 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4663 		int lnt = 0;
4664 
4665 		if (atomic_read(&intf->event_waiters)) {
4666 			intf->ticks_to_req_ev--;
4667 			if (intf->ticks_to_req_ev == 0) {
4668 				ipmi_request_event(intf);
4669 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4670 			}
4671 			lnt++;
4672 		}
4673 
4674 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4675 
4676 		lnt = !!lnt;
4677 		if (lnt != intf->last_needs_timer &&
4678 					intf->handlers->set_need_watch)
4679 			intf->handlers->set_need_watch(intf->send_info, lnt);
4680 		intf->last_needs_timer = lnt;
4681 
4682 		nt += lnt;
4683 	}
4684 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4685 
4686 	if (nt)
4687 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4688 }
4689 
4690 static void need_waiter(struct ipmi_smi *intf)
4691 {
4692 	/* Racy, but worst case we start the timer twice. */
4693 	if (!timer_pending(&ipmi_timer))
4694 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4695 }
4696 
4697 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4698 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4699 
4700 static void free_smi_msg(struct ipmi_smi_msg *msg)
4701 {
4702 	atomic_dec(&smi_msg_inuse_count);
4703 	kfree(msg);
4704 }
4705 
4706 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4707 {
4708 	struct ipmi_smi_msg *rv;
4709 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4710 	if (rv) {
4711 		rv->done = free_smi_msg;
4712 		rv->user_data = NULL;
4713 		atomic_inc(&smi_msg_inuse_count);
4714 	}
4715 	return rv;
4716 }
4717 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4718 
4719 static void free_recv_msg(struct ipmi_recv_msg *msg)
4720 {
4721 	atomic_dec(&recv_msg_inuse_count);
4722 	kfree(msg);
4723 }
4724 
4725 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4726 {
4727 	struct ipmi_recv_msg *rv;
4728 
4729 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4730 	if (rv) {
4731 		rv->user = NULL;
4732 		rv->done = free_recv_msg;
4733 		atomic_inc(&recv_msg_inuse_count);
4734 	}
4735 	return rv;
4736 }
4737 
4738 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4739 {
4740 	if (msg->user)
4741 		kref_put(&msg->user->refcount, free_user);
4742 	msg->done(msg);
4743 }
4744 EXPORT_SYMBOL(ipmi_free_recv_msg);
4745 
4746 static atomic_t panic_done_count = ATOMIC_INIT(0);
4747 
4748 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4749 {
4750 	atomic_dec(&panic_done_count);
4751 }
4752 
4753 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4754 {
4755 	atomic_dec(&panic_done_count);
4756 }
4757 
4758 /*
4759  * Inside a panic, send a message and wait for a response.
4760  */
4761 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4762 					struct ipmi_addr *addr,
4763 					struct kernel_ipmi_msg *msg)
4764 {
4765 	struct ipmi_smi_msg  smi_msg;
4766 	struct ipmi_recv_msg recv_msg;
4767 	int rv;
4768 
4769 	smi_msg.done = dummy_smi_done_handler;
4770 	recv_msg.done = dummy_recv_done_handler;
4771 	atomic_add(2, &panic_done_count);
4772 	rv = i_ipmi_request(NULL,
4773 			    intf,
4774 			    addr,
4775 			    0,
4776 			    msg,
4777 			    intf,
4778 			    &smi_msg,
4779 			    &recv_msg,
4780 			    0,
4781 			    intf->addrinfo[0].address,
4782 			    intf->addrinfo[0].lun,
4783 			    0, 1); /* Don't retry, and don't wait. */
4784 	if (rv)
4785 		atomic_sub(2, &panic_done_count);
4786 	else if (intf->handlers->flush_messages)
4787 		intf->handlers->flush_messages(intf->send_info);
4788 
4789 	while (atomic_read(&panic_done_count) != 0)
4790 		ipmi_poll(intf);
4791 }
4792 
4793 static void event_receiver_fetcher(struct ipmi_smi *intf,
4794 				   struct ipmi_recv_msg *msg)
4795 {
4796 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4797 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4798 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4799 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4800 		/* A get event receiver command, save it. */
4801 		intf->event_receiver = msg->msg.data[1];
4802 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4803 	}
4804 }
4805 
4806 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4807 {
4808 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4809 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4810 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4811 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4812 		/*
4813 		 * A get device id command, save if we are an event
4814 		 * receiver or generator.
4815 		 */
4816 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4817 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4818 	}
4819 }
4820 
4821 static void send_panic_events(struct ipmi_smi *intf, char *str)
4822 {
4823 	struct kernel_ipmi_msg msg;
4824 	unsigned char data[16];
4825 	struct ipmi_system_interface_addr *si;
4826 	struct ipmi_addr addr;
4827 	char *p = str;
4828 	struct ipmi_ipmb_addr *ipmb;
4829 	int j;
4830 
4831 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4832 		return;
4833 
4834 	si = (struct ipmi_system_interface_addr *) &addr;
4835 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4836 	si->channel = IPMI_BMC_CHANNEL;
4837 	si->lun = 0;
4838 
4839 	/* Fill in an event telling that we have failed. */
4840 	msg.netfn = 0x04; /* Sensor or Event. */
4841 	msg.cmd = 2; /* Platform event command. */
4842 	msg.data = data;
4843 	msg.data_len = 8;
4844 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4845 	data[1] = 0x03; /* This is for IPMI 1.0. */
4846 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4847 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4848 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4849 
4850 	/*
4851 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4852 	 * to make the panic events more useful.
4853 	 */
4854 	if (str) {
4855 		data[3] = str[0];
4856 		data[6] = str[1];
4857 		data[7] = str[2];
4858 	}
4859 
4860 	/* Send the event announcing the panic. */
4861 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4862 
4863 	/*
4864 	 * On every interface, dump a bunch of OEM event holding the
4865 	 * string.
4866 	 */
4867 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4868 		return;
4869 
4870 	/*
4871 	 * intf_num is used as an marker to tell if the
4872 	 * interface is valid.  Thus we need a read barrier to
4873 	 * make sure data fetched before checking intf_num
4874 	 * won't be used.
4875 	 */
4876 	smp_rmb();
4877 
4878 	/*
4879 	 * First job here is to figure out where to send the
4880 	 * OEM events.  There's no way in IPMI to send OEM
4881 	 * events using an event send command, so we have to
4882 	 * find the SEL to put them in and stick them in
4883 	 * there.
4884 	 */
4885 
4886 	/* Get capabilities from the get device id. */
4887 	intf->local_sel_device = 0;
4888 	intf->local_event_generator = 0;
4889 	intf->event_receiver = 0;
4890 
4891 	/* Request the device info from the local MC. */
4892 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4893 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4894 	msg.data = NULL;
4895 	msg.data_len = 0;
4896 	intf->null_user_handler = device_id_fetcher;
4897 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4898 
4899 	if (intf->local_event_generator) {
4900 		/* Request the event receiver from the local MC. */
4901 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4902 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4903 		msg.data = NULL;
4904 		msg.data_len = 0;
4905 		intf->null_user_handler = event_receiver_fetcher;
4906 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4907 	}
4908 	intf->null_user_handler = NULL;
4909 
4910 	/*
4911 	 * Validate the event receiver.  The low bit must not
4912 	 * be 1 (it must be a valid IPMB address), it cannot
4913 	 * be zero, and it must not be my address.
4914 	 */
4915 	if (((intf->event_receiver & 1) == 0)
4916 	    && (intf->event_receiver != 0)
4917 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
4918 		/*
4919 		 * The event receiver is valid, send an IPMB
4920 		 * message.
4921 		 */
4922 		ipmb = (struct ipmi_ipmb_addr *) &addr;
4923 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4924 		ipmb->channel = 0; /* FIXME - is this right? */
4925 		ipmb->lun = intf->event_receiver_lun;
4926 		ipmb->slave_addr = intf->event_receiver;
4927 	} else if (intf->local_sel_device) {
4928 		/*
4929 		 * The event receiver was not valid (or was
4930 		 * me), but I am an SEL device, just dump it
4931 		 * in my SEL.
4932 		 */
4933 		si = (struct ipmi_system_interface_addr *) &addr;
4934 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4935 		si->channel = IPMI_BMC_CHANNEL;
4936 		si->lun = 0;
4937 	} else
4938 		return; /* No where to send the event. */
4939 
4940 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4941 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4942 	msg.data = data;
4943 	msg.data_len = 16;
4944 
4945 	j = 0;
4946 	while (*p) {
4947 		int size = strlen(p);
4948 
4949 		if (size > 11)
4950 			size = 11;
4951 		data[0] = 0;
4952 		data[1] = 0;
4953 		data[2] = 0xf0; /* OEM event without timestamp. */
4954 		data[3] = intf->addrinfo[0].address;
4955 		data[4] = j++; /* sequence # */
4956 		/*
4957 		 * Always give 11 bytes, so strncpy will fill
4958 		 * it with zeroes for me.
4959 		 */
4960 		strncpy(data+5, p, 11);
4961 		p += size;
4962 
4963 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4964 	}
4965 }
4966 
4967 static int has_panicked;
4968 
4969 static int panic_event(struct notifier_block *this,
4970 		       unsigned long         event,
4971 		       void                  *ptr)
4972 {
4973 	struct ipmi_smi *intf;
4974 	struct ipmi_user *user;
4975 
4976 	if (has_panicked)
4977 		return NOTIFY_DONE;
4978 	has_panicked = 1;
4979 
4980 	/* For every registered interface, set it to run to completion. */
4981 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4982 		if (!intf->handlers || intf->intf_num == -1)
4983 			/* Interface is not ready. */
4984 			continue;
4985 
4986 		if (!intf->handlers->poll)
4987 			continue;
4988 
4989 		/*
4990 		 * If we were interrupted while locking xmit_msgs_lock or
4991 		 * waiting_rcv_msgs_lock, the corresponding list may be
4992 		 * corrupted.  In this case, drop items on the list for
4993 		 * the safety.
4994 		 */
4995 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4996 			INIT_LIST_HEAD(&intf->xmit_msgs);
4997 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4998 		} else
4999 			spin_unlock(&intf->xmit_msgs_lock);
5000 
5001 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5002 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5003 		else
5004 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5005 
5006 		intf->run_to_completion = 1;
5007 		if (intf->handlers->set_run_to_completion)
5008 			intf->handlers->set_run_to_completion(intf->send_info,
5009 							      1);
5010 
5011 		list_for_each_entry_rcu(user, &intf->users, link) {
5012 			if (user->handler->ipmi_panic_handler)
5013 				user->handler->ipmi_panic_handler(
5014 					user->handler_data);
5015 		}
5016 
5017 		send_panic_events(intf, ptr);
5018 	}
5019 
5020 	return NOTIFY_DONE;
5021 }
5022 
5023 static struct notifier_block panic_block = {
5024 	.notifier_call	= panic_event,
5025 	.next		= NULL,
5026 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5027 };
5028 
5029 static int ipmi_init_msghandler(void)
5030 {
5031 	int rv;
5032 
5033 	if (initialized)
5034 		return 0;
5035 
5036 	rv = driver_register(&ipmidriver.driver);
5037 	if (rv) {
5038 		pr_err(PFX "Could not register IPMI driver\n");
5039 		return rv;
5040 	}
5041 
5042 	pr_info("ipmi message handler version " IPMI_DRIVER_VERSION "\n");
5043 
5044 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5045 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5046 
5047 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5048 
5049 	initialized = 1;
5050 
5051 	return 0;
5052 }
5053 
5054 static int __init ipmi_init_msghandler_mod(void)
5055 {
5056 	ipmi_init_msghandler();
5057 	return 0;
5058 }
5059 
5060 static void __exit cleanup_ipmi(void)
5061 {
5062 	int count;
5063 
5064 	if (!initialized)
5065 		return;
5066 
5067 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
5068 
5069 	/*
5070 	 * This can't be called if any interfaces exist, so no worry
5071 	 * about shutting down the interfaces.
5072 	 */
5073 
5074 	/*
5075 	 * Tell the timer to stop, then wait for it to stop.  This
5076 	 * avoids problems with race conditions removing the timer
5077 	 * here.
5078 	 */
5079 	atomic_inc(&stop_operation);
5080 	del_timer_sync(&ipmi_timer);
5081 
5082 	driver_unregister(&ipmidriver.driver);
5083 
5084 	initialized = 0;
5085 
5086 	/* Check for buffer leaks. */
5087 	count = atomic_read(&smi_msg_inuse_count);
5088 	if (count != 0)
5089 		pr_warn(PFX "SMI message count %d at exit\n", count);
5090 	count = atomic_read(&recv_msg_inuse_count);
5091 	if (count != 0)
5092 		pr_warn(PFX "recv message count %d at exit\n", count);
5093 }
5094 module_exit(cleanup_ipmi);
5095 
5096 module_init(ipmi_init_msghandler_mod);
5097 MODULE_LICENSE("GPL");
5098 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5099 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5100 		   " interface.");
5101 MODULE_VERSION(IPMI_DRIVER_VERSION);
5102 MODULE_SOFTDEP("post: ipmi_devintf");
5103