1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 enum ipmi_panic_event_op {
53 	IPMI_SEND_PANIC_EVENT_NONE,
54 	IPMI_SEND_PANIC_EVENT,
55 	IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64 
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66 
67 static int panic_op_write_handler(const char *val,
68 				  const struct kernel_param *kp)
69 {
70 	char valcp[16];
71 	char *s;
72 
73 	strncpy(valcp, val, 15);
74 	valcp[15] = '\0';
75 
76 	s = strstrip(valcp);
77 
78 	if (strcmp(s, "none") == 0)
79 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 	else if (strcmp(s, "event") == 0)
81 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 	else if (strcmp(s, "string") == 0)
83 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 	else
85 		return -EINVAL;
86 
87 	return 0;
88 }
89 
90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 	switch (ipmi_send_panic_event) {
93 	case IPMI_SEND_PANIC_EVENT_NONE:
94 		strcpy(buffer, "none\n");
95 		break;
96 
97 	case IPMI_SEND_PANIC_EVENT:
98 		strcpy(buffer, "event\n");
99 		break;
100 
101 	case IPMI_SEND_PANIC_EVENT_STRING:
102 		strcpy(buffer, "string\n");
103 		break;
104 
105 	default:
106 		strcpy(buffer, "???\n");
107 		break;
108 	}
109 
110 	return strlen(buffer);
111 }
112 
113 static const struct kernel_param_ops panic_op_ops = {
114 	.set = panic_op_write_handler,
115 	.get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119 
120 
121 #define MAX_EVENTS_IN_QUEUE	25
122 
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128 
129 /*
130  * Don't let a message sit in a queue forever, always time it with at lest
131  * the max message timer.  This is in milliseconds.
132  */
133 #define MAX_MSG_TIMEOUT		60000
134 
135 /*
136  * Timeout times below are in milliseconds, and are done off a 1
137  * second timer.  So setting the value to 1000 would mean anything
138  * between 0 and 1000ms.  So really the only reasonable minimum
139  * setting it 2000ms, which is between 1 and 2 seconds.
140  */
141 
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 		 "The time (milliseconds) between retry sends");
147 
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 		 "The time (milliseconds) between retry sends in maintenance mode");
153 
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 		 "The time (milliseconds) between retry sends in maintenance mode");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	/* Free must run in process context for RCU cleanup. */
203 	struct work_struct remove_work;
204 };
205 
206 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
207 	__acquires(user->release_barrier)
208 {
209 	struct ipmi_user *ruser;
210 
211 	*index = srcu_read_lock(&user->release_barrier);
212 	ruser = srcu_dereference(user->self, &user->release_barrier);
213 	if (!ruser)
214 		srcu_read_unlock(&user->release_barrier, *index);
215 	return ruser;
216 }
217 
218 static void release_ipmi_user(struct ipmi_user *user, int index)
219 {
220 	srcu_read_unlock(&user->release_barrier, index);
221 }
222 
223 struct cmd_rcvr {
224 	struct list_head link;
225 
226 	struct ipmi_user *user;
227 	unsigned char netfn;
228 	unsigned char cmd;
229 	unsigned int  chans;
230 
231 	/*
232 	 * This is used to form a linked lised during mass deletion.
233 	 * Since this is in an RCU list, we cannot use the link above
234 	 * or change any data until the RCU period completes.  So we
235 	 * use this next variable during mass deletion so we can have
236 	 * a list and don't have to wait and restart the search on
237 	 * every individual deletion of a command.
238 	 */
239 	struct cmd_rcvr *next;
240 };
241 
242 struct seq_table {
243 	unsigned int         inuse : 1;
244 	unsigned int         broadcast : 1;
245 
246 	unsigned long        timeout;
247 	unsigned long        orig_timeout;
248 	unsigned int         retries_left;
249 
250 	/*
251 	 * To verify on an incoming send message response that this is
252 	 * the message that the response is for, we keep a sequence id
253 	 * and increment it every time we send a message.
254 	 */
255 	long                 seqid;
256 
257 	/*
258 	 * This is held so we can properly respond to the message on a
259 	 * timeout, and it is used to hold the temporary data for
260 	 * retransmission, too.
261 	 */
262 	struct ipmi_recv_msg *recv_msg;
263 };
264 
265 /*
266  * Store the information in a msgid (long) to allow us to find a
267  * sequence table entry from the msgid.
268  */
269 #define STORE_SEQ_IN_MSGID(seq, seqid) \
270 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
271 
272 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
273 	do {								\
274 		seq = (((msgid) >> 26) & 0x3f);				\
275 		seqid = ((msgid) & 0x3ffffff);				\
276 	} while (0)
277 
278 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
279 
280 #define IPMI_MAX_CHANNELS       16
281 struct ipmi_channel {
282 	unsigned char medium;
283 	unsigned char protocol;
284 };
285 
286 struct ipmi_channel_set {
287 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
288 };
289 
290 struct ipmi_my_addrinfo {
291 	/*
292 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
293 	 * but may be changed by the user.
294 	 */
295 	unsigned char address;
296 
297 	/*
298 	 * My LUN.  This should generally stay the SMS LUN, but just in
299 	 * case...
300 	 */
301 	unsigned char lun;
302 };
303 
304 /*
305  * Note that the product id, manufacturer id, guid, and device id are
306  * immutable in this structure, so dyn_mutex is not required for
307  * accessing those.  If those change on a BMC, a new BMC is allocated.
308  */
309 struct bmc_device {
310 	struct platform_device pdev;
311 	struct list_head       intfs; /* Interfaces on this BMC. */
312 	struct ipmi_device_id  id;
313 	struct ipmi_device_id  fetch_id;
314 	int                    dyn_id_set;
315 	unsigned long          dyn_id_expiry;
316 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
317 	guid_t                 guid;
318 	guid_t                 fetch_guid;
319 	int                    dyn_guid_set;
320 	struct kref	       usecount;
321 	struct work_struct     remove_work;
322 	unsigned char	       cc; /* completion code */
323 };
324 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
325 
326 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
327 			     struct ipmi_device_id *id,
328 			     bool *guid_set, guid_t *guid);
329 
330 /*
331  * Various statistics for IPMI, these index stats[] in the ipmi_smi
332  * structure.
333  */
334 enum ipmi_stat_indexes {
335 	/* Commands we got from the user that were invalid. */
336 	IPMI_STAT_sent_invalid_commands = 0,
337 
338 	/* Commands we sent to the MC. */
339 	IPMI_STAT_sent_local_commands,
340 
341 	/* Responses from the MC that were delivered to a user. */
342 	IPMI_STAT_handled_local_responses,
343 
344 	/* Responses from the MC that were not delivered to a user. */
345 	IPMI_STAT_unhandled_local_responses,
346 
347 	/* Commands we sent out to the IPMB bus. */
348 	IPMI_STAT_sent_ipmb_commands,
349 
350 	/* Commands sent on the IPMB that had errors on the SEND CMD */
351 	IPMI_STAT_sent_ipmb_command_errs,
352 
353 	/* Each retransmit increments this count. */
354 	IPMI_STAT_retransmitted_ipmb_commands,
355 
356 	/*
357 	 * When a message times out (runs out of retransmits) this is
358 	 * incremented.
359 	 */
360 	IPMI_STAT_timed_out_ipmb_commands,
361 
362 	/*
363 	 * This is like above, but for broadcasts.  Broadcasts are
364 	 * *not* included in the above count (they are expected to
365 	 * time out).
366 	 */
367 	IPMI_STAT_timed_out_ipmb_broadcasts,
368 
369 	/* Responses I have sent to the IPMB bus. */
370 	IPMI_STAT_sent_ipmb_responses,
371 
372 	/* The response was delivered to the user. */
373 	IPMI_STAT_handled_ipmb_responses,
374 
375 	/* The response had invalid data in it. */
376 	IPMI_STAT_invalid_ipmb_responses,
377 
378 	/* The response didn't have anyone waiting for it. */
379 	IPMI_STAT_unhandled_ipmb_responses,
380 
381 	/* Commands we sent out to the IPMB bus. */
382 	IPMI_STAT_sent_lan_commands,
383 
384 	/* Commands sent on the IPMB that had errors on the SEND CMD */
385 	IPMI_STAT_sent_lan_command_errs,
386 
387 	/* Each retransmit increments this count. */
388 	IPMI_STAT_retransmitted_lan_commands,
389 
390 	/*
391 	 * When a message times out (runs out of retransmits) this is
392 	 * incremented.
393 	 */
394 	IPMI_STAT_timed_out_lan_commands,
395 
396 	/* Responses I have sent to the IPMB bus. */
397 	IPMI_STAT_sent_lan_responses,
398 
399 	/* The response was delivered to the user. */
400 	IPMI_STAT_handled_lan_responses,
401 
402 	/* The response had invalid data in it. */
403 	IPMI_STAT_invalid_lan_responses,
404 
405 	/* The response didn't have anyone waiting for it. */
406 	IPMI_STAT_unhandled_lan_responses,
407 
408 	/* The command was delivered to the user. */
409 	IPMI_STAT_handled_commands,
410 
411 	/* The command had invalid data in it. */
412 	IPMI_STAT_invalid_commands,
413 
414 	/* The command didn't have anyone waiting for it. */
415 	IPMI_STAT_unhandled_commands,
416 
417 	/* Invalid data in an event. */
418 	IPMI_STAT_invalid_events,
419 
420 	/* Events that were received with the proper format. */
421 	IPMI_STAT_events,
422 
423 	/* Retransmissions on IPMB that failed. */
424 	IPMI_STAT_dropped_rexmit_ipmb_commands,
425 
426 	/* Retransmissions on LAN that failed. */
427 	IPMI_STAT_dropped_rexmit_lan_commands,
428 
429 	/* This *must* remain last, add new values above this. */
430 	IPMI_NUM_STATS
431 };
432 
433 
434 #define IPMI_IPMB_NUM_SEQ	64
435 struct ipmi_smi {
436 	struct module *owner;
437 
438 	/* What interface number are we? */
439 	int intf_num;
440 
441 	struct kref refcount;
442 
443 	/* Set when the interface is being unregistered. */
444 	bool in_shutdown;
445 
446 	/* Used for a list of interfaces. */
447 	struct list_head link;
448 
449 	/*
450 	 * The list of upper layers that are using me.  seq_lock write
451 	 * protects this.  Read protection is with srcu.
452 	 */
453 	struct list_head users;
454 	struct srcu_struct users_srcu;
455 
456 	/* Used for wake ups at startup. */
457 	wait_queue_head_t waitq;
458 
459 	/*
460 	 * Prevents the interface from being unregistered when the
461 	 * interface is used by being looked up through the BMC
462 	 * structure.
463 	 */
464 	struct mutex bmc_reg_mutex;
465 
466 	struct bmc_device tmp_bmc;
467 	struct bmc_device *bmc;
468 	bool bmc_registered;
469 	struct list_head bmc_link;
470 	char *my_dev_name;
471 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
472 	struct work_struct bmc_reg_work;
473 
474 	const struct ipmi_smi_handlers *handlers;
475 	void                     *send_info;
476 
477 	/* Driver-model device for the system interface. */
478 	struct device          *si_dev;
479 
480 	/*
481 	 * A table of sequence numbers for this interface.  We use the
482 	 * sequence numbers for IPMB messages that go out of the
483 	 * interface to match them up with their responses.  A routine
484 	 * is called periodically to time the items in this list.
485 	 */
486 	spinlock_t       seq_lock;
487 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
488 	int curr_seq;
489 
490 	/*
491 	 * Messages queued for delivery.  If delivery fails (out of memory
492 	 * for instance), They will stay in here to be processed later in a
493 	 * periodic timer interrupt.  The tasklet is for handling received
494 	 * messages directly from the handler.
495 	 */
496 	spinlock_t       waiting_rcv_msgs_lock;
497 	struct list_head waiting_rcv_msgs;
498 	atomic_t	 watchdog_pretimeouts_to_deliver;
499 	struct tasklet_struct recv_tasklet;
500 
501 	spinlock_t             xmit_msgs_lock;
502 	struct list_head       xmit_msgs;
503 	struct ipmi_smi_msg    *curr_msg;
504 	struct list_head       hp_xmit_msgs;
505 
506 	/*
507 	 * The list of command receivers that are registered for commands
508 	 * on this interface.
509 	 */
510 	struct mutex     cmd_rcvrs_mutex;
511 	struct list_head cmd_rcvrs;
512 
513 	/*
514 	 * Events that were queues because no one was there to receive
515 	 * them.
516 	 */
517 	spinlock_t       events_lock; /* For dealing with event stuff. */
518 	struct list_head waiting_events;
519 	unsigned int     waiting_events_count; /* How many events in queue? */
520 	char             delivering_events;
521 	char             event_msg_printed;
522 
523 	/* How many users are waiting for events? */
524 	atomic_t         event_waiters;
525 	unsigned int     ticks_to_req_ev;
526 
527 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
528 
529 	/* How many users are waiting for commands? */
530 	unsigned int     command_waiters;
531 
532 	/* How many users are waiting for watchdogs? */
533 	unsigned int     watchdog_waiters;
534 
535 	/* How many users are waiting for message responses? */
536 	unsigned int     response_waiters;
537 
538 	/*
539 	 * Tells what the lower layer has last been asked to watch for,
540 	 * messages and/or watchdogs.  Protected by watch_lock.
541 	 */
542 	unsigned int     last_watch_mask;
543 
544 	/*
545 	 * The event receiver for my BMC, only really used at panic
546 	 * shutdown as a place to store this.
547 	 */
548 	unsigned char event_receiver;
549 	unsigned char event_receiver_lun;
550 	unsigned char local_sel_device;
551 	unsigned char local_event_generator;
552 
553 	/* For handling of maintenance mode. */
554 	int maintenance_mode;
555 	bool maintenance_mode_enable;
556 	int auto_maintenance_timeout;
557 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
558 
559 	/*
560 	 * If we are doing maintenance on something on IPMB, extend
561 	 * the timeout time to avoid timeouts writing firmware and
562 	 * such.
563 	 */
564 	int ipmb_maintenance_mode_timeout;
565 
566 	/*
567 	 * A cheap hack, if this is non-null and a message to an
568 	 * interface comes in with a NULL user, call this routine with
569 	 * it.  Note that the message will still be freed by the
570 	 * caller.  This only works on the system interface.
571 	 *
572 	 * Protected by bmc_reg_mutex.
573 	 */
574 	void (*null_user_handler)(struct ipmi_smi *intf,
575 				  struct ipmi_recv_msg *msg);
576 
577 	/*
578 	 * When we are scanning the channels for an SMI, this will
579 	 * tell which channel we are scanning.
580 	 */
581 	int curr_channel;
582 
583 	/* Channel information */
584 	struct ipmi_channel_set *channel_list;
585 	unsigned int curr_working_cset; /* First index into the following. */
586 	struct ipmi_channel_set wchannels[2];
587 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
588 	bool channels_ready;
589 
590 	atomic_t stats[IPMI_NUM_STATS];
591 
592 	/*
593 	 * run_to_completion duplicate of smb_info, smi_info
594 	 * and ipmi_serial_info structures. Used to decrease numbers of
595 	 * parameters passed by "low" level IPMI code.
596 	 */
597 	int run_to_completion;
598 };
599 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
600 
601 static void __get_guid(struct ipmi_smi *intf);
602 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
603 static int __ipmi_bmc_register(struct ipmi_smi *intf,
604 			       struct ipmi_device_id *id,
605 			       bool guid_set, guid_t *guid, int intf_num);
606 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
607 
608 
609 /**
610  * The driver model view of the IPMI messaging driver.
611  */
612 static struct platform_driver ipmidriver = {
613 	.driver = {
614 		.name = "ipmi",
615 		.bus = &platform_bus_type
616 	}
617 };
618 /*
619  * This mutex keeps us from adding the same BMC twice.
620  */
621 static DEFINE_MUTEX(ipmidriver_mutex);
622 
623 static LIST_HEAD(ipmi_interfaces);
624 static DEFINE_MUTEX(ipmi_interfaces_mutex);
625 #define ipmi_interfaces_mutex_held() \
626 	lockdep_is_held(&ipmi_interfaces_mutex)
627 static struct srcu_struct ipmi_interfaces_srcu;
628 
629 /*
630  * List of watchers that want to know when smi's are added and deleted.
631  */
632 static LIST_HEAD(smi_watchers);
633 static DEFINE_MUTEX(smi_watchers_mutex);
634 
635 #define ipmi_inc_stat(intf, stat) \
636 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
637 #define ipmi_get_stat(intf, stat) \
638 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
639 
640 static const char * const addr_src_to_str[] = {
641 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
642 	"device-tree", "platform"
643 };
644 
645 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
646 {
647 	if (src >= SI_LAST)
648 		src = 0; /* Invalid */
649 	return addr_src_to_str[src];
650 }
651 EXPORT_SYMBOL(ipmi_addr_src_to_str);
652 
653 static int is_lan_addr(struct ipmi_addr *addr)
654 {
655 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
656 }
657 
658 static int is_ipmb_addr(struct ipmi_addr *addr)
659 {
660 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
661 }
662 
663 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
664 {
665 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
666 }
667 
668 static void free_recv_msg_list(struct list_head *q)
669 {
670 	struct ipmi_recv_msg *msg, *msg2;
671 
672 	list_for_each_entry_safe(msg, msg2, q, link) {
673 		list_del(&msg->link);
674 		ipmi_free_recv_msg(msg);
675 	}
676 }
677 
678 static void free_smi_msg_list(struct list_head *q)
679 {
680 	struct ipmi_smi_msg *msg, *msg2;
681 
682 	list_for_each_entry_safe(msg, msg2, q, link) {
683 		list_del(&msg->link);
684 		ipmi_free_smi_msg(msg);
685 	}
686 }
687 
688 static void clean_up_interface_data(struct ipmi_smi *intf)
689 {
690 	int              i;
691 	struct cmd_rcvr  *rcvr, *rcvr2;
692 	struct list_head list;
693 
694 	tasklet_kill(&intf->recv_tasklet);
695 
696 	free_smi_msg_list(&intf->waiting_rcv_msgs);
697 	free_recv_msg_list(&intf->waiting_events);
698 
699 	/*
700 	 * Wholesale remove all the entries from the list in the
701 	 * interface and wait for RCU to know that none are in use.
702 	 */
703 	mutex_lock(&intf->cmd_rcvrs_mutex);
704 	INIT_LIST_HEAD(&list);
705 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
706 	mutex_unlock(&intf->cmd_rcvrs_mutex);
707 
708 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
709 		kfree(rcvr);
710 
711 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
712 		if ((intf->seq_table[i].inuse)
713 					&& (intf->seq_table[i].recv_msg))
714 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
715 	}
716 }
717 
718 static void intf_free(struct kref *ref)
719 {
720 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
721 
722 	clean_up_interface_data(intf);
723 	kfree(intf);
724 }
725 
726 struct watcher_entry {
727 	int              intf_num;
728 	struct ipmi_smi  *intf;
729 	struct list_head link;
730 };
731 
732 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
733 {
734 	struct ipmi_smi *intf;
735 	int index, rv;
736 
737 	/*
738 	 * Make sure the driver is actually initialized, this handles
739 	 * problems with initialization order.
740 	 */
741 	rv = ipmi_init_msghandler();
742 	if (rv)
743 		return rv;
744 
745 	mutex_lock(&smi_watchers_mutex);
746 
747 	list_add(&watcher->link, &smi_watchers);
748 
749 	index = srcu_read_lock(&ipmi_interfaces_srcu);
750 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
751 		int intf_num = READ_ONCE(intf->intf_num);
752 
753 		if (intf_num == -1)
754 			continue;
755 		watcher->new_smi(intf_num, intf->si_dev);
756 	}
757 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
758 
759 	mutex_unlock(&smi_watchers_mutex);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL(ipmi_smi_watcher_register);
764 
765 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
766 {
767 	mutex_lock(&smi_watchers_mutex);
768 	list_del(&watcher->link);
769 	mutex_unlock(&smi_watchers_mutex);
770 	return 0;
771 }
772 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
773 
774 /*
775  * Must be called with smi_watchers_mutex held.
776  */
777 static void
778 call_smi_watchers(int i, struct device *dev)
779 {
780 	struct ipmi_smi_watcher *w;
781 
782 	mutex_lock(&smi_watchers_mutex);
783 	list_for_each_entry(w, &smi_watchers, link) {
784 		if (try_module_get(w->owner)) {
785 			w->new_smi(i, dev);
786 			module_put(w->owner);
787 		}
788 	}
789 	mutex_unlock(&smi_watchers_mutex);
790 }
791 
792 static int
793 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
794 {
795 	if (addr1->addr_type != addr2->addr_type)
796 		return 0;
797 
798 	if (addr1->channel != addr2->channel)
799 		return 0;
800 
801 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
802 		struct ipmi_system_interface_addr *smi_addr1
803 		    = (struct ipmi_system_interface_addr *) addr1;
804 		struct ipmi_system_interface_addr *smi_addr2
805 		    = (struct ipmi_system_interface_addr *) addr2;
806 		return (smi_addr1->lun == smi_addr2->lun);
807 	}
808 
809 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
810 		struct ipmi_ipmb_addr *ipmb_addr1
811 		    = (struct ipmi_ipmb_addr *) addr1;
812 		struct ipmi_ipmb_addr *ipmb_addr2
813 		    = (struct ipmi_ipmb_addr *) addr2;
814 
815 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
816 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
817 	}
818 
819 	if (is_lan_addr(addr1)) {
820 		struct ipmi_lan_addr *lan_addr1
821 			= (struct ipmi_lan_addr *) addr1;
822 		struct ipmi_lan_addr *lan_addr2
823 		    = (struct ipmi_lan_addr *) addr2;
824 
825 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
826 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
827 			&& (lan_addr1->session_handle
828 			    == lan_addr2->session_handle)
829 			&& (lan_addr1->lun == lan_addr2->lun));
830 	}
831 
832 	return 1;
833 }
834 
835 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
836 {
837 	if (len < sizeof(struct ipmi_system_interface_addr))
838 		return -EINVAL;
839 
840 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
841 		if (addr->channel != IPMI_BMC_CHANNEL)
842 			return -EINVAL;
843 		return 0;
844 	}
845 
846 	if ((addr->channel == IPMI_BMC_CHANNEL)
847 	    || (addr->channel >= IPMI_MAX_CHANNELS)
848 	    || (addr->channel < 0))
849 		return -EINVAL;
850 
851 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
852 		if (len < sizeof(struct ipmi_ipmb_addr))
853 			return -EINVAL;
854 		return 0;
855 	}
856 
857 	if (is_lan_addr(addr)) {
858 		if (len < sizeof(struct ipmi_lan_addr))
859 			return -EINVAL;
860 		return 0;
861 	}
862 
863 	return -EINVAL;
864 }
865 EXPORT_SYMBOL(ipmi_validate_addr);
866 
867 unsigned int ipmi_addr_length(int addr_type)
868 {
869 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
870 		return sizeof(struct ipmi_system_interface_addr);
871 
872 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
873 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
874 		return sizeof(struct ipmi_ipmb_addr);
875 
876 	if (addr_type == IPMI_LAN_ADDR_TYPE)
877 		return sizeof(struct ipmi_lan_addr);
878 
879 	return 0;
880 }
881 EXPORT_SYMBOL(ipmi_addr_length);
882 
883 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
884 {
885 	int rv = 0;
886 
887 	if (!msg->user) {
888 		/* Special handling for NULL users. */
889 		if (intf->null_user_handler) {
890 			intf->null_user_handler(intf, msg);
891 		} else {
892 			/* No handler, so give up. */
893 			rv = -EINVAL;
894 		}
895 		ipmi_free_recv_msg(msg);
896 	} else if (oops_in_progress) {
897 		/*
898 		 * If we are running in the panic context, calling the
899 		 * receive handler doesn't much meaning and has a deadlock
900 		 * risk.  At this moment, simply skip it in that case.
901 		 */
902 		ipmi_free_recv_msg(msg);
903 	} else {
904 		int index;
905 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
906 
907 		if (user) {
908 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
909 			release_ipmi_user(user, index);
910 		} else {
911 			/* User went away, give up. */
912 			ipmi_free_recv_msg(msg);
913 			rv = -EINVAL;
914 		}
915 	}
916 
917 	return rv;
918 }
919 
920 static void deliver_local_response(struct ipmi_smi *intf,
921 				   struct ipmi_recv_msg *msg)
922 {
923 	if (deliver_response(intf, msg))
924 		ipmi_inc_stat(intf, unhandled_local_responses);
925 	else
926 		ipmi_inc_stat(intf, handled_local_responses);
927 }
928 
929 static void deliver_err_response(struct ipmi_smi *intf,
930 				 struct ipmi_recv_msg *msg, int err)
931 {
932 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
933 	msg->msg_data[0] = err;
934 	msg->msg.netfn |= 1; /* Convert to a response. */
935 	msg->msg.data_len = 1;
936 	msg->msg.data = msg->msg_data;
937 	deliver_local_response(intf, msg);
938 }
939 
940 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
941 {
942 	unsigned long iflags;
943 
944 	if (!intf->handlers->set_need_watch)
945 		return;
946 
947 	spin_lock_irqsave(&intf->watch_lock, iflags);
948 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
949 		intf->response_waiters++;
950 
951 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
952 		intf->watchdog_waiters++;
953 
954 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
955 		intf->command_waiters++;
956 
957 	if ((intf->last_watch_mask & flags) != flags) {
958 		intf->last_watch_mask |= flags;
959 		intf->handlers->set_need_watch(intf->send_info,
960 					       intf->last_watch_mask);
961 	}
962 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
963 }
964 
965 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
966 {
967 	unsigned long iflags;
968 
969 	if (!intf->handlers->set_need_watch)
970 		return;
971 
972 	spin_lock_irqsave(&intf->watch_lock, iflags);
973 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
974 		intf->response_waiters--;
975 
976 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
977 		intf->watchdog_waiters--;
978 
979 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
980 		intf->command_waiters--;
981 
982 	flags = 0;
983 	if (intf->response_waiters)
984 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
985 	if (intf->watchdog_waiters)
986 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
987 	if (intf->command_waiters)
988 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
989 
990 	if (intf->last_watch_mask != flags) {
991 		intf->last_watch_mask = flags;
992 		intf->handlers->set_need_watch(intf->send_info,
993 					       intf->last_watch_mask);
994 	}
995 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
996 }
997 
998 /*
999  * Find the next sequence number not being used and add the given
1000  * message with the given timeout to the sequence table.  This must be
1001  * called with the interface's seq_lock held.
1002  */
1003 static int intf_next_seq(struct ipmi_smi      *intf,
1004 			 struct ipmi_recv_msg *recv_msg,
1005 			 unsigned long        timeout,
1006 			 int                  retries,
1007 			 int                  broadcast,
1008 			 unsigned char        *seq,
1009 			 long                 *seqid)
1010 {
1011 	int          rv = 0;
1012 	unsigned int i;
1013 
1014 	if (timeout == 0)
1015 		timeout = default_retry_ms;
1016 	if (retries < 0)
1017 		retries = default_max_retries;
1018 
1019 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1020 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1021 		if (!intf->seq_table[i].inuse)
1022 			break;
1023 	}
1024 
1025 	if (!intf->seq_table[i].inuse) {
1026 		intf->seq_table[i].recv_msg = recv_msg;
1027 
1028 		/*
1029 		 * Start with the maximum timeout, when the send response
1030 		 * comes in we will start the real timer.
1031 		 */
1032 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1033 		intf->seq_table[i].orig_timeout = timeout;
1034 		intf->seq_table[i].retries_left = retries;
1035 		intf->seq_table[i].broadcast = broadcast;
1036 		intf->seq_table[i].inuse = 1;
1037 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1038 		*seq = i;
1039 		*seqid = intf->seq_table[i].seqid;
1040 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1041 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1042 		need_waiter(intf);
1043 	} else {
1044 		rv = -EAGAIN;
1045 	}
1046 
1047 	return rv;
1048 }
1049 
1050 /*
1051  * Return the receive message for the given sequence number and
1052  * release the sequence number so it can be reused.  Some other data
1053  * is passed in to be sure the message matches up correctly (to help
1054  * guard against message coming in after their timeout and the
1055  * sequence number being reused).
1056  */
1057 static int intf_find_seq(struct ipmi_smi      *intf,
1058 			 unsigned char        seq,
1059 			 short                channel,
1060 			 unsigned char        cmd,
1061 			 unsigned char        netfn,
1062 			 struct ipmi_addr     *addr,
1063 			 struct ipmi_recv_msg **recv_msg)
1064 {
1065 	int           rv = -ENODEV;
1066 	unsigned long flags;
1067 
1068 	if (seq >= IPMI_IPMB_NUM_SEQ)
1069 		return -EINVAL;
1070 
1071 	spin_lock_irqsave(&intf->seq_lock, flags);
1072 	if (intf->seq_table[seq].inuse) {
1073 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1074 
1075 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1076 				&& (msg->msg.netfn == netfn)
1077 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1078 			*recv_msg = msg;
1079 			intf->seq_table[seq].inuse = 0;
1080 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1081 			rv = 0;
1082 		}
1083 	}
1084 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1085 
1086 	return rv;
1087 }
1088 
1089 
1090 /* Start the timer for a specific sequence table entry. */
1091 static int intf_start_seq_timer(struct ipmi_smi *intf,
1092 				long       msgid)
1093 {
1094 	int           rv = -ENODEV;
1095 	unsigned long flags;
1096 	unsigned char seq;
1097 	unsigned long seqid;
1098 
1099 
1100 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1101 
1102 	spin_lock_irqsave(&intf->seq_lock, flags);
1103 	/*
1104 	 * We do this verification because the user can be deleted
1105 	 * while a message is outstanding.
1106 	 */
1107 	if ((intf->seq_table[seq].inuse)
1108 				&& (intf->seq_table[seq].seqid == seqid)) {
1109 		struct seq_table *ent = &intf->seq_table[seq];
1110 		ent->timeout = ent->orig_timeout;
1111 		rv = 0;
1112 	}
1113 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1114 
1115 	return rv;
1116 }
1117 
1118 /* Got an error for the send message for a specific sequence number. */
1119 static int intf_err_seq(struct ipmi_smi *intf,
1120 			long         msgid,
1121 			unsigned int err)
1122 {
1123 	int                  rv = -ENODEV;
1124 	unsigned long        flags;
1125 	unsigned char        seq;
1126 	unsigned long        seqid;
1127 	struct ipmi_recv_msg *msg = NULL;
1128 
1129 
1130 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1131 
1132 	spin_lock_irqsave(&intf->seq_lock, flags);
1133 	/*
1134 	 * We do this verification because the user can be deleted
1135 	 * while a message is outstanding.
1136 	 */
1137 	if ((intf->seq_table[seq].inuse)
1138 				&& (intf->seq_table[seq].seqid == seqid)) {
1139 		struct seq_table *ent = &intf->seq_table[seq];
1140 
1141 		ent->inuse = 0;
1142 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1143 		msg = ent->recv_msg;
1144 		rv = 0;
1145 	}
1146 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1147 
1148 	if (msg)
1149 		deliver_err_response(intf, msg, err);
1150 
1151 	return rv;
1152 }
1153 
1154 static void free_user_work(struct work_struct *work)
1155 {
1156 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1157 					      remove_work);
1158 
1159 	cleanup_srcu_struct(&user->release_barrier);
1160 	vfree(user);
1161 }
1162 
1163 int ipmi_create_user(unsigned int          if_num,
1164 		     const struct ipmi_user_hndl *handler,
1165 		     void                  *handler_data,
1166 		     struct ipmi_user      **user)
1167 {
1168 	unsigned long flags;
1169 	struct ipmi_user *new_user;
1170 	int           rv, index;
1171 	struct ipmi_smi *intf;
1172 
1173 	/*
1174 	 * There is no module usecount here, because it's not
1175 	 * required.  Since this can only be used by and called from
1176 	 * other modules, they will implicitly use this module, and
1177 	 * thus this can't be removed unless the other modules are
1178 	 * removed.
1179 	 */
1180 
1181 	if (handler == NULL)
1182 		return -EINVAL;
1183 
1184 	/*
1185 	 * Make sure the driver is actually initialized, this handles
1186 	 * problems with initialization order.
1187 	 */
1188 	rv = ipmi_init_msghandler();
1189 	if (rv)
1190 		return rv;
1191 
1192 	new_user = vzalloc(sizeof(*new_user));
1193 	if (!new_user)
1194 		return -ENOMEM;
1195 
1196 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1197 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1198 		if (intf->intf_num == if_num)
1199 			goto found;
1200 	}
1201 	/* Not found, return an error */
1202 	rv = -EINVAL;
1203 	goto out_kfree;
1204 
1205  found:
1206 	INIT_WORK(&new_user->remove_work, free_user_work);
1207 
1208 	rv = init_srcu_struct(&new_user->release_barrier);
1209 	if (rv)
1210 		goto out_kfree;
1211 
1212 	if (!try_module_get(intf->owner)) {
1213 		rv = -ENODEV;
1214 		goto out_kfree;
1215 	}
1216 
1217 	/* Note that each existing user holds a refcount to the interface. */
1218 	kref_get(&intf->refcount);
1219 
1220 	kref_init(&new_user->refcount);
1221 	new_user->handler = handler;
1222 	new_user->handler_data = handler_data;
1223 	new_user->intf = intf;
1224 	new_user->gets_events = false;
1225 
1226 	rcu_assign_pointer(new_user->self, new_user);
1227 	spin_lock_irqsave(&intf->seq_lock, flags);
1228 	list_add_rcu(&new_user->link, &intf->users);
1229 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1230 	if (handler->ipmi_watchdog_pretimeout)
1231 		/* User wants pretimeouts, so make sure to watch for them. */
1232 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1233 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1234 	*user = new_user;
1235 	return 0;
1236 
1237 out_kfree:
1238 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1239 	vfree(new_user);
1240 	return rv;
1241 }
1242 EXPORT_SYMBOL(ipmi_create_user);
1243 
1244 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1245 {
1246 	int rv, index;
1247 	struct ipmi_smi *intf;
1248 
1249 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1250 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1251 		if (intf->intf_num == if_num)
1252 			goto found;
1253 	}
1254 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1255 
1256 	/* Not found, return an error */
1257 	return -EINVAL;
1258 
1259 found:
1260 	if (!intf->handlers->get_smi_info)
1261 		rv = -ENOTTY;
1262 	else
1263 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1264 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1265 
1266 	return rv;
1267 }
1268 EXPORT_SYMBOL(ipmi_get_smi_info);
1269 
1270 static void free_user(struct kref *ref)
1271 {
1272 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1273 
1274 	/* SRCU cleanup must happen in task context. */
1275 	schedule_work(&user->remove_work);
1276 }
1277 
1278 static void _ipmi_destroy_user(struct ipmi_user *user)
1279 {
1280 	struct ipmi_smi  *intf = user->intf;
1281 	int              i;
1282 	unsigned long    flags;
1283 	struct cmd_rcvr  *rcvr;
1284 	struct cmd_rcvr  *rcvrs = NULL;
1285 
1286 	if (!acquire_ipmi_user(user, &i)) {
1287 		/*
1288 		 * The user has already been cleaned up, just make sure
1289 		 * nothing is using it and return.
1290 		 */
1291 		synchronize_srcu(&user->release_barrier);
1292 		return;
1293 	}
1294 
1295 	rcu_assign_pointer(user->self, NULL);
1296 	release_ipmi_user(user, i);
1297 
1298 	synchronize_srcu(&user->release_barrier);
1299 
1300 	if (user->handler->shutdown)
1301 		user->handler->shutdown(user->handler_data);
1302 
1303 	if (user->handler->ipmi_watchdog_pretimeout)
1304 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1305 
1306 	if (user->gets_events)
1307 		atomic_dec(&intf->event_waiters);
1308 
1309 	/* Remove the user from the interface's sequence table. */
1310 	spin_lock_irqsave(&intf->seq_lock, flags);
1311 	list_del_rcu(&user->link);
1312 
1313 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1314 		if (intf->seq_table[i].inuse
1315 		    && (intf->seq_table[i].recv_msg->user == user)) {
1316 			intf->seq_table[i].inuse = 0;
1317 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1318 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1319 		}
1320 	}
1321 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1322 
1323 	/*
1324 	 * Remove the user from the command receiver's table.  First
1325 	 * we build a list of everything (not using the standard link,
1326 	 * since other things may be using it till we do
1327 	 * synchronize_srcu()) then free everything in that list.
1328 	 */
1329 	mutex_lock(&intf->cmd_rcvrs_mutex);
1330 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1331 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1332 		if (rcvr->user == user) {
1333 			list_del_rcu(&rcvr->link);
1334 			rcvr->next = rcvrs;
1335 			rcvrs = rcvr;
1336 		}
1337 	}
1338 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1339 	synchronize_rcu();
1340 	while (rcvrs) {
1341 		rcvr = rcvrs;
1342 		rcvrs = rcvr->next;
1343 		kfree(rcvr);
1344 	}
1345 
1346 	kref_put(&intf->refcount, intf_free);
1347 	module_put(intf->owner);
1348 }
1349 
1350 int ipmi_destroy_user(struct ipmi_user *user)
1351 {
1352 	_ipmi_destroy_user(user);
1353 
1354 	kref_put(&user->refcount, free_user);
1355 
1356 	return 0;
1357 }
1358 EXPORT_SYMBOL(ipmi_destroy_user);
1359 
1360 int ipmi_get_version(struct ipmi_user *user,
1361 		     unsigned char *major,
1362 		     unsigned char *minor)
1363 {
1364 	struct ipmi_device_id id;
1365 	int rv, index;
1366 
1367 	user = acquire_ipmi_user(user, &index);
1368 	if (!user)
1369 		return -ENODEV;
1370 
1371 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1372 	if (!rv) {
1373 		*major = ipmi_version_major(&id);
1374 		*minor = ipmi_version_minor(&id);
1375 	}
1376 	release_ipmi_user(user, index);
1377 
1378 	return rv;
1379 }
1380 EXPORT_SYMBOL(ipmi_get_version);
1381 
1382 int ipmi_set_my_address(struct ipmi_user *user,
1383 			unsigned int  channel,
1384 			unsigned char address)
1385 {
1386 	int index, rv = 0;
1387 
1388 	user = acquire_ipmi_user(user, &index);
1389 	if (!user)
1390 		return -ENODEV;
1391 
1392 	if (channel >= IPMI_MAX_CHANNELS) {
1393 		rv = -EINVAL;
1394 	} else {
1395 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1396 		user->intf->addrinfo[channel].address = address;
1397 	}
1398 	release_ipmi_user(user, index);
1399 
1400 	return rv;
1401 }
1402 EXPORT_SYMBOL(ipmi_set_my_address);
1403 
1404 int ipmi_get_my_address(struct ipmi_user *user,
1405 			unsigned int  channel,
1406 			unsigned char *address)
1407 {
1408 	int index, rv = 0;
1409 
1410 	user = acquire_ipmi_user(user, &index);
1411 	if (!user)
1412 		return -ENODEV;
1413 
1414 	if (channel >= IPMI_MAX_CHANNELS) {
1415 		rv = -EINVAL;
1416 	} else {
1417 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1418 		*address = user->intf->addrinfo[channel].address;
1419 	}
1420 	release_ipmi_user(user, index);
1421 
1422 	return rv;
1423 }
1424 EXPORT_SYMBOL(ipmi_get_my_address);
1425 
1426 int ipmi_set_my_LUN(struct ipmi_user *user,
1427 		    unsigned int  channel,
1428 		    unsigned char LUN)
1429 {
1430 	int index, rv = 0;
1431 
1432 	user = acquire_ipmi_user(user, &index);
1433 	if (!user)
1434 		return -ENODEV;
1435 
1436 	if (channel >= IPMI_MAX_CHANNELS) {
1437 		rv = -EINVAL;
1438 	} else {
1439 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1440 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1441 	}
1442 	release_ipmi_user(user, index);
1443 
1444 	return rv;
1445 }
1446 EXPORT_SYMBOL(ipmi_set_my_LUN);
1447 
1448 int ipmi_get_my_LUN(struct ipmi_user *user,
1449 		    unsigned int  channel,
1450 		    unsigned char *address)
1451 {
1452 	int index, rv = 0;
1453 
1454 	user = acquire_ipmi_user(user, &index);
1455 	if (!user)
1456 		return -ENODEV;
1457 
1458 	if (channel >= IPMI_MAX_CHANNELS) {
1459 		rv = -EINVAL;
1460 	} else {
1461 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1462 		*address = user->intf->addrinfo[channel].lun;
1463 	}
1464 	release_ipmi_user(user, index);
1465 
1466 	return rv;
1467 }
1468 EXPORT_SYMBOL(ipmi_get_my_LUN);
1469 
1470 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1471 {
1472 	int mode, index;
1473 	unsigned long flags;
1474 
1475 	user = acquire_ipmi_user(user, &index);
1476 	if (!user)
1477 		return -ENODEV;
1478 
1479 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1480 	mode = user->intf->maintenance_mode;
1481 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1482 	release_ipmi_user(user, index);
1483 
1484 	return mode;
1485 }
1486 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1487 
1488 static void maintenance_mode_update(struct ipmi_smi *intf)
1489 {
1490 	if (intf->handlers->set_maintenance_mode)
1491 		intf->handlers->set_maintenance_mode(
1492 			intf->send_info, intf->maintenance_mode_enable);
1493 }
1494 
1495 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1496 {
1497 	int rv = 0, index;
1498 	unsigned long flags;
1499 	struct ipmi_smi *intf = user->intf;
1500 
1501 	user = acquire_ipmi_user(user, &index);
1502 	if (!user)
1503 		return -ENODEV;
1504 
1505 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1506 	if (intf->maintenance_mode != mode) {
1507 		switch (mode) {
1508 		case IPMI_MAINTENANCE_MODE_AUTO:
1509 			intf->maintenance_mode_enable
1510 				= (intf->auto_maintenance_timeout > 0);
1511 			break;
1512 
1513 		case IPMI_MAINTENANCE_MODE_OFF:
1514 			intf->maintenance_mode_enable = false;
1515 			break;
1516 
1517 		case IPMI_MAINTENANCE_MODE_ON:
1518 			intf->maintenance_mode_enable = true;
1519 			break;
1520 
1521 		default:
1522 			rv = -EINVAL;
1523 			goto out_unlock;
1524 		}
1525 		intf->maintenance_mode = mode;
1526 
1527 		maintenance_mode_update(intf);
1528 	}
1529  out_unlock:
1530 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1531 	release_ipmi_user(user, index);
1532 
1533 	return rv;
1534 }
1535 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1536 
1537 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1538 {
1539 	unsigned long        flags;
1540 	struct ipmi_smi      *intf = user->intf;
1541 	struct ipmi_recv_msg *msg, *msg2;
1542 	struct list_head     msgs;
1543 	int index;
1544 
1545 	user = acquire_ipmi_user(user, &index);
1546 	if (!user)
1547 		return -ENODEV;
1548 
1549 	INIT_LIST_HEAD(&msgs);
1550 
1551 	spin_lock_irqsave(&intf->events_lock, flags);
1552 	if (user->gets_events == val)
1553 		goto out;
1554 
1555 	user->gets_events = val;
1556 
1557 	if (val) {
1558 		if (atomic_inc_return(&intf->event_waiters) == 1)
1559 			need_waiter(intf);
1560 	} else {
1561 		atomic_dec(&intf->event_waiters);
1562 	}
1563 
1564 	if (intf->delivering_events)
1565 		/*
1566 		 * Another thread is delivering events for this, so
1567 		 * let it handle any new events.
1568 		 */
1569 		goto out;
1570 
1571 	/* Deliver any queued events. */
1572 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1573 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1574 			list_move_tail(&msg->link, &msgs);
1575 		intf->waiting_events_count = 0;
1576 		if (intf->event_msg_printed) {
1577 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1578 			intf->event_msg_printed = 0;
1579 		}
1580 
1581 		intf->delivering_events = 1;
1582 		spin_unlock_irqrestore(&intf->events_lock, flags);
1583 
1584 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1585 			msg->user = user;
1586 			kref_get(&user->refcount);
1587 			deliver_local_response(intf, msg);
1588 		}
1589 
1590 		spin_lock_irqsave(&intf->events_lock, flags);
1591 		intf->delivering_events = 0;
1592 	}
1593 
1594  out:
1595 	spin_unlock_irqrestore(&intf->events_lock, flags);
1596 	release_ipmi_user(user, index);
1597 
1598 	return 0;
1599 }
1600 EXPORT_SYMBOL(ipmi_set_gets_events);
1601 
1602 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1603 				      unsigned char netfn,
1604 				      unsigned char cmd,
1605 				      unsigned char chan)
1606 {
1607 	struct cmd_rcvr *rcvr;
1608 
1609 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1610 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1611 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1612 					&& (rcvr->chans & (1 << chan)))
1613 			return rcvr;
1614 	}
1615 	return NULL;
1616 }
1617 
1618 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1619 				 unsigned char netfn,
1620 				 unsigned char cmd,
1621 				 unsigned int  chans)
1622 {
1623 	struct cmd_rcvr *rcvr;
1624 
1625 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1626 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1627 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1628 					&& (rcvr->chans & chans))
1629 			return 0;
1630 	}
1631 	return 1;
1632 }
1633 
1634 int ipmi_register_for_cmd(struct ipmi_user *user,
1635 			  unsigned char netfn,
1636 			  unsigned char cmd,
1637 			  unsigned int  chans)
1638 {
1639 	struct ipmi_smi *intf = user->intf;
1640 	struct cmd_rcvr *rcvr;
1641 	int rv = 0, index;
1642 
1643 	user = acquire_ipmi_user(user, &index);
1644 	if (!user)
1645 		return -ENODEV;
1646 
1647 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1648 	if (!rcvr) {
1649 		rv = -ENOMEM;
1650 		goto out_release;
1651 	}
1652 	rcvr->cmd = cmd;
1653 	rcvr->netfn = netfn;
1654 	rcvr->chans = chans;
1655 	rcvr->user = user;
1656 
1657 	mutex_lock(&intf->cmd_rcvrs_mutex);
1658 	/* Make sure the command/netfn is not already registered. */
1659 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1660 		rv = -EBUSY;
1661 		goto out_unlock;
1662 	}
1663 
1664 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1665 
1666 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1667 
1668 out_unlock:
1669 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1670 	if (rv)
1671 		kfree(rcvr);
1672 out_release:
1673 	release_ipmi_user(user, index);
1674 
1675 	return rv;
1676 }
1677 EXPORT_SYMBOL(ipmi_register_for_cmd);
1678 
1679 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1680 			    unsigned char netfn,
1681 			    unsigned char cmd,
1682 			    unsigned int  chans)
1683 {
1684 	struct ipmi_smi *intf = user->intf;
1685 	struct cmd_rcvr *rcvr;
1686 	struct cmd_rcvr *rcvrs = NULL;
1687 	int i, rv = -ENOENT, index;
1688 
1689 	user = acquire_ipmi_user(user, &index);
1690 	if (!user)
1691 		return -ENODEV;
1692 
1693 	mutex_lock(&intf->cmd_rcvrs_mutex);
1694 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1695 		if (((1 << i) & chans) == 0)
1696 			continue;
1697 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1698 		if (rcvr == NULL)
1699 			continue;
1700 		if (rcvr->user == user) {
1701 			rv = 0;
1702 			rcvr->chans &= ~chans;
1703 			if (rcvr->chans == 0) {
1704 				list_del_rcu(&rcvr->link);
1705 				rcvr->next = rcvrs;
1706 				rcvrs = rcvr;
1707 			}
1708 		}
1709 	}
1710 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1711 	synchronize_rcu();
1712 	release_ipmi_user(user, index);
1713 	while (rcvrs) {
1714 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1715 		rcvr = rcvrs;
1716 		rcvrs = rcvr->next;
1717 		kfree(rcvr);
1718 	}
1719 
1720 	return rv;
1721 }
1722 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1723 
1724 static unsigned char
1725 ipmb_checksum(unsigned char *data, int size)
1726 {
1727 	unsigned char csum = 0;
1728 
1729 	for (; size > 0; size--, data++)
1730 		csum += *data;
1731 
1732 	return -csum;
1733 }
1734 
1735 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1736 				   struct kernel_ipmi_msg *msg,
1737 				   struct ipmi_ipmb_addr *ipmb_addr,
1738 				   long                  msgid,
1739 				   unsigned char         ipmb_seq,
1740 				   int                   broadcast,
1741 				   unsigned char         source_address,
1742 				   unsigned char         source_lun)
1743 {
1744 	int i = broadcast;
1745 
1746 	/* Format the IPMB header data. */
1747 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1748 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1749 	smi_msg->data[2] = ipmb_addr->channel;
1750 	if (broadcast)
1751 		smi_msg->data[3] = 0;
1752 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1753 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1754 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1755 	smi_msg->data[i+6] = source_address;
1756 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1757 	smi_msg->data[i+8] = msg->cmd;
1758 
1759 	/* Now tack on the data to the message. */
1760 	if (msg->data_len > 0)
1761 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1762 	smi_msg->data_size = msg->data_len + 9;
1763 
1764 	/* Now calculate the checksum and tack it on. */
1765 	smi_msg->data[i+smi_msg->data_size]
1766 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1767 
1768 	/*
1769 	 * Add on the checksum size and the offset from the
1770 	 * broadcast.
1771 	 */
1772 	smi_msg->data_size += 1 + i;
1773 
1774 	smi_msg->msgid = msgid;
1775 }
1776 
1777 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1778 				  struct kernel_ipmi_msg *msg,
1779 				  struct ipmi_lan_addr  *lan_addr,
1780 				  long                  msgid,
1781 				  unsigned char         ipmb_seq,
1782 				  unsigned char         source_lun)
1783 {
1784 	/* Format the IPMB header data. */
1785 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1786 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1787 	smi_msg->data[2] = lan_addr->channel;
1788 	smi_msg->data[3] = lan_addr->session_handle;
1789 	smi_msg->data[4] = lan_addr->remote_SWID;
1790 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1791 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1792 	smi_msg->data[7] = lan_addr->local_SWID;
1793 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1794 	smi_msg->data[9] = msg->cmd;
1795 
1796 	/* Now tack on the data to the message. */
1797 	if (msg->data_len > 0)
1798 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1799 	smi_msg->data_size = msg->data_len + 10;
1800 
1801 	/* Now calculate the checksum and tack it on. */
1802 	smi_msg->data[smi_msg->data_size]
1803 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1804 
1805 	/*
1806 	 * Add on the checksum size and the offset from the
1807 	 * broadcast.
1808 	 */
1809 	smi_msg->data_size += 1;
1810 
1811 	smi_msg->msgid = msgid;
1812 }
1813 
1814 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1815 					     struct ipmi_smi_msg *smi_msg,
1816 					     int priority)
1817 {
1818 	if (intf->curr_msg) {
1819 		if (priority > 0)
1820 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1821 		else
1822 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1823 		smi_msg = NULL;
1824 	} else {
1825 		intf->curr_msg = smi_msg;
1826 	}
1827 
1828 	return smi_msg;
1829 }
1830 
1831 static void smi_send(struct ipmi_smi *intf,
1832 		     const struct ipmi_smi_handlers *handlers,
1833 		     struct ipmi_smi_msg *smi_msg, int priority)
1834 {
1835 	int run_to_completion = intf->run_to_completion;
1836 	unsigned long flags = 0;
1837 
1838 	if (!run_to_completion)
1839 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1840 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1841 
1842 	if (!run_to_completion)
1843 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1844 
1845 	if (smi_msg)
1846 		handlers->sender(intf->send_info, smi_msg);
1847 }
1848 
1849 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1850 {
1851 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1852 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1853 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1854 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1855 }
1856 
1857 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1858 			      struct ipmi_addr       *addr,
1859 			      long                   msgid,
1860 			      struct kernel_ipmi_msg *msg,
1861 			      struct ipmi_smi_msg    *smi_msg,
1862 			      struct ipmi_recv_msg   *recv_msg,
1863 			      int                    retries,
1864 			      unsigned int           retry_time_ms)
1865 {
1866 	struct ipmi_system_interface_addr *smi_addr;
1867 
1868 	if (msg->netfn & 1)
1869 		/* Responses are not allowed to the SMI. */
1870 		return -EINVAL;
1871 
1872 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1873 	if (smi_addr->lun > 3) {
1874 		ipmi_inc_stat(intf, sent_invalid_commands);
1875 		return -EINVAL;
1876 	}
1877 
1878 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1879 
1880 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1881 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1882 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1883 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1884 		/*
1885 		 * We don't let the user do these, since we manage
1886 		 * the sequence numbers.
1887 		 */
1888 		ipmi_inc_stat(intf, sent_invalid_commands);
1889 		return -EINVAL;
1890 	}
1891 
1892 	if (is_maintenance_mode_cmd(msg)) {
1893 		unsigned long flags;
1894 
1895 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1896 		intf->auto_maintenance_timeout
1897 			= maintenance_mode_timeout_ms;
1898 		if (!intf->maintenance_mode
1899 		    && !intf->maintenance_mode_enable) {
1900 			intf->maintenance_mode_enable = true;
1901 			maintenance_mode_update(intf);
1902 		}
1903 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1904 				       flags);
1905 	}
1906 
1907 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1908 		ipmi_inc_stat(intf, sent_invalid_commands);
1909 		return -EMSGSIZE;
1910 	}
1911 
1912 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1913 	smi_msg->data[1] = msg->cmd;
1914 	smi_msg->msgid = msgid;
1915 	smi_msg->user_data = recv_msg;
1916 	if (msg->data_len > 0)
1917 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1918 	smi_msg->data_size = msg->data_len + 2;
1919 	ipmi_inc_stat(intf, sent_local_commands);
1920 
1921 	return 0;
1922 }
1923 
1924 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1925 			   struct ipmi_addr       *addr,
1926 			   long                   msgid,
1927 			   struct kernel_ipmi_msg *msg,
1928 			   struct ipmi_smi_msg    *smi_msg,
1929 			   struct ipmi_recv_msg   *recv_msg,
1930 			   unsigned char          source_address,
1931 			   unsigned char          source_lun,
1932 			   int                    retries,
1933 			   unsigned int           retry_time_ms)
1934 {
1935 	struct ipmi_ipmb_addr *ipmb_addr;
1936 	unsigned char ipmb_seq;
1937 	long seqid;
1938 	int broadcast = 0;
1939 	struct ipmi_channel *chans;
1940 	int rv = 0;
1941 
1942 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1943 		ipmi_inc_stat(intf, sent_invalid_commands);
1944 		return -EINVAL;
1945 	}
1946 
1947 	chans = READ_ONCE(intf->channel_list)->c;
1948 
1949 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1950 		ipmi_inc_stat(intf, sent_invalid_commands);
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1955 		/*
1956 		 * Broadcasts add a zero at the beginning of the
1957 		 * message, but otherwise is the same as an IPMB
1958 		 * address.
1959 		 */
1960 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1961 		broadcast = 1;
1962 		retries = 0; /* Don't retry broadcasts. */
1963 	}
1964 
1965 	/*
1966 	 * 9 for the header and 1 for the checksum, plus
1967 	 * possibly one for the broadcast.
1968 	 */
1969 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1970 		ipmi_inc_stat(intf, sent_invalid_commands);
1971 		return -EMSGSIZE;
1972 	}
1973 
1974 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1975 	if (ipmb_addr->lun > 3) {
1976 		ipmi_inc_stat(intf, sent_invalid_commands);
1977 		return -EINVAL;
1978 	}
1979 
1980 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1981 
1982 	if (recv_msg->msg.netfn & 0x1) {
1983 		/*
1984 		 * It's a response, so use the user's sequence
1985 		 * from msgid.
1986 		 */
1987 		ipmi_inc_stat(intf, sent_ipmb_responses);
1988 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1989 				msgid, broadcast,
1990 				source_address, source_lun);
1991 
1992 		/*
1993 		 * Save the receive message so we can use it
1994 		 * to deliver the response.
1995 		 */
1996 		smi_msg->user_data = recv_msg;
1997 	} else {
1998 		/* It's a command, so get a sequence for it. */
1999 		unsigned long flags;
2000 
2001 		spin_lock_irqsave(&intf->seq_lock, flags);
2002 
2003 		if (is_maintenance_mode_cmd(msg))
2004 			intf->ipmb_maintenance_mode_timeout =
2005 				maintenance_mode_timeout_ms;
2006 
2007 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2008 			/* Different default in maintenance mode */
2009 			retry_time_ms = default_maintenance_retry_ms;
2010 
2011 		/*
2012 		 * Create a sequence number with a 1 second
2013 		 * timeout and 4 retries.
2014 		 */
2015 		rv = intf_next_seq(intf,
2016 				   recv_msg,
2017 				   retry_time_ms,
2018 				   retries,
2019 				   broadcast,
2020 				   &ipmb_seq,
2021 				   &seqid);
2022 		if (rv)
2023 			/*
2024 			 * We have used up all the sequence numbers,
2025 			 * probably, so abort.
2026 			 */
2027 			goto out_err;
2028 
2029 		ipmi_inc_stat(intf, sent_ipmb_commands);
2030 
2031 		/*
2032 		 * Store the sequence number in the message,
2033 		 * so that when the send message response
2034 		 * comes back we can start the timer.
2035 		 */
2036 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2037 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2038 				ipmb_seq, broadcast,
2039 				source_address, source_lun);
2040 
2041 		/*
2042 		 * Copy the message into the recv message data, so we
2043 		 * can retransmit it later if necessary.
2044 		 */
2045 		memcpy(recv_msg->msg_data, smi_msg->data,
2046 		       smi_msg->data_size);
2047 		recv_msg->msg.data = recv_msg->msg_data;
2048 		recv_msg->msg.data_len = smi_msg->data_size;
2049 
2050 		/*
2051 		 * We don't unlock until here, because we need
2052 		 * to copy the completed message into the
2053 		 * recv_msg before we release the lock.
2054 		 * Otherwise, race conditions may bite us.  I
2055 		 * know that's pretty paranoid, but I prefer
2056 		 * to be correct.
2057 		 */
2058 out_err:
2059 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2060 	}
2061 
2062 	return rv;
2063 }
2064 
2065 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2066 			  struct ipmi_addr       *addr,
2067 			  long                   msgid,
2068 			  struct kernel_ipmi_msg *msg,
2069 			  struct ipmi_smi_msg    *smi_msg,
2070 			  struct ipmi_recv_msg   *recv_msg,
2071 			  unsigned char          source_lun,
2072 			  int                    retries,
2073 			  unsigned int           retry_time_ms)
2074 {
2075 	struct ipmi_lan_addr  *lan_addr;
2076 	unsigned char ipmb_seq;
2077 	long seqid;
2078 	struct ipmi_channel *chans;
2079 	int rv = 0;
2080 
2081 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2082 		ipmi_inc_stat(intf, sent_invalid_commands);
2083 		return -EINVAL;
2084 	}
2085 
2086 	chans = READ_ONCE(intf->channel_list)->c;
2087 
2088 	if ((chans[addr->channel].medium
2089 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2090 			&& (chans[addr->channel].medium
2091 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2092 		ipmi_inc_stat(intf, sent_invalid_commands);
2093 		return -EINVAL;
2094 	}
2095 
2096 	/* 11 for the header and 1 for the checksum. */
2097 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2098 		ipmi_inc_stat(intf, sent_invalid_commands);
2099 		return -EMSGSIZE;
2100 	}
2101 
2102 	lan_addr = (struct ipmi_lan_addr *) addr;
2103 	if (lan_addr->lun > 3) {
2104 		ipmi_inc_stat(intf, sent_invalid_commands);
2105 		return -EINVAL;
2106 	}
2107 
2108 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2109 
2110 	if (recv_msg->msg.netfn & 0x1) {
2111 		/*
2112 		 * It's a response, so use the user's sequence
2113 		 * from msgid.
2114 		 */
2115 		ipmi_inc_stat(intf, sent_lan_responses);
2116 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2117 			       msgid, source_lun);
2118 
2119 		/*
2120 		 * Save the receive message so we can use it
2121 		 * to deliver the response.
2122 		 */
2123 		smi_msg->user_data = recv_msg;
2124 	} else {
2125 		/* It's a command, so get a sequence for it. */
2126 		unsigned long flags;
2127 
2128 		spin_lock_irqsave(&intf->seq_lock, flags);
2129 
2130 		/*
2131 		 * Create a sequence number with a 1 second
2132 		 * timeout and 4 retries.
2133 		 */
2134 		rv = intf_next_seq(intf,
2135 				   recv_msg,
2136 				   retry_time_ms,
2137 				   retries,
2138 				   0,
2139 				   &ipmb_seq,
2140 				   &seqid);
2141 		if (rv)
2142 			/*
2143 			 * We have used up all the sequence numbers,
2144 			 * probably, so abort.
2145 			 */
2146 			goto out_err;
2147 
2148 		ipmi_inc_stat(intf, sent_lan_commands);
2149 
2150 		/*
2151 		 * Store the sequence number in the message,
2152 		 * so that when the send message response
2153 		 * comes back we can start the timer.
2154 		 */
2155 		format_lan_msg(smi_msg, msg, lan_addr,
2156 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2157 			       ipmb_seq, source_lun);
2158 
2159 		/*
2160 		 * Copy the message into the recv message data, so we
2161 		 * can retransmit it later if necessary.
2162 		 */
2163 		memcpy(recv_msg->msg_data, smi_msg->data,
2164 		       smi_msg->data_size);
2165 		recv_msg->msg.data = recv_msg->msg_data;
2166 		recv_msg->msg.data_len = smi_msg->data_size;
2167 
2168 		/*
2169 		 * We don't unlock until here, because we need
2170 		 * to copy the completed message into the
2171 		 * recv_msg before we release the lock.
2172 		 * Otherwise, race conditions may bite us.  I
2173 		 * know that's pretty paranoid, but I prefer
2174 		 * to be correct.
2175 		 */
2176 out_err:
2177 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2178 	}
2179 
2180 	return rv;
2181 }
2182 
2183 /*
2184  * Separate from ipmi_request so that the user does not have to be
2185  * supplied in certain circumstances (mainly at panic time).  If
2186  * messages are supplied, they will be freed, even if an error
2187  * occurs.
2188  */
2189 static int i_ipmi_request(struct ipmi_user     *user,
2190 			  struct ipmi_smi      *intf,
2191 			  struct ipmi_addr     *addr,
2192 			  long                 msgid,
2193 			  struct kernel_ipmi_msg *msg,
2194 			  void                 *user_msg_data,
2195 			  void                 *supplied_smi,
2196 			  struct ipmi_recv_msg *supplied_recv,
2197 			  int                  priority,
2198 			  unsigned char        source_address,
2199 			  unsigned char        source_lun,
2200 			  int                  retries,
2201 			  unsigned int         retry_time_ms)
2202 {
2203 	struct ipmi_smi_msg *smi_msg;
2204 	struct ipmi_recv_msg *recv_msg;
2205 	int rv = 0;
2206 
2207 	if (supplied_recv)
2208 		recv_msg = supplied_recv;
2209 	else {
2210 		recv_msg = ipmi_alloc_recv_msg();
2211 		if (recv_msg == NULL) {
2212 			rv = -ENOMEM;
2213 			goto out;
2214 		}
2215 	}
2216 	recv_msg->user_msg_data = user_msg_data;
2217 
2218 	if (supplied_smi)
2219 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2220 	else {
2221 		smi_msg = ipmi_alloc_smi_msg();
2222 		if (smi_msg == NULL) {
2223 			if (!supplied_recv)
2224 				ipmi_free_recv_msg(recv_msg);
2225 			rv = -ENOMEM;
2226 			goto out;
2227 		}
2228 	}
2229 
2230 	rcu_read_lock();
2231 	if (intf->in_shutdown) {
2232 		rv = -ENODEV;
2233 		goto out_err;
2234 	}
2235 
2236 	recv_msg->user = user;
2237 	if (user)
2238 		/* The put happens when the message is freed. */
2239 		kref_get(&user->refcount);
2240 	recv_msg->msgid = msgid;
2241 	/*
2242 	 * Store the message to send in the receive message so timeout
2243 	 * responses can get the proper response data.
2244 	 */
2245 	recv_msg->msg = *msg;
2246 
2247 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2248 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2249 					recv_msg, retries, retry_time_ms);
2250 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2251 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2252 				     source_address, source_lun,
2253 				     retries, retry_time_ms);
2254 	} else if (is_lan_addr(addr)) {
2255 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2256 				    source_lun, retries, retry_time_ms);
2257 	} else {
2258 	    /* Unknown address type. */
2259 		ipmi_inc_stat(intf, sent_invalid_commands);
2260 		rv = -EINVAL;
2261 	}
2262 
2263 	if (rv) {
2264 out_err:
2265 		ipmi_free_smi_msg(smi_msg);
2266 		ipmi_free_recv_msg(recv_msg);
2267 	} else {
2268 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2269 
2270 		smi_send(intf, intf->handlers, smi_msg, priority);
2271 	}
2272 	rcu_read_unlock();
2273 
2274 out:
2275 	return rv;
2276 }
2277 
2278 static int check_addr(struct ipmi_smi  *intf,
2279 		      struct ipmi_addr *addr,
2280 		      unsigned char    *saddr,
2281 		      unsigned char    *lun)
2282 {
2283 	if (addr->channel >= IPMI_MAX_CHANNELS)
2284 		return -EINVAL;
2285 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2286 	*lun = intf->addrinfo[addr->channel].lun;
2287 	*saddr = intf->addrinfo[addr->channel].address;
2288 	return 0;
2289 }
2290 
2291 int ipmi_request_settime(struct ipmi_user *user,
2292 			 struct ipmi_addr *addr,
2293 			 long             msgid,
2294 			 struct kernel_ipmi_msg  *msg,
2295 			 void             *user_msg_data,
2296 			 int              priority,
2297 			 int              retries,
2298 			 unsigned int     retry_time_ms)
2299 {
2300 	unsigned char saddr = 0, lun = 0;
2301 	int rv, index;
2302 
2303 	if (!user)
2304 		return -EINVAL;
2305 
2306 	user = acquire_ipmi_user(user, &index);
2307 	if (!user)
2308 		return -ENODEV;
2309 
2310 	rv = check_addr(user->intf, addr, &saddr, &lun);
2311 	if (!rv)
2312 		rv = i_ipmi_request(user,
2313 				    user->intf,
2314 				    addr,
2315 				    msgid,
2316 				    msg,
2317 				    user_msg_data,
2318 				    NULL, NULL,
2319 				    priority,
2320 				    saddr,
2321 				    lun,
2322 				    retries,
2323 				    retry_time_ms);
2324 
2325 	release_ipmi_user(user, index);
2326 	return rv;
2327 }
2328 EXPORT_SYMBOL(ipmi_request_settime);
2329 
2330 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2331 			     struct ipmi_addr     *addr,
2332 			     long                 msgid,
2333 			     struct kernel_ipmi_msg *msg,
2334 			     void                 *user_msg_data,
2335 			     void                 *supplied_smi,
2336 			     struct ipmi_recv_msg *supplied_recv,
2337 			     int                  priority)
2338 {
2339 	unsigned char saddr = 0, lun = 0;
2340 	int rv, index;
2341 
2342 	if (!user)
2343 		return -EINVAL;
2344 
2345 	user = acquire_ipmi_user(user, &index);
2346 	if (!user)
2347 		return -ENODEV;
2348 
2349 	rv = check_addr(user->intf, addr, &saddr, &lun);
2350 	if (!rv)
2351 		rv = i_ipmi_request(user,
2352 				    user->intf,
2353 				    addr,
2354 				    msgid,
2355 				    msg,
2356 				    user_msg_data,
2357 				    supplied_smi,
2358 				    supplied_recv,
2359 				    priority,
2360 				    saddr,
2361 				    lun,
2362 				    -1, 0);
2363 
2364 	release_ipmi_user(user, index);
2365 	return rv;
2366 }
2367 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2368 
2369 static void bmc_device_id_handler(struct ipmi_smi *intf,
2370 				  struct ipmi_recv_msg *msg)
2371 {
2372 	int rv;
2373 
2374 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2375 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2376 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2377 		dev_warn(intf->si_dev,
2378 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2379 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2380 		return;
2381 	}
2382 
2383 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2384 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2385 	if (rv) {
2386 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2387 		/* record completion code when error */
2388 		intf->bmc->cc = msg->msg.data[0];
2389 		intf->bmc->dyn_id_set = 0;
2390 	} else {
2391 		/*
2392 		 * Make sure the id data is available before setting
2393 		 * dyn_id_set.
2394 		 */
2395 		smp_wmb();
2396 		intf->bmc->dyn_id_set = 1;
2397 	}
2398 
2399 	wake_up(&intf->waitq);
2400 }
2401 
2402 static int
2403 send_get_device_id_cmd(struct ipmi_smi *intf)
2404 {
2405 	struct ipmi_system_interface_addr si;
2406 	struct kernel_ipmi_msg msg;
2407 
2408 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2409 	si.channel = IPMI_BMC_CHANNEL;
2410 	si.lun = 0;
2411 
2412 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2413 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2414 	msg.data = NULL;
2415 	msg.data_len = 0;
2416 
2417 	return i_ipmi_request(NULL,
2418 			      intf,
2419 			      (struct ipmi_addr *) &si,
2420 			      0,
2421 			      &msg,
2422 			      intf,
2423 			      NULL,
2424 			      NULL,
2425 			      0,
2426 			      intf->addrinfo[0].address,
2427 			      intf->addrinfo[0].lun,
2428 			      -1, 0);
2429 }
2430 
2431 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2432 {
2433 	int rv;
2434 	unsigned int retry_count = 0;
2435 
2436 	intf->null_user_handler = bmc_device_id_handler;
2437 
2438 retry:
2439 	bmc->cc = 0;
2440 	bmc->dyn_id_set = 2;
2441 
2442 	rv = send_get_device_id_cmd(intf);
2443 	if (rv)
2444 		goto out_reset_handler;
2445 
2446 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2447 
2448 	if (!bmc->dyn_id_set) {
2449 		if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2450 		     || bmc->cc ==  IPMI_DEVICE_IN_INIT_ERR
2451 		     || bmc->cc ==  IPMI_NOT_IN_MY_STATE_ERR)
2452 		     && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2453 			msleep(500);
2454 			dev_warn(intf->si_dev,
2455 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2456 			    bmc->cc);
2457 			goto retry;
2458 		}
2459 
2460 		rv = -EIO; /* Something went wrong in the fetch. */
2461 	}
2462 
2463 	/* dyn_id_set makes the id data available. */
2464 	smp_rmb();
2465 
2466 out_reset_handler:
2467 	intf->null_user_handler = NULL;
2468 
2469 	return rv;
2470 }
2471 
2472 /*
2473  * Fetch the device id for the bmc/interface.  You must pass in either
2474  * bmc or intf, this code will get the other one.  If the data has
2475  * been recently fetched, this will just use the cached data.  Otherwise
2476  * it will run a new fetch.
2477  *
2478  * Except for the first time this is called (in ipmi_add_smi()),
2479  * this will always return good data;
2480  */
2481 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2482 			       struct ipmi_device_id *id,
2483 			       bool *guid_set, guid_t *guid, int intf_num)
2484 {
2485 	int rv = 0;
2486 	int prev_dyn_id_set, prev_guid_set;
2487 	bool intf_set = intf != NULL;
2488 
2489 	if (!intf) {
2490 		mutex_lock(&bmc->dyn_mutex);
2491 retry_bmc_lock:
2492 		if (list_empty(&bmc->intfs)) {
2493 			mutex_unlock(&bmc->dyn_mutex);
2494 			return -ENOENT;
2495 		}
2496 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2497 					bmc_link);
2498 		kref_get(&intf->refcount);
2499 		mutex_unlock(&bmc->dyn_mutex);
2500 		mutex_lock(&intf->bmc_reg_mutex);
2501 		mutex_lock(&bmc->dyn_mutex);
2502 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2503 					     bmc_link)) {
2504 			mutex_unlock(&intf->bmc_reg_mutex);
2505 			kref_put(&intf->refcount, intf_free);
2506 			goto retry_bmc_lock;
2507 		}
2508 	} else {
2509 		mutex_lock(&intf->bmc_reg_mutex);
2510 		bmc = intf->bmc;
2511 		mutex_lock(&bmc->dyn_mutex);
2512 		kref_get(&intf->refcount);
2513 	}
2514 
2515 	/* If we have a valid and current ID, just return that. */
2516 	if (intf->in_bmc_register ||
2517 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2518 		goto out_noprocessing;
2519 
2520 	prev_guid_set = bmc->dyn_guid_set;
2521 	__get_guid(intf);
2522 
2523 	prev_dyn_id_set = bmc->dyn_id_set;
2524 	rv = __get_device_id(intf, bmc);
2525 	if (rv)
2526 		goto out;
2527 
2528 	/*
2529 	 * The guid, device id, manufacturer id, and product id should
2530 	 * not change on a BMC.  If it does we have to do some dancing.
2531 	 */
2532 	if (!intf->bmc_registered
2533 	    || (!prev_guid_set && bmc->dyn_guid_set)
2534 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2535 	    || (prev_guid_set && bmc->dyn_guid_set
2536 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2537 	    || bmc->id.device_id != bmc->fetch_id.device_id
2538 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2539 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2540 		struct ipmi_device_id id = bmc->fetch_id;
2541 		int guid_set = bmc->dyn_guid_set;
2542 		guid_t guid;
2543 
2544 		guid = bmc->fetch_guid;
2545 		mutex_unlock(&bmc->dyn_mutex);
2546 
2547 		__ipmi_bmc_unregister(intf);
2548 		/* Fill in the temporary BMC for good measure. */
2549 		intf->bmc->id = id;
2550 		intf->bmc->dyn_guid_set = guid_set;
2551 		intf->bmc->guid = guid;
2552 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2553 			need_waiter(intf); /* Retry later on an error. */
2554 		else
2555 			__scan_channels(intf, &id);
2556 
2557 
2558 		if (!intf_set) {
2559 			/*
2560 			 * We weren't given the interface on the
2561 			 * command line, so restart the operation on
2562 			 * the next interface for the BMC.
2563 			 */
2564 			mutex_unlock(&intf->bmc_reg_mutex);
2565 			mutex_lock(&bmc->dyn_mutex);
2566 			goto retry_bmc_lock;
2567 		}
2568 
2569 		/* We have a new BMC, set it up. */
2570 		bmc = intf->bmc;
2571 		mutex_lock(&bmc->dyn_mutex);
2572 		goto out_noprocessing;
2573 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2574 		/* Version info changes, scan the channels again. */
2575 		__scan_channels(intf, &bmc->fetch_id);
2576 
2577 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2578 
2579 out:
2580 	if (rv && prev_dyn_id_set) {
2581 		rv = 0; /* Ignore failures if we have previous data. */
2582 		bmc->dyn_id_set = prev_dyn_id_set;
2583 	}
2584 	if (!rv) {
2585 		bmc->id = bmc->fetch_id;
2586 		if (bmc->dyn_guid_set)
2587 			bmc->guid = bmc->fetch_guid;
2588 		else if (prev_guid_set)
2589 			/*
2590 			 * The guid used to be valid and it failed to fetch,
2591 			 * just use the cached value.
2592 			 */
2593 			bmc->dyn_guid_set = prev_guid_set;
2594 	}
2595 out_noprocessing:
2596 	if (!rv) {
2597 		if (id)
2598 			*id = bmc->id;
2599 
2600 		if (guid_set)
2601 			*guid_set = bmc->dyn_guid_set;
2602 
2603 		if (guid && bmc->dyn_guid_set)
2604 			*guid =  bmc->guid;
2605 	}
2606 
2607 	mutex_unlock(&bmc->dyn_mutex);
2608 	mutex_unlock(&intf->bmc_reg_mutex);
2609 
2610 	kref_put(&intf->refcount, intf_free);
2611 	return rv;
2612 }
2613 
2614 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2615 			     struct ipmi_device_id *id,
2616 			     bool *guid_set, guid_t *guid)
2617 {
2618 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2619 }
2620 
2621 static ssize_t device_id_show(struct device *dev,
2622 			      struct device_attribute *attr,
2623 			      char *buf)
2624 {
2625 	struct bmc_device *bmc = to_bmc_device(dev);
2626 	struct ipmi_device_id id;
2627 	int rv;
2628 
2629 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2630 	if (rv)
2631 		return rv;
2632 
2633 	return snprintf(buf, 10, "%u\n", id.device_id);
2634 }
2635 static DEVICE_ATTR_RO(device_id);
2636 
2637 static ssize_t provides_device_sdrs_show(struct device *dev,
2638 					 struct device_attribute *attr,
2639 					 char *buf)
2640 {
2641 	struct bmc_device *bmc = to_bmc_device(dev);
2642 	struct ipmi_device_id id;
2643 	int rv;
2644 
2645 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2646 	if (rv)
2647 		return rv;
2648 
2649 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2650 }
2651 static DEVICE_ATTR_RO(provides_device_sdrs);
2652 
2653 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2654 			     char *buf)
2655 {
2656 	struct bmc_device *bmc = to_bmc_device(dev);
2657 	struct ipmi_device_id id;
2658 	int rv;
2659 
2660 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2661 	if (rv)
2662 		return rv;
2663 
2664 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2665 }
2666 static DEVICE_ATTR_RO(revision);
2667 
2668 static ssize_t firmware_revision_show(struct device *dev,
2669 				      struct device_attribute *attr,
2670 				      char *buf)
2671 {
2672 	struct bmc_device *bmc = to_bmc_device(dev);
2673 	struct ipmi_device_id id;
2674 	int rv;
2675 
2676 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2677 	if (rv)
2678 		return rv;
2679 
2680 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2681 			id.firmware_revision_2);
2682 }
2683 static DEVICE_ATTR_RO(firmware_revision);
2684 
2685 static ssize_t ipmi_version_show(struct device *dev,
2686 				 struct device_attribute *attr,
2687 				 char *buf)
2688 {
2689 	struct bmc_device *bmc = to_bmc_device(dev);
2690 	struct ipmi_device_id id;
2691 	int rv;
2692 
2693 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2694 	if (rv)
2695 		return rv;
2696 
2697 	return snprintf(buf, 20, "%u.%u\n",
2698 			ipmi_version_major(&id),
2699 			ipmi_version_minor(&id));
2700 }
2701 static DEVICE_ATTR_RO(ipmi_version);
2702 
2703 static ssize_t add_dev_support_show(struct device *dev,
2704 				    struct device_attribute *attr,
2705 				    char *buf)
2706 {
2707 	struct bmc_device *bmc = to_bmc_device(dev);
2708 	struct ipmi_device_id id;
2709 	int rv;
2710 
2711 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2712 	if (rv)
2713 		return rv;
2714 
2715 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2716 }
2717 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2718 		   NULL);
2719 
2720 static ssize_t manufacturer_id_show(struct device *dev,
2721 				    struct device_attribute *attr,
2722 				    char *buf)
2723 {
2724 	struct bmc_device *bmc = to_bmc_device(dev);
2725 	struct ipmi_device_id id;
2726 	int rv;
2727 
2728 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2729 	if (rv)
2730 		return rv;
2731 
2732 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2733 }
2734 static DEVICE_ATTR_RO(manufacturer_id);
2735 
2736 static ssize_t product_id_show(struct device *dev,
2737 			       struct device_attribute *attr,
2738 			       char *buf)
2739 {
2740 	struct bmc_device *bmc = to_bmc_device(dev);
2741 	struct ipmi_device_id id;
2742 	int rv;
2743 
2744 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2745 	if (rv)
2746 		return rv;
2747 
2748 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2749 }
2750 static DEVICE_ATTR_RO(product_id);
2751 
2752 static ssize_t aux_firmware_rev_show(struct device *dev,
2753 				     struct device_attribute *attr,
2754 				     char *buf)
2755 {
2756 	struct bmc_device *bmc = to_bmc_device(dev);
2757 	struct ipmi_device_id id;
2758 	int rv;
2759 
2760 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2761 	if (rv)
2762 		return rv;
2763 
2764 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2765 			id.aux_firmware_revision[3],
2766 			id.aux_firmware_revision[2],
2767 			id.aux_firmware_revision[1],
2768 			id.aux_firmware_revision[0]);
2769 }
2770 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2771 
2772 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2773 			 char *buf)
2774 {
2775 	struct bmc_device *bmc = to_bmc_device(dev);
2776 	bool guid_set;
2777 	guid_t guid;
2778 	int rv;
2779 
2780 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2781 	if (rv)
2782 		return rv;
2783 	if (!guid_set)
2784 		return -ENOENT;
2785 
2786 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2787 }
2788 static DEVICE_ATTR_RO(guid);
2789 
2790 static struct attribute *bmc_dev_attrs[] = {
2791 	&dev_attr_device_id.attr,
2792 	&dev_attr_provides_device_sdrs.attr,
2793 	&dev_attr_revision.attr,
2794 	&dev_attr_firmware_revision.attr,
2795 	&dev_attr_ipmi_version.attr,
2796 	&dev_attr_additional_device_support.attr,
2797 	&dev_attr_manufacturer_id.attr,
2798 	&dev_attr_product_id.attr,
2799 	&dev_attr_aux_firmware_revision.attr,
2800 	&dev_attr_guid.attr,
2801 	NULL
2802 };
2803 
2804 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2805 				       struct attribute *attr, int idx)
2806 {
2807 	struct device *dev = kobj_to_dev(kobj);
2808 	struct bmc_device *bmc = to_bmc_device(dev);
2809 	umode_t mode = attr->mode;
2810 	int rv;
2811 
2812 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2813 		struct ipmi_device_id id;
2814 
2815 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2816 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2817 	}
2818 	if (attr == &dev_attr_guid.attr) {
2819 		bool guid_set;
2820 
2821 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2822 		return (!rv && guid_set) ? mode : 0;
2823 	}
2824 	return mode;
2825 }
2826 
2827 static const struct attribute_group bmc_dev_attr_group = {
2828 	.attrs		= bmc_dev_attrs,
2829 	.is_visible	= bmc_dev_attr_is_visible,
2830 };
2831 
2832 static const struct attribute_group *bmc_dev_attr_groups[] = {
2833 	&bmc_dev_attr_group,
2834 	NULL
2835 };
2836 
2837 static const struct device_type bmc_device_type = {
2838 	.groups		= bmc_dev_attr_groups,
2839 };
2840 
2841 static int __find_bmc_guid(struct device *dev, const void *data)
2842 {
2843 	const guid_t *guid = data;
2844 	struct bmc_device *bmc;
2845 	int rv;
2846 
2847 	if (dev->type != &bmc_device_type)
2848 		return 0;
2849 
2850 	bmc = to_bmc_device(dev);
2851 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2852 	if (rv)
2853 		rv = kref_get_unless_zero(&bmc->usecount);
2854 	return rv;
2855 }
2856 
2857 /*
2858  * Returns with the bmc's usecount incremented, if it is non-NULL.
2859  */
2860 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2861 					     guid_t *guid)
2862 {
2863 	struct device *dev;
2864 	struct bmc_device *bmc = NULL;
2865 
2866 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2867 	if (dev) {
2868 		bmc = to_bmc_device(dev);
2869 		put_device(dev);
2870 	}
2871 	return bmc;
2872 }
2873 
2874 struct prod_dev_id {
2875 	unsigned int  product_id;
2876 	unsigned char device_id;
2877 };
2878 
2879 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2880 {
2881 	const struct prod_dev_id *cid = data;
2882 	struct bmc_device *bmc;
2883 	int rv;
2884 
2885 	if (dev->type != &bmc_device_type)
2886 		return 0;
2887 
2888 	bmc = to_bmc_device(dev);
2889 	rv = (bmc->id.product_id == cid->product_id
2890 	      && bmc->id.device_id == cid->device_id);
2891 	if (rv)
2892 		rv = kref_get_unless_zero(&bmc->usecount);
2893 	return rv;
2894 }
2895 
2896 /*
2897  * Returns with the bmc's usecount incremented, if it is non-NULL.
2898  */
2899 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2900 	struct device_driver *drv,
2901 	unsigned int product_id, unsigned char device_id)
2902 {
2903 	struct prod_dev_id id = {
2904 		.product_id = product_id,
2905 		.device_id = device_id,
2906 	};
2907 	struct device *dev;
2908 	struct bmc_device *bmc = NULL;
2909 
2910 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2911 	if (dev) {
2912 		bmc = to_bmc_device(dev);
2913 		put_device(dev);
2914 	}
2915 	return bmc;
2916 }
2917 
2918 static DEFINE_IDA(ipmi_bmc_ida);
2919 
2920 static void
2921 release_bmc_device(struct device *dev)
2922 {
2923 	kfree(to_bmc_device(dev));
2924 }
2925 
2926 static void cleanup_bmc_work(struct work_struct *work)
2927 {
2928 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2929 					      remove_work);
2930 	int id = bmc->pdev.id; /* Unregister overwrites id */
2931 
2932 	platform_device_unregister(&bmc->pdev);
2933 	ida_simple_remove(&ipmi_bmc_ida, id);
2934 }
2935 
2936 static void
2937 cleanup_bmc_device(struct kref *ref)
2938 {
2939 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2940 
2941 	/*
2942 	 * Remove the platform device in a work queue to avoid issues
2943 	 * with removing the device attributes while reading a device
2944 	 * attribute.
2945 	 */
2946 	schedule_work(&bmc->remove_work);
2947 }
2948 
2949 /*
2950  * Must be called with intf->bmc_reg_mutex held.
2951  */
2952 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2953 {
2954 	struct bmc_device *bmc = intf->bmc;
2955 
2956 	if (!intf->bmc_registered)
2957 		return;
2958 
2959 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2960 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2961 	kfree(intf->my_dev_name);
2962 	intf->my_dev_name = NULL;
2963 
2964 	mutex_lock(&bmc->dyn_mutex);
2965 	list_del(&intf->bmc_link);
2966 	mutex_unlock(&bmc->dyn_mutex);
2967 	intf->bmc = &intf->tmp_bmc;
2968 	kref_put(&bmc->usecount, cleanup_bmc_device);
2969 	intf->bmc_registered = false;
2970 }
2971 
2972 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2973 {
2974 	mutex_lock(&intf->bmc_reg_mutex);
2975 	__ipmi_bmc_unregister(intf);
2976 	mutex_unlock(&intf->bmc_reg_mutex);
2977 }
2978 
2979 /*
2980  * Must be called with intf->bmc_reg_mutex held.
2981  */
2982 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2983 			       struct ipmi_device_id *id,
2984 			       bool guid_set, guid_t *guid, int intf_num)
2985 {
2986 	int               rv;
2987 	struct bmc_device *bmc;
2988 	struct bmc_device *old_bmc;
2989 
2990 	/*
2991 	 * platform_device_register() can cause bmc_reg_mutex to
2992 	 * be claimed because of the is_visible functions of
2993 	 * the attributes.  Eliminate possible recursion and
2994 	 * release the lock.
2995 	 */
2996 	intf->in_bmc_register = true;
2997 	mutex_unlock(&intf->bmc_reg_mutex);
2998 
2999 	/*
3000 	 * Try to find if there is an bmc_device struct
3001 	 * representing the interfaced BMC already
3002 	 */
3003 	mutex_lock(&ipmidriver_mutex);
3004 	if (guid_set)
3005 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3006 	else
3007 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3008 						    id->product_id,
3009 						    id->device_id);
3010 
3011 	/*
3012 	 * If there is already an bmc_device, free the new one,
3013 	 * otherwise register the new BMC device
3014 	 */
3015 	if (old_bmc) {
3016 		bmc = old_bmc;
3017 		/*
3018 		 * Note: old_bmc already has usecount incremented by
3019 		 * the BMC find functions.
3020 		 */
3021 		intf->bmc = old_bmc;
3022 		mutex_lock(&bmc->dyn_mutex);
3023 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3024 		mutex_unlock(&bmc->dyn_mutex);
3025 
3026 		dev_info(intf->si_dev,
3027 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3028 			 bmc->id.manufacturer_id,
3029 			 bmc->id.product_id,
3030 			 bmc->id.device_id);
3031 	} else {
3032 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3033 		if (!bmc) {
3034 			rv = -ENOMEM;
3035 			goto out;
3036 		}
3037 		INIT_LIST_HEAD(&bmc->intfs);
3038 		mutex_init(&bmc->dyn_mutex);
3039 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3040 
3041 		bmc->id = *id;
3042 		bmc->dyn_id_set = 1;
3043 		bmc->dyn_guid_set = guid_set;
3044 		bmc->guid = *guid;
3045 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3046 
3047 		bmc->pdev.name = "ipmi_bmc";
3048 
3049 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3050 		if (rv < 0) {
3051 			kfree(bmc);
3052 			goto out;
3053 		}
3054 
3055 		bmc->pdev.dev.driver = &ipmidriver.driver;
3056 		bmc->pdev.id = rv;
3057 		bmc->pdev.dev.release = release_bmc_device;
3058 		bmc->pdev.dev.type = &bmc_device_type;
3059 		kref_init(&bmc->usecount);
3060 
3061 		intf->bmc = bmc;
3062 		mutex_lock(&bmc->dyn_mutex);
3063 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3064 		mutex_unlock(&bmc->dyn_mutex);
3065 
3066 		rv = platform_device_register(&bmc->pdev);
3067 		if (rv) {
3068 			dev_err(intf->si_dev,
3069 				"Unable to register bmc device: %d\n",
3070 				rv);
3071 			goto out_list_del;
3072 		}
3073 
3074 		dev_info(intf->si_dev,
3075 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3076 			 bmc->id.manufacturer_id,
3077 			 bmc->id.product_id,
3078 			 bmc->id.device_id);
3079 	}
3080 
3081 	/*
3082 	 * create symlink from system interface device to bmc device
3083 	 * and back.
3084 	 */
3085 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3086 	if (rv) {
3087 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3088 		goto out_put_bmc;
3089 	}
3090 
3091 	if (intf_num == -1)
3092 		intf_num = intf->intf_num;
3093 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3094 	if (!intf->my_dev_name) {
3095 		rv = -ENOMEM;
3096 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3097 			rv);
3098 		goto out_unlink1;
3099 	}
3100 
3101 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3102 			       intf->my_dev_name);
3103 	if (rv) {
3104 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3105 			rv);
3106 		goto out_free_my_dev_name;
3107 	}
3108 
3109 	intf->bmc_registered = true;
3110 
3111 out:
3112 	mutex_unlock(&ipmidriver_mutex);
3113 	mutex_lock(&intf->bmc_reg_mutex);
3114 	intf->in_bmc_register = false;
3115 	return rv;
3116 
3117 
3118 out_free_my_dev_name:
3119 	kfree(intf->my_dev_name);
3120 	intf->my_dev_name = NULL;
3121 
3122 out_unlink1:
3123 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3124 
3125 out_put_bmc:
3126 	mutex_lock(&bmc->dyn_mutex);
3127 	list_del(&intf->bmc_link);
3128 	mutex_unlock(&bmc->dyn_mutex);
3129 	intf->bmc = &intf->tmp_bmc;
3130 	kref_put(&bmc->usecount, cleanup_bmc_device);
3131 	goto out;
3132 
3133 out_list_del:
3134 	mutex_lock(&bmc->dyn_mutex);
3135 	list_del(&intf->bmc_link);
3136 	mutex_unlock(&bmc->dyn_mutex);
3137 	intf->bmc = &intf->tmp_bmc;
3138 	put_device(&bmc->pdev.dev);
3139 	goto out;
3140 }
3141 
3142 static int
3143 send_guid_cmd(struct ipmi_smi *intf, int chan)
3144 {
3145 	struct kernel_ipmi_msg            msg;
3146 	struct ipmi_system_interface_addr si;
3147 
3148 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3149 	si.channel = IPMI_BMC_CHANNEL;
3150 	si.lun = 0;
3151 
3152 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3153 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3154 	msg.data = NULL;
3155 	msg.data_len = 0;
3156 	return i_ipmi_request(NULL,
3157 			      intf,
3158 			      (struct ipmi_addr *) &si,
3159 			      0,
3160 			      &msg,
3161 			      intf,
3162 			      NULL,
3163 			      NULL,
3164 			      0,
3165 			      intf->addrinfo[0].address,
3166 			      intf->addrinfo[0].lun,
3167 			      -1, 0);
3168 }
3169 
3170 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3171 {
3172 	struct bmc_device *bmc = intf->bmc;
3173 
3174 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3175 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3176 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3177 		/* Not for me */
3178 		return;
3179 
3180 	if (msg->msg.data[0] != 0) {
3181 		/* Error from getting the GUID, the BMC doesn't have one. */
3182 		bmc->dyn_guid_set = 0;
3183 		goto out;
3184 	}
3185 
3186 	if (msg->msg.data_len < UUID_SIZE + 1) {
3187 		bmc->dyn_guid_set = 0;
3188 		dev_warn(intf->si_dev,
3189 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3190 			 msg->msg.data_len, UUID_SIZE + 1);
3191 		goto out;
3192 	}
3193 
3194 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3195 	/*
3196 	 * Make sure the guid data is available before setting
3197 	 * dyn_guid_set.
3198 	 */
3199 	smp_wmb();
3200 	bmc->dyn_guid_set = 1;
3201  out:
3202 	wake_up(&intf->waitq);
3203 }
3204 
3205 static void __get_guid(struct ipmi_smi *intf)
3206 {
3207 	int rv;
3208 	struct bmc_device *bmc = intf->bmc;
3209 
3210 	bmc->dyn_guid_set = 2;
3211 	intf->null_user_handler = guid_handler;
3212 	rv = send_guid_cmd(intf, 0);
3213 	if (rv)
3214 		/* Send failed, no GUID available. */
3215 		bmc->dyn_guid_set = 0;
3216 	else
3217 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3218 
3219 	/* dyn_guid_set makes the guid data available. */
3220 	smp_rmb();
3221 
3222 	intf->null_user_handler = NULL;
3223 }
3224 
3225 static int
3226 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3227 {
3228 	struct kernel_ipmi_msg            msg;
3229 	unsigned char                     data[1];
3230 	struct ipmi_system_interface_addr si;
3231 
3232 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3233 	si.channel = IPMI_BMC_CHANNEL;
3234 	si.lun = 0;
3235 
3236 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3237 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3238 	msg.data = data;
3239 	msg.data_len = 1;
3240 	data[0] = chan;
3241 	return i_ipmi_request(NULL,
3242 			      intf,
3243 			      (struct ipmi_addr *) &si,
3244 			      0,
3245 			      &msg,
3246 			      intf,
3247 			      NULL,
3248 			      NULL,
3249 			      0,
3250 			      intf->addrinfo[0].address,
3251 			      intf->addrinfo[0].lun,
3252 			      -1, 0);
3253 }
3254 
3255 static void
3256 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3257 {
3258 	int rv = 0;
3259 	int ch;
3260 	unsigned int set = intf->curr_working_cset;
3261 	struct ipmi_channel *chans;
3262 
3263 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3264 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3265 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3266 		/* It's the one we want */
3267 		if (msg->msg.data[0] != 0) {
3268 			/* Got an error from the channel, just go on. */
3269 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3270 				/*
3271 				 * If the MC does not support this
3272 				 * command, that is legal.  We just
3273 				 * assume it has one IPMB at channel
3274 				 * zero.
3275 				 */
3276 				intf->wchannels[set].c[0].medium
3277 					= IPMI_CHANNEL_MEDIUM_IPMB;
3278 				intf->wchannels[set].c[0].protocol
3279 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3280 
3281 				intf->channel_list = intf->wchannels + set;
3282 				intf->channels_ready = true;
3283 				wake_up(&intf->waitq);
3284 				goto out;
3285 			}
3286 			goto next_channel;
3287 		}
3288 		if (msg->msg.data_len < 4) {
3289 			/* Message not big enough, just go on. */
3290 			goto next_channel;
3291 		}
3292 		ch = intf->curr_channel;
3293 		chans = intf->wchannels[set].c;
3294 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3295 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3296 
3297  next_channel:
3298 		intf->curr_channel++;
3299 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3300 			intf->channel_list = intf->wchannels + set;
3301 			intf->channels_ready = true;
3302 			wake_up(&intf->waitq);
3303 		} else {
3304 			intf->channel_list = intf->wchannels + set;
3305 			intf->channels_ready = true;
3306 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3307 		}
3308 
3309 		if (rv) {
3310 			/* Got an error somehow, just give up. */
3311 			dev_warn(intf->si_dev,
3312 				 "Error sending channel information for channel %d: %d\n",
3313 				 intf->curr_channel, rv);
3314 
3315 			intf->channel_list = intf->wchannels + set;
3316 			intf->channels_ready = true;
3317 			wake_up(&intf->waitq);
3318 		}
3319 	}
3320  out:
3321 	return;
3322 }
3323 
3324 /*
3325  * Must be holding intf->bmc_reg_mutex to call this.
3326  */
3327 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3328 {
3329 	int rv;
3330 
3331 	if (ipmi_version_major(id) > 1
3332 			|| (ipmi_version_major(id) == 1
3333 			    && ipmi_version_minor(id) >= 5)) {
3334 		unsigned int set;
3335 
3336 		/*
3337 		 * Start scanning the channels to see what is
3338 		 * available.
3339 		 */
3340 		set = !intf->curr_working_cset;
3341 		intf->curr_working_cset = set;
3342 		memset(&intf->wchannels[set], 0,
3343 		       sizeof(struct ipmi_channel_set));
3344 
3345 		intf->null_user_handler = channel_handler;
3346 		intf->curr_channel = 0;
3347 		rv = send_channel_info_cmd(intf, 0);
3348 		if (rv) {
3349 			dev_warn(intf->si_dev,
3350 				 "Error sending channel information for channel 0, %d\n",
3351 				 rv);
3352 			intf->null_user_handler = NULL;
3353 			return -EIO;
3354 		}
3355 
3356 		/* Wait for the channel info to be read. */
3357 		wait_event(intf->waitq, intf->channels_ready);
3358 		intf->null_user_handler = NULL;
3359 	} else {
3360 		unsigned int set = intf->curr_working_cset;
3361 
3362 		/* Assume a single IPMB channel at zero. */
3363 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3364 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3365 		intf->channel_list = intf->wchannels + set;
3366 		intf->channels_ready = true;
3367 	}
3368 
3369 	return 0;
3370 }
3371 
3372 static void ipmi_poll(struct ipmi_smi *intf)
3373 {
3374 	if (intf->handlers->poll)
3375 		intf->handlers->poll(intf->send_info);
3376 	/* In case something came in */
3377 	handle_new_recv_msgs(intf);
3378 }
3379 
3380 void ipmi_poll_interface(struct ipmi_user *user)
3381 {
3382 	ipmi_poll(user->intf);
3383 }
3384 EXPORT_SYMBOL(ipmi_poll_interface);
3385 
3386 static void redo_bmc_reg(struct work_struct *work)
3387 {
3388 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3389 					     bmc_reg_work);
3390 
3391 	if (!intf->in_shutdown)
3392 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3393 
3394 	kref_put(&intf->refcount, intf_free);
3395 }
3396 
3397 int ipmi_add_smi(struct module         *owner,
3398 		 const struct ipmi_smi_handlers *handlers,
3399 		 void		       *send_info,
3400 		 struct device         *si_dev,
3401 		 unsigned char         slave_addr)
3402 {
3403 	int              i, j;
3404 	int              rv;
3405 	struct ipmi_smi *intf, *tintf;
3406 	struct list_head *link;
3407 	struct ipmi_device_id id;
3408 
3409 	/*
3410 	 * Make sure the driver is actually initialized, this handles
3411 	 * problems with initialization order.
3412 	 */
3413 	rv = ipmi_init_msghandler();
3414 	if (rv)
3415 		return rv;
3416 
3417 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3418 	if (!intf)
3419 		return -ENOMEM;
3420 
3421 	rv = init_srcu_struct(&intf->users_srcu);
3422 	if (rv) {
3423 		kfree(intf);
3424 		return rv;
3425 	}
3426 
3427 	intf->owner = owner;
3428 	intf->bmc = &intf->tmp_bmc;
3429 	INIT_LIST_HEAD(&intf->bmc->intfs);
3430 	mutex_init(&intf->bmc->dyn_mutex);
3431 	INIT_LIST_HEAD(&intf->bmc_link);
3432 	mutex_init(&intf->bmc_reg_mutex);
3433 	intf->intf_num = -1; /* Mark it invalid for now. */
3434 	kref_init(&intf->refcount);
3435 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3436 	intf->si_dev = si_dev;
3437 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3438 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3439 		intf->addrinfo[j].lun = 2;
3440 	}
3441 	if (slave_addr != 0)
3442 		intf->addrinfo[0].address = slave_addr;
3443 	INIT_LIST_HEAD(&intf->users);
3444 	intf->handlers = handlers;
3445 	intf->send_info = send_info;
3446 	spin_lock_init(&intf->seq_lock);
3447 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3448 		intf->seq_table[j].inuse = 0;
3449 		intf->seq_table[j].seqid = 0;
3450 	}
3451 	intf->curr_seq = 0;
3452 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3453 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3454 	tasklet_setup(&intf->recv_tasklet,
3455 		     smi_recv_tasklet);
3456 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3457 	spin_lock_init(&intf->xmit_msgs_lock);
3458 	INIT_LIST_HEAD(&intf->xmit_msgs);
3459 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3460 	spin_lock_init(&intf->events_lock);
3461 	spin_lock_init(&intf->watch_lock);
3462 	atomic_set(&intf->event_waiters, 0);
3463 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3464 	INIT_LIST_HEAD(&intf->waiting_events);
3465 	intf->waiting_events_count = 0;
3466 	mutex_init(&intf->cmd_rcvrs_mutex);
3467 	spin_lock_init(&intf->maintenance_mode_lock);
3468 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3469 	init_waitqueue_head(&intf->waitq);
3470 	for (i = 0; i < IPMI_NUM_STATS; i++)
3471 		atomic_set(&intf->stats[i], 0);
3472 
3473 	mutex_lock(&ipmi_interfaces_mutex);
3474 	/* Look for a hole in the numbers. */
3475 	i = 0;
3476 	link = &ipmi_interfaces;
3477 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3478 				ipmi_interfaces_mutex_held()) {
3479 		if (tintf->intf_num != i) {
3480 			link = &tintf->link;
3481 			break;
3482 		}
3483 		i++;
3484 	}
3485 	/* Add the new interface in numeric order. */
3486 	if (i == 0)
3487 		list_add_rcu(&intf->link, &ipmi_interfaces);
3488 	else
3489 		list_add_tail_rcu(&intf->link, link);
3490 
3491 	rv = handlers->start_processing(send_info, intf);
3492 	if (rv)
3493 		goto out_err;
3494 
3495 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3496 	if (rv) {
3497 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3498 		goto out_err_started;
3499 	}
3500 
3501 	mutex_lock(&intf->bmc_reg_mutex);
3502 	rv = __scan_channels(intf, &id);
3503 	mutex_unlock(&intf->bmc_reg_mutex);
3504 	if (rv)
3505 		goto out_err_bmc_reg;
3506 
3507 	/*
3508 	 * Keep memory order straight for RCU readers.  Make
3509 	 * sure everything else is committed to memory before
3510 	 * setting intf_num to mark the interface valid.
3511 	 */
3512 	smp_wmb();
3513 	intf->intf_num = i;
3514 	mutex_unlock(&ipmi_interfaces_mutex);
3515 
3516 	/* After this point the interface is legal to use. */
3517 	call_smi_watchers(i, intf->si_dev);
3518 
3519 	return 0;
3520 
3521  out_err_bmc_reg:
3522 	ipmi_bmc_unregister(intf);
3523  out_err_started:
3524 	if (intf->handlers->shutdown)
3525 		intf->handlers->shutdown(intf->send_info);
3526  out_err:
3527 	list_del_rcu(&intf->link);
3528 	mutex_unlock(&ipmi_interfaces_mutex);
3529 	synchronize_srcu(&ipmi_interfaces_srcu);
3530 	cleanup_srcu_struct(&intf->users_srcu);
3531 	kref_put(&intf->refcount, intf_free);
3532 
3533 	return rv;
3534 }
3535 EXPORT_SYMBOL(ipmi_add_smi);
3536 
3537 static void deliver_smi_err_response(struct ipmi_smi *intf,
3538 				     struct ipmi_smi_msg *msg,
3539 				     unsigned char err)
3540 {
3541 	msg->rsp[0] = msg->data[0] | 4;
3542 	msg->rsp[1] = msg->data[1];
3543 	msg->rsp[2] = err;
3544 	msg->rsp_size = 3;
3545 	/* It's an error, so it will never requeue, no need to check return. */
3546 	handle_one_recv_msg(intf, msg);
3547 }
3548 
3549 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3550 {
3551 	int              i;
3552 	struct seq_table *ent;
3553 	struct ipmi_smi_msg *msg;
3554 	struct list_head *entry;
3555 	struct list_head tmplist;
3556 
3557 	/* Clear out our transmit queues and hold the messages. */
3558 	INIT_LIST_HEAD(&tmplist);
3559 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3560 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3561 
3562 	/* Current message first, to preserve order */
3563 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3564 		/* Wait for the message to clear out. */
3565 		schedule_timeout(1);
3566 	}
3567 
3568 	/* No need for locks, the interface is down. */
3569 
3570 	/*
3571 	 * Return errors for all pending messages in queue and in the
3572 	 * tables waiting for remote responses.
3573 	 */
3574 	while (!list_empty(&tmplist)) {
3575 		entry = tmplist.next;
3576 		list_del(entry);
3577 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3578 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3579 	}
3580 
3581 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3582 		ent = &intf->seq_table[i];
3583 		if (!ent->inuse)
3584 			continue;
3585 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3586 	}
3587 }
3588 
3589 void ipmi_unregister_smi(struct ipmi_smi *intf)
3590 {
3591 	struct ipmi_smi_watcher *w;
3592 	int intf_num = intf->intf_num, index;
3593 
3594 	mutex_lock(&ipmi_interfaces_mutex);
3595 	intf->intf_num = -1;
3596 	intf->in_shutdown = true;
3597 	list_del_rcu(&intf->link);
3598 	mutex_unlock(&ipmi_interfaces_mutex);
3599 	synchronize_srcu(&ipmi_interfaces_srcu);
3600 
3601 	/* At this point no users can be added to the interface. */
3602 
3603 	/*
3604 	 * Call all the watcher interfaces to tell them that
3605 	 * an interface is going away.
3606 	 */
3607 	mutex_lock(&smi_watchers_mutex);
3608 	list_for_each_entry(w, &smi_watchers, link)
3609 		w->smi_gone(intf_num);
3610 	mutex_unlock(&smi_watchers_mutex);
3611 
3612 	index = srcu_read_lock(&intf->users_srcu);
3613 	while (!list_empty(&intf->users)) {
3614 		struct ipmi_user *user =
3615 			container_of(list_next_rcu(&intf->users),
3616 				     struct ipmi_user, link);
3617 
3618 		_ipmi_destroy_user(user);
3619 	}
3620 	srcu_read_unlock(&intf->users_srcu, index);
3621 
3622 	if (intf->handlers->shutdown)
3623 		intf->handlers->shutdown(intf->send_info);
3624 
3625 	cleanup_smi_msgs(intf);
3626 
3627 	ipmi_bmc_unregister(intf);
3628 
3629 	cleanup_srcu_struct(&intf->users_srcu);
3630 	kref_put(&intf->refcount, intf_free);
3631 }
3632 EXPORT_SYMBOL(ipmi_unregister_smi);
3633 
3634 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3635 				   struct ipmi_smi_msg *msg)
3636 {
3637 	struct ipmi_ipmb_addr ipmb_addr;
3638 	struct ipmi_recv_msg  *recv_msg;
3639 
3640 	/*
3641 	 * This is 11, not 10, because the response must contain a
3642 	 * completion code.
3643 	 */
3644 	if (msg->rsp_size < 11) {
3645 		/* Message not big enough, just ignore it. */
3646 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3647 		return 0;
3648 	}
3649 
3650 	if (msg->rsp[2] != 0) {
3651 		/* An error getting the response, just ignore it. */
3652 		return 0;
3653 	}
3654 
3655 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3656 	ipmb_addr.slave_addr = msg->rsp[6];
3657 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3658 	ipmb_addr.lun = msg->rsp[7] & 3;
3659 
3660 	/*
3661 	 * It's a response from a remote entity.  Look up the sequence
3662 	 * number and handle the response.
3663 	 */
3664 	if (intf_find_seq(intf,
3665 			  msg->rsp[7] >> 2,
3666 			  msg->rsp[3] & 0x0f,
3667 			  msg->rsp[8],
3668 			  (msg->rsp[4] >> 2) & (~1),
3669 			  (struct ipmi_addr *) &ipmb_addr,
3670 			  &recv_msg)) {
3671 		/*
3672 		 * We were unable to find the sequence number,
3673 		 * so just nuke the message.
3674 		 */
3675 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3676 		return 0;
3677 	}
3678 
3679 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3680 	/*
3681 	 * The other fields matched, so no need to set them, except
3682 	 * for netfn, which needs to be the response that was
3683 	 * returned, not the request value.
3684 	 */
3685 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3686 	recv_msg->msg.data = recv_msg->msg_data;
3687 	recv_msg->msg.data_len = msg->rsp_size - 10;
3688 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3689 	if (deliver_response(intf, recv_msg))
3690 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3691 	else
3692 		ipmi_inc_stat(intf, handled_ipmb_responses);
3693 
3694 	return 0;
3695 }
3696 
3697 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3698 				   struct ipmi_smi_msg *msg)
3699 {
3700 	struct cmd_rcvr          *rcvr;
3701 	int                      rv = 0;
3702 	unsigned char            netfn;
3703 	unsigned char            cmd;
3704 	unsigned char            chan;
3705 	struct ipmi_user         *user = NULL;
3706 	struct ipmi_ipmb_addr    *ipmb_addr;
3707 	struct ipmi_recv_msg     *recv_msg;
3708 
3709 	if (msg->rsp_size < 10) {
3710 		/* Message not big enough, just ignore it. */
3711 		ipmi_inc_stat(intf, invalid_commands);
3712 		return 0;
3713 	}
3714 
3715 	if (msg->rsp[2] != 0) {
3716 		/* An error getting the response, just ignore it. */
3717 		return 0;
3718 	}
3719 
3720 	netfn = msg->rsp[4] >> 2;
3721 	cmd = msg->rsp[8];
3722 	chan = msg->rsp[3] & 0xf;
3723 
3724 	rcu_read_lock();
3725 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3726 	if (rcvr) {
3727 		user = rcvr->user;
3728 		kref_get(&user->refcount);
3729 	} else
3730 		user = NULL;
3731 	rcu_read_unlock();
3732 
3733 	if (user == NULL) {
3734 		/* We didn't find a user, deliver an error response. */
3735 		ipmi_inc_stat(intf, unhandled_commands);
3736 
3737 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3738 		msg->data[1] = IPMI_SEND_MSG_CMD;
3739 		msg->data[2] = msg->rsp[3];
3740 		msg->data[3] = msg->rsp[6];
3741 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3742 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3743 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3744 		/* rqseq/lun */
3745 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3746 		msg->data[8] = msg->rsp[8]; /* cmd */
3747 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3748 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3749 		msg->data_size = 11;
3750 
3751 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3752 
3753 		rcu_read_lock();
3754 		if (!intf->in_shutdown) {
3755 			smi_send(intf, intf->handlers, msg, 0);
3756 			/*
3757 			 * We used the message, so return the value
3758 			 * that causes it to not be freed or
3759 			 * queued.
3760 			 */
3761 			rv = -1;
3762 		}
3763 		rcu_read_unlock();
3764 	} else {
3765 		recv_msg = ipmi_alloc_recv_msg();
3766 		if (!recv_msg) {
3767 			/*
3768 			 * We couldn't allocate memory for the
3769 			 * message, so requeue it for handling
3770 			 * later.
3771 			 */
3772 			rv = 1;
3773 			kref_put(&user->refcount, free_user);
3774 		} else {
3775 			/* Extract the source address from the data. */
3776 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3777 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3778 			ipmb_addr->slave_addr = msg->rsp[6];
3779 			ipmb_addr->lun = msg->rsp[7] & 3;
3780 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3781 
3782 			/*
3783 			 * Extract the rest of the message information
3784 			 * from the IPMB header.
3785 			 */
3786 			recv_msg->user = user;
3787 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3788 			recv_msg->msgid = msg->rsp[7] >> 2;
3789 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3790 			recv_msg->msg.cmd = msg->rsp[8];
3791 			recv_msg->msg.data = recv_msg->msg_data;
3792 
3793 			/*
3794 			 * We chop off 10, not 9 bytes because the checksum
3795 			 * at the end also needs to be removed.
3796 			 */
3797 			recv_msg->msg.data_len = msg->rsp_size - 10;
3798 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3799 			       msg->rsp_size - 10);
3800 			if (deliver_response(intf, recv_msg))
3801 				ipmi_inc_stat(intf, unhandled_commands);
3802 			else
3803 				ipmi_inc_stat(intf, handled_commands);
3804 		}
3805 	}
3806 
3807 	return rv;
3808 }
3809 
3810 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3811 				  struct ipmi_smi_msg *msg)
3812 {
3813 	struct ipmi_lan_addr  lan_addr;
3814 	struct ipmi_recv_msg  *recv_msg;
3815 
3816 
3817 	/*
3818 	 * This is 13, not 12, because the response must contain a
3819 	 * completion code.
3820 	 */
3821 	if (msg->rsp_size < 13) {
3822 		/* Message not big enough, just ignore it. */
3823 		ipmi_inc_stat(intf, invalid_lan_responses);
3824 		return 0;
3825 	}
3826 
3827 	if (msg->rsp[2] != 0) {
3828 		/* An error getting the response, just ignore it. */
3829 		return 0;
3830 	}
3831 
3832 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3833 	lan_addr.session_handle = msg->rsp[4];
3834 	lan_addr.remote_SWID = msg->rsp[8];
3835 	lan_addr.local_SWID = msg->rsp[5];
3836 	lan_addr.channel = msg->rsp[3] & 0x0f;
3837 	lan_addr.privilege = msg->rsp[3] >> 4;
3838 	lan_addr.lun = msg->rsp[9] & 3;
3839 
3840 	/*
3841 	 * It's a response from a remote entity.  Look up the sequence
3842 	 * number and handle the response.
3843 	 */
3844 	if (intf_find_seq(intf,
3845 			  msg->rsp[9] >> 2,
3846 			  msg->rsp[3] & 0x0f,
3847 			  msg->rsp[10],
3848 			  (msg->rsp[6] >> 2) & (~1),
3849 			  (struct ipmi_addr *) &lan_addr,
3850 			  &recv_msg)) {
3851 		/*
3852 		 * We were unable to find the sequence number,
3853 		 * so just nuke the message.
3854 		 */
3855 		ipmi_inc_stat(intf, unhandled_lan_responses);
3856 		return 0;
3857 	}
3858 
3859 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3860 	/*
3861 	 * The other fields matched, so no need to set them, except
3862 	 * for netfn, which needs to be the response that was
3863 	 * returned, not the request value.
3864 	 */
3865 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3866 	recv_msg->msg.data = recv_msg->msg_data;
3867 	recv_msg->msg.data_len = msg->rsp_size - 12;
3868 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3869 	if (deliver_response(intf, recv_msg))
3870 		ipmi_inc_stat(intf, unhandled_lan_responses);
3871 	else
3872 		ipmi_inc_stat(intf, handled_lan_responses);
3873 
3874 	return 0;
3875 }
3876 
3877 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3878 				  struct ipmi_smi_msg *msg)
3879 {
3880 	struct cmd_rcvr          *rcvr;
3881 	int                      rv = 0;
3882 	unsigned char            netfn;
3883 	unsigned char            cmd;
3884 	unsigned char            chan;
3885 	struct ipmi_user         *user = NULL;
3886 	struct ipmi_lan_addr     *lan_addr;
3887 	struct ipmi_recv_msg     *recv_msg;
3888 
3889 	if (msg->rsp_size < 12) {
3890 		/* Message not big enough, just ignore it. */
3891 		ipmi_inc_stat(intf, invalid_commands);
3892 		return 0;
3893 	}
3894 
3895 	if (msg->rsp[2] != 0) {
3896 		/* An error getting the response, just ignore it. */
3897 		return 0;
3898 	}
3899 
3900 	netfn = msg->rsp[6] >> 2;
3901 	cmd = msg->rsp[10];
3902 	chan = msg->rsp[3] & 0xf;
3903 
3904 	rcu_read_lock();
3905 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3906 	if (rcvr) {
3907 		user = rcvr->user;
3908 		kref_get(&user->refcount);
3909 	} else
3910 		user = NULL;
3911 	rcu_read_unlock();
3912 
3913 	if (user == NULL) {
3914 		/* We didn't find a user, just give up. */
3915 		ipmi_inc_stat(intf, unhandled_commands);
3916 
3917 		/*
3918 		 * Don't do anything with these messages, just allow
3919 		 * them to be freed.
3920 		 */
3921 		rv = 0;
3922 	} else {
3923 		recv_msg = ipmi_alloc_recv_msg();
3924 		if (!recv_msg) {
3925 			/*
3926 			 * We couldn't allocate memory for the
3927 			 * message, so requeue it for handling later.
3928 			 */
3929 			rv = 1;
3930 			kref_put(&user->refcount, free_user);
3931 		} else {
3932 			/* Extract the source address from the data. */
3933 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3934 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3935 			lan_addr->session_handle = msg->rsp[4];
3936 			lan_addr->remote_SWID = msg->rsp[8];
3937 			lan_addr->local_SWID = msg->rsp[5];
3938 			lan_addr->lun = msg->rsp[9] & 3;
3939 			lan_addr->channel = msg->rsp[3] & 0xf;
3940 			lan_addr->privilege = msg->rsp[3] >> 4;
3941 
3942 			/*
3943 			 * Extract the rest of the message information
3944 			 * from the IPMB header.
3945 			 */
3946 			recv_msg->user = user;
3947 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3948 			recv_msg->msgid = msg->rsp[9] >> 2;
3949 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3950 			recv_msg->msg.cmd = msg->rsp[10];
3951 			recv_msg->msg.data = recv_msg->msg_data;
3952 
3953 			/*
3954 			 * We chop off 12, not 11 bytes because the checksum
3955 			 * at the end also needs to be removed.
3956 			 */
3957 			recv_msg->msg.data_len = msg->rsp_size - 12;
3958 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3959 			       msg->rsp_size - 12);
3960 			if (deliver_response(intf, recv_msg))
3961 				ipmi_inc_stat(intf, unhandled_commands);
3962 			else
3963 				ipmi_inc_stat(intf, handled_commands);
3964 		}
3965 	}
3966 
3967 	return rv;
3968 }
3969 
3970 /*
3971  * This routine will handle "Get Message" command responses with
3972  * channels that use an OEM Medium. The message format belongs to
3973  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3974  * Chapter 22, sections 22.6 and 22.24 for more details.
3975  */
3976 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3977 				  struct ipmi_smi_msg *msg)
3978 {
3979 	struct cmd_rcvr       *rcvr;
3980 	int                   rv = 0;
3981 	unsigned char         netfn;
3982 	unsigned char         cmd;
3983 	unsigned char         chan;
3984 	struct ipmi_user *user = NULL;
3985 	struct ipmi_system_interface_addr *smi_addr;
3986 	struct ipmi_recv_msg  *recv_msg;
3987 
3988 	/*
3989 	 * We expect the OEM SW to perform error checking
3990 	 * so we just do some basic sanity checks
3991 	 */
3992 	if (msg->rsp_size < 4) {
3993 		/* Message not big enough, just ignore it. */
3994 		ipmi_inc_stat(intf, invalid_commands);
3995 		return 0;
3996 	}
3997 
3998 	if (msg->rsp[2] != 0) {
3999 		/* An error getting the response, just ignore it. */
4000 		return 0;
4001 	}
4002 
4003 	/*
4004 	 * This is an OEM Message so the OEM needs to know how
4005 	 * handle the message. We do no interpretation.
4006 	 */
4007 	netfn = msg->rsp[0] >> 2;
4008 	cmd = msg->rsp[1];
4009 	chan = msg->rsp[3] & 0xf;
4010 
4011 	rcu_read_lock();
4012 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4013 	if (rcvr) {
4014 		user = rcvr->user;
4015 		kref_get(&user->refcount);
4016 	} else
4017 		user = NULL;
4018 	rcu_read_unlock();
4019 
4020 	if (user == NULL) {
4021 		/* We didn't find a user, just give up. */
4022 		ipmi_inc_stat(intf, unhandled_commands);
4023 
4024 		/*
4025 		 * Don't do anything with these messages, just allow
4026 		 * them to be freed.
4027 		 */
4028 
4029 		rv = 0;
4030 	} else {
4031 		recv_msg = ipmi_alloc_recv_msg();
4032 		if (!recv_msg) {
4033 			/*
4034 			 * We couldn't allocate memory for the
4035 			 * message, so requeue it for handling
4036 			 * later.
4037 			 */
4038 			rv = 1;
4039 			kref_put(&user->refcount, free_user);
4040 		} else {
4041 			/*
4042 			 * OEM Messages are expected to be delivered via
4043 			 * the system interface to SMS software.  We might
4044 			 * need to visit this again depending on OEM
4045 			 * requirements
4046 			 */
4047 			smi_addr = ((struct ipmi_system_interface_addr *)
4048 				    &recv_msg->addr);
4049 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4050 			smi_addr->channel = IPMI_BMC_CHANNEL;
4051 			smi_addr->lun = msg->rsp[0] & 3;
4052 
4053 			recv_msg->user = user;
4054 			recv_msg->user_msg_data = NULL;
4055 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4056 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4057 			recv_msg->msg.cmd = msg->rsp[1];
4058 			recv_msg->msg.data = recv_msg->msg_data;
4059 
4060 			/*
4061 			 * The message starts at byte 4 which follows the
4062 			 * the Channel Byte in the "GET MESSAGE" command
4063 			 */
4064 			recv_msg->msg.data_len = msg->rsp_size - 4;
4065 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4066 			       msg->rsp_size - 4);
4067 			if (deliver_response(intf, recv_msg))
4068 				ipmi_inc_stat(intf, unhandled_commands);
4069 			else
4070 				ipmi_inc_stat(intf, handled_commands);
4071 		}
4072 	}
4073 
4074 	return rv;
4075 }
4076 
4077 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4078 				     struct ipmi_smi_msg  *msg)
4079 {
4080 	struct ipmi_system_interface_addr *smi_addr;
4081 
4082 	recv_msg->msgid = 0;
4083 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4084 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4085 	smi_addr->channel = IPMI_BMC_CHANNEL;
4086 	smi_addr->lun = msg->rsp[0] & 3;
4087 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4088 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4089 	recv_msg->msg.cmd = msg->rsp[1];
4090 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4091 	recv_msg->msg.data = recv_msg->msg_data;
4092 	recv_msg->msg.data_len = msg->rsp_size - 3;
4093 }
4094 
4095 static int handle_read_event_rsp(struct ipmi_smi *intf,
4096 				 struct ipmi_smi_msg *msg)
4097 {
4098 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4099 	struct list_head     msgs;
4100 	struct ipmi_user     *user;
4101 	int rv = 0, deliver_count = 0, index;
4102 	unsigned long        flags;
4103 
4104 	if (msg->rsp_size < 19) {
4105 		/* Message is too small to be an IPMB event. */
4106 		ipmi_inc_stat(intf, invalid_events);
4107 		return 0;
4108 	}
4109 
4110 	if (msg->rsp[2] != 0) {
4111 		/* An error getting the event, just ignore it. */
4112 		return 0;
4113 	}
4114 
4115 	INIT_LIST_HEAD(&msgs);
4116 
4117 	spin_lock_irqsave(&intf->events_lock, flags);
4118 
4119 	ipmi_inc_stat(intf, events);
4120 
4121 	/*
4122 	 * Allocate and fill in one message for every user that is
4123 	 * getting events.
4124 	 */
4125 	index = srcu_read_lock(&intf->users_srcu);
4126 	list_for_each_entry_rcu(user, &intf->users, link) {
4127 		if (!user->gets_events)
4128 			continue;
4129 
4130 		recv_msg = ipmi_alloc_recv_msg();
4131 		if (!recv_msg) {
4132 			rcu_read_unlock();
4133 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4134 						 link) {
4135 				list_del(&recv_msg->link);
4136 				ipmi_free_recv_msg(recv_msg);
4137 			}
4138 			/*
4139 			 * We couldn't allocate memory for the
4140 			 * message, so requeue it for handling
4141 			 * later.
4142 			 */
4143 			rv = 1;
4144 			goto out;
4145 		}
4146 
4147 		deliver_count++;
4148 
4149 		copy_event_into_recv_msg(recv_msg, msg);
4150 		recv_msg->user = user;
4151 		kref_get(&user->refcount);
4152 		list_add_tail(&recv_msg->link, &msgs);
4153 	}
4154 	srcu_read_unlock(&intf->users_srcu, index);
4155 
4156 	if (deliver_count) {
4157 		/* Now deliver all the messages. */
4158 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4159 			list_del(&recv_msg->link);
4160 			deliver_local_response(intf, recv_msg);
4161 		}
4162 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4163 		/*
4164 		 * No one to receive the message, put it in queue if there's
4165 		 * not already too many things in the queue.
4166 		 */
4167 		recv_msg = ipmi_alloc_recv_msg();
4168 		if (!recv_msg) {
4169 			/*
4170 			 * We couldn't allocate memory for the
4171 			 * message, so requeue it for handling
4172 			 * later.
4173 			 */
4174 			rv = 1;
4175 			goto out;
4176 		}
4177 
4178 		copy_event_into_recv_msg(recv_msg, msg);
4179 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4180 		intf->waiting_events_count++;
4181 	} else if (!intf->event_msg_printed) {
4182 		/*
4183 		 * There's too many things in the queue, discard this
4184 		 * message.
4185 		 */
4186 		dev_warn(intf->si_dev,
4187 			 "Event queue full, discarding incoming events\n");
4188 		intf->event_msg_printed = 1;
4189 	}
4190 
4191  out:
4192 	spin_unlock_irqrestore(&intf->events_lock, flags);
4193 
4194 	return rv;
4195 }
4196 
4197 static int handle_bmc_rsp(struct ipmi_smi *intf,
4198 			  struct ipmi_smi_msg *msg)
4199 {
4200 	struct ipmi_recv_msg *recv_msg;
4201 	struct ipmi_system_interface_addr *smi_addr;
4202 
4203 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4204 	if (recv_msg == NULL) {
4205 		dev_warn(intf->si_dev,
4206 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4207 		return 0;
4208 	}
4209 
4210 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4211 	recv_msg->msgid = msg->msgid;
4212 	smi_addr = ((struct ipmi_system_interface_addr *)
4213 		    &recv_msg->addr);
4214 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4215 	smi_addr->channel = IPMI_BMC_CHANNEL;
4216 	smi_addr->lun = msg->rsp[0] & 3;
4217 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4218 	recv_msg->msg.cmd = msg->rsp[1];
4219 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4220 	recv_msg->msg.data = recv_msg->msg_data;
4221 	recv_msg->msg.data_len = msg->rsp_size - 2;
4222 	deliver_local_response(intf, recv_msg);
4223 
4224 	return 0;
4225 }
4226 
4227 /*
4228  * Handle a received message.  Return 1 if the message should be requeued,
4229  * 0 if the message should be freed, or -1 if the message should not
4230  * be freed or requeued.
4231  */
4232 static int handle_one_recv_msg(struct ipmi_smi *intf,
4233 			       struct ipmi_smi_msg *msg)
4234 {
4235 	int requeue;
4236 	int chan;
4237 
4238 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4239 
4240 	if ((msg->data_size >= 2)
4241 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4242 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4243 	    && (msg->user_data == NULL)) {
4244 
4245 		if (intf->in_shutdown)
4246 			goto free_msg;
4247 
4248 		/*
4249 		 * This is the local response to a command send, start
4250 		 * the timer for these.  The user_data will not be
4251 		 * NULL if this is a response send, and we will let
4252 		 * response sends just go through.
4253 		 */
4254 
4255 		/*
4256 		 * Check for errors, if we get certain errors (ones
4257 		 * that mean basically we can try again later), we
4258 		 * ignore them and start the timer.  Otherwise we
4259 		 * report the error immediately.
4260 		 */
4261 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4262 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4263 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4264 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4265 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4266 			int ch = msg->rsp[3] & 0xf;
4267 			struct ipmi_channel *chans;
4268 
4269 			/* Got an error sending the message, handle it. */
4270 
4271 			chans = READ_ONCE(intf->channel_list)->c;
4272 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4273 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4274 				ipmi_inc_stat(intf, sent_lan_command_errs);
4275 			else
4276 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4277 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4278 		} else
4279 			/* The message was sent, start the timer. */
4280 			intf_start_seq_timer(intf, msg->msgid);
4281 free_msg:
4282 		requeue = 0;
4283 		goto out;
4284 
4285 	} else if (msg->rsp_size < 2) {
4286 		/* Message is too small to be correct. */
4287 		dev_warn(intf->si_dev,
4288 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4289 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4290 
4291 		/* Generate an error response for the message. */
4292 		msg->rsp[0] = msg->data[0] | (1 << 2);
4293 		msg->rsp[1] = msg->data[1];
4294 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4295 		msg->rsp_size = 3;
4296 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4297 		   || (msg->rsp[1] != msg->data[1])) {
4298 		/*
4299 		 * The NetFN and Command in the response is not even
4300 		 * marginally correct.
4301 		 */
4302 		dev_warn(intf->si_dev,
4303 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4304 			 (msg->data[0] >> 2) | 1, msg->data[1],
4305 			 msg->rsp[0] >> 2, msg->rsp[1]);
4306 
4307 		/* Generate an error response for the message. */
4308 		msg->rsp[0] = msg->data[0] | (1 << 2);
4309 		msg->rsp[1] = msg->data[1];
4310 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4311 		msg->rsp_size = 3;
4312 	}
4313 
4314 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4315 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4316 	    && (msg->user_data != NULL)) {
4317 		/*
4318 		 * It's a response to a response we sent.  For this we
4319 		 * deliver a send message response to the user.
4320 		 */
4321 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4322 
4323 		requeue = 0;
4324 		if (msg->rsp_size < 2)
4325 			/* Message is too small to be correct. */
4326 			goto out;
4327 
4328 		chan = msg->data[2] & 0x0f;
4329 		if (chan >= IPMI_MAX_CHANNELS)
4330 			/* Invalid channel number */
4331 			goto out;
4332 
4333 		if (!recv_msg)
4334 			goto out;
4335 
4336 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4337 		recv_msg->msg.data = recv_msg->msg_data;
4338 		recv_msg->msg.data_len = 1;
4339 		recv_msg->msg_data[0] = msg->rsp[2];
4340 		deliver_local_response(intf, recv_msg);
4341 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4342 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4343 		struct ipmi_channel   *chans;
4344 
4345 		/* It's from the receive queue. */
4346 		chan = msg->rsp[3] & 0xf;
4347 		if (chan >= IPMI_MAX_CHANNELS) {
4348 			/* Invalid channel number */
4349 			requeue = 0;
4350 			goto out;
4351 		}
4352 
4353 		/*
4354 		 * We need to make sure the channels have been initialized.
4355 		 * The channel_handler routine will set the "curr_channel"
4356 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4357 		 * channels for this interface have been initialized.
4358 		 */
4359 		if (!intf->channels_ready) {
4360 			requeue = 0; /* Throw the message away */
4361 			goto out;
4362 		}
4363 
4364 		chans = READ_ONCE(intf->channel_list)->c;
4365 
4366 		switch (chans[chan].medium) {
4367 		case IPMI_CHANNEL_MEDIUM_IPMB:
4368 			if (msg->rsp[4] & 0x04) {
4369 				/*
4370 				 * It's a response, so find the
4371 				 * requesting message and send it up.
4372 				 */
4373 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4374 			} else {
4375 				/*
4376 				 * It's a command to the SMS from some other
4377 				 * entity.  Handle that.
4378 				 */
4379 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4380 			}
4381 			break;
4382 
4383 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4384 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4385 			if (msg->rsp[6] & 0x04) {
4386 				/*
4387 				 * It's a response, so find the
4388 				 * requesting message and send it up.
4389 				 */
4390 				requeue = handle_lan_get_msg_rsp(intf, msg);
4391 			} else {
4392 				/*
4393 				 * It's a command to the SMS from some other
4394 				 * entity.  Handle that.
4395 				 */
4396 				requeue = handle_lan_get_msg_cmd(intf, msg);
4397 			}
4398 			break;
4399 
4400 		default:
4401 			/* Check for OEM Channels.  Clients had better
4402 			   register for these commands. */
4403 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4404 			    && (chans[chan].medium
4405 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4406 				requeue = handle_oem_get_msg_cmd(intf, msg);
4407 			} else {
4408 				/*
4409 				 * We don't handle the channel type, so just
4410 				 * free the message.
4411 				 */
4412 				requeue = 0;
4413 			}
4414 		}
4415 
4416 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4417 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4418 		/* It's an asynchronous event. */
4419 		requeue = handle_read_event_rsp(intf, msg);
4420 	} else {
4421 		/* It's a response from the local BMC. */
4422 		requeue = handle_bmc_rsp(intf, msg);
4423 	}
4424 
4425  out:
4426 	return requeue;
4427 }
4428 
4429 /*
4430  * If there are messages in the queue or pretimeouts, handle them.
4431  */
4432 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4433 {
4434 	struct ipmi_smi_msg  *smi_msg;
4435 	unsigned long        flags = 0;
4436 	int                  rv;
4437 	int                  run_to_completion = intf->run_to_completion;
4438 
4439 	/* See if any waiting messages need to be processed. */
4440 	if (!run_to_completion)
4441 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4442 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4443 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4444 				     struct ipmi_smi_msg, link);
4445 		list_del(&smi_msg->link);
4446 		if (!run_to_completion)
4447 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4448 					       flags);
4449 		rv = handle_one_recv_msg(intf, smi_msg);
4450 		if (!run_to_completion)
4451 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4452 		if (rv > 0) {
4453 			/*
4454 			 * To preserve message order, quit if we
4455 			 * can't handle a message.  Add the message
4456 			 * back at the head, this is safe because this
4457 			 * tasklet is the only thing that pulls the
4458 			 * messages.
4459 			 */
4460 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4461 			break;
4462 		} else {
4463 			if (rv == 0)
4464 				/* Message handled */
4465 				ipmi_free_smi_msg(smi_msg);
4466 			/* If rv < 0, fatal error, del but don't free. */
4467 		}
4468 	}
4469 	if (!run_to_completion)
4470 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4471 
4472 	/*
4473 	 * If the pretimout count is non-zero, decrement one from it and
4474 	 * deliver pretimeouts to all the users.
4475 	 */
4476 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4477 		struct ipmi_user *user;
4478 		int index;
4479 
4480 		index = srcu_read_lock(&intf->users_srcu);
4481 		list_for_each_entry_rcu(user, &intf->users, link) {
4482 			if (user->handler->ipmi_watchdog_pretimeout)
4483 				user->handler->ipmi_watchdog_pretimeout(
4484 					user->handler_data);
4485 		}
4486 		srcu_read_unlock(&intf->users_srcu, index);
4487 	}
4488 }
4489 
4490 static void smi_recv_tasklet(struct tasklet_struct *t)
4491 {
4492 	unsigned long flags = 0; /* keep us warning-free. */
4493 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4494 	int run_to_completion = intf->run_to_completion;
4495 	struct ipmi_smi_msg *newmsg = NULL;
4496 
4497 	/*
4498 	 * Start the next message if available.
4499 	 *
4500 	 * Do this here, not in the actual receiver, because we may deadlock
4501 	 * because the lower layer is allowed to hold locks while calling
4502 	 * message delivery.
4503 	 */
4504 
4505 	rcu_read_lock();
4506 
4507 	if (!run_to_completion)
4508 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4509 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4510 		struct list_head *entry = NULL;
4511 
4512 		/* Pick the high priority queue first. */
4513 		if (!list_empty(&intf->hp_xmit_msgs))
4514 			entry = intf->hp_xmit_msgs.next;
4515 		else if (!list_empty(&intf->xmit_msgs))
4516 			entry = intf->xmit_msgs.next;
4517 
4518 		if (entry) {
4519 			list_del(entry);
4520 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4521 			intf->curr_msg = newmsg;
4522 		}
4523 	}
4524 
4525 	if (!run_to_completion)
4526 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4527 	if (newmsg)
4528 		intf->handlers->sender(intf->send_info, newmsg);
4529 
4530 	rcu_read_unlock();
4531 
4532 	handle_new_recv_msgs(intf);
4533 }
4534 
4535 /* Handle a new message from the lower layer. */
4536 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4537 			   struct ipmi_smi_msg *msg)
4538 {
4539 	unsigned long flags = 0; /* keep us warning-free. */
4540 	int run_to_completion = intf->run_to_completion;
4541 
4542 	/*
4543 	 * To preserve message order, we keep a queue and deliver from
4544 	 * a tasklet.
4545 	 */
4546 	if (!run_to_completion)
4547 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4548 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4549 	if (!run_to_completion)
4550 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4551 				       flags);
4552 
4553 	if (!run_to_completion)
4554 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4555 	/*
4556 	 * We can get an asynchronous event or receive message in addition
4557 	 * to commands we send.
4558 	 */
4559 	if (msg == intf->curr_msg)
4560 		intf->curr_msg = NULL;
4561 	if (!run_to_completion)
4562 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4563 
4564 	if (run_to_completion)
4565 		smi_recv_tasklet(&intf->recv_tasklet);
4566 	else
4567 		tasklet_schedule(&intf->recv_tasklet);
4568 }
4569 EXPORT_SYMBOL(ipmi_smi_msg_received);
4570 
4571 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4572 {
4573 	if (intf->in_shutdown)
4574 		return;
4575 
4576 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4577 	tasklet_schedule(&intf->recv_tasklet);
4578 }
4579 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4580 
4581 static struct ipmi_smi_msg *
4582 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4583 		  unsigned char seq, long seqid)
4584 {
4585 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4586 	if (!smi_msg)
4587 		/*
4588 		 * If we can't allocate the message, then just return, we
4589 		 * get 4 retries, so this should be ok.
4590 		 */
4591 		return NULL;
4592 
4593 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4594 	smi_msg->data_size = recv_msg->msg.data_len;
4595 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4596 
4597 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4598 
4599 	return smi_msg;
4600 }
4601 
4602 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4603 			      struct list_head *timeouts,
4604 			      unsigned long timeout_period,
4605 			      int slot, unsigned long *flags,
4606 			      bool *need_timer)
4607 {
4608 	struct ipmi_recv_msg *msg;
4609 
4610 	if (intf->in_shutdown)
4611 		return;
4612 
4613 	if (!ent->inuse)
4614 		return;
4615 
4616 	if (timeout_period < ent->timeout) {
4617 		ent->timeout -= timeout_period;
4618 		*need_timer = true;
4619 		return;
4620 	}
4621 
4622 	if (ent->retries_left == 0) {
4623 		/* The message has used all its retries. */
4624 		ent->inuse = 0;
4625 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4626 		msg = ent->recv_msg;
4627 		list_add_tail(&msg->link, timeouts);
4628 		if (ent->broadcast)
4629 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4630 		else if (is_lan_addr(&ent->recv_msg->addr))
4631 			ipmi_inc_stat(intf, timed_out_lan_commands);
4632 		else
4633 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4634 	} else {
4635 		struct ipmi_smi_msg *smi_msg;
4636 		/* More retries, send again. */
4637 
4638 		*need_timer = true;
4639 
4640 		/*
4641 		 * Start with the max timer, set to normal timer after
4642 		 * the message is sent.
4643 		 */
4644 		ent->timeout = MAX_MSG_TIMEOUT;
4645 		ent->retries_left--;
4646 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4647 					    ent->seqid);
4648 		if (!smi_msg) {
4649 			if (is_lan_addr(&ent->recv_msg->addr))
4650 				ipmi_inc_stat(intf,
4651 					      dropped_rexmit_lan_commands);
4652 			else
4653 				ipmi_inc_stat(intf,
4654 					      dropped_rexmit_ipmb_commands);
4655 			return;
4656 		}
4657 
4658 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4659 
4660 		/*
4661 		 * Send the new message.  We send with a zero
4662 		 * priority.  It timed out, I doubt time is that
4663 		 * critical now, and high priority messages are really
4664 		 * only for messages to the local MC, which don't get
4665 		 * resent.
4666 		 */
4667 		if (intf->handlers) {
4668 			if (is_lan_addr(&ent->recv_msg->addr))
4669 				ipmi_inc_stat(intf,
4670 					      retransmitted_lan_commands);
4671 			else
4672 				ipmi_inc_stat(intf,
4673 					      retransmitted_ipmb_commands);
4674 
4675 			smi_send(intf, intf->handlers, smi_msg, 0);
4676 		} else
4677 			ipmi_free_smi_msg(smi_msg);
4678 
4679 		spin_lock_irqsave(&intf->seq_lock, *flags);
4680 	}
4681 }
4682 
4683 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4684 				 unsigned long timeout_period)
4685 {
4686 	struct list_head     timeouts;
4687 	struct ipmi_recv_msg *msg, *msg2;
4688 	unsigned long        flags;
4689 	int                  i;
4690 	bool                 need_timer = false;
4691 
4692 	if (!intf->bmc_registered) {
4693 		kref_get(&intf->refcount);
4694 		if (!schedule_work(&intf->bmc_reg_work)) {
4695 			kref_put(&intf->refcount, intf_free);
4696 			need_timer = true;
4697 		}
4698 	}
4699 
4700 	/*
4701 	 * Go through the seq table and find any messages that
4702 	 * have timed out, putting them in the timeouts
4703 	 * list.
4704 	 */
4705 	INIT_LIST_HEAD(&timeouts);
4706 	spin_lock_irqsave(&intf->seq_lock, flags);
4707 	if (intf->ipmb_maintenance_mode_timeout) {
4708 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4709 			intf->ipmb_maintenance_mode_timeout = 0;
4710 		else
4711 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4712 	}
4713 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4714 		check_msg_timeout(intf, &intf->seq_table[i],
4715 				  &timeouts, timeout_period, i,
4716 				  &flags, &need_timer);
4717 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4718 
4719 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4720 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4721 
4722 	/*
4723 	 * Maintenance mode handling.  Check the timeout
4724 	 * optimistically before we claim the lock.  It may
4725 	 * mean a timeout gets missed occasionally, but that
4726 	 * only means the timeout gets extended by one period
4727 	 * in that case.  No big deal, and it avoids the lock
4728 	 * most of the time.
4729 	 */
4730 	if (intf->auto_maintenance_timeout > 0) {
4731 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4732 		if (intf->auto_maintenance_timeout > 0) {
4733 			intf->auto_maintenance_timeout
4734 				-= timeout_period;
4735 			if (!intf->maintenance_mode
4736 			    && (intf->auto_maintenance_timeout <= 0)) {
4737 				intf->maintenance_mode_enable = false;
4738 				maintenance_mode_update(intf);
4739 			}
4740 		}
4741 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4742 				       flags);
4743 	}
4744 
4745 	tasklet_schedule(&intf->recv_tasklet);
4746 
4747 	return need_timer;
4748 }
4749 
4750 static void ipmi_request_event(struct ipmi_smi *intf)
4751 {
4752 	/* No event requests when in maintenance mode. */
4753 	if (intf->maintenance_mode_enable)
4754 		return;
4755 
4756 	if (!intf->in_shutdown)
4757 		intf->handlers->request_events(intf->send_info);
4758 }
4759 
4760 static struct timer_list ipmi_timer;
4761 
4762 static atomic_t stop_operation;
4763 
4764 static void ipmi_timeout(struct timer_list *unused)
4765 {
4766 	struct ipmi_smi *intf;
4767 	bool need_timer = false;
4768 	int index;
4769 
4770 	if (atomic_read(&stop_operation))
4771 		return;
4772 
4773 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4774 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4775 		if (atomic_read(&intf->event_waiters)) {
4776 			intf->ticks_to_req_ev--;
4777 			if (intf->ticks_to_req_ev == 0) {
4778 				ipmi_request_event(intf);
4779 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4780 			}
4781 			need_timer = true;
4782 		}
4783 
4784 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4785 	}
4786 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4787 
4788 	if (need_timer)
4789 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4790 }
4791 
4792 static void need_waiter(struct ipmi_smi *intf)
4793 {
4794 	/* Racy, but worst case we start the timer twice. */
4795 	if (!timer_pending(&ipmi_timer))
4796 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4797 }
4798 
4799 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4800 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4801 
4802 static void free_smi_msg(struct ipmi_smi_msg *msg)
4803 {
4804 	atomic_dec(&smi_msg_inuse_count);
4805 	kfree(msg);
4806 }
4807 
4808 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4809 {
4810 	struct ipmi_smi_msg *rv;
4811 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4812 	if (rv) {
4813 		rv->done = free_smi_msg;
4814 		rv->user_data = NULL;
4815 		atomic_inc(&smi_msg_inuse_count);
4816 	}
4817 	return rv;
4818 }
4819 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4820 
4821 static void free_recv_msg(struct ipmi_recv_msg *msg)
4822 {
4823 	atomic_dec(&recv_msg_inuse_count);
4824 	kfree(msg);
4825 }
4826 
4827 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4828 {
4829 	struct ipmi_recv_msg *rv;
4830 
4831 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4832 	if (rv) {
4833 		rv->user = NULL;
4834 		rv->done = free_recv_msg;
4835 		atomic_inc(&recv_msg_inuse_count);
4836 	}
4837 	return rv;
4838 }
4839 
4840 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4841 {
4842 	if (msg->user)
4843 		kref_put(&msg->user->refcount, free_user);
4844 	msg->done(msg);
4845 }
4846 EXPORT_SYMBOL(ipmi_free_recv_msg);
4847 
4848 static atomic_t panic_done_count = ATOMIC_INIT(0);
4849 
4850 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4851 {
4852 	atomic_dec(&panic_done_count);
4853 }
4854 
4855 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4856 {
4857 	atomic_dec(&panic_done_count);
4858 }
4859 
4860 /*
4861  * Inside a panic, send a message and wait for a response.
4862  */
4863 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4864 					struct ipmi_addr *addr,
4865 					struct kernel_ipmi_msg *msg)
4866 {
4867 	struct ipmi_smi_msg  smi_msg;
4868 	struct ipmi_recv_msg recv_msg;
4869 	int rv;
4870 
4871 	smi_msg.done = dummy_smi_done_handler;
4872 	recv_msg.done = dummy_recv_done_handler;
4873 	atomic_add(2, &panic_done_count);
4874 	rv = i_ipmi_request(NULL,
4875 			    intf,
4876 			    addr,
4877 			    0,
4878 			    msg,
4879 			    intf,
4880 			    &smi_msg,
4881 			    &recv_msg,
4882 			    0,
4883 			    intf->addrinfo[0].address,
4884 			    intf->addrinfo[0].lun,
4885 			    0, 1); /* Don't retry, and don't wait. */
4886 	if (rv)
4887 		atomic_sub(2, &panic_done_count);
4888 	else if (intf->handlers->flush_messages)
4889 		intf->handlers->flush_messages(intf->send_info);
4890 
4891 	while (atomic_read(&panic_done_count) != 0)
4892 		ipmi_poll(intf);
4893 }
4894 
4895 static void event_receiver_fetcher(struct ipmi_smi *intf,
4896 				   struct ipmi_recv_msg *msg)
4897 {
4898 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4899 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4900 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4901 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4902 		/* A get event receiver command, save it. */
4903 		intf->event_receiver = msg->msg.data[1];
4904 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4905 	}
4906 }
4907 
4908 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4909 {
4910 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4911 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4912 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4913 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4914 		/*
4915 		 * A get device id command, save if we are an event
4916 		 * receiver or generator.
4917 		 */
4918 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4919 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4920 	}
4921 }
4922 
4923 static void send_panic_events(struct ipmi_smi *intf, char *str)
4924 {
4925 	struct kernel_ipmi_msg msg;
4926 	unsigned char data[16];
4927 	struct ipmi_system_interface_addr *si;
4928 	struct ipmi_addr addr;
4929 	char *p = str;
4930 	struct ipmi_ipmb_addr *ipmb;
4931 	int j;
4932 
4933 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4934 		return;
4935 
4936 	si = (struct ipmi_system_interface_addr *) &addr;
4937 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4938 	si->channel = IPMI_BMC_CHANNEL;
4939 	si->lun = 0;
4940 
4941 	/* Fill in an event telling that we have failed. */
4942 	msg.netfn = 0x04; /* Sensor or Event. */
4943 	msg.cmd = 2; /* Platform event command. */
4944 	msg.data = data;
4945 	msg.data_len = 8;
4946 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4947 	data[1] = 0x03; /* This is for IPMI 1.0. */
4948 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4949 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4950 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4951 
4952 	/*
4953 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4954 	 * to make the panic events more useful.
4955 	 */
4956 	if (str) {
4957 		data[3] = str[0];
4958 		data[6] = str[1];
4959 		data[7] = str[2];
4960 	}
4961 
4962 	/* Send the event announcing the panic. */
4963 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4964 
4965 	/*
4966 	 * On every interface, dump a bunch of OEM event holding the
4967 	 * string.
4968 	 */
4969 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4970 		return;
4971 
4972 	/*
4973 	 * intf_num is used as an marker to tell if the
4974 	 * interface is valid.  Thus we need a read barrier to
4975 	 * make sure data fetched before checking intf_num
4976 	 * won't be used.
4977 	 */
4978 	smp_rmb();
4979 
4980 	/*
4981 	 * First job here is to figure out where to send the
4982 	 * OEM events.  There's no way in IPMI to send OEM
4983 	 * events using an event send command, so we have to
4984 	 * find the SEL to put them in and stick them in
4985 	 * there.
4986 	 */
4987 
4988 	/* Get capabilities from the get device id. */
4989 	intf->local_sel_device = 0;
4990 	intf->local_event_generator = 0;
4991 	intf->event_receiver = 0;
4992 
4993 	/* Request the device info from the local MC. */
4994 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4995 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4996 	msg.data = NULL;
4997 	msg.data_len = 0;
4998 	intf->null_user_handler = device_id_fetcher;
4999 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5000 
5001 	if (intf->local_event_generator) {
5002 		/* Request the event receiver from the local MC. */
5003 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5004 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5005 		msg.data = NULL;
5006 		msg.data_len = 0;
5007 		intf->null_user_handler = event_receiver_fetcher;
5008 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5009 	}
5010 	intf->null_user_handler = NULL;
5011 
5012 	/*
5013 	 * Validate the event receiver.  The low bit must not
5014 	 * be 1 (it must be a valid IPMB address), it cannot
5015 	 * be zero, and it must not be my address.
5016 	 */
5017 	if (((intf->event_receiver & 1) == 0)
5018 	    && (intf->event_receiver != 0)
5019 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5020 		/*
5021 		 * The event receiver is valid, send an IPMB
5022 		 * message.
5023 		 */
5024 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5025 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5026 		ipmb->channel = 0; /* FIXME - is this right? */
5027 		ipmb->lun = intf->event_receiver_lun;
5028 		ipmb->slave_addr = intf->event_receiver;
5029 	} else if (intf->local_sel_device) {
5030 		/*
5031 		 * The event receiver was not valid (or was
5032 		 * me), but I am an SEL device, just dump it
5033 		 * in my SEL.
5034 		 */
5035 		si = (struct ipmi_system_interface_addr *) &addr;
5036 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5037 		si->channel = IPMI_BMC_CHANNEL;
5038 		si->lun = 0;
5039 	} else
5040 		return; /* No where to send the event. */
5041 
5042 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5043 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5044 	msg.data = data;
5045 	msg.data_len = 16;
5046 
5047 	j = 0;
5048 	while (*p) {
5049 		int size = strlen(p);
5050 
5051 		if (size > 11)
5052 			size = 11;
5053 		data[0] = 0;
5054 		data[1] = 0;
5055 		data[2] = 0xf0; /* OEM event without timestamp. */
5056 		data[3] = intf->addrinfo[0].address;
5057 		data[4] = j++; /* sequence # */
5058 		/*
5059 		 * Always give 11 bytes, so strncpy will fill
5060 		 * it with zeroes for me.
5061 		 */
5062 		strncpy(data+5, p, 11);
5063 		p += size;
5064 
5065 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5066 	}
5067 }
5068 
5069 static int has_panicked;
5070 
5071 static int panic_event(struct notifier_block *this,
5072 		       unsigned long         event,
5073 		       void                  *ptr)
5074 {
5075 	struct ipmi_smi *intf;
5076 	struct ipmi_user *user;
5077 
5078 	if (has_panicked)
5079 		return NOTIFY_DONE;
5080 	has_panicked = 1;
5081 
5082 	/* For every registered interface, set it to run to completion. */
5083 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5084 		if (!intf->handlers || intf->intf_num == -1)
5085 			/* Interface is not ready. */
5086 			continue;
5087 
5088 		if (!intf->handlers->poll)
5089 			continue;
5090 
5091 		/*
5092 		 * If we were interrupted while locking xmit_msgs_lock or
5093 		 * waiting_rcv_msgs_lock, the corresponding list may be
5094 		 * corrupted.  In this case, drop items on the list for
5095 		 * the safety.
5096 		 */
5097 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5098 			INIT_LIST_HEAD(&intf->xmit_msgs);
5099 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5100 		} else
5101 			spin_unlock(&intf->xmit_msgs_lock);
5102 
5103 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5104 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5105 		else
5106 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5107 
5108 		intf->run_to_completion = 1;
5109 		if (intf->handlers->set_run_to_completion)
5110 			intf->handlers->set_run_to_completion(intf->send_info,
5111 							      1);
5112 
5113 		list_for_each_entry_rcu(user, &intf->users, link) {
5114 			if (user->handler->ipmi_panic_handler)
5115 				user->handler->ipmi_panic_handler(
5116 					user->handler_data);
5117 		}
5118 
5119 		send_panic_events(intf, ptr);
5120 	}
5121 
5122 	return NOTIFY_DONE;
5123 }
5124 
5125 /* Must be called with ipmi_interfaces_mutex held. */
5126 static int ipmi_register_driver(void)
5127 {
5128 	int rv;
5129 
5130 	if (drvregistered)
5131 		return 0;
5132 
5133 	rv = driver_register(&ipmidriver.driver);
5134 	if (rv)
5135 		pr_err("Could not register IPMI driver\n");
5136 	else
5137 		drvregistered = true;
5138 	return rv;
5139 }
5140 
5141 static struct notifier_block panic_block = {
5142 	.notifier_call	= panic_event,
5143 	.next		= NULL,
5144 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5145 };
5146 
5147 static int ipmi_init_msghandler(void)
5148 {
5149 	int rv;
5150 
5151 	mutex_lock(&ipmi_interfaces_mutex);
5152 	rv = ipmi_register_driver();
5153 	if (rv)
5154 		goto out;
5155 	if (initialized)
5156 		goto out;
5157 
5158 	init_srcu_struct(&ipmi_interfaces_srcu);
5159 
5160 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5161 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5162 
5163 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5164 
5165 	initialized = true;
5166 
5167 out:
5168 	mutex_unlock(&ipmi_interfaces_mutex);
5169 	return rv;
5170 }
5171 
5172 static int __init ipmi_init_msghandler_mod(void)
5173 {
5174 	int rv;
5175 
5176 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5177 
5178 	mutex_lock(&ipmi_interfaces_mutex);
5179 	rv = ipmi_register_driver();
5180 	mutex_unlock(&ipmi_interfaces_mutex);
5181 
5182 	return rv;
5183 }
5184 
5185 static void __exit cleanup_ipmi(void)
5186 {
5187 	int count;
5188 
5189 	if (initialized) {
5190 		atomic_notifier_chain_unregister(&panic_notifier_list,
5191 						 &panic_block);
5192 
5193 		/*
5194 		 * This can't be called if any interfaces exist, so no worry
5195 		 * about shutting down the interfaces.
5196 		 */
5197 
5198 		/*
5199 		 * Tell the timer to stop, then wait for it to stop.  This
5200 		 * avoids problems with race conditions removing the timer
5201 		 * here.
5202 		 */
5203 		atomic_set(&stop_operation, 1);
5204 		del_timer_sync(&ipmi_timer);
5205 
5206 		initialized = false;
5207 
5208 		/* Check for buffer leaks. */
5209 		count = atomic_read(&smi_msg_inuse_count);
5210 		if (count != 0)
5211 			pr_warn("SMI message count %d at exit\n", count);
5212 		count = atomic_read(&recv_msg_inuse_count);
5213 		if (count != 0)
5214 			pr_warn("recv message count %d at exit\n", count);
5215 
5216 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5217 	}
5218 	if (drvregistered)
5219 		driver_unregister(&ipmidriver.driver);
5220 }
5221 module_exit(cleanup_ipmi);
5222 
5223 module_init(ipmi_init_msghandler_mod);
5224 MODULE_LICENSE("GPL");
5225 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5226 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5227 		   " interface.");
5228 MODULE_VERSION(IPMI_DRIVER_VERSION);
5229 MODULE_SOFTDEP("post: ipmi_devintf");
5230