1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 
49 #define PFX "IPMI message handler: "
50 
51 #define IPMI_DRIVER_VERSION "39.2"
52 
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55 
56 static int initialized;
57 
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
61 
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 
65 #define MAX_EVENTS_IN_QUEUE	25
66 
67 /*
68  * Don't let a message sit in a queue forever, always time it with at lest
69  * the max message timer.  This is in milliseconds.
70  */
71 #define MAX_MSG_TIMEOUT		60000
72 
73 /*
74  * The main "user" data structure.
75  */
76 struct ipmi_user {
77 	struct list_head link;
78 
79 	/* Set to "0" when the user is destroyed. */
80 	int valid;
81 
82 	struct kref refcount;
83 
84 	/* The upper layer that handles receive messages. */
85 	struct ipmi_user_hndl *handler;
86 	void             *handler_data;
87 
88 	/* The interface this user is bound to. */
89 	ipmi_smi_t intf;
90 
91 	/* Does this interface receive IPMI events? */
92 	int gets_events;
93 };
94 
95 struct cmd_rcvr {
96 	struct list_head link;
97 
98 	ipmi_user_t   user;
99 	unsigned char netfn;
100 	unsigned char cmd;
101 	unsigned int  chans;
102 
103 	/*
104 	 * This is used to form a linked lised during mass deletion.
105 	 * Since this is in an RCU list, we cannot use the link above
106 	 * or change any data until the RCU period completes.  So we
107 	 * use this next variable during mass deletion so we can have
108 	 * a list and don't have to wait and restart the search on
109 	 * every individual deletion of a command.
110 	 */
111 	struct cmd_rcvr *next;
112 };
113 
114 struct seq_table {
115 	unsigned int         inuse : 1;
116 	unsigned int         broadcast : 1;
117 
118 	unsigned long        timeout;
119 	unsigned long        orig_timeout;
120 	unsigned int         retries_left;
121 
122 	/*
123 	 * To verify on an incoming send message response that this is
124 	 * the message that the response is for, we keep a sequence id
125 	 * and increment it every time we send a message.
126 	 */
127 	long                 seqid;
128 
129 	/*
130 	 * This is held so we can properly respond to the message on a
131 	 * timeout, and it is used to hold the temporary data for
132 	 * retransmission, too.
133 	 */
134 	struct ipmi_recv_msg *recv_msg;
135 };
136 
137 /*
138  * Store the information in a msgid (long) to allow us to find a
139  * sequence table entry from the msgid.
140  */
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144 	do {								\
145 		seq = ((msgid >> 26) & 0x3f);				\
146 		seqid = (msgid & 0x3fffff);				\
147 	} while (0)
148 
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 
151 struct ipmi_channel {
152 	unsigned char medium;
153 	unsigned char protocol;
154 
155 	/*
156 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
157 	 * but may be changed by the user.
158 	 */
159 	unsigned char address;
160 
161 	/*
162 	 * My LUN.  This should generally stay the SMS LUN, but just in
163 	 * case...
164 	 */
165 	unsigned char lun;
166 };
167 
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry {
170 	char                   *name;
171 	struct ipmi_proc_entry *next;
172 };
173 #endif
174 
175 struct bmc_device {
176 	struct platform_device *dev;
177 	struct ipmi_device_id  id;
178 	unsigned char          guid[16];
179 	int                    guid_set;
180 
181 	struct kref	       refcount;
182 
183 	/* bmc device attributes */
184 	struct device_attribute device_id_attr;
185 	struct device_attribute provides_dev_sdrs_attr;
186 	struct device_attribute revision_attr;
187 	struct device_attribute firmware_rev_attr;
188 	struct device_attribute version_attr;
189 	struct device_attribute add_dev_support_attr;
190 	struct device_attribute manufacturer_id_attr;
191 	struct device_attribute product_id_attr;
192 	struct device_attribute guid_attr;
193 	struct device_attribute aux_firmware_rev_attr;
194 };
195 
196 /*
197  * Various statistics for IPMI, these index stats[] in the ipmi_smi
198  * structure.
199  */
200 enum ipmi_stat_indexes {
201 	/* Commands we got from the user that were invalid. */
202 	IPMI_STAT_sent_invalid_commands = 0,
203 
204 	/* Commands we sent to the MC. */
205 	IPMI_STAT_sent_local_commands,
206 
207 	/* Responses from the MC that were delivered to a user. */
208 	IPMI_STAT_handled_local_responses,
209 
210 	/* Responses from the MC that were not delivered to a user. */
211 	IPMI_STAT_unhandled_local_responses,
212 
213 	/* Commands we sent out to the IPMB bus. */
214 	IPMI_STAT_sent_ipmb_commands,
215 
216 	/* Commands sent on the IPMB that had errors on the SEND CMD */
217 	IPMI_STAT_sent_ipmb_command_errs,
218 
219 	/* Each retransmit increments this count. */
220 	IPMI_STAT_retransmitted_ipmb_commands,
221 
222 	/*
223 	 * When a message times out (runs out of retransmits) this is
224 	 * incremented.
225 	 */
226 	IPMI_STAT_timed_out_ipmb_commands,
227 
228 	/*
229 	 * This is like above, but for broadcasts.  Broadcasts are
230 	 * *not* included in the above count (they are expected to
231 	 * time out).
232 	 */
233 	IPMI_STAT_timed_out_ipmb_broadcasts,
234 
235 	/* Responses I have sent to the IPMB bus. */
236 	IPMI_STAT_sent_ipmb_responses,
237 
238 	/* The response was delivered to the user. */
239 	IPMI_STAT_handled_ipmb_responses,
240 
241 	/* The response had invalid data in it. */
242 	IPMI_STAT_invalid_ipmb_responses,
243 
244 	/* The response didn't have anyone waiting for it. */
245 	IPMI_STAT_unhandled_ipmb_responses,
246 
247 	/* Commands we sent out to the IPMB bus. */
248 	IPMI_STAT_sent_lan_commands,
249 
250 	/* Commands sent on the IPMB that had errors on the SEND CMD */
251 	IPMI_STAT_sent_lan_command_errs,
252 
253 	/* Each retransmit increments this count. */
254 	IPMI_STAT_retransmitted_lan_commands,
255 
256 	/*
257 	 * When a message times out (runs out of retransmits) this is
258 	 * incremented.
259 	 */
260 	IPMI_STAT_timed_out_lan_commands,
261 
262 	/* Responses I have sent to the IPMB bus. */
263 	IPMI_STAT_sent_lan_responses,
264 
265 	/* The response was delivered to the user. */
266 	IPMI_STAT_handled_lan_responses,
267 
268 	/* The response had invalid data in it. */
269 	IPMI_STAT_invalid_lan_responses,
270 
271 	/* The response didn't have anyone waiting for it. */
272 	IPMI_STAT_unhandled_lan_responses,
273 
274 	/* The command was delivered to the user. */
275 	IPMI_STAT_handled_commands,
276 
277 	/* The command had invalid data in it. */
278 	IPMI_STAT_invalid_commands,
279 
280 	/* The command didn't have anyone waiting for it. */
281 	IPMI_STAT_unhandled_commands,
282 
283 	/* Invalid data in an event. */
284 	IPMI_STAT_invalid_events,
285 
286 	/* Events that were received with the proper format. */
287 	IPMI_STAT_events,
288 
289 	/* Retransmissions on IPMB that failed. */
290 	IPMI_STAT_dropped_rexmit_ipmb_commands,
291 
292 	/* Retransmissions on LAN that failed. */
293 	IPMI_STAT_dropped_rexmit_lan_commands,
294 
295 	/* This *must* remain last, add new values above this. */
296 	IPMI_NUM_STATS
297 };
298 
299 
300 #define IPMI_IPMB_NUM_SEQ	64
301 #define IPMI_MAX_CHANNELS       16
302 struct ipmi_smi {
303 	/* What interface number are we? */
304 	int intf_num;
305 
306 	struct kref refcount;
307 
308 	/* Used for a list of interfaces. */
309 	struct list_head link;
310 
311 	/*
312 	 * The list of upper layers that are using me.  seq_lock
313 	 * protects this.
314 	 */
315 	struct list_head users;
316 
317 	/* Information to supply to users. */
318 	unsigned char ipmi_version_major;
319 	unsigned char ipmi_version_minor;
320 
321 	/* Used for wake ups at startup. */
322 	wait_queue_head_t waitq;
323 
324 	struct bmc_device *bmc;
325 	char *my_dev_name;
326 	char *sysfs_name;
327 
328 	/*
329 	 * This is the lower-layer's sender routine.  Note that you
330 	 * must either be holding the ipmi_interfaces_mutex or be in
331 	 * an umpreemptible region to use this.  You must fetch the
332 	 * value into a local variable and make sure it is not NULL.
333 	 */
334 	struct ipmi_smi_handlers *handlers;
335 	void                     *send_info;
336 
337 #ifdef CONFIG_PROC_FS
338 	/* A list of proc entries for this interface. */
339 	struct mutex           proc_entry_lock;
340 	struct ipmi_proc_entry *proc_entries;
341 #endif
342 
343 	/* Driver-model device for the system interface. */
344 	struct device          *si_dev;
345 
346 	/*
347 	 * A table of sequence numbers for this interface.  We use the
348 	 * sequence numbers for IPMB messages that go out of the
349 	 * interface to match them up with their responses.  A routine
350 	 * is called periodically to time the items in this list.
351 	 */
352 	spinlock_t       seq_lock;
353 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354 	int curr_seq;
355 
356 	/*
357 	 * Messages that were delayed for some reason (out of memory,
358 	 * for instance), will go in here to be processed later in a
359 	 * periodic timer interrupt.
360 	 */
361 	spinlock_t       waiting_msgs_lock;
362 	struct list_head waiting_msgs;
363 
364 	/*
365 	 * The list of command receivers that are registered for commands
366 	 * on this interface.
367 	 */
368 	struct mutex     cmd_rcvrs_mutex;
369 	struct list_head cmd_rcvrs;
370 
371 	/*
372 	 * Events that were queues because no one was there to receive
373 	 * them.
374 	 */
375 	spinlock_t       events_lock; /* For dealing with event stuff. */
376 	struct list_head waiting_events;
377 	unsigned int     waiting_events_count; /* How many events in queue? */
378 	char             delivering_events;
379 	char             event_msg_printed;
380 
381 	/*
382 	 * The event receiver for my BMC, only really used at panic
383 	 * shutdown as a place to store this.
384 	 */
385 	unsigned char event_receiver;
386 	unsigned char event_receiver_lun;
387 	unsigned char local_sel_device;
388 	unsigned char local_event_generator;
389 
390 	/* For handling of maintenance mode. */
391 	int maintenance_mode;
392 	int maintenance_mode_enable;
393 	int auto_maintenance_timeout;
394 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
395 
396 	/*
397 	 * A cheap hack, if this is non-null and a message to an
398 	 * interface comes in with a NULL user, call this routine with
399 	 * it.  Note that the message will still be freed by the
400 	 * caller.  This only works on the system interface.
401 	 */
402 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
403 
404 	/*
405 	 * When we are scanning the channels for an SMI, this will
406 	 * tell which channel we are scanning.
407 	 */
408 	int curr_channel;
409 
410 	/* Channel information */
411 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
412 
413 	/* Proc FS stuff. */
414 	struct proc_dir_entry *proc_dir;
415 	char                  proc_dir_name[10];
416 
417 	atomic_t stats[IPMI_NUM_STATS];
418 
419 	/*
420 	 * run_to_completion duplicate of smb_info, smi_info
421 	 * and ipmi_serial_info structures. Used to decrease numbers of
422 	 * parameters passed by "low" level IPMI code.
423 	 */
424 	int run_to_completion;
425 };
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
427 
428 /**
429  * The driver model view of the IPMI messaging driver.
430  */
431 static struct platform_driver ipmidriver = {
432 	.driver = {
433 		.name = "ipmi",
434 		.bus = &platform_bus_type
435 	}
436 };
437 static DEFINE_MUTEX(ipmidriver_mutex);
438 
439 static LIST_HEAD(ipmi_interfaces);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex);
441 
442 /*
443  * List of watchers that want to know when smi's are added and deleted.
444  */
445 static LIST_HEAD(smi_watchers);
446 static DEFINE_MUTEX(smi_watchers_mutex);
447 
448 
449 #define ipmi_inc_stat(intf, stat) \
450 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453 
454 static int is_lan_addr(struct ipmi_addr *addr)
455 {
456 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
457 }
458 
459 static int is_ipmb_addr(struct ipmi_addr *addr)
460 {
461 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
462 }
463 
464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465 {
466 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
467 }
468 
469 static void free_recv_msg_list(struct list_head *q)
470 {
471 	struct ipmi_recv_msg *msg, *msg2;
472 
473 	list_for_each_entry_safe(msg, msg2, q, link) {
474 		list_del(&msg->link);
475 		ipmi_free_recv_msg(msg);
476 	}
477 }
478 
479 static void free_smi_msg_list(struct list_head *q)
480 {
481 	struct ipmi_smi_msg *msg, *msg2;
482 
483 	list_for_each_entry_safe(msg, msg2, q, link) {
484 		list_del(&msg->link);
485 		ipmi_free_smi_msg(msg);
486 	}
487 }
488 
489 static void clean_up_interface_data(ipmi_smi_t intf)
490 {
491 	int              i;
492 	struct cmd_rcvr  *rcvr, *rcvr2;
493 	struct list_head list;
494 
495 	free_smi_msg_list(&intf->waiting_msgs);
496 	free_recv_msg_list(&intf->waiting_events);
497 
498 	/*
499 	 * Wholesale remove all the entries from the list in the
500 	 * interface and wait for RCU to know that none are in use.
501 	 */
502 	mutex_lock(&intf->cmd_rcvrs_mutex);
503 	INIT_LIST_HEAD(&list);
504 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505 	mutex_unlock(&intf->cmd_rcvrs_mutex);
506 
507 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508 		kfree(rcvr);
509 
510 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511 		if ((intf->seq_table[i].inuse)
512 					&& (intf->seq_table[i].recv_msg))
513 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
514 	}
515 }
516 
517 static void intf_free(struct kref *ref)
518 {
519 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520 
521 	clean_up_interface_data(intf);
522 	kfree(intf);
523 }
524 
525 struct watcher_entry {
526 	int              intf_num;
527 	ipmi_smi_t       intf;
528 	struct list_head link;
529 };
530 
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
532 {
533 	ipmi_smi_t intf;
534 	LIST_HEAD(to_deliver);
535 	struct watcher_entry *e, *e2;
536 
537 	mutex_lock(&smi_watchers_mutex);
538 
539 	mutex_lock(&ipmi_interfaces_mutex);
540 
541 	/* Build a list of things to deliver. */
542 	list_for_each_entry(intf, &ipmi_interfaces, link) {
543 		if (intf->intf_num == -1)
544 			continue;
545 		e = kmalloc(sizeof(*e), GFP_KERNEL);
546 		if (!e)
547 			goto out_err;
548 		kref_get(&intf->refcount);
549 		e->intf = intf;
550 		e->intf_num = intf->intf_num;
551 		list_add_tail(&e->link, &to_deliver);
552 	}
553 
554 	/* We will succeed, so add it to the list. */
555 	list_add(&watcher->link, &smi_watchers);
556 
557 	mutex_unlock(&ipmi_interfaces_mutex);
558 
559 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
560 		list_del(&e->link);
561 		watcher->new_smi(e->intf_num, e->intf->si_dev);
562 		kref_put(&e->intf->refcount, intf_free);
563 		kfree(e);
564 	}
565 
566 	mutex_unlock(&smi_watchers_mutex);
567 
568 	return 0;
569 
570  out_err:
571 	mutex_unlock(&ipmi_interfaces_mutex);
572 	mutex_unlock(&smi_watchers_mutex);
573 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
574 		list_del(&e->link);
575 		kref_put(&e->intf->refcount, intf_free);
576 		kfree(e);
577 	}
578 	return -ENOMEM;
579 }
580 EXPORT_SYMBOL(ipmi_smi_watcher_register);
581 
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583 {
584 	mutex_lock(&smi_watchers_mutex);
585 	list_del(&(watcher->link));
586 	mutex_unlock(&smi_watchers_mutex);
587 	return 0;
588 }
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
590 
591 /*
592  * Must be called with smi_watchers_mutex held.
593  */
594 static void
595 call_smi_watchers(int i, struct device *dev)
596 {
597 	struct ipmi_smi_watcher *w;
598 
599 	list_for_each_entry(w, &smi_watchers, link) {
600 		if (try_module_get(w->owner)) {
601 			w->new_smi(i, dev);
602 			module_put(w->owner);
603 		}
604 	}
605 }
606 
607 static int
608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609 {
610 	if (addr1->addr_type != addr2->addr_type)
611 		return 0;
612 
613 	if (addr1->channel != addr2->channel)
614 		return 0;
615 
616 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617 		struct ipmi_system_interface_addr *smi_addr1
618 		    = (struct ipmi_system_interface_addr *) addr1;
619 		struct ipmi_system_interface_addr *smi_addr2
620 		    = (struct ipmi_system_interface_addr *) addr2;
621 		return (smi_addr1->lun == smi_addr2->lun);
622 	}
623 
624 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625 		struct ipmi_ipmb_addr *ipmb_addr1
626 		    = (struct ipmi_ipmb_addr *) addr1;
627 		struct ipmi_ipmb_addr *ipmb_addr2
628 		    = (struct ipmi_ipmb_addr *) addr2;
629 
630 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
632 	}
633 
634 	if (is_lan_addr(addr1)) {
635 		struct ipmi_lan_addr *lan_addr1
636 			= (struct ipmi_lan_addr *) addr1;
637 		struct ipmi_lan_addr *lan_addr2
638 		    = (struct ipmi_lan_addr *) addr2;
639 
640 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
642 			&& (lan_addr1->session_handle
643 			    == lan_addr2->session_handle)
644 			&& (lan_addr1->lun == lan_addr2->lun));
645 	}
646 
647 	return 1;
648 }
649 
650 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651 {
652 	if (len < sizeof(struct ipmi_system_interface_addr))
653 		return -EINVAL;
654 
655 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656 		if (addr->channel != IPMI_BMC_CHANNEL)
657 			return -EINVAL;
658 		return 0;
659 	}
660 
661 	if ((addr->channel == IPMI_BMC_CHANNEL)
662 	    || (addr->channel >= IPMI_MAX_CHANNELS)
663 	    || (addr->channel < 0))
664 		return -EINVAL;
665 
666 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667 		if (len < sizeof(struct ipmi_ipmb_addr))
668 			return -EINVAL;
669 		return 0;
670 	}
671 
672 	if (is_lan_addr(addr)) {
673 		if (len < sizeof(struct ipmi_lan_addr))
674 			return -EINVAL;
675 		return 0;
676 	}
677 
678 	return -EINVAL;
679 }
680 EXPORT_SYMBOL(ipmi_validate_addr);
681 
682 unsigned int ipmi_addr_length(int addr_type)
683 {
684 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685 		return sizeof(struct ipmi_system_interface_addr);
686 
687 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689 		return sizeof(struct ipmi_ipmb_addr);
690 
691 	if (addr_type == IPMI_LAN_ADDR_TYPE)
692 		return sizeof(struct ipmi_lan_addr);
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL(ipmi_addr_length);
697 
698 static void deliver_response(struct ipmi_recv_msg *msg)
699 {
700 	if (!msg->user) {
701 		ipmi_smi_t    intf = msg->user_msg_data;
702 
703 		/* Special handling for NULL users. */
704 		if (intf->null_user_handler) {
705 			intf->null_user_handler(intf, msg);
706 			ipmi_inc_stat(intf, handled_local_responses);
707 		} else {
708 			/* No handler, so give up. */
709 			ipmi_inc_stat(intf, unhandled_local_responses);
710 		}
711 		ipmi_free_recv_msg(msg);
712 	} else {
713 		ipmi_user_t user = msg->user;
714 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
715 	}
716 }
717 
718 static void
719 deliver_err_response(struct ipmi_recv_msg *msg, int err)
720 {
721 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722 	msg->msg_data[0] = err;
723 	msg->msg.netfn |= 1; /* Convert to a response. */
724 	msg->msg.data_len = 1;
725 	msg->msg.data = msg->msg_data;
726 	deliver_response(msg);
727 }
728 
729 /*
730  * Find the next sequence number not being used and add the given
731  * message with the given timeout to the sequence table.  This must be
732  * called with the interface's seq_lock held.
733  */
734 static int intf_next_seq(ipmi_smi_t           intf,
735 			 struct ipmi_recv_msg *recv_msg,
736 			 unsigned long        timeout,
737 			 int                  retries,
738 			 int                  broadcast,
739 			 unsigned char        *seq,
740 			 long                 *seqid)
741 {
742 	int          rv = 0;
743 	unsigned int i;
744 
745 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747 		if (!intf->seq_table[i].inuse)
748 			break;
749 	}
750 
751 	if (!intf->seq_table[i].inuse) {
752 		intf->seq_table[i].recv_msg = recv_msg;
753 
754 		/*
755 		 * Start with the maximum timeout, when the send response
756 		 * comes in we will start the real timer.
757 		 */
758 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759 		intf->seq_table[i].orig_timeout = timeout;
760 		intf->seq_table[i].retries_left = retries;
761 		intf->seq_table[i].broadcast = broadcast;
762 		intf->seq_table[i].inuse = 1;
763 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764 		*seq = i;
765 		*seqid = intf->seq_table[i].seqid;
766 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767 	} else {
768 		rv = -EAGAIN;
769 	}
770 
771 	return rv;
772 }
773 
774 /*
775  * Return the receive message for the given sequence number and
776  * release the sequence number so it can be reused.  Some other data
777  * is passed in to be sure the message matches up correctly (to help
778  * guard against message coming in after their timeout and the
779  * sequence number being reused).
780  */
781 static int intf_find_seq(ipmi_smi_t           intf,
782 			 unsigned char        seq,
783 			 short                channel,
784 			 unsigned char        cmd,
785 			 unsigned char        netfn,
786 			 struct ipmi_addr     *addr,
787 			 struct ipmi_recv_msg **recv_msg)
788 {
789 	int           rv = -ENODEV;
790 	unsigned long flags;
791 
792 	if (seq >= IPMI_IPMB_NUM_SEQ)
793 		return -EINVAL;
794 
795 	spin_lock_irqsave(&(intf->seq_lock), flags);
796 	if (intf->seq_table[seq].inuse) {
797 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798 
799 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800 				&& (msg->msg.netfn == netfn)
801 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
802 			*recv_msg = msg;
803 			intf->seq_table[seq].inuse = 0;
804 			rv = 0;
805 		}
806 	}
807 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
808 
809 	return rv;
810 }
811 
812 
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf,
815 				long       msgid)
816 {
817 	int           rv = -ENODEV;
818 	unsigned long flags;
819 	unsigned char seq;
820 	unsigned long seqid;
821 
822 
823 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824 
825 	spin_lock_irqsave(&(intf->seq_lock), flags);
826 	/*
827 	 * We do this verification because the user can be deleted
828 	 * while a message is outstanding.
829 	 */
830 	if ((intf->seq_table[seq].inuse)
831 				&& (intf->seq_table[seq].seqid == seqid)) {
832 		struct seq_table *ent = &(intf->seq_table[seq]);
833 		ent->timeout = ent->orig_timeout;
834 		rv = 0;
835 	}
836 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
837 
838 	return rv;
839 }
840 
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t   intf,
843 			long         msgid,
844 			unsigned int err)
845 {
846 	int                  rv = -ENODEV;
847 	unsigned long        flags;
848 	unsigned char        seq;
849 	unsigned long        seqid;
850 	struct ipmi_recv_msg *msg = NULL;
851 
852 
853 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854 
855 	spin_lock_irqsave(&(intf->seq_lock), flags);
856 	/*
857 	 * We do this verification because the user can be deleted
858 	 * while a message is outstanding.
859 	 */
860 	if ((intf->seq_table[seq].inuse)
861 				&& (intf->seq_table[seq].seqid == seqid)) {
862 		struct seq_table *ent = &(intf->seq_table[seq]);
863 
864 		ent->inuse = 0;
865 		msg = ent->recv_msg;
866 		rv = 0;
867 	}
868 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
869 
870 	if (msg)
871 		deliver_err_response(msg, err);
872 
873 	return rv;
874 }
875 
876 
877 int ipmi_create_user(unsigned int          if_num,
878 		     struct ipmi_user_hndl *handler,
879 		     void                  *handler_data,
880 		     ipmi_user_t           *user)
881 {
882 	unsigned long flags;
883 	ipmi_user_t   new_user;
884 	int           rv = 0;
885 	ipmi_smi_t    intf;
886 
887 	/*
888 	 * There is no module usecount here, because it's not
889 	 * required.  Since this can only be used by and called from
890 	 * other modules, they will implicitly use this module, and
891 	 * thus this can't be removed unless the other modules are
892 	 * removed.
893 	 */
894 
895 	if (handler == NULL)
896 		return -EINVAL;
897 
898 	/*
899 	 * Make sure the driver is actually initialized, this handles
900 	 * problems with initialization order.
901 	 */
902 	if (!initialized) {
903 		rv = ipmi_init_msghandler();
904 		if (rv)
905 			return rv;
906 
907 		/*
908 		 * The init code doesn't return an error if it was turned
909 		 * off, but it won't initialize.  Check that.
910 		 */
911 		if (!initialized)
912 			return -ENODEV;
913 	}
914 
915 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916 	if (!new_user)
917 		return -ENOMEM;
918 
919 	mutex_lock(&ipmi_interfaces_mutex);
920 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921 		if (intf->intf_num == if_num)
922 			goto found;
923 	}
924 	/* Not found, return an error */
925 	rv = -EINVAL;
926 	goto out_kfree;
927 
928  found:
929 	/* Note that each existing user holds a refcount to the interface. */
930 	kref_get(&intf->refcount);
931 
932 	kref_init(&new_user->refcount);
933 	new_user->handler = handler;
934 	new_user->handler_data = handler_data;
935 	new_user->intf = intf;
936 	new_user->gets_events = 0;
937 
938 	if (!try_module_get(intf->handlers->owner)) {
939 		rv = -ENODEV;
940 		goto out_kref;
941 	}
942 
943 	if (intf->handlers->inc_usecount) {
944 		rv = intf->handlers->inc_usecount(intf->send_info);
945 		if (rv) {
946 			module_put(intf->handlers->owner);
947 			goto out_kref;
948 		}
949 	}
950 
951 	/*
952 	 * Hold the lock so intf->handlers is guaranteed to be good
953 	 * until now
954 	 */
955 	mutex_unlock(&ipmi_interfaces_mutex);
956 
957 	new_user->valid = 1;
958 	spin_lock_irqsave(&intf->seq_lock, flags);
959 	list_add_rcu(&new_user->link, &intf->users);
960 	spin_unlock_irqrestore(&intf->seq_lock, flags);
961 	*user = new_user;
962 	return 0;
963 
964 out_kref:
965 	kref_put(&intf->refcount, intf_free);
966 out_kfree:
967 	mutex_unlock(&ipmi_interfaces_mutex);
968 	kfree(new_user);
969 	return rv;
970 }
971 EXPORT_SYMBOL(ipmi_create_user);
972 
973 static void free_user(struct kref *ref)
974 {
975 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
976 	kfree(user);
977 }
978 
979 int ipmi_destroy_user(ipmi_user_t user)
980 {
981 	ipmi_smi_t       intf = user->intf;
982 	int              i;
983 	unsigned long    flags;
984 	struct cmd_rcvr  *rcvr;
985 	struct cmd_rcvr  *rcvrs = NULL;
986 
987 	user->valid = 0;
988 
989 	/* Remove the user from the interface's sequence table. */
990 	spin_lock_irqsave(&intf->seq_lock, flags);
991 	list_del_rcu(&user->link);
992 
993 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
994 		if (intf->seq_table[i].inuse
995 		    && (intf->seq_table[i].recv_msg->user == user)) {
996 			intf->seq_table[i].inuse = 0;
997 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
998 		}
999 	}
1000 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1001 
1002 	/*
1003 	 * Remove the user from the command receiver's table.  First
1004 	 * we build a list of everything (not using the standard link,
1005 	 * since other things may be using it till we do
1006 	 * synchronize_rcu()) then free everything in that list.
1007 	 */
1008 	mutex_lock(&intf->cmd_rcvrs_mutex);
1009 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1010 		if (rcvr->user == user) {
1011 			list_del_rcu(&rcvr->link);
1012 			rcvr->next = rcvrs;
1013 			rcvrs = rcvr;
1014 		}
1015 	}
1016 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1017 	synchronize_rcu();
1018 	while (rcvrs) {
1019 		rcvr = rcvrs;
1020 		rcvrs = rcvr->next;
1021 		kfree(rcvr);
1022 	}
1023 
1024 	mutex_lock(&ipmi_interfaces_mutex);
1025 	if (intf->handlers) {
1026 		module_put(intf->handlers->owner);
1027 		if (intf->handlers->dec_usecount)
1028 			intf->handlers->dec_usecount(intf->send_info);
1029 	}
1030 	mutex_unlock(&ipmi_interfaces_mutex);
1031 
1032 	kref_put(&intf->refcount, intf_free);
1033 
1034 	kref_put(&user->refcount, free_user);
1035 
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL(ipmi_destroy_user);
1039 
1040 void ipmi_get_version(ipmi_user_t   user,
1041 		      unsigned char *major,
1042 		      unsigned char *minor)
1043 {
1044 	*major = user->intf->ipmi_version_major;
1045 	*minor = user->intf->ipmi_version_minor;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_version);
1048 
1049 int ipmi_set_my_address(ipmi_user_t   user,
1050 			unsigned int  channel,
1051 			unsigned char address)
1052 {
1053 	if (channel >= IPMI_MAX_CHANNELS)
1054 		return -EINVAL;
1055 	user->intf->channels[channel].address = address;
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL(ipmi_set_my_address);
1059 
1060 int ipmi_get_my_address(ipmi_user_t   user,
1061 			unsigned int  channel,
1062 			unsigned char *address)
1063 {
1064 	if (channel >= IPMI_MAX_CHANNELS)
1065 		return -EINVAL;
1066 	*address = user->intf->channels[channel].address;
1067 	return 0;
1068 }
1069 EXPORT_SYMBOL(ipmi_get_my_address);
1070 
1071 int ipmi_set_my_LUN(ipmi_user_t   user,
1072 		    unsigned int  channel,
1073 		    unsigned char LUN)
1074 {
1075 	if (channel >= IPMI_MAX_CHANNELS)
1076 		return -EINVAL;
1077 	user->intf->channels[channel].lun = LUN & 0x3;
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL(ipmi_set_my_LUN);
1081 
1082 int ipmi_get_my_LUN(ipmi_user_t   user,
1083 		    unsigned int  channel,
1084 		    unsigned char *address)
1085 {
1086 	if (channel >= IPMI_MAX_CHANNELS)
1087 		return -EINVAL;
1088 	*address = user->intf->channels[channel].lun;
1089 	return 0;
1090 }
1091 EXPORT_SYMBOL(ipmi_get_my_LUN);
1092 
1093 int ipmi_get_maintenance_mode(ipmi_user_t user)
1094 {
1095 	int           mode;
1096 	unsigned long flags;
1097 
1098 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1099 	mode = user->intf->maintenance_mode;
1100 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1101 
1102 	return mode;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1105 
1106 static void maintenance_mode_update(ipmi_smi_t intf)
1107 {
1108 	if (intf->handlers->set_maintenance_mode)
1109 		intf->handlers->set_maintenance_mode(
1110 			intf->send_info, intf->maintenance_mode_enable);
1111 }
1112 
1113 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1114 {
1115 	int           rv = 0;
1116 	unsigned long flags;
1117 	ipmi_smi_t    intf = user->intf;
1118 
1119 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1120 	if (intf->maintenance_mode != mode) {
1121 		switch (mode) {
1122 		case IPMI_MAINTENANCE_MODE_AUTO:
1123 			intf->maintenance_mode = mode;
1124 			intf->maintenance_mode_enable
1125 				= (intf->auto_maintenance_timeout > 0);
1126 			break;
1127 
1128 		case IPMI_MAINTENANCE_MODE_OFF:
1129 			intf->maintenance_mode = mode;
1130 			intf->maintenance_mode_enable = 0;
1131 			break;
1132 
1133 		case IPMI_MAINTENANCE_MODE_ON:
1134 			intf->maintenance_mode = mode;
1135 			intf->maintenance_mode_enable = 1;
1136 			break;
1137 
1138 		default:
1139 			rv = -EINVAL;
1140 			goto out_unlock;
1141 		}
1142 
1143 		maintenance_mode_update(intf);
1144 	}
1145  out_unlock:
1146 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1147 
1148 	return rv;
1149 }
1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1151 
1152 int ipmi_set_gets_events(ipmi_user_t user, int val)
1153 {
1154 	unsigned long        flags;
1155 	ipmi_smi_t           intf = user->intf;
1156 	struct ipmi_recv_msg *msg, *msg2;
1157 	struct list_head     msgs;
1158 
1159 	INIT_LIST_HEAD(&msgs);
1160 
1161 	spin_lock_irqsave(&intf->events_lock, flags);
1162 	user->gets_events = val;
1163 
1164 	if (intf->delivering_events)
1165 		/*
1166 		 * Another thread is delivering events for this, so
1167 		 * let it handle any new events.
1168 		 */
1169 		goto out;
1170 
1171 	/* Deliver any queued events. */
1172 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1173 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1174 			list_move_tail(&msg->link, &msgs);
1175 		intf->waiting_events_count = 0;
1176 		if (intf->event_msg_printed) {
1177 			printk(KERN_WARNING PFX "Event queue no longer"
1178 			       " full\n");
1179 			intf->event_msg_printed = 0;
1180 		}
1181 
1182 		intf->delivering_events = 1;
1183 		spin_unlock_irqrestore(&intf->events_lock, flags);
1184 
1185 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186 			msg->user = user;
1187 			kref_get(&user->refcount);
1188 			deliver_response(msg);
1189 		}
1190 
1191 		spin_lock_irqsave(&intf->events_lock, flags);
1192 		intf->delivering_events = 0;
1193 	}
1194 
1195  out:
1196 	spin_unlock_irqrestore(&intf->events_lock, flags);
1197 
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL(ipmi_set_gets_events);
1201 
1202 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1203 				      unsigned char netfn,
1204 				      unsigned char cmd,
1205 				      unsigned char chan)
1206 {
1207 	struct cmd_rcvr *rcvr;
1208 
1209 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1210 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1211 					&& (rcvr->chans & (1 << chan)))
1212 			return rcvr;
1213 	}
1214 	return NULL;
1215 }
1216 
1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1218 				 unsigned char netfn,
1219 				 unsigned char cmd,
1220 				 unsigned int  chans)
1221 {
1222 	struct cmd_rcvr *rcvr;
1223 
1224 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1225 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1226 					&& (rcvr->chans & chans))
1227 			return 0;
1228 	}
1229 	return 1;
1230 }
1231 
1232 int ipmi_register_for_cmd(ipmi_user_t   user,
1233 			  unsigned char netfn,
1234 			  unsigned char cmd,
1235 			  unsigned int  chans)
1236 {
1237 	ipmi_smi_t      intf = user->intf;
1238 	struct cmd_rcvr *rcvr;
1239 	int             rv = 0;
1240 
1241 
1242 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1243 	if (!rcvr)
1244 		return -ENOMEM;
1245 	rcvr->cmd = cmd;
1246 	rcvr->netfn = netfn;
1247 	rcvr->chans = chans;
1248 	rcvr->user = user;
1249 
1250 	mutex_lock(&intf->cmd_rcvrs_mutex);
1251 	/* Make sure the command/netfn is not already registered. */
1252 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1253 		rv = -EBUSY;
1254 		goto out_unlock;
1255 	}
1256 
1257 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1258 
1259  out_unlock:
1260 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1261 	if (rv)
1262 		kfree(rcvr);
1263 
1264 	return rv;
1265 }
1266 EXPORT_SYMBOL(ipmi_register_for_cmd);
1267 
1268 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1269 			    unsigned char netfn,
1270 			    unsigned char cmd,
1271 			    unsigned int  chans)
1272 {
1273 	ipmi_smi_t      intf = user->intf;
1274 	struct cmd_rcvr *rcvr;
1275 	struct cmd_rcvr *rcvrs = NULL;
1276 	int i, rv = -ENOENT;
1277 
1278 	mutex_lock(&intf->cmd_rcvrs_mutex);
1279 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1280 		if (((1 << i) & chans) == 0)
1281 			continue;
1282 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1283 		if (rcvr == NULL)
1284 			continue;
1285 		if (rcvr->user == user) {
1286 			rv = 0;
1287 			rcvr->chans &= ~chans;
1288 			if (rcvr->chans == 0) {
1289 				list_del_rcu(&rcvr->link);
1290 				rcvr->next = rcvrs;
1291 				rcvrs = rcvr;
1292 			}
1293 		}
1294 	}
1295 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1296 	synchronize_rcu();
1297 	while (rcvrs) {
1298 		rcvr = rcvrs;
1299 		rcvrs = rcvr->next;
1300 		kfree(rcvr);
1301 	}
1302 	return rv;
1303 }
1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1305 
1306 static unsigned char
1307 ipmb_checksum(unsigned char *data, int size)
1308 {
1309 	unsigned char csum = 0;
1310 
1311 	for (; size > 0; size--, data++)
1312 		csum += *data;
1313 
1314 	return -csum;
1315 }
1316 
1317 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1318 				   struct kernel_ipmi_msg *msg,
1319 				   struct ipmi_ipmb_addr *ipmb_addr,
1320 				   long                  msgid,
1321 				   unsigned char         ipmb_seq,
1322 				   int                   broadcast,
1323 				   unsigned char         source_address,
1324 				   unsigned char         source_lun)
1325 {
1326 	int i = broadcast;
1327 
1328 	/* Format the IPMB header data. */
1329 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1330 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1331 	smi_msg->data[2] = ipmb_addr->channel;
1332 	if (broadcast)
1333 		smi_msg->data[3] = 0;
1334 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1335 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1336 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1337 	smi_msg->data[i+6] = source_address;
1338 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1339 	smi_msg->data[i+8] = msg->cmd;
1340 
1341 	/* Now tack on the data to the message. */
1342 	if (msg->data_len > 0)
1343 		memcpy(&(smi_msg->data[i+9]), msg->data,
1344 		       msg->data_len);
1345 	smi_msg->data_size = msg->data_len + 9;
1346 
1347 	/* Now calculate the checksum and tack it on. */
1348 	smi_msg->data[i+smi_msg->data_size]
1349 		= ipmb_checksum(&(smi_msg->data[i+6]),
1350 				smi_msg->data_size-6);
1351 
1352 	/*
1353 	 * Add on the checksum size and the offset from the
1354 	 * broadcast.
1355 	 */
1356 	smi_msg->data_size += 1 + i;
1357 
1358 	smi_msg->msgid = msgid;
1359 }
1360 
1361 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1362 				  struct kernel_ipmi_msg *msg,
1363 				  struct ipmi_lan_addr  *lan_addr,
1364 				  long                  msgid,
1365 				  unsigned char         ipmb_seq,
1366 				  unsigned char         source_lun)
1367 {
1368 	/* Format the IPMB header data. */
1369 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1370 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1371 	smi_msg->data[2] = lan_addr->channel;
1372 	smi_msg->data[3] = lan_addr->session_handle;
1373 	smi_msg->data[4] = lan_addr->remote_SWID;
1374 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1375 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1376 	smi_msg->data[7] = lan_addr->local_SWID;
1377 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1378 	smi_msg->data[9] = msg->cmd;
1379 
1380 	/* Now tack on the data to the message. */
1381 	if (msg->data_len > 0)
1382 		memcpy(&(smi_msg->data[10]), msg->data,
1383 		       msg->data_len);
1384 	smi_msg->data_size = msg->data_len + 10;
1385 
1386 	/* Now calculate the checksum and tack it on. */
1387 	smi_msg->data[smi_msg->data_size]
1388 		= ipmb_checksum(&(smi_msg->data[7]),
1389 				smi_msg->data_size-7);
1390 
1391 	/*
1392 	 * Add on the checksum size and the offset from the
1393 	 * broadcast.
1394 	 */
1395 	smi_msg->data_size += 1;
1396 
1397 	smi_msg->msgid = msgid;
1398 }
1399 
1400 /*
1401  * Separate from ipmi_request so that the user does not have to be
1402  * supplied in certain circumstances (mainly at panic time).  If
1403  * messages are supplied, they will be freed, even if an error
1404  * occurs.
1405  */
1406 static int i_ipmi_request(ipmi_user_t          user,
1407 			  ipmi_smi_t           intf,
1408 			  struct ipmi_addr     *addr,
1409 			  long                 msgid,
1410 			  struct kernel_ipmi_msg *msg,
1411 			  void                 *user_msg_data,
1412 			  void                 *supplied_smi,
1413 			  struct ipmi_recv_msg *supplied_recv,
1414 			  int                  priority,
1415 			  unsigned char        source_address,
1416 			  unsigned char        source_lun,
1417 			  int                  retries,
1418 			  unsigned int         retry_time_ms)
1419 {
1420 	int                      rv = 0;
1421 	struct ipmi_smi_msg      *smi_msg;
1422 	struct ipmi_recv_msg     *recv_msg;
1423 	unsigned long            flags;
1424 	struct ipmi_smi_handlers *handlers;
1425 
1426 
1427 	if (supplied_recv)
1428 		recv_msg = supplied_recv;
1429 	else {
1430 		recv_msg = ipmi_alloc_recv_msg();
1431 		if (recv_msg == NULL)
1432 			return -ENOMEM;
1433 	}
1434 	recv_msg->user_msg_data = user_msg_data;
1435 
1436 	if (supplied_smi)
1437 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438 	else {
1439 		smi_msg = ipmi_alloc_smi_msg();
1440 		if (smi_msg == NULL) {
1441 			ipmi_free_recv_msg(recv_msg);
1442 			return -ENOMEM;
1443 		}
1444 	}
1445 
1446 	rcu_read_lock();
1447 	handlers = intf->handlers;
1448 	if (!handlers) {
1449 		rv = -ENODEV;
1450 		goto out_err;
1451 	}
1452 
1453 	recv_msg->user = user;
1454 	if (user)
1455 		kref_get(&user->refcount);
1456 	recv_msg->msgid = msgid;
1457 	/*
1458 	 * Store the message to send in the receive message so timeout
1459 	 * responses can get the proper response data.
1460 	 */
1461 	recv_msg->msg = *msg;
1462 
1463 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1464 		struct ipmi_system_interface_addr *smi_addr;
1465 
1466 		if (msg->netfn & 1) {
1467 			/* Responses are not allowed to the SMI. */
1468 			rv = -EINVAL;
1469 			goto out_err;
1470 		}
1471 
1472 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1473 		if (smi_addr->lun > 3) {
1474 			ipmi_inc_stat(intf, sent_invalid_commands);
1475 			rv = -EINVAL;
1476 			goto out_err;
1477 		}
1478 
1479 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1480 
1481 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1482 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1483 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1484 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1485 			/*
1486 			 * We don't let the user do these, since we manage
1487 			 * the sequence numbers.
1488 			 */
1489 			ipmi_inc_stat(intf, sent_invalid_commands);
1490 			rv = -EINVAL;
1491 			goto out_err;
1492 		}
1493 
1494 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1495 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1496 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1497 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1498 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1499 			intf->auto_maintenance_timeout
1500 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1501 			if (!intf->maintenance_mode
1502 			    && !intf->maintenance_mode_enable) {
1503 				intf->maintenance_mode_enable = 1;
1504 				maintenance_mode_update(intf);
1505 			}
1506 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1507 					       flags);
1508 		}
1509 
1510 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1511 			ipmi_inc_stat(intf, sent_invalid_commands);
1512 			rv = -EMSGSIZE;
1513 			goto out_err;
1514 		}
1515 
1516 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1517 		smi_msg->data[1] = msg->cmd;
1518 		smi_msg->msgid = msgid;
1519 		smi_msg->user_data = recv_msg;
1520 		if (msg->data_len > 0)
1521 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1522 		smi_msg->data_size = msg->data_len + 2;
1523 		ipmi_inc_stat(intf, sent_local_commands);
1524 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1525 		struct ipmi_ipmb_addr *ipmb_addr;
1526 		unsigned char         ipmb_seq;
1527 		long                  seqid;
1528 		int                   broadcast = 0;
1529 
1530 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1531 			ipmi_inc_stat(intf, sent_invalid_commands);
1532 			rv = -EINVAL;
1533 			goto out_err;
1534 		}
1535 
1536 		if (intf->channels[addr->channel].medium
1537 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1538 			ipmi_inc_stat(intf, sent_invalid_commands);
1539 			rv = -EINVAL;
1540 			goto out_err;
1541 		}
1542 
1543 		if (retries < 0) {
1544 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1545 			retries = 0; /* Don't retry broadcasts. */
1546 		    else
1547 			retries = 4;
1548 		}
1549 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1550 		    /*
1551 		     * Broadcasts add a zero at the beginning of the
1552 		     * message, but otherwise is the same as an IPMB
1553 		     * address.
1554 		     */
1555 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1556 		    broadcast = 1;
1557 		}
1558 
1559 
1560 		/* Default to 1 second retries. */
1561 		if (retry_time_ms == 0)
1562 		    retry_time_ms = 1000;
1563 
1564 		/*
1565 		 * 9 for the header and 1 for the checksum, plus
1566 		 * possibly one for the broadcast.
1567 		 */
1568 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1569 			ipmi_inc_stat(intf, sent_invalid_commands);
1570 			rv = -EMSGSIZE;
1571 			goto out_err;
1572 		}
1573 
1574 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1575 		if (ipmb_addr->lun > 3) {
1576 			ipmi_inc_stat(intf, sent_invalid_commands);
1577 			rv = -EINVAL;
1578 			goto out_err;
1579 		}
1580 
1581 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1582 
1583 		if (recv_msg->msg.netfn & 0x1) {
1584 			/*
1585 			 * It's a response, so use the user's sequence
1586 			 * from msgid.
1587 			 */
1588 			ipmi_inc_stat(intf, sent_ipmb_responses);
1589 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590 					msgid, broadcast,
1591 					source_address, source_lun);
1592 
1593 			/*
1594 			 * Save the receive message so we can use it
1595 			 * to deliver the response.
1596 			 */
1597 			smi_msg->user_data = recv_msg;
1598 		} else {
1599 			/* It's a command, so get a sequence for it. */
1600 
1601 			spin_lock_irqsave(&(intf->seq_lock), flags);
1602 
1603 			/*
1604 			 * Create a sequence number with a 1 second
1605 			 * timeout and 4 retries.
1606 			 */
1607 			rv = intf_next_seq(intf,
1608 					   recv_msg,
1609 					   retry_time_ms,
1610 					   retries,
1611 					   broadcast,
1612 					   &ipmb_seq,
1613 					   &seqid);
1614 			if (rv) {
1615 				/*
1616 				 * We have used up all the sequence numbers,
1617 				 * probably, so abort.
1618 				 */
1619 				spin_unlock_irqrestore(&(intf->seq_lock),
1620 						       flags);
1621 				goto out_err;
1622 			}
1623 
1624 			ipmi_inc_stat(intf, sent_ipmb_commands);
1625 
1626 			/*
1627 			 * Store the sequence number in the message,
1628 			 * so that when the send message response
1629 			 * comes back we can start the timer.
1630 			 */
1631 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1632 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1633 					ipmb_seq, broadcast,
1634 					source_address, source_lun);
1635 
1636 			/*
1637 			 * Copy the message into the recv message data, so we
1638 			 * can retransmit it later if necessary.
1639 			 */
1640 			memcpy(recv_msg->msg_data, smi_msg->data,
1641 			       smi_msg->data_size);
1642 			recv_msg->msg.data = recv_msg->msg_data;
1643 			recv_msg->msg.data_len = smi_msg->data_size;
1644 
1645 			/*
1646 			 * We don't unlock until here, because we need
1647 			 * to copy the completed message into the
1648 			 * recv_msg before we release the lock.
1649 			 * Otherwise, race conditions may bite us.  I
1650 			 * know that's pretty paranoid, but I prefer
1651 			 * to be correct.
1652 			 */
1653 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1654 		}
1655 	} else if (is_lan_addr(addr)) {
1656 		struct ipmi_lan_addr  *lan_addr;
1657 		unsigned char         ipmb_seq;
1658 		long                  seqid;
1659 
1660 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1661 			ipmi_inc_stat(intf, sent_invalid_commands);
1662 			rv = -EINVAL;
1663 			goto out_err;
1664 		}
1665 
1666 		if ((intf->channels[addr->channel].medium
1667 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1668 		    && (intf->channels[addr->channel].medium
1669 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1670 			ipmi_inc_stat(intf, sent_invalid_commands);
1671 			rv = -EINVAL;
1672 			goto out_err;
1673 		}
1674 
1675 		retries = 4;
1676 
1677 		/* Default to 1 second retries. */
1678 		if (retry_time_ms == 0)
1679 		    retry_time_ms = 1000;
1680 
1681 		/* 11 for the header and 1 for the checksum. */
1682 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1683 			ipmi_inc_stat(intf, sent_invalid_commands);
1684 			rv = -EMSGSIZE;
1685 			goto out_err;
1686 		}
1687 
1688 		lan_addr = (struct ipmi_lan_addr *) addr;
1689 		if (lan_addr->lun > 3) {
1690 			ipmi_inc_stat(intf, sent_invalid_commands);
1691 			rv = -EINVAL;
1692 			goto out_err;
1693 		}
1694 
1695 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1696 
1697 		if (recv_msg->msg.netfn & 0x1) {
1698 			/*
1699 			 * It's a response, so use the user's sequence
1700 			 * from msgid.
1701 			 */
1702 			ipmi_inc_stat(intf, sent_lan_responses);
1703 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1704 				       msgid, source_lun);
1705 
1706 			/*
1707 			 * Save the receive message so we can use it
1708 			 * to deliver the response.
1709 			 */
1710 			smi_msg->user_data = recv_msg;
1711 		} else {
1712 			/* It's a command, so get a sequence for it. */
1713 
1714 			spin_lock_irqsave(&(intf->seq_lock), flags);
1715 
1716 			/*
1717 			 * Create a sequence number with a 1 second
1718 			 * timeout and 4 retries.
1719 			 */
1720 			rv = intf_next_seq(intf,
1721 					   recv_msg,
1722 					   retry_time_ms,
1723 					   retries,
1724 					   0,
1725 					   &ipmb_seq,
1726 					   &seqid);
1727 			if (rv) {
1728 				/*
1729 				 * We have used up all the sequence numbers,
1730 				 * probably, so abort.
1731 				 */
1732 				spin_unlock_irqrestore(&(intf->seq_lock),
1733 						       flags);
1734 				goto out_err;
1735 			}
1736 
1737 			ipmi_inc_stat(intf, sent_lan_commands);
1738 
1739 			/*
1740 			 * Store the sequence number in the message,
1741 			 * so that when the send message response
1742 			 * comes back we can start the timer.
1743 			 */
1744 			format_lan_msg(smi_msg, msg, lan_addr,
1745 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1746 				       ipmb_seq, source_lun);
1747 
1748 			/*
1749 			 * Copy the message into the recv message data, so we
1750 			 * can retransmit it later if necessary.
1751 			 */
1752 			memcpy(recv_msg->msg_data, smi_msg->data,
1753 			       smi_msg->data_size);
1754 			recv_msg->msg.data = recv_msg->msg_data;
1755 			recv_msg->msg.data_len = smi_msg->data_size;
1756 
1757 			/*
1758 			 * We don't unlock until here, because we need
1759 			 * to copy the completed message into the
1760 			 * recv_msg before we release the lock.
1761 			 * Otherwise, race conditions may bite us.  I
1762 			 * know that's pretty paranoid, but I prefer
1763 			 * to be correct.
1764 			 */
1765 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1766 		}
1767 	} else {
1768 	    /* Unknown address type. */
1769 		ipmi_inc_stat(intf, sent_invalid_commands);
1770 		rv = -EINVAL;
1771 		goto out_err;
1772 	}
1773 
1774 #ifdef DEBUG_MSGING
1775 	{
1776 		int m;
1777 		for (m = 0; m < smi_msg->data_size; m++)
1778 			printk(" %2.2x", smi_msg->data[m]);
1779 		printk("\n");
1780 	}
1781 #endif
1782 
1783 	handlers->sender(intf->send_info, smi_msg, priority);
1784 	rcu_read_unlock();
1785 
1786 	return 0;
1787 
1788  out_err:
1789 	rcu_read_unlock();
1790 	ipmi_free_smi_msg(smi_msg);
1791 	ipmi_free_recv_msg(recv_msg);
1792 	return rv;
1793 }
1794 
1795 static int check_addr(ipmi_smi_t       intf,
1796 		      struct ipmi_addr *addr,
1797 		      unsigned char    *saddr,
1798 		      unsigned char    *lun)
1799 {
1800 	if (addr->channel >= IPMI_MAX_CHANNELS)
1801 		return -EINVAL;
1802 	*lun = intf->channels[addr->channel].lun;
1803 	*saddr = intf->channels[addr->channel].address;
1804 	return 0;
1805 }
1806 
1807 int ipmi_request_settime(ipmi_user_t      user,
1808 			 struct ipmi_addr *addr,
1809 			 long             msgid,
1810 			 struct kernel_ipmi_msg  *msg,
1811 			 void             *user_msg_data,
1812 			 int              priority,
1813 			 int              retries,
1814 			 unsigned int     retry_time_ms)
1815 {
1816 	unsigned char saddr, lun;
1817 	int           rv;
1818 
1819 	if (!user)
1820 		return -EINVAL;
1821 	rv = check_addr(user->intf, addr, &saddr, &lun);
1822 	if (rv)
1823 		return rv;
1824 	return i_ipmi_request(user,
1825 			      user->intf,
1826 			      addr,
1827 			      msgid,
1828 			      msg,
1829 			      user_msg_data,
1830 			      NULL, NULL,
1831 			      priority,
1832 			      saddr,
1833 			      lun,
1834 			      retries,
1835 			      retry_time_ms);
1836 }
1837 EXPORT_SYMBOL(ipmi_request_settime);
1838 
1839 int ipmi_request_supply_msgs(ipmi_user_t          user,
1840 			     struct ipmi_addr     *addr,
1841 			     long                 msgid,
1842 			     struct kernel_ipmi_msg *msg,
1843 			     void                 *user_msg_data,
1844 			     void                 *supplied_smi,
1845 			     struct ipmi_recv_msg *supplied_recv,
1846 			     int                  priority)
1847 {
1848 	unsigned char saddr, lun;
1849 	int           rv;
1850 
1851 	if (!user)
1852 		return -EINVAL;
1853 	rv = check_addr(user->intf, addr, &saddr, &lun);
1854 	if (rv)
1855 		return rv;
1856 	return i_ipmi_request(user,
1857 			      user->intf,
1858 			      addr,
1859 			      msgid,
1860 			      msg,
1861 			      user_msg_data,
1862 			      supplied_smi,
1863 			      supplied_recv,
1864 			      priority,
1865 			      saddr,
1866 			      lun,
1867 			      -1, 0);
1868 }
1869 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1870 
1871 #ifdef CONFIG_PROC_FS
1872 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1873 			       int count, int *eof, void *data)
1874 {
1875 	char       *out = (char *) page;
1876 	ipmi_smi_t intf = data;
1877 	int        i;
1878 	int        rv = 0;
1879 
1880 	for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1881 		rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1882 	out[rv-1] = '\n'; /* Replace the final space with a newline */
1883 	out[rv] = '\0';
1884 	rv++;
1885 	return rv;
1886 }
1887 
1888 static int version_file_read_proc(char *page, char **start, off_t off,
1889 				  int count, int *eof, void *data)
1890 {
1891 	char       *out = (char *) page;
1892 	ipmi_smi_t intf = data;
1893 
1894 	return sprintf(out, "%u.%u\n",
1895 		       ipmi_version_major(&intf->bmc->id),
1896 		       ipmi_version_minor(&intf->bmc->id));
1897 }
1898 
1899 static int stat_file_read_proc(char *page, char **start, off_t off,
1900 			       int count, int *eof, void *data)
1901 {
1902 	char       *out = (char *) page;
1903 	ipmi_smi_t intf = data;
1904 
1905 	out += sprintf(out, "sent_invalid_commands:       %u\n",
1906 		       ipmi_get_stat(intf, sent_invalid_commands));
1907 	out += sprintf(out, "sent_local_commands:         %u\n",
1908 		       ipmi_get_stat(intf, sent_local_commands));
1909 	out += sprintf(out, "handled_local_responses:     %u\n",
1910 		       ipmi_get_stat(intf, handled_local_responses));
1911 	out += sprintf(out, "unhandled_local_responses:   %u\n",
1912 		       ipmi_get_stat(intf, unhandled_local_responses));
1913 	out += sprintf(out, "sent_ipmb_commands:          %u\n",
1914 		       ipmi_get_stat(intf, sent_ipmb_commands));
1915 	out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1916 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1917 	out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1918 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1919 	out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1920 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1921 	out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1922 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1923 	out += sprintf(out, "sent_ipmb_responses:         %u\n",
1924 		       ipmi_get_stat(intf, sent_ipmb_responses));
1925 	out += sprintf(out, "handled_ipmb_responses:      %u\n",
1926 		       ipmi_get_stat(intf, handled_ipmb_responses));
1927 	out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1928 		       ipmi_get_stat(intf, invalid_ipmb_responses));
1929 	out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1930 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1931 	out += sprintf(out, "sent_lan_commands:           %u\n",
1932 		       ipmi_get_stat(intf, sent_lan_commands));
1933 	out += sprintf(out, "sent_lan_command_errs:       %u\n",
1934 		       ipmi_get_stat(intf, sent_lan_command_errs));
1935 	out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1936 		       ipmi_get_stat(intf, retransmitted_lan_commands));
1937 	out += sprintf(out, "timed_out_lan_commands:      %u\n",
1938 		       ipmi_get_stat(intf, timed_out_lan_commands));
1939 	out += sprintf(out, "sent_lan_responses:          %u\n",
1940 		       ipmi_get_stat(intf, sent_lan_responses));
1941 	out += sprintf(out, "handled_lan_responses:       %u\n",
1942 		       ipmi_get_stat(intf, handled_lan_responses));
1943 	out += sprintf(out, "invalid_lan_responses:       %u\n",
1944 		       ipmi_get_stat(intf, invalid_lan_responses));
1945 	out += sprintf(out, "unhandled_lan_responses:     %u\n",
1946 		       ipmi_get_stat(intf, unhandled_lan_responses));
1947 	out += sprintf(out, "handled_commands:            %u\n",
1948 		       ipmi_get_stat(intf, handled_commands));
1949 	out += sprintf(out, "invalid_commands:            %u\n",
1950 		       ipmi_get_stat(intf, invalid_commands));
1951 	out += sprintf(out, "unhandled_commands:          %u\n",
1952 		       ipmi_get_stat(intf, unhandled_commands));
1953 	out += sprintf(out, "invalid_events:              %u\n",
1954 		       ipmi_get_stat(intf, invalid_events));
1955 	out += sprintf(out, "events:                      %u\n",
1956 		       ipmi_get_stat(intf, events));
1957 	out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1958 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1959 	out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1960 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1961 
1962 	return (out - ((char *) page));
1963 }
1964 #endif /* CONFIG_PROC_FS */
1965 
1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1967 			    read_proc_t *read_proc,
1968 			    void *data)
1969 {
1970 	int                    rv = 0;
1971 #ifdef CONFIG_PROC_FS
1972 	struct proc_dir_entry  *file;
1973 	struct ipmi_proc_entry *entry;
1974 
1975 	/* Create a list element. */
1976 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1977 	if (!entry)
1978 		return -ENOMEM;
1979 	entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1980 	if (!entry->name) {
1981 		kfree(entry);
1982 		return -ENOMEM;
1983 	}
1984 	strcpy(entry->name, name);
1985 
1986 	file = create_proc_entry(name, 0, smi->proc_dir);
1987 	if (!file) {
1988 		kfree(entry->name);
1989 		kfree(entry);
1990 		rv = -ENOMEM;
1991 	} else {
1992 		file->data = data;
1993 		file->read_proc = read_proc;
1994 
1995 		mutex_lock(&smi->proc_entry_lock);
1996 		/* Stick it on the list. */
1997 		entry->next = smi->proc_entries;
1998 		smi->proc_entries = entry;
1999 		mutex_unlock(&smi->proc_entry_lock);
2000 	}
2001 #endif /* CONFIG_PROC_FS */
2002 
2003 	return rv;
2004 }
2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2006 
2007 static int add_proc_entries(ipmi_smi_t smi, int num)
2008 {
2009 	int rv = 0;
2010 
2011 #ifdef CONFIG_PROC_FS
2012 	sprintf(smi->proc_dir_name, "%d", num);
2013 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2014 	if (!smi->proc_dir)
2015 		rv = -ENOMEM;
2016 
2017 	if (rv == 0)
2018 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2019 					     stat_file_read_proc,
2020 					     smi);
2021 
2022 	if (rv == 0)
2023 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2024 					     ipmb_file_read_proc,
2025 					     smi);
2026 
2027 	if (rv == 0)
2028 		rv = ipmi_smi_add_proc_entry(smi, "version",
2029 					     version_file_read_proc,
2030 					     smi);
2031 #endif /* CONFIG_PROC_FS */
2032 
2033 	return rv;
2034 }
2035 
2036 static void remove_proc_entries(ipmi_smi_t smi)
2037 {
2038 #ifdef CONFIG_PROC_FS
2039 	struct ipmi_proc_entry *entry;
2040 
2041 	mutex_lock(&smi->proc_entry_lock);
2042 	while (smi->proc_entries) {
2043 		entry = smi->proc_entries;
2044 		smi->proc_entries = entry->next;
2045 
2046 		remove_proc_entry(entry->name, smi->proc_dir);
2047 		kfree(entry->name);
2048 		kfree(entry);
2049 	}
2050 	mutex_unlock(&smi->proc_entry_lock);
2051 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2052 #endif /* CONFIG_PROC_FS */
2053 }
2054 
2055 static int __find_bmc_guid(struct device *dev, void *data)
2056 {
2057 	unsigned char *id = data;
2058 	struct bmc_device *bmc = dev_get_drvdata(dev);
2059 	return memcmp(bmc->guid, id, 16) == 0;
2060 }
2061 
2062 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2063 					     unsigned char *guid)
2064 {
2065 	struct device *dev;
2066 
2067 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068 	if (dev)
2069 		return dev_get_drvdata(dev);
2070 	else
2071 		return NULL;
2072 }
2073 
2074 struct prod_dev_id {
2075 	unsigned int  product_id;
2076 	unsigned char device_id;
2077 };
2078 
2079 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2080 {
2081 	struct prod_dev_id *id = data;
2082 	struct bmc_device *bmc = dev_get_drvdata(dev);
2083 
2084 	return (bmc->id.product_id == id->product_id
2085 		&& bmc->id.device_id == id->device_id);
2086 }
2087 
2088 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2089 	struct device_driver *drv,
2090 	unsigned int product_id, unsigned char device_id)
2091 {
2092 	struct prod_dev_id id = {
2093 		.product_id = product_id,
2094 		.device_id = device_id,
2095 	};
2096 	struct device *dev;
2097 
2098 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099 	if (dev)
2100 		return dev_get_drvdata(dev);
2101 	else
2102 		return NULL;
2103 }
2104 
2105 static ssize_t device_id_show(struct device *dev,
2106 			      struct device_attribute *attr,
2107 			      char *buf)
2108 {
2109 	struct bmc_device *bmc = dev_get_drvdata(dev);
2110 
2111 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2112 }
2113 
2114 static ssize_t provides_dev_sdrs_show(struct device *dev,
2115 				      struct device_attribute *attr,
2116 				      char *buf)
2117 {
2118 	struct bmc_device *bmc = dev_get_drvdata(dev);
2119 
2120 	return snprintf(buf, 10, "%u\n",
2121 			(bmc->id.device_revision & 0x80) >> 7);
2122 }
2123 
2124 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2125 			     char *buf)
2126 {
2127 	struct bmc_device *bmc = dev_get_drvdata(dev);
2128 
2129 	return snprintf(buf, 20, "%u\n",
2130 			bmc->id.device_revision & 0x0F);
2131 }
2132 
2133 static ssize_t firmware_rev_show(struct device *dev,
2134 				 struct device_attribute *attr,
2135 				 char *buf)
2136 {
2137 	struct bmc_device *bmc = dev_get_drvdata(dev);
2138 
2139 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2140 			bmc->id.firmware_revision_2);
2141 }
2142 
2143 static ssize_t ipmi_version_show(struct device *dev,
2144 				 struct device_attribute *attr,
2145 				 char *buf)
2146 {
2147 	struct bmc_device *bmc = dev_get_drvdata(dev);
2148 
2149 	return snprintf(buf, 20, "%u.%u\n",
2150 			ipmi_version_major(&bmc->id),
2151 			ipmi_version_minor(&bmc->id));
2152 }
2153 
2154 static ssize_t add_dev_support_show(struct device *dev,
2155 				    struct device_attribute *attr,
2156 				    char *buf)
2157 {
2158 	struct bmc_device *bmc = dev_get_drvdata(dev);
2159 
2160 	return snprintf(buf, 10, "0x%02x\n",
2161 			bmc->id.additional_device_support);
2162 }
2163 
2164 static ssize_t manufacturer_id_show(struct device *dev,
2165 				    struct device_attribute *attr,
2166 				    char *buf)
2167 {
2168 	struct bmc_device *bmc = dev_get_drvdata(dev);
2169 
2170 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2171 }
2172 
2173 static ssize_t product_id_show(struct device *dev,
2174 			       struct device_attribute *attr,
2175 			       char *buf)
2176 {
2177 	struct bmc_device *bmc = dev_get_drvdata(dev);
2178 
2179 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2180 }
2181 
2182 static ssize_t aux_firmware_rev_show(struct device *dev,
2183 				     struct device_attribute *attr,
2184 				     char *buf)
2185 {
2186 	struct bmc_device *bmc = dev_get_drvdata(dev);
2187 
2188 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189 			bmc->id.aux_firmware_revision[3],
2190 			bmc->id.aux_firmware_revision[2],
2191 			bmc->id.aux_firmware_revision[1],
2192 			bmc->id.aux_firmware_revision[0]);
2193 }
2194 
2195 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2196 			 char *buf)
2197 {
2198 	struct bmc_device *bmc = dev_get_drvdata(dev);
2199 
2200 	return snprintf(buf, 100, "%Lx%Lx\n",
2201 			(long long) bmc->guid[0],
2202 			(long long) bmc->guid[8]);
2203 }
2204 
2205 static void remove_files(struct bmc_device *bmc)
2206 {
2207 	if (!bmc->dev)
2208 		return;
2209 
2210 	device_remove_file(&bmc->dev->dev,
2211 			   &bmc->device_id_attr);
2212 	device_remove_file(&bmc->dev->dev,
2213 			   &bmc->provides_dev_sdrs_attr);
2214 	device_remove_file(&bmc->dev->dev,
2215 			   &bmc->revision_attr);
2216 	device_remove_file(&bmc->dev->dev,
2217 			   &bmc->firmware_rev_attr);
2218 	device_remove_file(&bmc->dev->dev,
2219 			   &bmc->version_attr);
2220 	device_remove_file(&bmc->dev->dev,
2221 			   &bmc->add_dev_support_attr);
2222 	device_remove_file(&bmc->dev->dev,
2223 			   &bmc->manufacturer_id_attr);
2224 	device_remove_file(&bmc->dev->dev,
2225 			   &bmc->product_id_attr);
2226 
2227 	if (bmc->id.aux_firmware_revision_set)
2228 		device_remove_file(&bmc->dev->dev,
2229 				   &bmc->aux_firmware_rev_attr);
2230 	if (bmc->guid_set)
2231 		device_remove_file(&bmc->dev->dev,
2232 				   &bmc->guid_attr);
2233 }
2234 
2235 static void
2236 cleanup_bmc_device(struct kref *ref)
2237 {
2238 	struct bmc_device *bmc;
2239 
2240 	bmc = container_of(ref, struct bmc_device, refcount);
2241 
2242 	remove_files(bmc);
2243 	platform_device_unregister(bmc->dev);
2244 	kfree(bmc);
2245 }
2246 
2247 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2248 {
2249 	struct bmc_device *bmc = intf->bmc;
2250 
2251 	if (intf->sysfs_name) {
2252 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2253 		kfree(intf->sysfs_name);
2254 		intf->sysfs_name = NULL;
2255 	}
2256 	if (intf->my_dev_name) {
2257 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2258 		kfree(intf->my_dev_name);
2259 		intf->my_dev_name = NULL;
2260 	}
2261 
2262 	mutex_lock(&ipmidriver_mutex);
2263 	kref_put(&bmc->refcount, cleanup_bmc_device);
2264 	intf->bmc = NULL;
2265 	mutex_unlock(&ipmidriver_mutex);
2266 }
2267 
2268 static int create_files(struct bmc_device *bmc)
2269 {
2270 	int err;
2271 
2272 	bmc->device_id_attr.attr.name = "device_id";
2273 	bmc->device_id_attr.attr.mode = S_IRUGO;
2274 	bmc->device_id_attr.show = device_id_show;
2275 	sysfs_attr_init(&bmc->device_id_attr.attr);
2276 
2277 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2278 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2279 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2280 	sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2281 
2282 	bmc->revision_attr.attr.name = "revision";
2283 	bmc->revision_attr.attr.mode = S_IRUGO;
2284 	bmc->revision_attr.show = revision_show;
2285 	sysfs_attr_init(&bmc->revision_attr.attr);
2286 
2287 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2288 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2289 	bmc->firmware_rev_attr.show = firmware_rev_show;
2290 	sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2291 
2292 	bmc->version_attr.attr.name = "ipmi_version";
2293 	bmc->version_attr.attr.mode = S_IRUGO;
2294 	bmc->version_attr.show = ipmi_version_show;
2295 	sysfs_attr_init(&bmc->version_attr.attr);
2296 
2297 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2298 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2299 	bmc->add_dev_support_attr.show = add_dev_support_show;
2300 	sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2301 
2302 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2303 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2304 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2305 	sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2306 
2307 	bmc->product_id_attr.attr.name = "product_id";
2308 	bmc->product_id_attr.attr.mode = S_IRUGO;
2309 	bmc->product_id_attr.show = product_id_show;
2310 	sysfs_attr_init(&bmc->product_id_attr.attr);
2311 
2312 	bmc->guid_attr.attr.name = "guid";
2313 	bmc->guid_attr.attr.mode = S_IRUGO;
2314 	bmc->guid_attr.show = guid_show;
2315 	sysfs_attr_init(&bmc->guid_attr.attr);
2316 
2317 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2318 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2319 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2320 	sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2321 
2322 	err = device_create_file(&bmc->dev->dev,
2323 			   &bmc->device_id_attr);
2324 	if (err)
2325 		goto out;
2326 	err = device_create_file(&bmc->dev->dev,
2327 			   &bmc->provides_dev_sdrs_attr);
2328 	if (err)
2329 		goto out_devid;
2330 	err = device_create_file(&bmc->dev->dev,
2331 			   &bmc->revision_attr);
2332 	if (err)
2333 		goto out_sdrs;
2334 	err = device_create_file(&bmc->dev->dev,
2335 			   &bmc->firmware_rev_attr);
2336 	if (err)
2337 		goto out_rev;
2338 	err = device_create_file(&bmc->dev->dev,
2339 			   &bmc->version_attr);
2340 	if (err)
2341 		goto out_firm;
2342 	err = device_create_file(&bmc->dev->dev,
2343 			   &bmc->add_dev_support_attr);
2344 	if (err)
2345 		goto out_version;
2346 	err = device_create_file(&bmc->dev->dev,
2347 			   &bmc->manufacturer_id_attr);
2348 	if (err)
2349 		goto out_add_dev;
2350 	err = device_create_file(&bmc->dev->dev,
2351 			   &bmc->product_id_attr);
2352 	if (err)
2353 		goto out_manu;
2354 	if (bmc->id.aux_firmware_revision_set) {
2355 		err = device_create_file(&bmc->dev->dev,
2356 				   &bmc->aux_firmware_rev_attr);
2357 		if (err)
2358 			goto out_prod_id;
2359 	}
2360 	if (bmc->guid_set) {
2361 		err = device_create_file(&bmc->dev->dev,
2362 				   &bmc->guid_attr);
2363 		if (err)
2364 			goto out_aux_firm;
2365 	}
2366 
2367 	return 0;
2368 
2369 out_aux_firm:
2370 	if (bmc->id.aux_firmware_revision_set)
2371 		device_remove_file(&bmc->dev->dev,
2372 				   &bmc->aux_firmware_rev_attr);
2373 out_prod_id:
2374 	device_remove_file(&bmc->dev->dev,
2375 			   &bmc->product_id_attr);
2376 out_manu:
2377 	device_remove_file(&bmc->dev->dev,
2378 			   &bmc->manufacturer_id_attr);
2379 out_add_dev:
2380 	device_remove_file(&bmc->dev->dev,
2381 			   &bmc->add_dev_support_attr);
2382 out_version:
2383 	device_remove_file(&bmc->dev->dev,
2384 			   &bmc->version_attr);
2385 out_firm:
2386 	device_remove_file(&bmc->dev->dev,
2387 			   &bmc->firmware_rev_attr);
2388 out_rev:
2389 	device_remove_file(&bmc->dev->dev,
2390 			   &bmc->revision_attr);
2391 out_sdrs:
2392 	device_remove_file(&bmc->dev->dev,
2393 			   &bmc->provides_dev_sdrs_attr);
2394 out_devid:
2395 	device_remove_file(&bmc->dev->dev,
2396 			   &bmc->device_id_attr);
2397 out:
2398 	return err;
2399 }
2400 
2401 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2402 			     const char *sysfs_name)
2403 {
2404 	int               rv;
2405 	struct bmc_device *bmc = intf->bmc;
2406 	struct bmc_device *old_bmc;
2407 	int               size;
2408 	char              dummy[1];
2409 
2410 	mutex_lock(&ipmidriver_mutex);
2411 
2412 	/*
2413 	 * Try to find if there is an bmc_device struct
2414 	 * representing the interfaced BMC already
2415 	 */
2416 	if (bmc->guid_set)
2417 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2418 	else
2419 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2420 						    bmc->id.product_id,
2421 						    bmc->id.device_id);
2422 
2423 	/*
2424 	 * If there is already an bmc_device, free the new one,
2425 	 * otherwise register the new BMC device
2426 	 */
2427 	if (old_bmc) {
2428 		kfree(bmc);
2429 		intf->bmc = old_bmc;
2430 		bmc = old_bmc;
2431 
2432 		kref_get(&bmc->refcount);
2433 		mutex_unlock(&ipmidriver_mutex);
2434 
2435 		printk(KERN_INFO
2436 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2437 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2438 		       bmc->id.manufacturer_id,
2439 		       bmc->id.product_id,
2440 		       bmc->id.device_id);
2441 	} else {
2442 		char name[14];
2443 		unsigned char orig_dev_id = bmc->id.device_id;
2444 		int warn_printed = 0;
2445 
2446 		snprintf(name, sizeof(name),
2447 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2448 
2449 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2450 						 bmc->id.product_id,
2451 						 bmc->id.device_id)) {
2452 			if (!warn_printed) {
2453 				printk(KERN_WARNING PFX
2454 				       "This machine has two different BMCs"
2455 				       " with the same product id and device"
2456 				       " id.  This is an error in the"
2457 				       " firmware, but incrementing the"
2458 				       " device id to work around the problem."
2459 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2460 				       bmc->id.product_id, bmc->id.device_id);
2461 				warn_printed = 1;
2462 			}
2463 			bmc->id.device_id++; /* Wraps at 255 */
2464 			if (bmc->id.device_id == orig_dev_id) {
2465 				printk(KERN_ERR PFX
2466 				       "Out of device ids!\n");
2467 				break;
2468 			}
2469 		}
2470 
2471 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2472 		if (!bmc->dev) {
2473 			mutex_unlock(&ipmidriver_mutex);
2474 			printk(KERN_ERR
2475 			       "ipmi_msghandler:"
2476 			       " Unable to allocate platform device\n");
2477 			return -ENOMEM;
2478 		}
2479 		bmc->dev->dev.driver = &ipmidriver.driver;
2480 		dev_set_drvdata(&bmc->dev->dev, bmc);
2481 		kref_init(&bmc->refcount);
2482 
2483 		rv = platform_device_add(bmc->dev);
2484 		mutex_unlock(&ipmidriver_mutex);
2485 		if (rv) {
2486 			platform_device_put(bmc->dev);
2487 			bmc->dev = NULL;
2488 			printk(KERN_ERR
2489 			       "ipmi_msghandler:"
2490 			       " Unable to register bmc device: %d\n",
2491 			       rv);
2492 			/*
2493 			 * Don't go to out_err, you can only do that if
2494 			 * the device is registered already.
2495 			 */
2496 			return rv;
2497 		}
2498 
2499 		rv = create_files(bmc);
2500 		if (rv) {
2501 			mutex_lock(&ipmidriver_mutex);
2502 			platform_device_unregister(bmc->dev);
2503 			mutex_unlock(&ipmidriver_mutex);
2504 
2505 			return rv;
2506 		}
2507 
2508 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2509 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2510 			 bmc->id.manufacturer_id,
2511 			 bmc->id.product_id,
2512 			 bmc->id.device_id);
2513 	}
2514 
2515 	/*
2516 	 * create symlink from system interface device to bmc device
2517 	 * and back.
2518 	 */
2519 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2520 	if (!intf->sysfs_name) {
2521 		rv = -ENOMEM;
2522 		printk(KERN_ERR
2523 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2524 		       rv);
2525 		goto out_err;
2526 	}
2527 
2528 	rv = sysfs_create_link(&intf->si_dev->kobj,
2529 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2530 	if (rv) {
2531 		kfree(intf->sysfs_name);
2532 		intf->sysfs_name = NULL;
2533 		printk(KERN_ERR
2534 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2535 		       rv);
2536 		goto out_err;
2537 	}
2538 
2539 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2540 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2541 	if (!intf->my_dev_name) {
2542 		kfree(intf->sysfs_name);
2543 		intf->sysfs_name = NULL;
2544 		rv = -ENOMEM;
2545 		printk(KERN_ERR
2546 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2547 		       rv);
2548 		goto out_err;
2549 	}
2550 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2551 
2552 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2553 			       intf->my_dev_name);
2554 	if (rv) {
2555 		kfree(intf->sysfs_name);
2556 		intf->sysfs_name = NULL;
2557 		kfree(intf->my_dev_name);
2558 		intf->my_dev_name = NULL;
2559 		printk(KERN_ERR
2560 		       "ipmi_msghandler:"
2561 		       " Unable to create symlink to bmc: %d\n",
2562 		       rv);
2563 		goto out_err;
2564 	}
2565 
2566 	return 0;
2567 
2568 out_err:
2569 	ipmi_bmc_unregister(intf);
2570 	return rv;
2571 }
2572 
2573 static int
2574 send_guid_cmd(ipmi_smi_t intf, int chan)
2575 {
2576 	struct kernel_ipmi_msg            msg;
2577 	struct ipmi_system_interface_addr si;
2578 
2579 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2580 	si.channel = IPMI_BMC_CHANNEL;
2581 	si.lun = 0;
2582 
2583 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2584 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2585 	msg.data = NULL;
2586 	msg.data_len = 0;
2587 	return i_ipmi_request(NULL,
2588 			      intf,
2589 			      (struct ipmi_addr *) &si,
2590 			      0,
2591 			      &msg,
2592 			      intf,
2593 			      NULL,
2594 			      NULL,
2595 			      0,
2596 			      intf->channels[0].address,
2597 			      intf->channels[0].lun,
2598 			      -1, 0);
2599 }
2600 
2601 static void
2602 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2603 {
2604 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2605 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2606 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2607 		/* Not for me */
2608 		return;
2609 
2610 	if (msg->msg.data[0] != 0) {
2611 		/* Error from getting the GUID, the BMC doesn't have one. */
2612 		intf->bmc->guid_set = 0;
2613 		goto out;
2614 	}
2615 
2616 	if (msg->msg.data_len < 17) {
2617 		intf->bmc->guid_set = 0;
2618 		printk(KERN_WARNING PFX
2619 		       "guid_handler: The GUID response from the BMC was too"
2620 		       " short, it was %d but should have been 17.  Assuming"
2621 		       " GUID is not available.\n",
2622 		       msg->msg.data_len);
2623 		goto out;
2624 	}
2625 
2626 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2627 	intf->bmc->guid_set = 1;
2628  out:
2629 	wake_up(&intf->waitq);
2630 }
2631 
2632 static void
2633 get_guid(ipmi_smi_t intf)
2634 {
2635 	int rv;
2636 
2637 	intf->bmc->guid_set = 0x2;
2638 	intf->null_user_handler = guid_handler;
2639 	rv = send_guid_cmd(intf, 0);
2640 	if (rv)
2641 		/* Send failed, no GUID available. */
2642 		intf->bmc->guid_set = 0;
2643 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2644 	intf->null_user_handler = NULL;
2645 }
2646 
2647 static int
2648 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2649 {
2650 	struct kernel_ipmi_msg            msg;
2651 	unsigned char                     data[1];
2652 	struct ipmi_system_interface_addr si;
2653 
2654 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2655 	si.channel = IPMI_BMC_CHANNEL;
2656 	si.lun = 0;
2657 
2658 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2659 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2660 	msg.data = data;
2661 	msg.data_len = 1;
2662 	data[0] = chan;
2663 	return i_ipmi_request(NULL,
2664 			      intf,
2665 			      (struct ipmi_addr *) &si,
2666 			      0,
2667 			      &msg,
2668 			      intf,
2669 			      NULL,
2670 			      NULL,
2671 			      0,
2672 			      intf->channels[0].address,
2673 			      intf->channels[0].lun,
2674 			      -1, 0);
2675 }
2676 
2677 static void
2678 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2679 {
2680 	int rv = 0;
2681 	int chan;
2682 
2683 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2684 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2685 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2686 		/* It's the one we want */
2687 		if (msg->msg.data[0] != 0) {
2688 			/* Got an error from the channel, just go on. */
2689 
2690 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2691 				/*
2692 				 * If the MC does not support this
2693 				 * command, that is legal.  We just
2694 				 * assume it has one IPMB at channel
2695 				 * zero.
2696 				 */
2697 				intf->channels[0].medium
2698 					= IPMI_CHANNEL_MEDIUM_IPMB;
2699 				intf->channels[0].protocol
2700 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2701 				rv = -ENOSYS;
2702 
2703 				intf->curr_channel = IPMI_MAX_CHANNELS;
2704 				wake_up(&intf->waitq);
2705 				goto out;
2706 			}
2707 			goto next_channel;
2708 		}
2709 		if (msg->msg.data_len < 4) {
2710 			/* Message not big enough, just go on. */
2711 			goto next_channel;
2712 		}
2713 		chan = intf->curr_channel;
2714 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2715 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2716 
2717  next_channel:
2718 		intf->curr_channel++;
2719 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2720 			wake_up(&intf->waitq);
2721 		else
2722 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2723 
2724 		if (rv) {
2725 			/* Got an error somehow, just give up. */
2726 			intf->curr_channel = IPMI_MAX_CHANNELS;
2727 			wake_up(&intf->waitq);
2728 
2729 			printk(KERN_WARNING PFX
2730 			       "Error sending channel information: %d\n",
2731 			       rv);
2732 		}
2733 	}
2734  out:
2735 	return;
2736 }
2737 
2738 void ipmi_poll_interface(ipmi_user_t user)
2739 {
2740 	ipmi_smi_t intf = user->intf;
2741 
2742 	if (intf->handlers->poll)
2743 		intf->handlers->poll(intf->send_info);
2744 }
2745 EXPORT_SYMBOL(ipmi_poll_interface);
2746 
2747 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2748 		      void		       *send_info,
2749 		      struct ipmi_device_id    *device_id,
2750 		      struct device            *si_dev,
2751 		      const char               *sysfs_name,
2752 		      unsigned char            slave_addr)
2753 {
2754 	int              i, j;
2755 	int              rv;
2756 	ipmi_smi_t       intf;
2757 	ipmi_smi_t       tintf;
2758 	struct list_head *link;
2759 
2760 	/*
2761 	 * Make sure the driver is actually initialized, this handles
2762 	 * problems with initialization order.
2763 	 */
2764 	if (!initialized) {
2765 		rv = ipmi_init_msghandler();
2766 		if (rv)
2767 			return rv;
2768 		/*
2769 		 * The init code doesn't return an error if it was turned
2770 		 * off, but it won't initialize.  Check that.
2771 		 */
2772 		if (!initialized)
2773 			return -ENODEV;
2774 	}
2775 
2776 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2777 	if (!intf)
2778 		return -ENOMEM;
2779 
2780 	intf->ipmi_version_major = ipmi_version_major(device_id);
2781 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2782 
2783 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2784 	if (!intf->bmc) {
2785 		kfree(intf);
2786 		return -ENOMEM;
2787 	}
2788 	intf->intf_num = -1; /* Mark it invalid for now. */
2789 	kref_init(&intf->refcount);
2790 	intf->bmc->id = *device_id;
2791 	intf->si_dev = si_dev;
2792 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2793 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2794 		intf->channels[j].lun = 2;
2795 	}
2796 	if (slave_addr != 0)
2797 		intf->channels[0].address = slave_addr;
2798 	INIT_LIST_HEAD(&intf->users);
2799 	intf->handlers = handlers;
2800 	intf->send_info = send_info;
2801 	spin_lock_init(&intf->seq_lock);
2802 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2803 		intf->seq_table[j].inuse = 0;
2804 		intf->seq_table[j].seqid = 0;
2805 	}
2806 	intf->curr_seq = 0;
2807 #ifdef CONFIG_PROC_FS
2808 	mutex_init(&intf->proc_entry_lock);
2809 #endif
2810 	spin_lock_init(&intf->waiting_msgs_lock);
2811 	INIT_LIST_HEAD(&intf->waiting_msgs);
2812 	spin_lock_init(&intf->events_lock);
2813 	INIT_LIST_HEAD(&intf->waiting_events);
2814 	intf->waiting_events_count = 0;
2815 	mutex_init(&intf->cmd_rcvrs_mutex);
2816 	spin_lock_init(&intf->maintenance_mode_lock);
2817 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2818 	init_waitqueue_head(&intf->waitq);
2819 	for (i = 0; i < IPMI_NUM_STATS; i++)
2820 		atomic_set(&intf->stats[i], 0);
2821 
2822 	intf->proc_dir = NULL;
2823 
2824 	mutex_lock(&smi_watchers_mutex);
2825 	mutex_lock(&ipmi_interfaces_mutex);
2826 	/* Look for a hole in the numbers. */
2827 	i = 0;
2828 	link = &ipmi_interfaces;
2829 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2830 		if (tintf->intf_num != i) {
2831 			link = &tintf->link;
2832 			break;
2833 		}
2834 		i++;
2835 	}
2836 	/* Add the new interface in numeric order. */
2837 	if (i == 0)
2838 		list_add_rcu(&intf->link, &ipmi_interfaces);
2839 	else
2840 		list_add_tail_rcu(&intf->link, link);
2841 
2842 	rv = handlers->start_processing(send_info, intf);
2843 	if (rv)
2844 		goto out;
2845 
2846 	get_guid(intf);
2847 
2848 	if ((intf->ipmi_version_major > 1)
2849 			|| ((intf->ipmi_version_major == 1)
2850 			    && (intf->ipmi_version_minor >= 5))) {
2851 		/*
2852 		 * Start scanning the channels to see what is
2853 		 * available.
2854 		 */
2855 		intf->null_user_handler = channel_handler;
2856 		intf->curr_channel = 0;
2857 		rv = send_channel_info_cmd(intf, 0);
2858 		if (rv)
2859 			goto out;
2860 
2861 		/* Wait for the channel info to be read. */
2862 		wait_event(intf->waitq,
2863 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2864 		intf->null_user_handler = NULL;
2865 	} else {
2866 		/* Assume a single IPMB channel at zero. */
2867 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2868 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2869 		intf->curr_channel = IPMI_MAX_CHANNELS;
2870 	}
2871 
2872 	if (rv == 0)
2873 		rv = add_proc_entries(intf, i);
2874 
2875 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2876 
2877  out:
2878 	if (rv) {
2879 		if (intf->proc_dir)
2880 			remove_proc_entries(intf);
2881 		intf->handlers = NULL;
2882 		list_del_rcu(&intf->link);
2883 		mutex_unlock(&ipmi_interfaces_mutex);
2884 		mutex_unlock(&smi_watchers_mutex);
2885 		synchronize_rcu();
2886 		kref_put(&intf->refcount, intf_free);
2887 	} else {
2888 		/*
2889 		 * Keep memory order straight for RCU readers.  Make
2890 		 * sure everything else is committed to memory before
2891 		 * setting intf_num to mark the interface valid.
2892 		 */
2893 		smp_wmb();
2894 		intf->intf_num = i;
2895 		mutex_unlock(&ipmi_interfaces_mutex);
2896 		/* After this point the interface is legal to use. */
2897 		call_smi_watchers(i, intf->si_dev);
2898 		mutex_unlock(&smi_watchers_mutex);
2899 	}
2900 
2901 	return rv;
2902 }
2903 EXPORT_SYMBOL(ipmi_register_smi);
2904 
2905 static void cleanup_smi_msgs(ipmi_smi_t intf)
2906 {
2907 	int              i;
2908 	struct seq_table *ent;
2909 
2910 	/* No need for locks, the interface is down. */
2911 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2912 		ent = &(intf->seq_table[i]);
2913 		if (!ent->inuse)
2914 			continue;
2915 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2916 	}
2917 }
2918 
2919 int ipmi_unregister_smi(ipmi_smi_t intf)
2920 {
2921 	struct ipmi_smi_watcher *w;
2922 	int    intf_num = intf->intf_num;
2923 
2924 	ipmi_bmc_unregister(intf);
2925 
2926 	mutex_lock(&smi_watchers_mutex);
2927 	mutex_lock(&ipmi_interfaces_mutex);
2928 	intf->intf_num = -1;
2929 	intf->handlers = NULL;
2930 	list_del_rcu(&intf->link);
2931 	mutex_unlock(&ipmi_interfaces_mutex);
2932 	synchronize_rcu();
2933 
2934 	cleanup_smi_msgs(intf);
2935 
2936 	remove_proc_entries(intf);
2937 
2938 	/*
2939 	 * Call all the watcher interfaces to tell them that
2940 	 * an interface is gone.
2941 	 */
2942 	list_for_each_entry(w, &smi_watchers, link)
2943 		w->smi_gone(intf_num);
2944 	mutex_unlock(&smi_watchers_mutex);
2945 
2946 	kref_put(&intf->refcount, intf_free);
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL(ipmi_unregister_smi);
2950 
2951 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2952 				   struct ipmi_smi_msg *msg)
2953 {
2954 	struct ipmi_ipmb_addr ipmb_addr;
2955 	struct ipmi_recv_msg  *recv_msg;
2956 
2957 	/*
2958 	 * This is 11, not 10, because the response must contain a
2959 	 * completion code.
2960 	 */
2961 	if (msg->rsp_size < 11) {
2962 		/* Message not big enough, just ignore it. */
2963 		ipmi_inc_stat(intf, invalid_ipmb_responses);
2964 		return 0;
2965 	}
2966 
2967 	if (msg->rsp[2] != 0) {
2968 		/* An error getting the response, just ignore it. */
2969 		return 0;
2970 	}
2971 
2972 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2973 	ipmb_addr.slave_addr = msg->rsp[6];
2974 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
2975 	ipmb_addr.lun = msg->rsp[7] & 3;
2976 
2977 	/*
2978 	 * It's a response from a remote entity.  Look up the sequence
2979 	 * number and handle the response.
2980 	 */
2981 	if (intf_find_seq(intf,
2982 			  msg->rsp[7] >> 2,
2983 			  msg->rsp[3] & 0x0f,
2984 			  msg->rsp[8],
2985 			  (msg->rsp[4] >> 2) & (~1),
2986 			  (struct ipmi_addr *) &(ipmb_addr),
2987 			  &recv_msg)) {
2988 		/*
2989 		 * We were unable to find the sequence number,
2990 		 * so just nuke the message.
2991 		 */
2992 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
2993 		return 0;
2994 	}
2995 
2996 	memcpy(recv_msg->msg_data,
2997 	       &(msg->rsp[9]),
2998 	       msg->rsp_size - 9);
2999 	/*
3000 	 * The other fields matched, so no need to set them, except
3001 	 * for netfn, which needs to be the response that was
3002 	 * returned, not the request value.
3003 	 */
3004 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3005 	recv_msg->msg.data = recv_msg->msg_data;
3006 	recv_msg->msg.data_len = msg->rsp_size - 10;
3007 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3008 	ipmi_inc_stat(intf, handled_ipmb_responses);
3009 	deliver_response(recv_msg);
3010 
3011 	return 0;
3012 }
3013 
3014 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3015 				   struct ipmi_smi_msg *msg)
3016 {
3017 	struct cmd_rcvr          *rcvr;
3018 	int                      rv = 0;
3019 	unsigned char            netfn;
3020 	unsigned char            cmd;
3021 	unsigned char            chan;
3022 	ipmi_user_t              user = NULL;
3023 	struct ipmi_ipmb_addr    *ipmb_addr;
3024 	struct ipmi_recv_msg     *recv_msg;
3025 	struct ipmi_smi_handlers *handlers;
3026 
3027 	if (msg->rsp_size < 10) {
3028 		/* Message not big enough, just ignore it. */
3029 		ipmi_inc_stat(intf, invalid_commands);
3030 		return 0;
3031 	}
3032 
3033 	if (msg->rsp[2] != 0) {
3034 		/* An error getting the response, just ignore it. */
3035 		return 0;
3036 	}
3037 
3038 	netfn = msg->rsp[4] >> 2;
3039 	cmd = msg->rsp[8];
3040 	chan = msg->rsp[3] & 0xf;
3041 
3042 	rcu_read_lock();
3043 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3044 	if (rcvr) {
3045 		user = rcvr->user;
3046 		kref_get(&user->refcount);
3047 	} else
3048 		user = NULL;
3049 	rcu_read_unlock();
3050 
3051 	if (user == NULL) {
3052 		/* We didn't find a user, deliver an error response. */
3053 		ipmi_inc_stat(intf, unhandled_commands);
3054 
3055 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3056 		msg->data[1] = IPMI_SEND_MSG_CMD;
3057 		msg->data[2] = msg->rsp[3];
3058 		msg->data[3] = msg->rsp[6];
3059 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3060 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3061 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3062 		/* rqseq/lun */
3063 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3064 		msg->data[8] = msg->rsp[8]; /* cmd */
3065 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3066 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3067 		msg->data_size = 11;
3068 
3069 #ifdef DEBUG_MSGING
3070 	{
3071 		int m;
3072 		printk("Invalid command:");
3073 		for (m = 0; m < msg->data_size; m++)
3074 			printk(" %2.2x", msg->data[m]);
3075 		printk("\n");
3076 	}
3077 #endif
3078 		rcu_read_lock();
3079 		handlers = intf->handlers;
3080 		if (handlers) {
3081 			handlers->sender(intf->send_info, msg, 0);
3082 			/*
3083 			 * We used the message, so return the value
3084 			 * that causes it to not be freed or
3085 			 * queued.
3086 			 */
3087 			rv = -1;
3088 		}
3089 		rcu_read_unlock();
3090 	} else {
3091 		/* Deliver the message to the user. */
3092 		ipmi_inc_stat(intf, handled_commands);
3093 
3094 		recv_msg = ipmi_alloc_recv_msg();
3095 		if (!recv_msg) {
3096 			/*
3097 			 * We couldn't allocate memory for the
3098 			 * message, so requeue it for handling
3099 			 * later.
3100 			 */
3101 			rv = 1;
3102 			kref_put(&user->refcount, free_user);
3103 		} else {
3104 			/* Extract the source address from the data. */
3105 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3106 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3107 			ipmb_addr->slave_addr = msg->rsp[6];
3108 			ipmb_addr->lun = msg->rsp[7] & 3;
3109 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3110 
3111 			/*
3112 			 * Extract the rest of the message information
3113 			 * from the IPMB header.
3114 			 */
3115 			recv_msg->user = user;
3116 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3117 			recv_msg->msgid = msg->rsp[7] >> 2;
3118 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3119 			recv_msg->msg.cmd = msg->rsp[8];
3120 			recv_msg->msg.data = recv_msg->msg_data;
3121 
3122 			/*
3123 			 * We chop off 10, not 9 bytes because the checksum
3124 			 * at the end also needs to be removed.
3125 			 */
3126 			recv_msg->msg.data_len = msg->rsp_size - 10;
3127 			memcpy(recv_msg->msg_data,
3128 			       &(msg->rsp[9]),
3129 			       msg->rsp_size - 10);
3130 			deliver_response(recv_msg);
3131 		}
3132 	}
3133 
3134 	return rv;
3135 }
3136 
3137 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3138 				  struct ipmi_smi_msg *msg)
3139 {
3140 	struct ipmi_lan_addr  lan_addr;
3141 	struct ipmi_recv_msg  *recv_msg;
3142 
3143 
3144 	/*
3145 	 * This is 13, not 12, because the response must contain a
3146 	 * completion code.
3147 	 */
3148 	if (msg->rsp_size < 13) {
3149 		/* Message not big enough, just ignore it. */
3150 		ipmi_inc_stat(intf, invalid_lan_responses);
3151 		return 0;
3152 	}
3153 
3154 	if (msg->rsp[2] != 0) {
3155 		/* An error getting the response, just ignore it. */
3156 		return 0;
3157 	}
3158 
3159 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3160 	lan_addr.session_handle = msg->rsp[4];
3161 	lan_addr.remote_SWID = msg->rsp[8];
3162 	lan_addr.local_SWID = msg->rsp[5];
3163 	lan_addr.channel = msg->rsp[3] & 0x0f;
3164 	lan_addr.privilege = msg->rsp[3] >> 4;
3165 	lan_addr.lun = msg->rsp[9] & 3;
3166 
3167 	/*
3168 	 * It's a response from a remote entity.  Look up the sequence
3169 	 * number and handle the response.
3170 	 */
3171 	if (intf_find_seq(intf,
3172 			  msg->rsp[9] >> 2,
3173 			  msg->rsp[3] & 0x0f,
3174 			  msg->rsp[10],
3175 			  (msg->rsp[6] >> 2) & (~1),
3176 			  (struct ipmi_addr *) &(lan_addr),
3177 			  &recv_msg)) {
3178 		/*
3179 		 * We were unable to find the sequence number,
3180 		 * so just nuke the message.
3181 		 */
3182 		ipmi_inc_stat(intf, unhandled_lan_responses);
3183 		return 0;
3184 	}
3185 
3186 	memcpy(recv_msg->msg_data,
3187 	       &(msg->rsp[11]),
3188 	       msg->rsp_size - 11);
3189 	/*
3190 	 * The other fields matched, so no need to set them, except
3191 	 * for netfn, which needs to be the response that was
3192 	 * returned, not the request value.
3193 	 */
3194 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3195 	recv_msg->msg.data = recv_msg->msg_data;
3196 	recv_msg->msg.data_len = msg->rsp_size - 12;
3197 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3198 	ipmi_inc_stat(intf, handled_lan_responses);
3199 	deliver_response(recv_msg);
3200 
3201 	return 0;
3202 }
3203 
3204 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3205 				  struct ipmi_smi_msg *msg)
3206 {
3207 	struct cmd_rcvr          *rcvr;
3208 	int                      rv = 0;
3209 	unsigned char            netfn;
3210 	unsigned char            cmd;
3211 	unsigned char            chan;
3212 	ipmi_user_t              user = NULL;
3213 	struct ipmi_lan_addr     *lan_addr;
3214 	struct ipmi_recv_msg     *recv_msg;
3215 
3216 	if (msg->rsp_size < 12) {
3217 		/* Message not big enough, just ignore it. */
3218 		ipmi_inc_stat(intf, invalid_commands);
3219 		return 0;
3220 	}
3221 
3222 	if (msg->rsp[2] != 0) {
3223 		/* An error getting the response, just ignore it. */
3224 		return 0;
3225 	}
3226 
3227 	netfn = msg->rsp[6] >> 2;
3228 	cmd = msg->rsp[10];
3229 	chan = msg->rsp[3] & 0xf;
3230 
3231 	rcu_read_lock();
3232 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3233 	if (rcvr) {
3234 		user = rcvr->user;
3235 		kref_get(&user->refcount);
3236 	} else
3237 		user = NULL;
3238 	rcu_read_unlock();
3239 
3240 	if (user == NULL) {
3241 		/* We didn't find a user, just give up. */
3242 		ipmi_inc_stat(intf, unhandled_commands);
3243 
3244 		/*
3245 		 * Don't do anything with these messages, just allow
3246 		 * them to be freed.
3247 		 */
3248 		rv = 0;
3249 	} else {
3250 		/* Deliver the message to the user. */
3251 		ipmi_inc_stat(intf, handled_commands);
3252 
3253 		recv_msg = ipmi_alloc_recv_msg();
3254 		if (!recv_msg) {
3255 			/*
3256 			 * We couldn't allocate memory for the
3257 			 * message, so requeue it for handling later.
3258 			 */
3259 			rv = 1;
3260 			kref_put(&user->refcount, free_user);
3261 		} else {
3262 			/* Extract the source address from the data. */
3263 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3264 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3265 			lan_addr->session_handle = msg->rsp[4];
3266 			lan_addr->remote_SWID = msg->rsp[8];
3267 			lan_addr->local_SWID = msg->rsp[5];
3268 			lan_addr->lun = msg->rsp[9] & 3;
3269 			lan_addr->channel = msg->rsp[3] & 0xf;
3270 			lan_addr->privilege = msg->rsp[3] >> 4;
3271 
3272 			/*
3273 			 * Extract the rest of the message information
3274 			 * from the IPMB header.
3275 			 */
3276 			recv_msg->user = user;
3277 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3278 			recv_msg->msgid = msg->rsp[9] >> 2;
3279 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3280 			recv_msg->msg.cmd = msg->rsp[10];
3281 			recv_msg->msg.data = recv_msg->msg_data;
3282 
3283 			/*
3284 			 * We chop off 12, not 11 bytes because the checksum
3285 			 * at the end also needs to be removed.
3286 			 */
3287 			recv_msg->msg.data_len = msg->rsp_size - 12;
3288 			memcpy(recv_msg->msg_data,
3289 			       &(msg->rsp[11]),
3290 			       msg->rsp_size - 12);
3291 			deliver_response(recv_msg);
3292 		}
3293 	}
3294 
3295 	return rv;
3296 }
3297 
3298 /*
3299  * This routine will handle "Get Message" command responses with
3300  * channels that use an OEM Medium. The message format belongs to
3301  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3302  * Chapter 22, sections 22.6 and 22.24 for more details.
3303  */
3304 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3305 				  struct ipmi_smi_msg *msg)
3306 {
3307 	struct cmd_rcvr       *rcvr;
3308 	int                   rv = 0;
3309 	unsigned char         netfn;
3310 	unsigned char         cmd;
3311 	unsigned char         chan;
3312 	ipmi_user_t           user = NULL;
3313 	struct ipmi_system_interface_addr *smi_addr;
3314 	struct ipmi_recv_msg  *recv_msg;
3315 
3316 	/*
3317 	 * We expect the OEM SW to perform error checking
3318 	 * so we just do some basic sanity checks
3319 	 */
3320 	if (msg->rsp_size < 4) {
3321 		/* Message not big enough, just ignore it. */
3322 		ipmi_inc_stat(intf, invalid_commands);
3323 		return 0;
3324 	}
3325 
3326 	if (msg->rsp[2] != 0) {
3327 		/* An error getting the response, just ignore it. */
3328 		return 0;
3329 	}
3330 
3331 	/*
3332 	 * This is an OEM Message so the OEM needs to know how
3333 	 * handle the message. We do no interpretation.
3334 	 */
3335 	netfn = msg->rsp[0] >> 2;
3336 	cmd = msg->rsp[1];
3337 	chan = msg->rsp[3] & 0xf;
3338 
3339 	rcu_read_lock();
3340 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3341 	if (rcvr) {
3342 		user = rcvr->user;
3343 		kref_get(&user->refcount);
3344 	} else
3345 		user = NULL;
3346 	rcu_read_unlock();
3347 
3348 	if (user == NULL) {
3349 		/* We didn't find a user, just give up. */
3350 		ipmi_inc_stat(intf, unhandled_commands);
3351 
3352 		/*
3353 		 * Don't do anything with these messages, just allow
3354 		 * them to be freed.
3355 		 */
3356 
3357 		rv = 0;
3358 	} else {
3359 		/* Deliver the message to the user. */
3360 		ipmi_inc_stat(intf, handled_commands);
3361 
3362 		recv_msg = ipmi_alloc_recv_msg();
3363 		if (!recv_msg) {
3364 			/*
3365 			 * We couldn't allocate memory for the
3366 			 * message, so requeue it for handling
3367 			 * later.
3368 			 */
3369 			rv = 1;
3370 			kref_put(&user->refcount, free_user);
3371 		} else {
3372 			/*
3373 			 * OEM Messages are expected to be delivered via
3374 			 * the system interface to SMS software.  We might
3375 			 * need to visit this again depending on OEM
3376 			 * requirements
3377 			 */
3378 			smi_addr = ((struct ipmi_system_interface_addr *)
3379 				    &(recv_msg->addr));
3380 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3381 			smi_addr->channel = IPMI_BMC_CHANNEL;
3382 			smi_addr->lun = msg->rsp[0] & 3;
3383 
3384 			recv_msg->user = user;
3385 			recv_msg->user_msg_data = NULL;
3386 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3387 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3388 			recv_msg->msg.cmd = msg->rsp[1];
3389 			recv_msg->msg.data = recv_msg->msg_data;
3390 
3391 			/*
3392 			 * The message starts at byte 4 which follows the
3393 			 * the Channel Byte in the "GET MESSAGE" command
3394 			 */
3395 			recv_msg->msg.data_len = msg->rsp_size - 4;
3396 			memcpy(recv_msg->msg_data,
3397 			       &(msg->rsp[4]),
3398 			       msg->rsp_size - 4);
3399 			deliver_response(recv_msg);
3400 		}
3401 	}
3402 
3403 	return rv;
3404 }
3405 
3406 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3407 				     struct ipmi_smi_msg  *msg)
3408 {
3409 	struct ipmi_system_interface_addr *smi_addr;
3410 
3411 	recv_msg->msgid = 0;
3412 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3413 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3414 	smi_addr->channel = IPMI_BMC_CHANNEL;
3415 	smi_addr->lun = msg->rsp[0] & 3;
3416 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3417 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3418 	recv_msg->msg.cmd = msg->rsp[1];
3419 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3420 	recv_msg->msg.data = recv_msg->msg_data;
3421 	recv_msg->msg.data_len = msg->rsp_size - 3;
3422 }
3423 
3424 static int handle_read_event_rsp(ipmi_smi_t          intf,
3425 				 struct ipmi_smi_msg *msg)
3426 {
3427 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3428 	struct list_head     msgs;
3429 	ipmi_user_t          user;
3430 	int                  rv = 0;
3431 	int                  deliver_count = 0;
3432 	unsigned long        flags;
3433 
3434 	if (msg->rsp_size < 19) {
3435 		/* Message is too small to be an IPMB event. */
3436 		ipmi_inc_stat(intf, invalid_events);
3437 		return 0;
3438 	}
3439 
3440 	if (msg->rsp[2] != 0) {
3441 		/* An error getting the event, just ignore it. */
3442 		return 0;
3443 	}
3444 
3445 	INIT_LIST_HEAD(&msgs);
3446 
3447 	spin_lock_irqsave(&intf->events_lock, flags);
3448 
3449 	ipmi_inc_stat(intf, events);
3450 
3451 	/*
3452 	 * Allocate and fill in one message for every user that is
3453 	 * getting events.
3454 	 */
3455 	rcu_read_lock();
3456 	list_for_each_entry_rcu(user, &intf->users, link) {
3457 		if (!user->gets_events)
3458 			continue;
3459 
3460 		recv_msg = ipmi_alloc_recv_msg();
3461 		if (!recv_msg) {
3462 			rcu_read_unlock();
3463 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3464 						 link) {
3465 				list_del(&recv_msg->link);
3466 				ipmi_free_recv_msg(recv_msg);
3467 			}
3468 			/*
3469 			 * We couldn't allocate memory for the
3470 			 * message, so requeue it for handling
3471 			 * later.
3472 			 */
3473 			rv = 1;
3474 			goto out;
3475 		}
3476 
3477 		deliver_count++;
3478 
3479 		copy_event_into_recv_msg(recv_msg, msg);
3480 		recv_msg->user = user;
3481 		kref_get(&user->refcount);
3482 		list_add_tail(&(recv_msg->link), &msgs);
3483 	}
3484 	rcu_read_unlock();
3485 
3486 	if (deliver_count) {
3487 		/* Now deliver all the messages. */
3488 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3489 			list_del(&recv_msg->link);
3490 			deliver_response(recv_msg);
3491 		}
3492 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3493 		/*
3494 		 * No one to receive the message, put it in queue if there's
3495 		 * not already too many things in the queue.
3496 		 */
3497 		recv_msg = ipmi_alloc_recv_msg();
3498 		if (!recv_msg) {
3499 			/*
3500 			 * We couldn't allocate memory for the
3501 			 * message, so requeue it for handling
3502 			 * later.
3503 			 */
3504 			rv = 1;
3505 			goto out;
3506 		}
3507 
3508 		copy_event_into_recv_msg(recv_msg, msg);
3509 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3510 		intf->waiting_events_count++;
3511 	} else if (!intf->event_msg_printed) {
3512 		/*
3513 		 * There's too many things in the queue, discard this
3514 		 * message.
3515 		 */
3516 		printk(KERN_WARNING PFX "Event queue full, discarding"
3517 		       " incoming events\n");
3518 		intf->event_msg_printed = 1;
3519 	}
3520 
3521  out:
3522 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3523 
3524 	return rv;
3525 }
3526 
3527 static int handle_bmc_rsp(ipmi_smi_t          intf,
3528 			  struct ipmi_smi_msg *msg)
3529 {
3530 	struct ipmi_recv_msg *recv_msg;
3531 	struct ipmi_user     *user;
3532 
3533 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3534 	if (recv_msg == NULL) {
3535 		printk(KERN_WARNING
3536 		       "IPMI message received with no owner. This\n"
3537 		       "could be because of a malformed message, or\n"
3538 		       "because of a hardware error.  Contact your\n"
3539 		       "hardware vender for assistance\n");
3540 		return 0;
3541 	}
3542 
3543 	user = recv_msg->user;
3544 	/* Make sure the user still exists. */
3545 	if (user && !user->valid) {
3546 		/* The user for the message went away, so give up. */
3547 		ipmi_inc_stat(intf, unhandled_local_responses);
3548 		ipmi_free_recv_msg(recv_msg);
3549 	} else {
3550 		struct ipmi_system_interface_addr *smi_addr;
3551 
3552 		ipmi_inc_stat(intf, handled_local_responses);
3553 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3554 		recv_msg->msgid = msg->msgid;
3555 		smi_addr = ((struct ipmi_system_interface_addr *)
3556 			    &(recv_msg->addr));
3557 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3558 		smi_addr->channel = IPMI_BMC_CHANNEL;
3559 		smi_addr->lun = msg->rsp[0] & 3;
3560 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3561 		recv_msg->msg.cmd = msg->rsp[1];
3562 		memcpy(recv_msg->msg_data,
3563 		       &(msg->rsp[2]),
3564 		       msg->rsp_size - 2);
3565 		recv_msg->msg.data = recv_msg->msg_data;
3566 		recv_msg->msg.data_len = msg->rsp_size - 2;
3567 		deliver_response(recv_msg);
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 /*
3574  * Handle a new message.  Return 1 if the message should be requeued,
3575  * 0 if the message should be freed, or -1 if the message should not
3576  * be freed or requeued.
3577  */
3578 static int handle_new_recv_msg(ipmi_smi_t          intf,
3579 			       struct ipmi_smi_msg *msg)
3580 {
3581 	int requeue;
3582 	int chan;
3583 
3584 #ifdef DEBUG_MSGING
3585 	int m;
3586 	printk("Recv:");
3587 	for (m = 0; m < msg->rsp_size; m++)
3588 		printk(" %2.2x", msg->rsp[m]);
3589 	printk("\n");
3590 #endif
3591 	if (msg->rsp_size < 2) {
3592 		/* Message is too small to be correct. */
3593 		printk(KERN_WARNING PFX "BMC returned to small a message"
3594 		       " for netfn %x cmd %x, got %d bytes\n",
3595 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3596 
3597 		/* Generate an error response for the message. */
3598 		msg->rsp[0] = msg->data[0] | (1 << 2);
3599 		msg->rsp[1] = msg->data[1];
3600 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3601 		msg->rsp_size = 3;
3602 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3603 		   || (msg->rsp[1] != msg->data[1])) {
3604 		/*
3605 		 * The NetFN and Command in the response is not even
3606 		 * marginally correct.
3607 		 */
3608 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3609 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3610 		       (msg->data[0] >> 2) | 1, msg->data[1],
3611 		       msg->rsp[0] >> 2, msg->rsp[1]);
3612 
3613 		/* Generate an error response for the message. */
3614 		msg->rsp[0] = msg->data[0] | (1 << 2);
3615 		msg->rsp[1] = msg->data[1];
3616 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3617 		msg->rsp_size = 3;
3618 	}
3619 
3620 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3621 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3622 	    && (msg->user_data != NULL)) {
3623 		/*
3624 		 * It's a response to a response we sent.  For this we
3625 		 * deliver a send message response to the user.
3626 		 */
3627 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3628 
3629 		requeue = 0;
3630 		if (msg->rsp_size < 2)
3631 			/* Message is too small to be correct. */
3632 			goto out;
3633 
3634 		chan = msg->data[2] & 0x0f;
3635 		if (chan >= IPMI_MAX_CHANNELS)
3636 			/* Invalid channel number */
3637 			goto out;
3638 
3639 		if (!recv_msg)
3640 			goto out;
3641 
3642 		/* Make sure the user still exists. */
3643 		if (!recv_msg->user || !recv_msg->user->valid)
3644 			goto out;
3645 
3646 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3647 		recv_msg->msg.data = recv_msg->msg_data;
3648 		recv_msg->msg.data_len = 1;
3649 		recv_msg->msg_data[0] = msg->rsp[2];
3650 		deliver_response(recv_msg);
3651 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3652 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3653 		/* It's from the receive queue. */
3654 		chan = msg->rsp[3] & 0xf;
3655 		if (chan >= IPMI_MAX_CHANNELS) {
3656 			/* Invalid channel number */
3657 			requeue = 0;
3658 			goto out;
3659 		}
3660 
3661 		/*
3662 		 * We need to make sure the channels have been initialized.
3663 		 * The channel_handler routine will set the "curr_channel"
3664 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3665 		 * channels for this interface have been initialized.
3666 		 */
3667 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3668 			requeue = 0; /* Throw the message away */
3669 			goto out;
3670 		}
3671 
3672 		switch (intf->channels[chan].medium) {
3673 		case IPMI_CHANNEL_MEDIUM_IPMB:
3674 			if (msg->rsp[4] & 0x04) {
3675 				/*
3676 				 * It's a response, so find the
3677 				 * requesting message and send it up.
3678 				 */
3679 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3680 			} else {
3681 				/*
3682 				 * It's a command to the SMS from some other
3683 				 * entity.  Handle that.
3684 				 */
3685 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3686 			}
3687 			break;
3688 
3689 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3690 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3691 			if (msg->rsp[6] & 0x04) {
3692 				/*
3693 				 * It's a response, so find the
3694 				 * requesting message and send it up.
3695 				 */
3696 				requeue = handle_lan_get_msg_rsp(intf, msg);
3697 			} else {
3698 				/*
3699 				 * It's a command to the SMS from some other
3700 				 * entity.  Handle that.
3701 				 */
3702 				requeue = handle_lan_get_msg_cmd(intf, msg);
3703 			}
3704 			break;
3705 
3706 		default:
3707 			/* Check for OEM Channels.  Clients had better
3708 			   register for these commands. */
3709 			if ((intf->channels[chan].medium
3710 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3711 			    && (intf->channels[chan].medium
3712 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3713 				requeue = handle_oem_get_msg_cmd(intf, msg);
3714 			} else {
3715 				/*
3716 				 * We don't handle the channel type, so just
3717 				 * free the message.
3718 				 */
3719 				requeue = 0;
3720 			}
3721 		}
3722 
3723 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3724 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3725 		/* It's an asyncronous event. */
3726 		requeue = handle_read_event_rsp(intf, msg);
3727 	} else {
3728 		/* It's a response from the local BMC. */
3729 		requeue = handle_bmc_rsp(intf, msg);
3730 	}
3731 
3732  out:
3733 	return requeue;
3734 }
3735 
3736 /* Handle a new message from the lower layer. */
3737 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3738 			   struct ipmi_smi_msg *msg)
3739 {
3740 	unsigned long flags = 0; /* keep us warning-free. */
3741 	int           rv;
3742 	int           run_to_completion;
3743 
3744 
3745 	if ((msg->data_size >= 2)
3746 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3747 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3748 	    && (msg->user_data == NULL)) {
3749 		/*
3750 		 * This is the local response to a command send, start
3751 		 * the timer for these.  The user_data will not be
3752 		 * NULL if this is a response send, and we will let
3753 		 * response sends just go through.
3754 		 */
3755 
3756 		/*
3757 		 * Check for errors, if we get certain errors (ones
3758 		 * that mean basically we can try again later), we
3759 		 * ignore them and start the timer.  Otherwise we
3760 		 * report the error immediately.
3761 		 */
3762 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3763 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3764 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3765 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3766 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3767 			int chan = msg->rsp[3] & 0xf;
3768 
3769 			/* Got an error sending the message, handle it. */
3770 			if (chan >= IPMI_MAX_CHANNELS)
3771 				; /* This shouldn't happen */
3772 			else if ((intf->channels[chan].medium
3773 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3774 				 || (intf->channels[chan].medium
3775 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3776 				ipmi_inc_stat(intf, sent_lan_command_errs);
3777 			else
3778 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3779 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3780 		} else
3781 			/* The message was sent, start the timer. */
3782 			intf_start_seq_timer(intf, msg->msgid);
3783 
3784 		ipmi_free_smi_msg(msg);
3785 		goto out;
3786 	}
3787 
3788 	/*
3789 	 * To preserve message order, if the list is not empty, we
3790 	 * tack this message onto the end of the list.
3791 	 */
3792 	run_to_completion = intf->run_to_completion;
3793 	if (!run_to_completion)
3794 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3795 	if (!list_empty(&intf->waiting_msgs)) {
3796 		list_add_tail(&msg->link, &intf->waiting_msgs);
3797 		if (!run_to_completion)
3798 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3799 		goto out;
3800 	}
3801 	if (!run_to_completion)
3802 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3803 
3804 	rv = handle_new_recv_msg(intf, msg);
3805 	if (rv > 0) {
3806 		/*
3807 		 * Could not handle the message now, just add it to a
3808 		 * list to handle later.
3809 		 */
3810 		run_to_completion = intf->run_to_completion;
3811 		if (!run_to_completion)
3812 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3813 		list_add_tail(&msg->link, &intf->waiting_msgs);
3814 		if (!run_to_completion)
3815 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3816 	} else if (rv == 0) {
3817 		ipmi_free_smi_msg(msg);
3818 	}
3819 
3820  out:
3821 	return;
3822 }
3823 EXPORT_SYMBOL(ipmi_smi_msg_received);
3824 
3825 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3826 {
3827 	ipmi_user_t user;
3828 
3829 	rcu_read_lock();
3830 	list_for_each_entry_rcu(user, &intf->users, link) {
3831 		if (!user->handler->ipmi_watchdog_pretimeout)
3832 			continue;
3833 
3834 		user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3835 	}
3836 	rcu_read_unlock();
3837 }
3838 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3839 
3840 static struct ipmi_smi_msg *
3841 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3842 		  unsigned char seq, long seqid)
3843 {
3844 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3845 	if (!smi_msg)
3846 		/*
3847 		 * If we can't allocate the message, then just return, we
3848 		 * get 4 retries, so this should be ok.
3849 		 */
3850 		return NULL;
3851 
3852 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3853 	smi_msg->data_size = recv_msg->msg.data_len;
3854 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3855 
3856 #ifdef DEBUG_MSGING
3857 	{
3858 		int m;
3859 		printk("Resend: ");
3860 		for (m = 0; m < smi_msg->data_size; m++)
3861 			printk(" %2.2x", smi_msg->data[m]);
3862 		printk("\n");
3863 	}
3864 #endif
3865 	return smi_msg;
3866 }
3867 
3868 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3869 			      struct list_head *timeouts, long timeout_period,
3870 			      int slot, unsigned long *flags)
3871 {
3872 	struct ipmi_recv_msg     *msg;
3873 	struct ipmi_smi_handlers *handlers;
3874 
3875 	if (intf->intf_num == -1)
3876 		return;
3877 
3878 	if (!ent->inuse)
3879 		return;
3880 
3881 	ent->timeout -= timeout_period;
3882 	if (ent->timeout > 0)
3883 		return;
3884 
3885 	if (ent->retries_left == 0) {
3886 		/* The message has used all its retries. */
3887 		ent->inuse = 0;
3888 		msg = ent->recv_msg;
3889 		list_add_tail(&msg->link, timeouts);
3890 		if (ent->broadcast)
3891 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3892 		else if (is_lan_addr(&ent->recv_msg->addr))
3893 			ipmi_inc_stat(intf, timed_out_lan_commands);
3894 		else
3895 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3896 	} else {
3897 		struct ipmi_smi_msg *smi_msg;
3898 		/* More retries, send again. */
3899 
3900 		/*
3901 		 * Start with the max timer, set to normal timer after
3902 		 * the message is sent.
3903 		 */
3904 		ent->timeout = MAX_MSG_TIMEOUT;
3905 		ent->retries_left--;
3906 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3907 					    ent->seqid);
3908 		if (!smi_msg) {
3909 			if (is_lan_addr(&ent->recv_msg->addr))
3910 				ipmi_inc_stat(intf,
3911 					      dropped_rexmit_lan_commands);
3912 			else
3913 				ipmi_inc_stat(intf,
3914 					      dropped_rexmit_ipmb_commands);
3915 			return;
3916 		}
3917 
3918 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
3919 
3920 		/*
3921 		 * Send the new message.  We send with a zero
3922 		 * priority.  It timed out, I doubt time is that
3923 		 * critical now, and high priority messages are really
3924 		 * only for messages to the local MC, which don't get
3925 		 * resent.
3926 		 */
3927 		handlers = intf->handlers;
3928 		if (handlers) {
3929 			if (is_lan_addr(&ent->recv_msg->addr))
3930 				ipmi_inc_stat(intf,
3931 					      retransmitted_lan_commands);
3932 			else
3933 				ipmi_inc_stat(intf,
3934 					      retransmitted_ipmb_commands);
3935 
3936 			intf->handlers->sender(intf->send_info,
3937 					       smi_msg, 0);
3938 		} else
3939 			ipmi_free_smi_msg(smi_msg);
3940 
3941 		spin_lock_irqsave(&intf->seq_lock, *flags);
3942 	}
3943 }
3944 
3945 static void ipmi_timeout_handler(long timeout_period)
3946 {
3947 	ipmi_smi_t           intf;
3948 	struct list_head     timeouts;
3949 	struct ipmi_recv_msg *msg, *msg2;
3950 	struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3951 	unsigned long        flags;
3952 	int                  i;
3953 
3954 	rcu_read_lock();
3955 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3956 		/* See if any waiting messages need to be processed. */
3957 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3958 		list_for_each_entry_safe(smi_msg, smi_msg2,
3959 					 &intf->waiting_msgs, link) {
3960 			if (!handle_new_recv_msg(intf, smi_msg)) {
3961 				list_del(&smi_msg->link);
3962 				ipmi_free_smi_msg(smi_msg);
3963 			} else {
3964 				/*
3965 				 * To preserve message order, quit if we
3966 				 * can't handle a message.
3967 				 */
3968 				break;
3969 			}
3970 		}
3971 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3972 
3973 		/*
3974 		 * Go through the seq table and find any messages that
3975 		 * have timed out, putting them in the timeouts
3976 		 * list.
3977 		 */
3978 		INIT_LIST_HEAD(&timeouts);
3979 		spin_lock_irqsave(&intf->seq_lock, flags);
3980 		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3981 			check_msg_timeout(intf, &(intf->seq_table[i]),
3982 					  &timeouts, timeout_period, i,
3983 					  &flags);
3984 		spin_unlock_irqrestore(&intf->seq_lock, flags);
3985 
3986 		list_for_each_entry_safe(msg, msg2, &timeouts, link)
3987 			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3988 
3989 		/*
3990 		 * Maintenance mode handling.  Check the timeout
3991 		 * optimistically before we claim the lock.  It may
3992 		 * mean a timeout gets missed occasionally, but that
3993 		 * only means the timeout gets extended by one period
3994 		 * in that case.  No big deal, and it avoids the lock
3995 		 * most of the time.
3996 		 */
3997 		if (intf->auto_maintenance_timeout > 0) {
3998 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3999 			if (intf->auto_maintenance_timeout > 0) {
4000 				intf->auto_maintenance_timeout
4001 					-= timeout_period;
4002 				if (!intf->maintenance_mode
4003 				    && (intf->auto_maintenance_timeout <= 0)) {
4004 					intf->maintenance_mode_enable = 0;
4005 					maintenance_mode_update(intf);
4006 				}
4007 			}
4008 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4009 					       flags);
4010 		}
4011 	}
4012 	rcu_read_unlock();
4013 }
4014 
4015 static void ipmi_request_event(void)
4016 {
4017 	ipmi_smi_t               intf;
4018 	struct ipmi_smi_handlers *handlers;
4019 
4020 	rcu_read_lock();
4021 	/*
4022 	 * Called from the timer, no need to check if handlers is
4023 	 * valid.
4024 	 */
4025 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4026 		/* No event requests when in maintenance mode. */
4027 		if (intf->maintenance_mode_enable)
4028 			continue;
4029 
4030 		handlers = intf->handlers;
4031 		if (handlers)
4032 			handlers->request_events(intf->send_info);
4033 	}
4034 	rcu_read_unlock();
4035 }
4036 
4037 static struct timer_list ipmi_timer;
4038 
4039 /* Call every ~1000 ms. */
4040 #define IPMI_TIMEOUT_TIME	1000
4041 
4042 /* How many jiffies does it take to get to the timeout time. */
4043 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
4044 
4045 /*
4046  * Request events from the queue every second (this is the number of
4047  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4048  * future, IPMI will add a way to know immediately if an event is in
4049  * the queue and this silliness can go away.
4050  */
4051 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
4052 
4053 static atomic_t stop_operation;
4054 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4055 
4056 static void ipmi_timeout(unsigned long data)
4057 {
4058 	if (atomic_read(&stop_operation))
4059 		return;
4060 
4061 	ticks_to_req_ev--;
4062 	if (ticks_to_req_ev == 0) {
4063 		ipmi_request_event();
4064 		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4065 	}
4066 
4067 	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4068 
4069 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4070 }
4071 
4072 
4073 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4074 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4075 
4076 /* FIXME - convert these to slabs. */
4077 static void free_smi_msg(struct ipmi_smi_msg *msg)
4078 {
4079 	atomic_dec(&smi_msg_inuse_count);
4080 	kfree(msg);
4081 }
4082 
4083 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4084 {
4085 	struct ipmi_smi_msg *rv;
4086 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4087 	if (rv) {
4088 		rv->done = free_smi_msg;
4089 		rv->user_data = NULL;
4090 		atomic_inc(&smi_msg_inuse_count);
4091 	}
4092 	return rv;
4093 }
4094 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4095 
4096 static void free_recv_msg(struct ipmi_recv_msg *msg)
4097 {
4098 	atomic_dec(&recv_msg_inuse_count);
4099 	kfree(msg);
4100 }
4101 
4102 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4103 {
4104 	struct ipmi_recv_msg *rv;
4105 
4106 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4107 	if (rv) {
4108 		rv->user = NULL;
4109 		rv->done = free_recv_msg;
4110 		atomic_inc(&recv_msg_inuse_count);
4111 	}
4112 	return rv;
4113 }
4114 
4115 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4116 {
4117 	if (msg->user)
4118 		kref_put(&msg->user->refcount, free_user);
4119 	msg->done(msg);
4120 }
4121 EXPORT_SYMBOL(ipmi_free_recv_msg);
4122 
4123 #ifdef CONFIG_IPMI_PANIC_EVENT
4124 
4125 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4126 {
4127 }
4128 
4129 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4130 {
4131 }
4132 
4133 #ifdef CONFIG_IPMI_PANIC_STRING
4134 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4135 {
4136 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4137 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4138 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4139 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4140 		/* A get event receiver command, save it. */
4141 		intf->event_receiver = msg->msg.data[1];
4142 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4143 	}
4144 }
4145 
4146 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4147 {
4148 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4149 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4150 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4151 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4152 		/*
4153 		 * A get device id command, save if we are an event
4154 		 * receiver or generator.
4155 		 */
4156 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4157 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4158 	}
4159 }
4160 #endif
4161 
4162 static void send_panic_events(char *str)
4163 {
4164 	struct kernel_ipmi_msg            msg;
4165 	ipmi_smi_t                        intf;
4166 	unsigned char                     data[16];
4167 	struct ipmi_system_interface_addr *si;
4168 	struct ipmi_addr                  addr;
4169 	struct ipmi_smi_msg               smi_msg;
4170 	struct ipmi_recv_msg              recv_msg;
4171 
4172 	si = (struct ipmi_system_interface_addr *) &addr;
4173 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4174 	si->channel = IPMI_BMC_CHANNEL;
4175 	si->lun = 0;
4176 
4177 	/* Fill in an event telling that we have failed. */
4178 	msg.netfn = 0x04; /* Sensor or Event. */
4179 	msg.cmd = 2; /* Platform event command. */
4180 	msg.data = data;
4181 	msg.data_len = 8;
4182 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4183 	data[1] = 0x03; /* This is for IPMI 1.0. */
4184 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4185 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4186 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4187 
4188 	/*
4189 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4190 	 * to make the panic events more useful.
4191 	 */
4192 	if (str) {
4193 		data[3] = str[0];
4194 		data[6] = str[1];
4195 		data[7] = str[2];
4196 	}
4197 
4198 	smi_msg.done = dummy_smi_done_handler;
4199 	recv_msg.done = dummy_recv_done_handler;
4200 
4201 	/* For every registered interface, send the event. */
4202 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4203 		if (!intf->handlers)
4204 			/* Interface is not ready. */
4205 			continue;
4206 
4207 		intf->run_to_completion = 1;
4208 		/* Send the event announcing the panic. */
4209 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4210 		i_ipmi_request(NULL,
4211 			       intf,
4212 			       &addr,
4213 			       0,
4214 			       &msg,
4215 			       intf,
4216 			       &smi_msg,
4217 			       &recv_msg,
4218 			       0,
4219 			       intf->channels[0].address,
4220 			       intf->channels[0].lun,
4221 			       0, 1); /* Don't retry, and don't wait. */
4222 	}
4223 
4224 #ifdef CONFIG_IPMI_PANIC_STRING
4225 	/*
4226 	 * On every interface, dump a bunch of OEM event holding the
4227 	 * string.
4228 	 */
4229 	if (!str)
4230 		return;
4231 
4232 	/* For every registered interface, send the event. */
4233 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4234 		char                  *p = str;
4235 		struct ipmi_ipmb_addr *ipmb;
4236 		int                   j;
4237 
4238 		if (intf->intf_num == -1)
4239 			/* Interface was not ready yet. */
4240 			continue;
4241 
4242 		/*
4243 		 * intf_num is used as an marker to tell if the
4244 		 * interface is valid.  Thus we need a read barrier to
4245 		 * make sure data fetched before checking intf_num
4246 		 * won't be used.
4247 		 */
4248 		smp_rmb();
4249 
4250 		/*
4251 		 * First job here is to figure out where to send the
4252 		 * OEM events.  There's no way in IPMI to send OEM
4253 		 * events using an event send command, so we have to
4254 		 * find the SEL to put them in and stick them in
4255 		 * there.
4256 		 */
4257 
4258 		/* Get capabilities from the get device id. */
4259 		intf->local_sel_device = 0;
4260 		intf->local_event_generator = 0;
4261 		intf->event_receiver = 0;
4262 
4263 		/* Request the device info from the local MC. */
4264 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4265 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4266 		msg.data = NULL;
4267 		msg.data_len = 0;
4268 		intf->null_user_handler = device_id_fetcher;
4269 		i_ipmi_request(NULL,
4270 			       intf,
4271 			       &addr,
4272 			       0,
4273 			       &msg,
4274 			       intf,
4275 			       &smi_msg,
4276 			       &recv_msg,
4277 			       0,
4278 			       intf->channels[0].address,
4279 			       intf->channels[0].lun,
4280 			       0, 1); /* Don't retry, and don't wait. */
4281 
4282 		if (intf->local_event_generator) {
4283 			/* Request the event receiver from the local MC. */
4284 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4285 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4286 			msg.data = NULL;
4287 			msg.data_len = 0;
4288 			intf->null_user_handler = event_receiver_fetcher;
4289 			i_ipmi_request(NULL,
4290 				       intf,
4291 				       &addr,
4292 				       0,
4293 				       &msg,
4294 				       intf,
4295 				       &smi_msg,
4296 				       &recv_msg,
4297 				       0,
4298 				       intf->channels[0].address,
4299 				       intf->channels[0].lun,
4300 				       0, 1); /* no retry, and no wait. */
4301 		}
4302 		intf->null_user_handler = NULL;
4303 
4304 		/*
4305 		 * Validate the event receiver.  The low bit must not
4306 		 * be 1 (it must be a valid IPMB address), it cannot
4307 		 * be zero, and it must not be my address.
4308 		 */
4309 		if (((intf->event_receiver & 1) == 0)
4310 		    && (intf->event_receiver != 0)
4311 		    && (intf->event_receiver != intf->channels[0].address)) {
4312 			/*
4313 			 * The event receiver is valid, send an IPMB
4314 			 * message.
4315 			 */
4316 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4317 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4318 			ipmb->channel = 0; /* FIXME - is this right? */
4319 			ipmb->lun = intf->event_receiver_lun;
4320 			ipmb->slave_addr = intf->event_receiver;
4321 		} else if (intf->local_sel_device) {
4322 			/*
4323 			 * The event receiver was not valid (or was
4324 			 * me), but I am an SEL device, just dump it
4325 			 * in my SEL.
4326 			 */
4327 			si = (struct ipmi_system_interface_addr *) &addr;
4328 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4329 			si->channel = IPMI_BMC_CHANNEL;
4330 			si->lun = 0;
4331 		} else
4332 			continue; /* No where to send the event. */
4333 
4334 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4335 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4336 		msg.data = data;
4337 		msg.data_len = 16;
4338 
4339 		j = 0;
4340 		while (*p) {
4341 			int size = strlen(p);
4342 
4343 			if (size > 11)
4344 				size = 11;
4345 			data[0] = 0;
4346 			data[1] = 0;
4347 			data[2] = 0xf0; /* OEM event without timestamp. */
4348 			data[3] = intf->channels[0].address;
4349 			data[4] = j++; /* sequence # */
4350 			/*
4351 			 * Always give 11 bytes, so strncpy will fill
4352 			 * it with zeroes for me.
4353 			 */
4354 			strncpy(data+5, p, 11);
4355 			p += size;
4356 
4357 			i_ipmi_request(NULL,
4358 				       intf,
4359 				       &addr,
4360 				       0,
4361 				       &msg,
4362 				       intf,
4363 				       &smi_msg,
4364 				       &recv_msg,
4365 				       0,
4366 				       intf->channels[0].address,
4367 				       intf->channels[0].lun,
4368 				       0, 1); /* no retry, and no wait. */
4369 		}
4370 	}
4371 #endif /* CONFIG_IPMI_PANIC_STRING */
4372 }
4373 #endif /* CONFIG_IPMI_PANIC_EVENT */
4374 
4375 static int has_panicked;
4376 
4377 static int panic_event(struct notifier_block *this,
4378 		       unsigned long         event,
4379 		       void                  *ptr)
4380 {
4381 	ipmi_smi_t intf;
4382 
4383 	if (has_panicked)
4384 		return NOTIFY_DONE;
4385 	has_panicked = 1;
4386 
4387 	/* For every registered interface, set it to run to completion. */
4388 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4389 		if (!intf->handlers)
4390 			/* Interface is not ready. */
4391 			continue;
4392 
4393 		intf->run_to_completion = 1;
4394 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4395 	}
4396 
4397 #ifdef CONFIG_IPMI_PANIC_EVENT
4398 	send_panic_events(ptr);
4399 #endif
4400 
4401 	return NOTIFY_DONE;
4402 }
4403 
4404 static struct notifier_block panic_block = {
4405 	.notifier_call	= panic_event,
4406 	.next		= NULL,
4407 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4408 };
4409 
4410 static int ipmi_init_msghandler(void)
4411 {
4412 	int rv;
4413 
4414 	if (initialized)
4415 		return 0;
4416 
4417 	rv = driver_register(&ipmidriver.driver);
4418 	if (rv) {
4419 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4420 		return rv;
4421 	}
4422 
4423 	printk(KERN_INFO "ipmi message handler version "
4424 	       IPMI_DRIVER_VERSION "\n");
4425 
4426 #ifdef CONFIG_PROC_FS
4427 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4428 	if (!proc_ipmi_root) {
4429 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4430 	    return -ENOMEM;
4431 	}
4432 
4433 #endif /* CONFIG_PROC_FS */
4434 
4435 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4436 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4437 
4438 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4439 
4440 	initialized = 1;
4441 
4442 	return 0;
4443 }
4444 
4445 static __init int ipmi_init_msghandler_mod(void)
4446 {
4447 	ipmi_init_msghandler();
4448 	return 0;
4449 }
4450 
4451 static __exit void cleanup_ipmi(void)
4452 {
4453 	int count;
4454 
4455 	if (!initialized)
4456 		return;
4457 
4458 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4459 
4460 	/*
4461 	 * This can't be called if any interfaces exist, so no worry
4462 	 * about shutting down the interfaces.
4463 	 */
4464 
4465 	/*
4466 	 * Tell the timer to stop, then wait for it to stop.  This
4467 	 * avoids problems with race conditions removing the timer
4468 	 * here.
4469 	 */
4470 	atomic_inc(&stop_operation);
4471 	del_timer_sync(&ipmi_timer);
4472 
4473 #ifdef CONFIG_PROC_FS
4474 	remove_proc_entry(proc_ipmi_root->name, NULL);
4475 #endif /* CONFIG_PROC_FS */
4476 
4477 	driver_unregister(&ipmidriver.driver);
4478 
4479 	initialized = 0;
4480 
4481 	/* Check for buffer leaks. */
4482 	count = atomic_read(&smi_msg_inuse_count);
4483 	if (count != 0)
4484 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4485 		       count);
4486 	count = atomic_read(&recv_msg_inuse_count);
4487 	if (count != 0)
4488 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4489 		       count);
4490 }
4491 module_exit(cleanup_ipmi);
4492 
4493 module_init(ipmi_init_msghandler_mod);
4494 MODULE_LICENSE("GPL");
4495 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4496 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4497 		   " interface.");
4498 MODULE_VERSION(IPMI_DRIVER_VERSION);
4499