1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 
36 #define IPMI_DRIVER_VERSION "39.2"
37 
38 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
39 static int ipmi_init_msghandler(void);
40 static void smi_recv_tasklet(unsigned long);
41 static void handle_new_recv_msgs(struct ipmi_smi *intf);
42 static void need_waiter(struct ipmi_smi *intf);
43 static int handle_one_recv_msg(struct ipmi_smi *intf,
44 			       struct ipmi_smi_msg *msg);
45 
46 #ifdef DEBUG
47 static void ipmi_debug_msg(const char *title, unsigned char *data,
48 			   unsigned int len)
49 {
50 	int i, pos;
51 	char buf[100];
52 
53 	pos = snprintf(buf, sizeof(buf), "%s: ", title);
54 	for (i = 0; i < len; i++)
55 		pos += snprintf(buf + pos, sizeof(buf) - pos,
56 				" %2.2x", data[i]);
57 	pr_debug("%s\n", buf);
58 }
59 #else
60 static void ipmi_debug_msg(const char *title, unsigned char *data,
61 			   unsigned int len)
62 { }
63 #endif
64 
65 static int initialized;
66 
67 enum ipmi_panic_event_op {
68 	IPMI_SEND_PANIC_EVENT_NONE,
69 	IPMI_SEND_PANIC_EVENT,
70 	IPMI_SEND_PANIC_EVENT_STRING
71 };
72 #ifdef CONFIG_IPMI_PANIC_STRING
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
74 #elif defined(CONFIG_IPMI_PANIC_EVENT)
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
76 #else
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
78 #endif
79 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
80 
81 static int panic_op_write_handler(const char *val,
82 				  const struct kernel_param *kp)
83 {
84 	char valcp[16];
85 	char *s;
86 
87 	strncpy(valcp, val, 15);
88 	valcp[15] = '\0';
89 
90 	s = strstrip(valcp);
91 
92 	if (strcmp(s, "none") == 0)
93 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
94 	else if (strcmp(s, "event") == 0)
95 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
96 	else if (strcmp(s, "string") == 0)
97 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
98 	else
99 		return -EINVAL;
100 
101 	return 0;
102 }
103 
104 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
105 {
106 	switch (ipmi_send_panic_event) {
107 	case IPMI_SEND_PANIC_EVENT_NONE:
108 		strcpy(buffer, "none");
109 		break;
110 
111 	case IPMI_SEND_PANIC_EVENT:
112 		strcpy(buffer, "event");
113 		break;
114 
115 	case IPMI_SEND_PANIC_EVENT_STRING:
116 		strcpy(buffer, "string");
117 		break;
118 
119 	default:
120 		strcpy(buffer, "???");
121 		break;
122 	}
123 
124 	return strlen(buffer);
125 }
126 
127 static const struct kernel_param_ops panic_op_ops = {
128 	.set = panic_op_write_handler,
129 	.get = panic_op_read_handler
130 };
131 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
132 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
133 
134 
135 #define MAX_EVENTS_IN_QUEUE	25
136 
137 /* Remain in auto-maintenance mode for this amount of time (in ms). */
138 static unsigned long maintenance_mode_timeout_ms = 30000;
139 module_param(maintenance_mode_timeout_ms, ulong, 0644);
140 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
141 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
142 
143 /*
144  * Don't let a message sit in a queue forever, always time it with at lest
145  * the max message timer.  This is in milliseconds.
146  */
147 #define MAX_MSG_TIMEOUT		60000
148 
149 /*
150  * Timeout times below are in milliseconds, and are done off a 1
151  * second timer.  So setting the value to 1000 would mean anything
152  * between 0 and 1000ms.  So really the only reasonable minimum
153  * setting it 2000ms, which is between 1 and 2 seconds.
154  */
155 
156 /* The default timeout for message retries. */
157 static unsigned long default_retry_ms = 2000;
158 module_param(default_retry_ms, ulong, 0644);
159 MODULE_PARM_DESC(default_retry_ms,
160 		 "The time (milliseconds) between retry sends");
161 
162 /* The default timeout for maintenance mode message retries. */
163 static unsigned long default_maintenance_retry_ms = 3000;
164 module_param(default_maintenance_retry_ms, ulong, 0644);
165 MODULE_PARM_DESC(default_maintenance_retry_ms,
166 		 "The time (milliseconds) between retry sends in maintenance mode");
167 
168 /* The default maximum number of retries */
169 static unsigned int default_max_retries = 4;
170 module_param(default_max_retries, uint, 0644);
171 MODULE_PARM_DESC(default_max_retries,
172 		 "The time (milliseconds) between retry sends in maintenance mode");
173 
174 /* Call every ~1000 ms. */
175 #define IPMI_TIMEOUT_TIME	1000
176 
177 /* How many jiffies does it take to get to the timeout time. */
178 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
179 
180 /*
181  * Request events from the queue every second (this is the number of
182  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
183  * future, IPMI will add a way to know immediately if an event is in
184  * the queue and this silliness can go away.
185  */
186 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
187 
188 /* How long should we cache dynamic device IDs? */
189 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
190 
191 /*
192  * The main "user" data structure.
193  */
194 struct ipmi_user {
195 	struct list_head link;
196 
197 	/*
198 	 * Set to NULL when the user is destroyed, a pointer to myself
199 	 * so srcu_dereference can be used on it.
200 	 */
201 	struct ipmi_user *self;
202 	struct srcu_struct release_barrier;
203 
204 	struct kref refcount;
205 
206 	/* The upper layer that handles receive messages. */
207 	const struct ipmi_user_hndl *handler;
208 	void             *handler_data;
209 
210 	/* The interface this user is bound to. */
211 	struct ipmi_smi *intf;
212 
213 	/* Does this interface receive IPMI events? */
214 	bool gets_events;
215 };
216 
217 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
218 	__acquires(user->release_barrier)
219 {
220 	struct ipmi_user *ruser;
221 
222 	*index = srcu_read_lock(&user->release_barrier);
223 	ruser = srcu_dereference(user->self, &user->release_barrier);
224 	if (!ruser)
225 		srcu_read_unlock(&user->release_barrier, *index);
226 	return ruser;
227 }
228 
229 static void release_ipmi_user(struct ipmi_user *user, int index)
230 {
231 	srcu_read_unlock(&user->release_barrier, index);
232 }
233 
234 struct cmd_rcvr {
235 	struct list_head link;
236 
237 	struct ipmi_user *user;
238 	unsigned char netfn;
239 	unsigned char cmd;
240 	unsigned int  chans;
241 
242 	/*
243 	 * This is used to form a linked lised during mass deletion.
244 	 * Since this is in an RCU list, we cannot use the link above
245 	 * or change any data until the RCU period completes.  So we
246 	 * use this next variable during mass deletion so we can have
247 	 * a list and don't have to wait and restart the search on
248 	 * every individual deletion of a command.
249 	 */
250 	struct cmd_rcvr *next;
251 };
252 
253 struct seq_table {
254 	unsigned int         inuse : 1;
255 	unsigned int         broadcast : 1;
256 
257 	unsigned long        timeout;
258 	unsigned long        orig_timeout;
259 	unsigned int         retries_left;
260 
261 	/*
262 	 * To verify on an incoming send message response that this is
263 	 * the message that the response is for, we keep a sequence id
264 	 * and increment it every time we send a message.
265 	 */
266 	long                 seqid;
267 
268 	/*
269 	 * This is held so we can properly respond to the message on a
270 	 * timeout, and it is used to hold the temporary data for
271 	 * retransmission, too.
272 	 */
273 	struct ipmi_recv_msg *recv_msg;
274 };
275 
276 /*
277  * Store the information in a msgid (long) to allow us to find a
278  * sequence table entry from the msgid.
279  */
280 #define STORE_SEQ_IN_MSGID(seq, seqid) \
281 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
282 
283 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
284 	do {								\
285 		seq = (((msgid) >> 26) & 0x3f);				\
286 		seqid = ((msgid) & 0x3ffffff);				\
287 	} while (0)
288 
289 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
290 
291 #define IPMI_MAX_CHANNELS       16
292 struct ipmi_channel {
293 	unsigned char medium;
294 	unsigned char protocol;
295 };
296 
297 struct ipmi_channel_set {
298 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
299 };
300 
301 struct ipmi_my_addrinfo {
302 	/*
303 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
304 	 * but may be changed by the user.
305 	 */
306 	unsigned char address;
307 
308 	/*
309 	 * My LUN.  This should generally stay the SMS LUN, but just in
310 	 * case...
311 	 */
312 	unsigned char lun;
313 };
314 
315 /*
316  * Note that the product id, manufacturer id, guid, and device id are
317  * immutable in this structure, so dyn_mutex is not required for
318  * accessing those.  If those change on a BMC, a new BMC is allocated.
319  */
320 struct bmc_device {
321 	struct platform_device pdev;
322 	struct list_head       intfs; /* Interfaces on this BMC. */
323 	struct ipmi_device_id  id;
324 	struct ipmi_device_id  fetch_id;
325 	int                    dyn_id_set;
326 	unsigned long          dyn_id_expiry;
327 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
328 	guid_t                 guid;
329 	guid_t                 fetch_guid;
330 	int                    dyn_guid_set;
331 	struct kref	       usecount;
332 	struct work_struct     remove_work;
333 };
334 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
335 
336 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
337 			     struct ipmi_device_id *id,
338 			     bool *guid_set, guid_t *guid);
339 
340 /*
341  * Various statistics for IPMI, these index stats[] in the ipmi_smi
342  * structure.
343  */
344 enum ipmi_stat_indexes {
345 	/* Commands we got from the user that were invalid. */
346 	IPMI_STAT_sent_invalid_commands = 0,
347 
348 	/* Commands we sent to the MC. */
349 	IPMI_STAT_sent_local_commands,
350 
351 	/* Responses from the MC that were delivered to a user. */
352 	IPMI_STAT_handled_local_responses,
353 
354 	/* Responses from the MC that were not delivered to a user. */
355 	IPMI_STAT_unhandled_local_responses,
356 
357 	/* Commands we sent out to the IPMB bus. */
358 	IPMI_STAT_sent_ipmb_commands,
359 
360 	/* Commands sent on the IPMB that had errors on the SEND CMD */
361 	IPMI_STAT_sent_ipmb_command_errs,
362 
363 	/* Each retransmit increments this count. */
364 	IPMI_STAT_retransmitted_ipmb_commands,
365 
366 	/*
367 	 * When a message times out (runs out of retransmits) this is
368 	 * incremented.
369 	 */
370 	IPMI_STAT_timed_out_ipmb_commands,
371 
372 	/*
373 	 * This is like above, but for broadcasts.  Broadcasts are
374 	 * *not* included in the above count (they are expected to
375 	 * time out).
376 	 */
377 	IPMI_STAT_timed_out_ipmb_broadcasts,
378 
379 	/* Responses I have sent to the IPMB bus. */
380 	IPMI_STAT_sent_ipmb_responses,
381 
382 	/* The response was delivered to the user. */
383 	IPMI_STAT_handled_ipmb_responses,
384 
385 	/* The response had invalid data in it. */
386 	IPMI_STAT_invalid_ipmb_responses,
387 
388 	/* The response didn't have anyone waiting for it. */
389 	IPMI_STAT_unhandled_ipmb_responses,
390 
391 	/* Commands we sent out to the IPMB bus. */
392 	IPMI_STAT_sent_lan_commands,
393 
394 	/* Commands sent on the IPMB that had errors on the SEND CMD */
395 	IPMI_STAT_sent_lan_command_errs,
396 
397 	/* Each retransmit increments this count. */
398 	IPMI_STAT_retransmitted_lan_commands,
399 
400 	/*
401 	 * When a message times out (runs out of retransmits) this is
402 	 * incremented.
403 	 */
404 	IPMI_STAT_timed_out_lan_commands,
405 
406 	/* Responses I have sent to the IPMB bus. */
407 	IPMI_STAT_sent_lan_responses,
408 
409 	/* The response was delivered to the user. */
410 	IPMI_STAT_handled_lan_responses,
411 
412 	/* The response had invalid data in it. */
413 	IPMI_STAT_invalid_lan_responses,
414 
415 	/* The response didn't have anyone waiting for it. */
416 	IPMI_STAT_unhandled_lan_responses,
417 
418 	/* The command was delivered to the user. */
419 	IPMI_STAT_handled_commands,
420 
421 	/* The command had invalid data in it. */
422 	IPMI_STAT_invalid_commands,
423 
424 	/* The command didn't have anyone waiting for it. */
425 	IPMI_STAT_unhandled_commands,
426 
427 	/* Invalid data in an event. */
428 	IPMI_STAT_invalid_events,
429 
430 	/* Events that were received with the proper format. */
431 	IPMI_STAT_events,
432 
433 	/* Retransmissions on IPMB that failed. */
434 	IPMI_STAT_dropped_rexmit_ipmb_commands,
435 
436 	/* Retransmissions on LAN that failed. */
437 	IPMI_STAT_dropped_rexmit_lan_commands,
438 
439 	/* This *must* remain last, add new values above this. */
440 	IPMI_NUM_STATS
441 };
442 
443 
444 #define IPMI_IPMB_NUM_SEQ	64
445 struct ipmi_smi {
446 	/* What interface number are we? */
447 	int intf_num;
448 
449 	struct kref refcount;
450 
451 	/* Set when the interface is being unregistered. */
452 	bool in_shutdown;
453 
454 	/* Used for a list of interfaces. */
455 	struct list_head link;
456 
457 	/*
458 	 * The list of upper layers that are using me.  seq_lock write
459 	 * protects this.  Read protection is with srcu.
460 	 */
461 	struct list_head users;
462 	struct srcu_struct users_srcu;
463 
464 	/* Used for wake ups at startup. */
465 	wait_queue_head_t waitq;
466 
467 	/*
468 	 * Prevents the interface from being unregistered when the
469 	 * interface is used by being looked up through the BMC
470 	 * structure.
471 	 */
472 	struct mutex bmc_reg_mutex;
473 
474 	struct bmc_device tmp_bmc;
475 	struct bmc_device *bmc;
476 	bool bmc_registered;
477 	struct list_head bmc_link;
478 	char *my_dev_name;
479 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
480 	struct work_struct bmc_reg_work;
481 
482 	const struct ipmi_smi_handlers *handlers;
483 	void                     *send_info;
484 
485 	/* Driver-model device for the system interface. */
486 	struct device          *si_dev;
487 
488 	/*
489 	 * A table of sequence numbers for this interface.  We use the
490 	 * sequence numbers for IPMB messages that go out of the
491 	 * interface to match them up with their responses.  A routine
492 	 * is called periodically to time the items in this list.
493 	 */
494 	spinlock_t       seq_lock;
495 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 	int curr_seq;
497 
498 	/*
499 	 * Messages queued for delivery.  If delivery fails (out of memory
500 	 * for instance), They will stay in here to be processed later in a
501 	 * periodic timer interrupt.  The tasklet is for handling received
502 	 * messages directly from the handler.
503 	 */
504 	spinlock_t       waiting_rcv_msgs_lock;
505 	struct list_head waiting_rcv_msgs;
506 	atomic_t	 watchdog_pretimeouts_to_deliver;
507 	struct tasklet_struct recv_tasklet;
508 
509 	spinlock_t             xmit_msgs_lock;
510 	struct list_head       xmit_msgs;
511 	struct ipmi_smi_msg    *curr_msg;
512 	struct list_head       hp_xmit_msgs;
513 
514 	/*
515 	 * The list of command receivers that are registered for commands
516 	 * on this interface.
517 	 */
518 	struct mutex     cmd_rcvrs_mutex;
519 	struct list_head cmd_rcvrs;
520 
521 	/*
522 	 * Events that were queues because no one was there to receive
523 	 * them.
524 	 */
525 	spinlock_t       events_lock; /* For dealing with event stuff. */
526 	struct list_head waiting_events;
527 	unsigned int     waiting_events_count; /* How many events in queue? */
528 	char             delivering_events;
529 	char             event_msg_printed;
530 	atomic_t         event_waiters;
531 	unsigned int     ticks_to_req_ev;
532 	int              last_needs_timer;
533 
534 	/*
535 	 * The event receiver for my BMC, only really used at panic
536 	 * shutdown as a place to store this.
537 	 */
538 	unsigned char event_receiver;
539 	unsigned char event_receiver_lun;
540 	unsigned char local_sel_device;
541 	unsigned char local_event_generator;
542 
543 	/* For handling of maintenance mode. */
544 	int maintenance_mode;
545 	bool maintenance_mode_enable;
546 	int auto_maintenance_timeout;
547 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
548 
549 	/*
550 	 * If we are doing maintenance on something on IPMB, extend
551 	 * the timeout time to avoid timeouts writing firmware and
552 	 * such.
553 	 */
554 	int ipmb_maintenance_mode_timeout;
555 
556 	/*
557 	 * A cheap hack, if this is non-null and a message to an
558 	 * interface comes in with a NULL user, call this routine with
559 	 * it.  Note that the message will still be freed by the
560 	 * caller.  This only works on the system interface.
561 	 *
562 	 * Protected by bmc_reg_mutex.
563 	 */
564 	void (*null_user_handler)(struct ipmi_smi *intf,
565 				  struct ipmi_recv_msg *msg);
566 
567 	/*
568 	 * When we are scanning the channels for an SMI, this will
569 	 * tell which channel we are scanning.
570 	 */
571 	int curr_channel;
572 
573 	/* Channel information */
574 	struct ipmi_channel_set *channel_list;
575 	unsigned int curr_working_cset; /* First index into the following. */
576 	struct ipmi_channel_set wchannels[2];
577 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
578 	bool channels_ready;
579 
580 	atomic_t stats[IPMI_NUM_STATS];
581 
582 	/*
583 	 * run_to_completion duplicate of smb_info, smi_info
584 	 * and ipmi_serial_info structures. Used to decrease numbers of
585 	 * parameters passed by "low" level IPMI code.
586 	 */
587 	int run_to_completion;
588 };
589 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
590 
591 static void __get_guid(struct ipmi_smi *intf);
592 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
593 static int __ipmi_bmc_register(struct ipmi_smi *intf,
594 			       struct ipmi_device_id *id,
595 			       bool guid_set, guid_t *guid, int intf_num);
596 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
597 
598 
599 /**
600  * The driver model view of the IPMI messaging driver.
601  */
602 static struct platform_driver ipmidriver = {
603 	.driver = {
604 		.name = "ipmi",
605 		.bus = &platform_bus_type
606 	}
607 };
608 /*
609  * This mutex keeps us from adding the same BMC twice.
610  */
611 static DEFINE_MUTEX(ipmidriver_mutex);
612 
613 static LIST_HEAD(ipmi_interfaces);
614 static DEFINE_MUTEX(ipmi_interfaces_mutex);
615 DEFINE_STATIC_SRCU(ipmi_interfaces_srcu);
616 
617 /*
618  * List of watchers that want to know when smi's are added and deleted.
619  */
620 static LIST_HEAD(smi_watchers);
621 static DEFINE_MUTEX(smi_watchers_mutex);
622 
623 #define ipmi_inc_stat(intf, stat) \
624 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
625 #define ipmi_get_stat(intf, stat) \
626 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
627 
628 static const char * const addr_src_to_str[] = {
629 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
630 	"device-tree", "platform"
631 };
632 
633 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
634 {
635 	if (src >= SI_LAST)
636 		src = 0; /* Invalid */
637 	return addr_src_to_str[src];
638 }
639 EXPORT_SYMBOL(ipmi_addr_src_to_str);
640 
641 static int is_lan_addr(struct ipmi_addr *addr)
642 {
643 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
644 }
645 
646 static int is_ipmb_addr(struct ipmi_addr *addr)
647 {
648 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
649 }
650 
651 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
652 {
653 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
654 }
655 
656 static void free_recv_msg_list(struct list_head *q)
657 {
658 	struct ipmi_recv_msg *msg, *msg2;
659 
660 	list_for_each_entry_safe(msg, msg2, q, link) {
661 		list_del(&msg->link);
662 		ipmi_free_recv_msg(msg);
663 	}
664 }
665 
666 static void free_smi_msg_list(struct list_head *q)
667 {
668 	struct ipmi_smi_msg *msg, *msg2;
669 
670 	list_for_each_entry_safe(msg, msg2, q, link) {
671 		list_del(&msg->link);
672 		ipmi_free_smi_msg(msg);
673 	}
674 }
675 
676 static void clean_up_interface_data(struct ipmi_smi *intf)
677 {
678 	int              i;
679 	struct cmd_rcvr  *rcvr, *rcvr2;
680 	struct list_head list;
681 
682 	tasklet_kill(&intf->recv_tasklet);
683 
684 	free_smi_msg_list(&intf->waiting_rcv_msgs);
685 	free_recv_msg_list(&intf->waiting_events);
686 
687 	/*
688 	 * Wholesale remove all the entries from the list in the
689 	 * interface and wait for RCU to know that none are in use.
690 	 */
691 	mutex_lock(&intf->cmd_rcvrs_mutex);
692 	INIT_LIST_HEAD(&list);
693 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
694 	mutex_unlock(&intf->cmd_rcvrs_mutex);
695 
696 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
697 		kfree(rcvr);
698 
699 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
700 		if ((intf->seq_table[i].inuse)
701 					&& (intf->seq_table[i].recv_msg))
702 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
703 	}
704 }
705 
706 static void intf_free(struct kref *ref)
707 {
708 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
709 
710 	clean_up_interface_data(intf);
711 	kfree(intf);
712 }
713 
714 struct watcher_entry {
715 	int              intf_num;
716 	struct ipmi_smi  *intf;
717 	struct list_head link;
718 };
719 
720 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
721 {
722 	struct ipmi_smi *intf;
723 	int index;
724 
725 	mutex_lock(&smi_watchers_mutex);
726 
727 	list_add(&watcher->link, &smi_watchers);
728 
729 	index = srcu_read_lock(&ipmi_interfaces_srcu);
730 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
731 		int intf_num = READ_ONCE(intf->intf_num);
732 
733 		if (intf_num == -1)
734 			continue;
735 		watcher->new_smi(intf_num, intf->si_dev);
736 	}
737 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
738 
739 	mutex_unlock(&smi_watchers_mutex);
740 
741 	return 0;
742 }
743 EXPORT_SYMBOL(ipmi_smi_watcher_register);
744 
745 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
746 {
747 	mutex_lock(&smi_watchers_mutex);
748 	list_del(&watcher->link);
749 	mutex_unlock(&smi_watchers_mutex);
750 	return 0;
751 }
752 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
753 
754 /*
755  * Must be called with smi_watchers_mutex held.
756  */
757 static void
758 call_smi_watchers(int i, struct device *dev)
759 {
760 	struct ipmi_smi_watcher *w;
761 
762 	mutex_lock(&smi_watchers_mutex);
763 	list_for_each_entry(w, &smi_watchers, link) {
764 		if (try_module_get(w->owner)) {
765 			w->new_smi(i, dev);
766 			module_put(w->owner);
767 		}
768 	}
769 	mutex_unlock(&smi_watchers_mutex);
770 }
771 
772 static int
773 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
774 {
775 	if (addr1->addr_type != addr2->addr_type)
776 		return 0;
777 
778 	if (addr1->channel != addr2->channel)
779 		return 0;
780 
781 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
782 		struct ipmi_system_interface_addr *smi_addr1
783 		    = (struct ipmi_system_interface_addr *) addr1;
784 		struct ipmi_system_interface_addr *smi_addr2
785 		    = (struct ipmi_system_interface_addr *) addr2;
786 		return (smi_addr1->lun == smi_addr2->lun);
787 	}
788 
789 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
790 		struct ipmi_ipmb_addr *ipmb_addr1
791 		    = (struct ipmi_ipmb_addr *) addr1;
792 		struct ipmi_ipmb_addr *ipmb_addr2
793 		    = (struct ipmi_ipmb_addr *) addr2;
794 
795 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
796 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
797 	}
798 
799 	if (is_lan_addr(addr1)) {
800 		struct ipmi_lan_addr *lan_addr1
801 			= (struct ipmi_lan_addr *) addr1;
802 		struct ipmi_lan_addr *lan_addr2
803 		    = (struct ipmi_lan_addr *) addr2;
804 
805 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
806 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
807 			&& (lan_addr1->session_handle
808 			    == lan_addr2->session_handle)
809 			&& (lan_addr1->lun == lan_addr2->lun));
810 	}
811 
812 	return 1;
813 }
814 
815 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
816 {
817 	if (len < sizeof(struct ipmi_system_interface_addr))
818 		return -EINVAL;
819 
820 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
821 		if (addr->channel != IPMI_BMC_CHANNEL)
822 			return -EINVAL;
823 		return 0;
824 	}
825 
826 	if ((addr->channel == IPMI_BMC_CHANNEL)
827 	    || (addr->channel >= IPMI_MAX_CHANNELS)
828 	    || (addr->channel < 0))
829 		return -EINVAL;
830 
831 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
832 		if (len < sizeof(struct ipmi_ipmb_addr))
833 			return -EINVAL;
834 		return 0;
835 	}
836 
837 	if (is_lan_addr(addr)) {
838 		if (len < sizeof(struct ipmi_lan_addr))
839 			return -EINVAL;
840 		return 0;
841 	}
842 
843 	return -EINVAL;
844 }
845 EXPORT_SYMBOL(ipmi_validate_addr);
846 
847 unsigned int ipmi_addr_length(int addr_type)
848 {
849 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
850 		return sizeof(struct ipmi_system_interface_addr);
851 
852 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
853 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
854 		return sizeof(struct ipmi_ipmb_addr);
855 
856 	if (addr_type == IPMI_LAN_ADDR_TYPE)
857 		return sizeof(struct ipmi_lan_addr);
858 
859 	return 0;
860 }
861 EXPORT_SYMBOL(ipmi_addr_length);
862 
863 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
864 {
865 	int rv = 0;
866 
867 	if (!msg->user) {
868 		/* Special handling for NULL users. */
869 		if (intf->null_user_handler) {
870 			intf->null_user_handler(intf, msg);
871 		} else {
872 			/* No handler, so give up. */
873 			rv = -EINVAL;
874 		}
875 		ipmi_free_recv_msg(msg);
876 	} else if (!oops_in_progress) {
877 		/*
878 		 * If we are running in the panic context, calling the
879 		 * receive handler doesn't much meaning and has a deadlock
880 		 * risk.  At this moment, simply skip it in that case.
881 		 */
882 		int index;
883 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
884 
885 		if (user) {
886 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
887 			release_ipmi_user(msg->user, index);
888 		} else {
889 			/* User went away, give up. */
890 			ipmi_free_recv_msg(msg);
891 			rv = -EINVAL;
892 		}
893 	}
894 
895 	return rv;
896 }
897 
898 static void deliver_local_response(struct ipmi_smi *intf,
899 				   struct ipmi_recv_msg *msg)
900 {
901 	if (deliver_response(intf, msg))
902 		ipmi_inc_stat(intf, unhandled_local_responses);
903 	else
904 		ipmi_inc_stat(intf, handled_local_responses);
905 }
906 
907 static void deliver_err_response(struct ipmi_smi *intf,
908 				 struct ipmi_recv_msg *msg, int err)
909 {
910 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
911 	msg->msg_data[0] = err;
912 	msg->msg.netfn |= 1; /* Convert to a response. */
913 	msg->msg.data_len = 1;
914 	msg->msg.data = msg->msg_data;
915 	deliver_local_response(intf, msg);
916 }
917 
918 /*
919  * Find the next sequence number not being used and add the given
920  * message with the given timeout to the sequence table.  This must be
921  * called with the interface's seq_lock held.
922  */
923 static int intf_next_seq(struct ipmi_smi      *intf,
924 			 struct ipmi_recv_msg *recv_msg,
925 			 unsigned long        timeout,
926 			 int                  retries,
927 			 int                  broadcast,
928 			 unsigned char        *seq,
929 			 long                 *seqid)
930 {
931 	int          rv = 0;
932 	unsigned int i;
933 
934 	if (timeout == 0)
935 		timeout = default_retry_ms;
936 	if (retries < 0)
937 		retries = default_max_retries;
938 
939 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
940 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
941 		if (!intf->seq_table[i].inuse)
942 			break;
943 	}
944 
945 	if (!intf->seq_table[i].inuse) {
946 		intf->seq_table[i].recv_msg = recv_msg;
947 
948 		/*
949 		 * Start with the maximum timeout, when the send response
950 		 * comes in we will start the real timer.
951 		 */
952 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
953 		intf->seq_table[i].orig_timeout = timeout;
954 		intf->seq_table[i].retries_left = retries;
955 		intf->seq_table[i].broadcast = broadcast;
956 		intf->seq_table[i].inuse = 1;
957 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
958 		*seq = i;
959 		*seqid = intf->seq_table[i].seqid;
960 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
961 		need_waiter(intf);
962 	} else {
963 		rv = -EAGAIN;
964 	}
965 
966 	return rv;
967 }
968 
969 /*
970  * Return the receive message for the given sequence number and
971  * release the sequence number so it can be reused.  Some other data
972  * is passed in to be sure the message matches up correctly (to help
973  * guard against message coming in after their timeout and the
974  * sequence number being reused).
975  */
976 static int intf_find_seq(struct ipmi_smi      *intf,
977 			 unsigned char        seq,
978 			 short                channel,
979 			 unsigned char        cmd,
980 			 unsigned char        netfn,
981 			 struct ipmi_addr     *addr,
982 			 struct ipmi_recv_msg **recv_msg)
983 {
984 	int           rv = -ENODEV;
985 	unsigned long flags;
986 
987 	if (seq >= IPMI_IPMB_NUM_SEQ)
988 		return -EINVAL;
989 
990 	spin_lock_irqsave(&intf->seq_lock, flags);
991 	if (intf->seq_table[seq].inuse) {
992 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
993 
994 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
995 				&& (msg->msg.netfn == netfn)
996 				&& (ipmi_addr_equal(addr, &msg->addr))) {
997 			*recv_msg = msg;
998 			intf->seq_table[seq].inuse = 0;
999 			rv = 0;
1000 		}
1001 	}
1002 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1003 
1004 	return rv;
1005 }
1006 
1007 
1008 /* Start the timer for a specific sequence table entry. */
1009 static int intf_start_seq_timer(struct ipmi_smi *intf,
1010 				long       msgid)
1011 {
1012 	int           rv = -ENODEV;
1013 	unsigned long flags;
1014 	unsigned char seq;
1015 	unsigned long seqid;
1016 
1017 
1018 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1019 
1020 	spin_lock_irqsave(&intf->seq_lock, flags);
1021 	/*
1022 	 * We do this verification because the user can be deleted
1023 	 * while a message is outstanding.
1024 	 */
1025 	if ((intf->seq_table[seq].inuse)
1026 				&& (intf->seq_table[seq].seqid == seqid)) {
1027 		struct seq_table *ent = &intf->seq_table[seq];
1028 		ent->timeout = ent->orig_timeout;
1029 		rv = 0;
1030 	}
1031 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1032 
1033 	return rv;
1034 }
1035 
1036 /* Got an error for the send message for a specific sequence number. */
1037 static int intf_err_seq(struct ipmi_smi *intf,
1038 			long         msgid,
1039 			unsigned int err)
1040 {
1041 	int                  rv = -ENODEV;
1042 	unsigned long        flags;
1043 	unsigned char        seq;
1044 	unsigned long        seqid;
1045 	struct ipmi_recv_msg *msg = NULL;
1046 
1047 
1048 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1049 
1050 	spin_lock_irqsave(&intf->seq_lock, flags);
1051 	/*
1052 	 * We do this verification because the user can be deleted
1053 	 * while a message is outstanding.
1054 	 */
1055 	if ((intf->seq_table[seq].inuse)
1056 				&& (intf->seq_table[seq].seqid == seqid)) {
1057 		struct seq_table *ent = &intf->seq_table[seq];
1058 
1059 		ent->inuse = 0;
1060 		msg = ent->recv_msg;
1061 		rv = 0;
1062 	}
1063 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1064 
1065 	if (msg)
1066 		deliver_err_response(intf, msg, err);
1067 
1068 	return rv;
1069 }
1070 
1071 
1072 int ipmi_create_user(unsigned int          if_num,
1073 		     const struct ipmi_user_hndl *handler,
1074 		     void                  *handler_data,
1075 		     struct ipmi_user      **user)
1076 {
1077 	unsigned long flags;
1078 	struct ipmi_user *new_user;
1079 	int           rv = 0, index;
1080 	struct ipmi_smi *intf;
1081 
1082 	/*
1083 	 * There is no module usecount here, because it's not
1084 	 * required.  Since this can only be used by and called from
1085 	 * other modules, they will implicitly use this module, and
1086 	 * thus this can't be removed unless the other modules are
1087 	 * removed.
1088 	 */
1089 
1090 	if (handler == NULL)
1091 		return -EINVAL;
1092 
1093 	/*
1094 	 * Make sure the driver is actually initialized, this handles
1095 	 * problems with initialization order.
1096 	 */
1097 	if (!initialized) {
1098 		rv = ipmi_init_msghandler();
1099 		if (rv)
1100 			return rv;
1101 
1102 		/*
1103 		 * The init code doesn't return an error if it was turned
1104 		 * off, but it won't initialize.  Check that.
1105 		 */
1106 		if (!initialized)
1107 			return -ENODEV;
1108 	}
1109 
1110 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1111 	if (!new_user)
1112 		return -ENOMEM;
1113 
1114 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1115 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1116 		if (intf->intf_num == if_num)
1117 			goto found;
1118 	}
1119 	/* Not found, return an error */
1120 	rv = -EINVAL;
1121 	goto out_kfree;
1122 
1123  found:
1124 	rv = init_srcu_struct(&new_user->release_barrier);
1125 	if (rv)
1126 		goto out_kfree;
1127 
1128 	/* Note that each existing user holds a refcount to the interface. */
1129 	kref_get(&intf->refcount);
1130 
1131 	kref_init(&new_user->refcount);
1132 	new_user->handler = handler;
1133 	new_user->handler_data = handler_data;
1134 	new_user->intf = intf;
1135 	new_user->gets_events = false;
1136 
1137 	rcu_assign_pointer(new_user->self, new_user);
1138 	spin_lock_irqsave(&intf->seq_lock, flags);
1139 	list_add_rcu(&new_user->link, &intf->users);
1140 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1141 	if (handler->ipmi_watchdog_pretimeout) {
1142 		/* User wants pretimeouts, so make sure to watch for them. */
1143 		if (atomic_inc_return(&intf->event_waiters) == 1)
1144 			need_waiter(intf);
1145 	}
1146 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1147 	*user = new_user;
1148 	return 0;
1149 
1150 out_kfree:
1151 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1152 	kfree(new_user);
1153 	return rv;
1154 }
1155 EXPORT_SYMBOL(ipmi_create_user);
1156 
1157 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1158 {
1159 	int rv, index;
1160 	struct ipmi_smi *intf;
1161 
1162 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1163 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1164 		if (intf->intf_num == if_num)
1165 			goto found;
1166 	}
1167 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1168 
1169 	/* Not found, return an error */
1170 	return -EINVAL;
1171 
1172 found:
1173 	if (!intf->handlers->get_smi_info)
1174 		rv = -ENOTTY;
1175 	else
1176 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1177 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1178 
1179 	return rv;
1180 }
1181 EXPORT_SYMBOL(ipmi_get_smi_info);
1182 
1183 static void free_user(struct kref *ref)
1184 {
1185 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1186 	kfree(user);
1187 }
1188 
1189 static void _ipmi_destroy_user(struct ipmi_user *user)
1190 {
1191 	struct ipmi_smi  *intf = user->intf;
1192 	int              i;
1193 	unsigned long    flags;
1194 	struct cmd_rcvr  *rcvr;
1195 	struct cmd_rcvr  *rcvrs = NULL;
1196 
1197 	if (!acquire_ipmi_user(user, &i)) {
1198 		/*
1199 		 * The user has already been cleaned up, just make sure
1200 		 * nothing is using it and return.
1201 		 */
1202 		synchronize_srcu(&user->release_barrier);
1203 		return;
1204 	}
1205 
1206 	rcu_assign_pointer(user->self, NULL);
1207 	release_ipmi_user(user, i);
1208 
1209 	synchronize_srcu(&user->release_barrier);
1210 
1211 	if (user->handler->shutdown)
1212 		user->handler->shutdown(user->handler_data);
1213 
1214 	if (user->handler->ipmi_watchdog_pretimeout)
1215 		atomic_dec(&intf->event_waiters);
1216 
1217 	if (user->gets_events)
1218 		atomic_dec(&intf->event_waiters);
1219 
1220 	/* Remove the user from the interface's sequence table. */
1221 	spin_lock_irqsave(&intf->seq_lock, flags);
1222 	list_del_rcu(&user->link);
1223 
1224 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1225 		if (intf->seq_table[i].inuse
1226 		    && (intf->seq_table[i].recv_msg->user == user)) {
1227 			intf->seq_table[i].inuse = 0;
1228 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1229 		}
1230 	}
1231 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1232 
1233 	/*
1234 	 * Remove the user from the command receiver's table.  First
1235 	 * we build a list of everything (not using the standard link,
1236 	 * since other things may be using it till we do
1237 	 * synchronize_srcu()) then free everything in that list.
1238 	 */
1239 	mutex_lock(&intf->cmd_rcvrs_mutex);
1240 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1241 		if (rcvr->user == user) {
1242 			list_del_rcu(&rcvr->link);
1243 			rcvr->next = rcvrs;
1244 			rcvrs = rcvr;
1245 		}
1246 	}
1247 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1248 	synchronize_rcu();
1249 	while (rcvrs) {
1250 		rcvr = rcvrs;
1251 		rcvrs = rcvr->next;
1252 		kfree(rcvr);
1253 	}
1254 
1255 	kref_put(&intf->refcount, intf_free);
1256 }
1257 
1258 int ipmi_destroy_user(struct ipmi_user *user)
1259 {
1260 	_ipmi_destroy_user(user);
1261 
1262 	cleanup_srcu_struct(&user->release_barrier);
1263 	kref_put(&user->refcount, free_user);
1264 
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL(ipmi_destroy_user);
1268 
1269 int ipmi_get_version(struct ipmi_user *user,
1270 		     unsigned char *major,
1271 		     unsigned char *minor)
1272 {
1273 	struct ipmi_device_id id;
1274 	int rv, index;
1275 
1276 	user = acquire_ipmi_user(user, &index);
1277 	if (!user)
1278 		return -ENODEV;
1279 
1280 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1281 	if (!rv) {
1282 		*major = ipmi_version_major(&id);
1283 		*minor = ipmi_version_minor(&id);
1284 	}
1285 	release_ipmi_user(user, index);
1286 
1287 	return rv;
1288 }
1289 EXPORT_SYMBOL(ipmi_get_version);
1290 
1291 int ipmi_set_my_address(struct ipmi_user *user,
1292 			unsigned int  channel,
1293 			unsigned char address)
1294 {
1295 	int index, rv = 0;
1296 
1297 	user = acquire_ipmi_user(user, &index);
1298 	if (!user)
1299 		return -ENODEV;
1300 
1301 	if (channel >= IPMI_MAX_CHANNELS)
1302 		rv = -EINVAL;
1303 	else
1304 		user->intf->addrinfo[channel].address = address;
1305 	release_ipmi_user(user, index);
1306 
1307 	return rv;
1308 }
1309 EXPORT_SYMBOL(ipmi_set_my_address);
1310 
1311 int ipmi_get_my_address(struct ipmi_user *user,
1312 			unsigned int  channel,
1313 			unsigned char *address)
1314 {
1315 	int index, rv = 0;
1316 
1317 	user = acquire_ipmi_user(user, &index);
1318 	if (!user)
1319 		return -ENODEV;
1320 
1321 	if (channel >= IPMI_MAX_CHANNELS)
1322 		rv = -EINVAL;
1323 	else
1324 		*address = user->intf->addrinfo[channel].address;
1325 	release_ipmi_user(user, index);
1326 
1327 	return rv;
1328 }
1329 EXPORT_SYMBOL(ipmi_get_my_address);
1330 
1331 int ipmi_set_my_LUN(struct ipmi_user *user,
1332 		    unsigned int  channel,
1333 		    unsigned char LUN)
1334 {
1335 	int index, rv = 0;
1336 
1337 	user = acquire_ipmi_user(user, &index);
1338 	if (!user)
1339 		return -ENODEV;
1340 
1341 	if (channel >= IPMI_MAX_CHANNELS)
1342 		rv = -EINVAL;
1343 	else
1344 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1345 	release_ipmi_user(user, index);
1346 
1347 	return rv;
1348 }
1349 EXPORT_SYMBOL(ipmi_set_my_LUN);
1350 
1351 int ipmi_get_my_LUN(struct ipmi_user *user,
1352 		    unsigned int  channel,
1353 		    unsigned char *address)
1354 {
1355 	int index, rv = 0;
1356 
1357 	user = acquire_ipmi_user(user, &index);
1358 	if (!user)
1359 		return -ENODEV;
1360 
1361 	if (channel >= IPMI_MAX_CHANNELS)
1362 		rv = -EINVAL;
1363 	else
1364 		*address = user->intf->addrinfo[channel].lun;
1365 	release_ipmi_user(user, index);
1366 
1367 	return rv;
1368 }
1369 EXPORT_SYMBOL(ipmi_get_my_LUN);
1370 
1371 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1372 {
1373 	int mode, index;
1374 	unsigned long flags;
1375 
1376 	user = acquire_ipmi_user(user, &index);
1377 	if (!user)
1378 		return -ENODEV;
1379 
1380 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1381 	mode = user->intf->maintenance_mode;
1382 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1383 	release_ipmi_user(user, index);
1384 
1385 	return mode;
1386 }
1387 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1388 
1389 static void maintenance_mode_update(struct ipmi_smi *intf)
1390 {
1391 	if (intf->handlers->set_maintenance_mode)
1392 		intf->handlers->set_maintenance_mode(
1393 			intf->send_info, intf->maintenance_mode_enable);
1394 }
1395 
1396 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1397 {
1398 	int rv = 0, index;
1399 	unsigned long flags;
1400 	struct ipmi_smi *intf = user->intf;
1401 
1402 	user = acquire_ipmi_user(user, &index);
1403 	if (!user)
1404 		return -ENODEV;
1405 
1406 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1407 	if (intf->maintenance_mode != mode) {
1408 		switch (mode) {
1409 		case IPMI_MAINTENANCE_MODE_AUTO:
1410 			intf->maintenance_mode_enable
1411 				= (intf->auto_maintenance_timeout > 0);
1412 			break;
1413 
1414 		case IPMI_MAINTENANCE_MODE_OFF:
1415 			intf->maintenance_mode_enable = false;
1416 			break;
1417 
1418 		case IPMI_MAINTENANCE_MODE_ON:
1419 			intf->maintenance_mode_enable = true;
1420 			break;
1421 
1422 		default:
1423 			rv = -EINVAL;
1424 			goto out_unlock;
1425 		}
1426 		intf->maintenance_mode = mode;
1427 
1428 		maintenance_mode_update(intf);
1429 	}
1430  out_unlock:
1431 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1432 	release_ipmi_user(user, index);
1433 
1434 	return rv;
1435 }
1436 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1437 
1438 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1439 {
1440 	unsigned long        flags;
1441 	struct ipmi_smi      *intf = user->intf;
1442 	struct ipmi_recv_msg *msg, *msg2;
1443 	struct list_head     msgs;
1444 	int index;
1445 
1446 	user = acquire_ipmi_user(user, &index);
1447 	if (!user)
1448 		return -ENODEV;
1449 
1450 	INIT_LIST_HEAD(&msgs);
1451 
1452 	spin_lock_irqsave(&intf->events_lock, flags);
1453 	if (user->gets_events == val)
1454 		goto out;
1455 
1456 	user->gets_events = val;
1457 
1458 	if (val) {
1459 		if (atomic_inc_return(&intf->event_waiters) == 1)
1460 			need_waiter(intf);
1461 	} else {
1462 		atomic_dec(&intf->event_waiters);
1463 	}
1464 
1465 	if (intf->delivering_events)
1466 		/*
1467 		 * Another thread is delivering events for this, so
1468 		 * let it handle any new events.
1469 		 */
1470 		goto out;
1471 
1472 	/* Deliver any queued events. */
1473 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1474 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1475 			list_move_tail(&msg->link, &msgs);
1476 		intf->waiting_events_count = 0;
1477 		if (intf->event_msg_printed) {
1478 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1479 			intf->event_msg_printed = 0;
1480 		}
1481 
1482 		intf->delivering_events = 1;
1483 		spin_unlock_irqrestore(&intf->events_lock, flags);
1484 
1485 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1486 			msg->user = user;
1487 			kref_get(&user->refcount);
1488 			deliver_local_response(intf, msg);
1489 		}
1490 
1491 		spin_lock_irqsave(&intf->events_lock, flags);
1492 		intf->delivering_events = 0;
1493 	}
1494 
1495  out:
1496 	spin_unlock_irqrestore(&intf->events_lock, flags);
1497 	release_ipmi_user(user, index);
1498 
1499 	return 0;
1500 }
1501 EXPORT_SYMBOL(ipmi_set_gets_events);
1502 
1503 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1504 				      unsigned char netfn,
1505 				      unsigned char cmd,
1506 				      unsigned char chan)
1507 {
1508 	struct cmd_rcvr *rcvr;
1509 
1510 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1511 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1512 					&& (rcvr->chans & (1 << chan)))
1513 			return rcvr;
1514 	}
1515 	return NULL;
1516 }
1517 
1518 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1519 				 unsigned char netfn,
1520 				 unsigned char cmd,
1521 				 unsigned int  chans)
1522 {
1523 	struct cmd_rcvr *rcvr;
1524 
1525 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1526 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1527 					&& (rcvr->chans & chans))
1528 			return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 int ipmi_register_for_cmd(struct ipmi_user *user,
1534 			  unsigned char netfn,
1535 			  unsigned char cmd,
1536 			  unsigned int  chans)
1537 {
1538 	struct ipmi_smi *intf = user->intf;
1539 	struct cmd_rcvr *rcvr;
1540 	int rv = 0, index;
1541 
1542 	user = acquire_ipmi_user(user, &index);
1543 	if (!user)
1544 		return -ENODEV;
1545 
1546 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1547 	if (!rcvr) {
1548 		rv = -ENOMEM;
1549 		goto out_release;
1550 	}
1551 	rcvr->cmd = cmd;
1552 	rcvr->netfn = netfn;
1553 	rcvr->chans = chans;
1554 	rcvr->user = user;
1555 
1556 	mutex_lock(&intf->cmd_rcvrs_mutex);
1557 	/* Make sure the command/netfn is not already registered. */
1558 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1559 		rv = -EBUSY;
1560 		goto out_unlock;
1561 	}
1562 
1563 	if (atomic_inc_return(&intf->event_waiters) == 1)
1564 		need_waiter(intf);
1565 
1566 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1567 
1568 out_unlock:
1569 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1570 	if (rv)
1571 		kfree(rcvr);
1572 out_release:
1573 	release_ipmi_user(user, index);
1574 
1575 	return rv;
1576 }
1577 EXPORT_SYMBOL(ipmi_register_for_cmd);
1578 
1579 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1580 			    unsigned char netfn,
1581 			    unsigned char cmd,
1582 			    unsigned int  chans)
1583 {
1584 	struct ipmi_smi *intf = user->intf;
1585 	struct cmd_rcvr *rcvr;
1586 	struct cmd_rcvr *rcvrs = NULL;
1587 	int i, rv = -ENOENT, index;
1588 
1589 	user = acquire_ipmi_user(user, &index);
1590 	if (!user)
1591 		return -ENODEV;
1592 
1593 	mutex_lock(&intf->cmd_rcvrs_mutex);
1594 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1595 		if (((1 << i) & chans) == 0)
1596 			continue;
1597 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1598 		if (rcvr == NULL)
1599 			continue;
1600 		if (rcvr->user == user) {
1601 			rv = 0;
1602 			rcvr->chans &= ~chans;
1603 			if (rcvr->chans == 0) {
1604 				list_del_rcu(&rcvr->link);
1605 				rcvr->next = rcvrs;
1606 				rcvrs = rcvr;
1607 			}
1608 		}
1609 	}
1610 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1611 	synchronize_rcu();
1612 	release_ipmi_user(user, index);
1613 	while (rcvrs) {
1614 		atomic_dec(&intf->event_waiters);
1615 		rcvr = rcvrs;
1616 		rcvrs = rcvr->next;
1617 		kfree(rcvr);
1618 	}
1619 
1620 	return rv;
1621 }
1622 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1623 
1624 static unsigned char
1625 ipmb_checksum(unsigned char *data, int size)
1626 {
1627 	unsigned char csum = 0;
1628 
1629 	for (; size > 0; size--, data++)
1630 		csum += *data;
1631 
1632 	return -csum;
1633 }
1634 
1635 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1636 				   struct kernel_ipmi_msg *msg,
1637 				   struct ipmi_ipmb_addr *ipmb_addr,
1638 				   long                  msgid,
1639 				   unsigned char         ipmb_seq,
1640 				   int                   broadcast,
1641 				   unsigned char         source_address,
1642 				   unsigned char         source_lun)
1643 {
1644 	int i = broadcast;
1645 
1646 	/* Format the IPMB header data. */
1647 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1648 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1649 	smi_msg->data[2] = ipmb_addr->channel;
1650 	if (broadcast)
1651 		smi_msg->data[3] = 0;
1652 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1653 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1654 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1655 	smi_msg->data[i+6] = source_address;
1656 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1657 	smi_msg->data[i+8] = msg->cmd;
1658 
1659 	/* Now tack on the data to the message. */
1660 	if (msg->data_len > 0)
1661 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1662 	smi_msg->data_size = msg->data_len + 9;
1663 
1664 	/* Now calculate the checksum and tack it on. */
1665 	smi_msg->data[i+smi_msg->data_size]
1666 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1667 
1668 	/*
1669 	 * Add on the checksum size and the offset from the
1670 	 * broadcast.
1671 	 */
1672 	smi_msg->data_size += 1 + i;
1673 
1674 	smi_msg->msgid = msgid;
1675 }
1676 
1677 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1678 				  struct kernel_ipmi_msg *msg,
1679 				  struct ipmi_lan_addr  *lan_addr,
1680 				  long                  msgid,
1681 				  unsigned char         ipmb_seq,
1682 				  unsigned char         source_lun)
1683 {
1684 	/* Format the IPMB header data. */
1685 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1686 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1687 	smi_msg->data[2] = lan_addr->channel;
1688 	smi_msg->data[3] = lan_addr->session_handle;
1689 	smi_msg->data[4] = lan_addr->remote_SWID;
1690 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1691 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1692 	smi_msg->data[7] = lan_addr->local_SWID;
1693 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1694 	smi_msg->data[9] = msg->cmd;
1695 
1696 	/* Now tack on the data to the message. */
1697 	if (msg->data_len > 0)
1698 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1699 	smi_msg->data_size = msg->data_len + 10;
1700 
1701 	/* Now calculate the checksum and tack it on. */
1702 	smi_msg->data[smi_msg->data_size]
1703 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1704 
1705 	/*
1706 	 * Add on the checksum size and the offset from the
1707 	 * broadcast.
1708 	 */
1709 	smi_msg->data_size += 1;
1710 
1711 	smi_msg->msgid = msgid;
1712 }
1713 
1714 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1715 					     struct ipmi_smi_msg *smi_msg,
1716 					     int priority)
1717 {
1718 	if (intf->curr_msg) {
1719 		if (priority > 0)
1720 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1721 		else
1722 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1723 		smi_msg = NULL;
1724 	} else {
1725 		intf->curr_msg = smi_msg;
1726 	}
1727 
1728 	return smi_msg;
1729 }
1730 
1731 
1732 static void smi_send(struct ipmi_smi *intf,
1733 		     const struct ipmi_smi_handlers *handlers,
1734 		     struct ipmi_smi_msg *smi_msg, int priority)
1735 {
1736 	int run_to_completion = intf->run_to_completion;
1737 
1738 	if (run_to_completion) {
1739 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1740 	} else {
1741 		unsigned long flags;
1742 
1743 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1744 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1745 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1746 	}
1747 
1748 	if (smi_msg)
1749 		handlers->sender(intf->send_info, smi_msg);
1750 }
1751 
1752 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1753 {
1754 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1755 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1756 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1757 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1758 }
1759 
1760 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1761 			      struct ipmi_addr       *addr,
1762 			      long                   msgid,
1763 			      struct kernel_ipmi_msg *msg,
1764 			      struct ipmi_smi_msg    *smi_msg,
1765 			      struct ipmi_recv_msg   *recv_msg,
1766 			      int                    retries,
1767 			      unsigned int           retry_time_ms)
1768 {
1769 	struct ipmi_system_interface_addr *smi_addr;
1770 
1771 	if (msg->netfn & 1)
1772 		/* Responses are not allowed to the SMI. */
1773 		return -EINVAL;
1774 
1775 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1776 	if (smi_addr->lun > 3) {
1777 		ipmi_inc_stat(intf, sent_invalid_commands);
1778 		return -EINVAL;
1779 	}
1780 
1781 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1782 
1783 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1784 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1785 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1786 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1787 		/*
1788 		 * We don't let the user do these, since we manage
1789 		 * the sequence numbers.
1790 		 */
1791 		ipmi_inc_stat(intf, sent_invalid_commands);
1792 		return -EINVAL;
1793 	}
1794 
1795 	if (is_maintenance_mode_cmd(msg)) {
1796 		unsigned long flags;
1797 
1798 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1799 		intf->auto_maintenance_timeout
1800 			= maintenance_mode_timeout_ms;
1801 		if (!intf->maintenance_mode
1802 		    && !intf->maintenance_mode_enable) {
1803 			intf->maintenance_mode_enable = true;
1804 			maintenance_mode_update(intf);
1805 		}
1806 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1807 				       flags);
1808 	}
1809 
1810 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1811 		ipmi_inc_stat(intf, sent_invalid_commands);
1812 		return -EMSGSIZE;
1813 	}
1814 
1815 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1816 	smi_msg->data[1] = msg->cmd;
1817 	smi_msg->msgid = msgid;
1818 	smi_msg->user_data = recv_msg;
1819 	if (msg->data_len > 0)
1820 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1821 	smi_msg->data_size = msg->data_len + 2;
1822 	ipmi_inc_stat(intf, sent_local_commands);
1823 
1824 	return 0;
1825 }
1826 
1827 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1828 			   struct ipmi_addr       *addr,
1829 			   long                   msgid,
1830 			   struct kernel_ipmi_msg *msg,
1831 			   struct ipmi_smi_msg    *smi_msg,
1832 			   struct ipmi_recv_msg   *recv_msg,
1833 			   unsigned char          source_address,
1834 			   unsigned char          source_lun,
1835 			   int                    retries,
1836 			   unsigned int           retry_time_ms)
1837 {
1838 	struct ipmi_ipmb_addr *ipmb_addr;
1839 	unsigned char ipmb_seq;
1840 	long seqid;
1841 	int broadcast = 0;
1842 	struct ipmi_channel *chans;
1843 	int rv = 0;
1844 
1845 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1846 		ipmi_inc_stat(intf, sent_invalid_commands);
1847 		return -EINVAL;
1848 	}
1849 
1850 	chans = READ_ONCE(intf->channel_list)->c;
1851 
1852 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1853 		ipmi_inc_stat(intf, sent_invalid_commands);
1854 		return -EINVAL;
1855 	}
1856 
1857 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1858 		/*
1859 		 * Broadcasts add a zero at the beginning of the
1860 		 * message, but otherwise is the same as an IPMB
1861 		 * address.
1862 		 */
1863 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1864 		broadcast = 1;
1865 		retries = 0; /* Don't retry broadcasts. */
1866 	}
1867 
1868 	/*
1869 	 * 9 for the header and 1 for the checksum, plus
1870 	 * possibly one for the broadcast.
1871 	 */
1872 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1873 		ipmi_inc_stat(intf, sent_invalid_commands);
1874 		return -EMSGSIZE;
1875 	}
1876 
1877 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1878 	if (ipmb_addr->lun > 3) {
1879 		ipmi_inc_stat(intf, sent_invalid_commands);
1880 		return -EINVAL;
1881 	}
1882 
1883 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1884 
1885 	if (recv_msg->msg.netfn & 0x1) {
1886 		/*
1887 		 * It's a response, so use the user's sequence
1888 		 * from msgid.
1889 		 */
1890 		ipmi_inc_stat(intf, sent_ipmb_responses);
1891 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1892 				msgid, broadcast,
1893 				source_address, source_lun);
1894 
1895 		/*
1896 		 * Save the receive message so we can use it
1897 		 * to deliver the response.
1898 		 */
1899 		smi_msg->user_data = recv_msg;
1900 	} else {
1901 		/* It's a command, so get a sequence for it. */
1902 		unsigned long flags;
1903 
1904 		spin_lock_irqsave(&intf->seq_lock, flags);
1905 
1906 		if (is_maintenance_mode_cmd(msg))
1907 			intf->ipmb_maintenance_mode_timeout =
1908 				maintenance_mode_timeout_ms;
1909 
1910 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1911 			/* Different default in maintenance mode */
1912 			retry_time_ms = default_maintenance_retry_ms;
1913 
1914 		/*
1915 		 * Create a sequence number with a 1 second
1916 		 * timeout and 4 retries.
1917 		 */
1918 		rv = intf_next_seq(intf,
1919 				   recv_msg,
1920 				   retry_time_ms,
1921 				   retries,
1922 				   broadcast,
1923 				   &ipmb_seq,
1924 				   &seqid);
1925 		if (rv)
1926 			/*
1927 			 * We have used up all the sequence numbers,
1928 			 * probably, so abort.
1929 			 */
1930 			goto out_err;
1931 
1932 		ipmi_inc_stat(intf, sent_ipmb_commands);
1933 
1934 		/*
1935 		 * Store the sequence number in the message,
1936 		 * so that when the send message response
1937 		 * comes back we can start the timer.
1938 		 */
1939 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
1940 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1941 				ipmb_seq, broadcast,
1942 				source_address, source_lun);
1943 
1944 		/*
1945 		 * Copy the message into the recv message data, so we
1946 		 * can retransmit it later if necessary.
1947 		 */
1948 		memcpy(recv_msg->msg_data, smi_msg->data,
1949 		       smi_msg->data_size);
1950 		recv_msg->msg.data = recv_msg->msg_data;
1951 		recv_msg->msg.data_len = smi_msg->data_size;
1952 
1953 		/*
1954 		 * We don't unlock until here, because we need
1955 		 * to copy the completed message into the
1956 		 * recv_msg before we release the lock.
1957 		 * Otherwise, race conditions may bite us.  I
1958 		 * know that's pretty paranoid, but I prefer
1959 		 * to be correct.
1960 		 */
1961 out_err:
1962 		spin_unlock_irqrestore(&intf->seq_lock, flags);
1963 	}
1964 
1965 	return rv;
1966 }
1967 
1968 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
1969 			  struct ipmi_addr       *addr,
1970 			  long                   msgid,
1971 			  struct kernel_ipmi_msg *msg,
1972 			  struct ipmi_smi_msg    *smi_msg,
1973 			  struct ipmi_recv_msg   *recv_msg,
1974 			  unsigned char          source_lun,
1975 			  int                    retries,
1976 			  unsigned int           retry_time_ms)
1977 {
1978 	struct ipmi_lan_addr  *lan_addr;
1979 	unsigned char ipmb_seq;
1980 	long seqid;
1981 	struct ipmi_channel *chans;
1982 	int rv = 0;
1983 
1984 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1985 		ipmi_inc_stat(intf, sent_invalid_commands);
1986 		return -EINVAL;
1987 	}
1988 
1989 	chans = READ_ONCE(intf->channel_list)->c;
1990 
1991 	if ((chans[addr->channel].medium
1992 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1993 			&& (chans[addr->channel].medium
1994 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1995 		ipmi_inc_stat(intf, sent_invalid_commands);
1996 		return -EINVAL;
1997 	}
1998 
1999 	/* 11 for the header and 1 for the checksum. */
2000 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2001 		ipmi_inc_stat(intf, sent_invalid_commands);
2002 		return -EMSGSIZE;
2003 	}
2004 
2005 	lan_addr = (struct ipmi_lan_addr *) addr;
2006 	if (lan_addr->lun > 3) {
2007 		ipmi_inc_stat(intf, sent_invalid_commands);
2008 		return -EINVAL;
2009 	}
2010 
2011 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2012 
2013 	if (recv_msg->msg.netfn & 0x1) {
2014 		/*
2015 		 * It's a response, so use the user's sequence
2016 		 * from msgid.
2017 		 */
2018 		ipmi_inc_stat(intf, sent_lan_responses);
2019 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2020 			       msgid, source_lun);
2021 
2022 		/*
2023 		 * Save the receive message so we can use it
2024 		 * to deliver the response.
2025 		 */
2026 		smi_msg->user_data = recv_msg;
2027 	} else {
2028 		/* It's a command, so get a sequence for it. */
2029 		unsigned long flags;
2030 
2031 		spin_lock_irqsave(&intf->seq_lock, flags);
2032 
2033 		/*
2034 		 * Create a sequence number with a 1 second
2035 		 * timeout and 4 retries.
2036 		 */
2037 		rv = intf_next_seq(intf,
2038 				   recv_msg,
2039 				   retry_time_ms,
2040 				   retries,
2041 				   0,
2042 				   &ipmb_seq,
2043 				   &seqid);
2044 		if (rv)
2045 			/*
2046 			 * We have used up all the sequence numbers,
2047 			 * probably, so abort.
2048 			 */
2049 			goto out_err;
2050 
2051 		ipmi_inc_stat(intf, sent_lan_commands);
2052 
2053 		/*
2054 		 * Store the sequence number in the message,
2055 		 * so that when the send message response
2056 		 * comes back we can start the timer.
2057 		 */
2058 		format_lan_msg(smi_msg, msg, lan_addr,
2059 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2060 			       ipmb_seq, source_lun);
2061 
2062 		/*
2063 		 * Copy the message into the recv message data, so we
2064 		 * can retransmit it later if necessary.
2065 		 */
2066 		memcpy(recv_msg->msg_data, smi_msg->data,
2067 		       smi_msg->data_size);
2068 		recv_msg->msg.data = recv_msg->msg_data;
2069 		recv_msg->msg.data_len = smi_msg->data_size;
2070 
2071 		/*
2072 		 * We don't unlock until here, because we need
2073 		 * to copy the completed message into the
2074 		 * recv_msg before we release the lock.
2075 		 * Otherwise, race conditions may bite us.  I
2076 		 * know that's pretty paranoid, but I prefer
2077 		 * to be correct.
2078 		 */
2079 out_err:
2080 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2081 	}
2082 
2083 	return rv;
2084 }
2085 
2086 /*
2087  * Separate from ipmi_request so that the user does not have to be
2088  * supplied in certain circumstances (mainly at panic time).  If
2089  * messages are supplied, they will be freed, even if an error
2090  * occurs.
2091  */
2092 static int i_ipmi_request(struct ipmi_user     *user,
2093 			  struct ipmi_smi      *intf,
2094 			  struct ipmi_addr     *addr,
2095 			  long                 msgid,
2096 			  struct kernel_ipmi_msg *msg,
2097 			  void                 *user_msg_data,
2098 			  void                 *supplied_smi,
2099 			  struct ipmi_recv_msg *supplied_recv,
2100 			  int                  priority,
2101 			  unsigned char        source_address,
2102 			  unsigned char        source_lun,
2103 			  int                  retries,
2104 			  unsigned int         retry_time_ms)
2105 {
2106 	struct ipmi_smi_msg *smi_msg;
2107 	struct ipmi_recv_msg *recv_msg;
2108 	int rv = 0;
2109 
2110 	if (supplied_recv)
2111 		recv_msg = supplied_recv;
2112 	else {
2113 		recv_msg = ipmi_alloc_recv_msg();
2114 		if (recv_msg == NULL) {
2115 			rv = -ENOMEM;
2116 			goto out;
2117 		}
2118 	}
2119 	recv_msg->user_msg_data = user_msg_data;
2120 
2121 	if (supplied_smi)
2122 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2123 	else {
2124 		smi_msg = ipmi_alloc_smi_msg();
2125 		if (smi_msg == NULL) {
2126 			ipmi_free_recv_msg(recv_msg);
2127 			rv = -ENOMEM;
2128 			goto out;
2129 		}
2130 	}
2131 
2132 	rcu_read_lock();
2133 	if (intf->in_shutdown) {
2134 		rv = -ENODEV;
2135 		goto out_err;
2136 	}
2137 
2138 	recv_msg->user = user;
2139 	if (user)
2140 		/* The put happens when the message is freed. */
2141 		kref_get(&user->refcount);
2142 	recv_msg->msgid = msgid;
2143 	/*
2144 	 * Store the message to send in the receive message so timeout
2145 	 * responses can get the proper response data.
2146 	 */
2147 	recv_msg->msg = *msg;
2148 
2149 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2150 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2151 					recv_msg, retries, retry_time_ms);
2152 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2153 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2154 				     source_address, source_lun,
2155 				     retries, retry_time_ms);
2156 	} else if (is_lan_addr(addr)) {
2157 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2158 				    source_lun, retries, retry_time_ms);
2159 	} else {
2160 	    /* Unknown address type. */
2161 		ipmi_inc_stat(intf, sent_invalid_commands);
2162 		rv = -EINVAL;
2163 	}
2164 
2165 	if (rv) {
2166 out_err:
2167 		ipmi_free_smi_msg(smi_msg);
2168 		ipmi_free_recv_msg(recv_msg);
2169 	} else {
2170 		ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2171 
2172 		smi_send(intf, intf->handlers, smi_msg, priority);
2173 	}
2174 	rcu_read_unlock();
2175 
2176 out:
2177 	return rv;
2178 }
2179 
2180 static int check_addr(struct ipmi_smi  *intf,
2181 		      struct ipmi_addr *addr,
2182 		      unsigned char    *saddr,
2183 		      unsigned char    *lun)
2184 {
2185 	if (addr->channel >= IPMI_MAX_CHANNELS)
2186 		return -EINVAL;
2187 	*lun = intf->addrinfo[addr->channel].lun;
2188 	*saddr = intf->addrinfo[addr->channel].address;
2189 	return 0;
2190 }
2191 
2192 int ipmi_request_settime(struct ipmi_user *user,
2193 			 struct ipmi_addr *addr,
2194 			 long             msgid,
2195 			 struct kernel_ipmi_msg  *msg,
2196 			 void             *user_msg_data,
2197 			 int              priority,
2198 			 int              retries,
2199 			 unsigned int     retry_time_ms)
2200 {
2201 	unsigned char saddr = 0, lun = 0;
2202 	int rv, index;
2203 
2204 	if (!user)
2205 		return -EINVAL;
2206 
2207 	user = acquire_ipmi_user(user, &index);
2208 	if (!user)
2209 		return -ENODEV;
2210 
2211 	rv = check_addr(user->intf, addr, &saddr, &lun);
2212 	if (!rv)
2213 		rv = i_ipmi_request(user,
2214 				    user->intf,
2215 				    addr,
2216 				    msgid,
2217 				    msg,
2218 				    user_msg_data,
2219 				    NULL, NULL,
2220 				    priority,
2221 				    saddr,
2222 				    lun,
2223 				    retries,
2224 				    retry_time_ms);
2225 
2226 	release_ipmi_user(user, index);
2227 	return rv;
2228 }
2229 EXPORT_SYMBOL(ipmi_request_settime);
2230 
2231 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2232 			     struct ipmi_addr     *addr,
2233 			     long                 msgid,
2234 			     struct kernel_ipmi_msg *msg,
2235 			     void                 *user_msg_data,
2236 			     void                 *supplied_smi,
2237 			     struct ipmi_recv_msg *supplied_recv,
2238 			     int                  priority)
2239 {
2240 	unsigned char saddr = 0, lun = 0;
2241 	int rv, index;
2242 
2243 	if (!user)
2244 		return -EINVAL;
2245 
2246 	user = acquire_ipmi_user(user, &index);
2247 	if (!user)
2248 		return -ENODEV;
2249 
2250 	rv = check_addr(user->intf, addr, &saddr, &lun);
2251 	if (!rv)
2252 		rv = i_ipmi_request(user,
2253 				    user->intf,
2254 				    addr,
2255 				    msgid,
2256 				    msg,
2257 				    user_msg_data,
2258 				    supplied_smi,
2259 				    supplied_recv,
2260 				    priority,
2261 				    saddr,
2262 				    lun,
2263 				    -1, 0);
2264 
2265 	release_ipmi_user(user, index);
2266 	return rv;
2267 }
2268 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2269 
2270 static void bmc_device_id_handler(struct ipmi_smi *intf,
2271 				  struct ipmi_recv_msg *msg)
2272 {
2273 	int rv;
2274 
2275 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2276 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2277 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2278 		dev_warn(intf->si_dev,
2279 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2280 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2281 		return;
2282 	}
2283 
2284 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2285 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2286 	if (rv) {
2287 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2288 		intf->bmc->dyn_id_set = 0;
2289 	} else {
2290 		/*
2291 		 * Make sure the id data is available before setting
2292 		 * dyn_id_set.
2293 		 */
2294 		smp_wmb();
2295 		intf->bmc->dyn_id_set = 1;
2296 	}
2297 
2298 	wake_up(&intf->waitq);
2299 }
2300 
2301 static int
2302 send_get_device_id_cmd(struct ipmi_smi *intf)
2303 {
2304 	struct ipmi_system_interface_addr si;
2305 	struct kernel_ipmi_msg msg;
2306 
2307 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2308 	si.channel = IPMI_BMC_CHANNEL;
2309 	si.lun = 0;
2310 
2311 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2312 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2313 	msg.data = NULL;
2314 	msg.data_len = 0;
2315 
2316 	return i_ipmi_request(NULL,
2317 			      intf,
2318 			      (struct ipmi_addr *) &si,
2319 			      0,
2320 			      &msg,
2321 			      intf,
2322 			      NULL,
2323 			      NULL,
2324 			      0,
2325 			      intf->addrinfo[0].address,
2326 			      intf->addrinfo[0].lun,
2327 			      -1, 0);
2328 }
2329 
2330 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2331 {
2332 	int rv;
2333 
2334 	bmc->dyn_id_set = 2;
2335 
2336 	intf->null_user_handler = bmc_device_id_handler;
2337 
2338 	rv = send_get_device_id_cmd(intf);
2339 	if (rv)
2340 		return rv;
2341 
2342 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2343 
2344 	if (!bmc->dyn_id_set)
2345 		rv = -EIO; /* Something went wrong in the fetch. */
2346 
2347 	/* dyn_id_set makes the id data available. */
2348 	smp_rmb();
2349 
2350 	intf->null_user_handler = NULL;
2351 
2352 	return rv;
2353 }
2354 
2355 /*
2356  * Fetch the device id for the bmc/interface.  You must pass in either
2357  * bmc or intf, this code will get the other one.  If the data has
2358  * been recently fetched, this will just use the cached data.  Otherwise
2359  * it will run a new fetch.
2360  *
2361  * Except for the first time this is called (in ipmi_register_smi()),
2362  * this will always return good data;
2363  */
2364 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2365 			       struct ipmi_device_id *id,
2366 			       bool *guid_set, guid_t *guid, int intf_num)
2367 {
2368 	int rv = 0;
2369 	int prev_dyn_id_set, prev_guid_set;
2370 	bool intf_set = intf != NULL;
2371 
2372 	if (!intf) {
2373 		mutex_lock(&bmc->dyn_mutex);
2374 retry_bmc_lock:
2375 		if (list_empty(&bmc->intfs)) {
2376 			mutex_unlock(&bmc->dyn_mutex);
2377 			return -ENOENT;
2378 		}
2379 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2380 					bmc_link);
2381 		kref_get(&intf->refcount);
2382 		mutex_unlock(&bmc->dyn_mutex);
2383 		mutex_lock(&intf->bmc_reg_mutex);
2384 		mutex_lock(&bmc->dyn_mutex);
2385 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2386 					     bmc_link)) {
2387 			mutex_unlock(&intf->bmc_reg_mutex);
2388 			kref_put(&intf->refcount, intf_free);
2389 			goto retry_bmc_lock;
2390 		}
2391 	} else {
2392 		mutex_lock(&intf->bmc_reg_mutex);
2393 		bmc = intf->bmc;
2394 		mutex_lock(&bmc->dyn_mutex);
2395 		kref_get(&intf->refcount);
2396 	}
2397 
2398 	/* If we have a valid and current ID, just return that. */
2399 	if (intf->in_bmc_register ||
2400 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2401 		goto out_noprocessing;
2402 
2403 	prev_guid_set = bmc->dyn_guid_set;
2404 	__get_guid(intf);
2405 
2406 	prev_dyn_id_set = bmc->dyn_id_set;
2407 	rv = __get_device_id(intf, bmc);
2408 	if (rv)
2409 		goto out;
2410 
2411 	/*
2412 	 * The guid, device id, manufacturer id, and product id should
2413 	 * not change on a BMC.  If it does we have to do some dancing.
2414 	 */
2415 	if (!intf->bmc_registered
2416 	    || (!prev_guid_set && bmc->dyn_guid_set)
2417 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2418 	    || (prev_guid_set && bmc->dyn_guid_set
2419 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2420 	    || bmc->id.device_id != bmc->fetch_id.device_id
2421 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2422 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2423 		struct ipmi_device_id id = bmc->fetch_id;
2424 		int guid_set = bmc->dyn_guid_set;
2425 		guid_t guid;
2426 
2427 		guid = bmc->fetch_guid;
2428 		mutex_unlock(&bmc->dyn_mutex);
2429 
2430 		__ipmi_bmc_unregister(intf);
2431 		/* Fill in the temporary BMC for good measure. */
2432 		intf->bmc->id = id;
2433 		intf->bmc->dyn_guid_set = guid_set;
2434 		intf->bmc->guid = guid;
2435 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2436 			need_waiter(intf); /* Retry later on an error. */
2437 		else
2438 			__scan_channels(intf, &id);
2439 
2440 
2441 		if (!intf_set) {
2442 			/*
2443 			 * We weren't given the interface on the
2444 			 * command line, so restart the operation on
2445 			 * the next interface for the BMC.
2446 			 */
2447 			mutex_unlock(&intf->bmc_reg_mutex);
2448 			mutex_lock(&bmc->dyn_mutex);
2449 			goto retry_bmc_lock;
2450 		}
2451 
2452 		/* We have a new BMC, set it up. */
2453 		bmc = intf->bmc;
2454 		mutex_lock(&bmc->dyn_mutex);
2455 		goto out_noprocessing;
2456 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2457 		/* Version info changes, scan the channels again. */
2458 		__scan_channels(intf, &bmc->fetch_id);
2459 
2460 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2461 
2462 out:
2463 	if (rv && prev_dyn_id_set) {
2464 		rv = 0; /* Ignore failures if we have previous data. */
2465 		bmc->dyn_id_set = prev_dyn_id_set;
2466 	}
2467 	if (!rv) {
2468 		bmc->id = bmc->fetch_id;
2469 		if (bmc->dyn_guid_set)
2470 			bmc->guid = bmc->fetch_guid;
2471 		else if (prev_guid_set)
2472 			/*
2473 			 * The guid used to be valid and it failed to fetch,
2474 			 * just use the cached value.
2475 			 */
2476 			bmc->dyn_guid_set = prev_guid_set;
2477 	}
2478 out_noprocessing:
2479 	if (!rv) {
2480 		if (id)
2481 			*id = bmc->id;
2482 
2483 		if (guid_set)
2484 			*guid_set = bmc->dyn_guid_set;
2485 
2486 		if (guid && bmc->dyn_guid_set)
2487 			*guid =  bmc->guid;
2488 	}
2489 
2490 	mutex_unlock(&bmc->dyn_mutex);
2491 	mutex_unlock(&intf->bmc_reg_mutex);
2492 
2493 	kref_put(&intf->refcount, intf_free);
2494 	return rv;
2495 }
2496 
2497 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2498 			     struct ipmi_device_id *id,
2499 			     bool *guid_set, guid_t *guid)
2500 {
2501 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2502 }
2503 
2504 static ssize_t device_id_show(struct device *dev,
2505 			      struct device_attribute *attr,
2506 			      char *buf)
2507 {
2508 	struct bmc_device *bmc = to_bmc_device(dev);
2509 	struct ipmi_device_id id;
2510 	int rv;
2511 
2512 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2513 	if (rv)
2514 		return rv;
2515 
2516 	return snprintf(buf, 10, "%u\n", id.device_id);
2517 }
2518 static DEVICE_ATTR_RO(device_id);
2519 
2520 static ssize_t provides_device_sdrs_show(struct device *dev,
2521 					 struct device_attribute *attr,
2522 					 char *buf)
2523 {
2524 	struct bmc_device *bmc = to_bmc_device(dev);
2525 	struct ipmi_device_id id;
2526 	int rv;
2527 
2528 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2529 	if (rv)
2530 		return rv;
2531 
2532 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2533 }
2534 static DEVICE_ATTR_RO(provides_device_sdrs);
2535 
2536 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2537 			     char *buf)
2538 {
2539 	struct bmc_device *bmc = to_bmc_device(dev);
2540 	struct ipmi_device_id id;
2541 	int rv;
2542 
2543 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2544 	if (rv)
2545 		return rv;
2546 
2547 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2548 }
2549 static DEVICE_ATTR_RO(revision);
2550 
2551 static ssize_t firmware_revision_show(struct device *dev,
2552 				      struct device_attribute *attr,
2553 				      char *buf)
2554 {
2555 	struct bmc_device *bmc = to_bmc_device(dev);
2556 	struct ipmi_device_id id;
2557 	int rv;
2558 
2559 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2560 	if (rv)
2561 		return rv;
2562 
2563 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2564 			id.firmware_revision_2);
2565 }
2566 static DEVICE_ATTR_RO(firmware_revision);
2567 
2568 static ssize_t ipmi_version_show(struct device *dev,
2569 				 struct device_attribute *attr,
2570 				 char *buf)
2571 {
2572 	struct bmc_device *bmc = to_bmc_device(dev);
2573 	struct ipmi_device_id id;
2574 	int rv;
2575 
2576 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2577 	if (rv)
2578 		return rv;
2579 
2580 	return snprintf(buf, 20, "%u.%u\n",
2581 			ipmi_version_major(&id),
2582 			ipmi_version_minor(&id));
2583 }
2584 static DEVICE_ATTR_RO(ipmi_version);
2585 
2586 static ssize_t add_dev_support_show(struct device *dev,
2587 				    struct device_attribute *attr,
2588 				    char *buf)
2589 {
2590 	struct bmc_device *bmc = to_bmc_device(dev);
2591 	struct ipmi_device_id id;
2592 	int rv;
2593 
2594 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2595 	if (rv)
2596 		return rv;
2597 
2598 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2599 }
2600 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2601 		   NULL);
2602 
2603 static ssize_t manufacturer_id_show(struct device *dev,
2604 				    struct device_attribute *attr,
2605 				    char *buf)
2606 {
2607 	struct bmc_device *bmc = to_bmc_device(dev);
2608 	struct ipmi_device_id id;
2609 	int rv;
2610 
2611 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2612 	if (rv)
2613 		return rv;
2614 
2615 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2616 }
2617 static DEVICE_ATTR_RO(manufacturer_id);
2618 
2619 static ssize_t product_id_show(struct device *dev,
2620 			       struct device_attribute *attr,
2621 			       char *buf)
2622 {
2623 	struct bmc_device *bmc = to_bmc_device(dev);
2624 	struct ipmi_device_id id;
2625 	int rv;
2626 
2627 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2628 	if (rv)
2629 		return rv;
2630 
2631 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2632 }
2633 static DEVICE_ATTR_RO(product_id);
2634 
2635 static ssize_t aux_firmware_rev_show(struct device *dev,
2636 				     struct device_attribute *attr,
2637 				     char *buf)
2638 {
2639 	struct bmc_device *bmc = to_bmc_device(dev);
2640 	struct ipmi_device_id id;
2641 	int rv;
2642 
2643 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2644 	if (rv)
2645 		return rv;
2646 
2647 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2648 			id.aux_firmware_revision[3],
2649 			id.aux_firmware_revision[2],
2650 			id.aux_firmware_revision[1],
2651 			id.aux_firmware_revision[0]);
2652 }
2653 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2654 
2655 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2656 			 char *buf)
2657 {
2658 	struct bmc_device *bmc = to_bmc_device(dev);
2659 	bool guid_set;
2660 	guid_t guid;
2661 	int rv;
2662 
2663 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2664 	if (rv)
2665 		return rv;
2666 	if (!guid_set)
2667 		return -ENOENT;
2668 
2669 	return snprintf(buf, 38, "%pUl\n", guid.b);
2670 }
2671 static DEVICE_ATTR_RO(guid);
2672 
2673 static struct attribute *bmc_dev_attrs[] = {
2674 	&dev_attr_device_id.attr,
2675 	&dev_attr_provides_device_sdrs.attr,
2676 	&dev_attr_revision.attr,
2677 	&dev_attr_firmware_revision.attr,
2678 	&dev_attr_ipmi_version.attr,
2679 	&dev_attr_additional_device_support.attr,
2680 	&dev_attr_manufacturer_id.attr,
2681 	&dev_attr_product_id.attr,
2682 	&dev_attr_aux_firmware_revision.attr,
2683 	&dev_attr_guid.attr,
2684 	NULL
2685 };
2686 
2687 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2688 				       struct attribute *attr, int idx)
2689 {
2690 	struct device *dev = kobj_to_dev(kobj);
2691 	struct bmc_device *bmc = to_bmc_device(dev);
2692 	umode_t mode = attr->mode;
2693 	int rv;
2694 
2695 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2696 		struct ipmi_device_id id;
2697 
2698 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2699 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2700 	}
2701 	if (attr == &dev_attr_guid.attr) {
2702 		bool guid_set;
2703 
2704 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2705 		return (!rv && guid_set) ? mode : 0;
2706 	}
2707 	return mode;
2708 }
2709 
2710 static const struct attribute_group bmc_dev_attr_group = {
2711 	.attrs		= bmc_dev_attrs,
2712 	.is_visible	= bmc_dev_attr_is_visible,
2713 };
2714 
2715 static const struct attribute_group *bmc_dev_attr_groups[] = {
2716 	&bmc_dev_attr_group,
2717 	NULL
2718 };
2719 
2720 static const struct device_type bmc_device_type = {
2721 	.groups		= bmc_dev_attr_groups,
2722 };
2723 
2724 static int __find_bmc_guid(struct device *dev, void *data)
2725 {
2726 	guid_t *guid = data;
2727 	struct bmc_device *bmc;
2728 	int rv;
2729 
2730 	if (dev->type != &bmc_device_type)
2731 		return 0;
2732 
2733 	bmc = to_bmc_device(dev);
2734 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2735 	if (rv)
2736 		rv = kref_get_unless_zero(&bmc->usecount);
2737 	return rv;
2738 }
2739 
2740 /*
2741  * Returns with the bmc's usecount incremented, if it is non-NULL.
2742  */
2743 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2744 					     guid_t *guid)
2745 {
2746 	struct device *dev;
2747 	struct bmc_device *bmc = NULL;
2748 
2749 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2750 	if (dev) {
2751 		bmc = to_bmc_device(dev);
2752 		put_device(dev);
2753 	}
2754 	return bmc;
2755 }
2756 
2757 struct prod_dev_id {
2758 	unsigned int  product_id;
2759 	unsigned char device_id;
2760 };
2761 
2762 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2763 {
2764 	struct prod_dev_id *cid = data;
2765 	struct bmc_device *bmc;
2766 	int rv;
2767 
2768 	if (dev->type != &bmc_device_type)
2769 		return 0;
2770 
2771 	bmc = to_bmc_device(dev);
2772 	rv = (bmc->id.product_id == cid->product_id
2773 	      && bmc->id.device_id == cid->device_id);
2774 	if (rv)
2775 		rv = kref_get_unless_zero(&bmc->usecount);
2776 	return rv;
2777 }
2778 
2779 /*
2780  * Returns with the bmc's usecount incremented, if it is non-NULL.
2781  */
2782 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2783 	struct device_driver *drv,
2784 	unsigned int product_id, unsigned char device_id)
2785 {
2786 	struct prod_dev_id id = {
2787 		.product_id = product_id,
2788 		.device_id = device_id,
2789 	};
2790 	struct device *dev;
2791 	struct bmc_device *bmc = NULL;
2792 
2793 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2794 	if (dev) {
2795 		bmc = to_bmc_device(dev);
2796 		put_device(dev);
2797 	}
2798 	return bmc;
2799 }
2800 
2801 static DEFINE_IDA(ipmi_bmc_ida);
2802 
2803 static void
2804 release_bmc_device(struct device *dev)
2805 {
2806 	kfree(to_bmc_device(dev));
2807 }
2808 
2809 static void cleanup_bmc_work(struct work_struct *work)
2810 {
2811 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2812 					      remove_work);
2813 	int id = bmc->pdev.id; /* Unregister overwrites id */
2814 
2815 	platform_device_unregister(&bmc->pdev);
2816 	ida_simple_remove(&ipmi_bmc_ida, id);
2817 }
2818 
2819 static void
2820 cleanup_bmc_device(struct kref *ref)
2821 {
2822 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2823 
2824 	/*
2825 	 * Remove the platform device in a work queue to avoid issues
2826 	 * with removing the device attributes while reading a device
2827 	 * attribute.
2828 	 */
2829 	schedule_work(&bmc->remove_work);
2830 }
2831 
2832 /*
2833  * Must be called with intf->bmc_reg_mutex held.
2834  */
2835 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2836 {
2837 	struct bmc_device *bmc = intf->bmc;
2838 
2839 	if (!intf->bmc_registered)
2840 		return;
2841 
2842 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2843 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2844 	kfree(intf->my_dev_name);
2845 	intf->my_dev_name = NULL;
2846 
2847 	mutex_lock(&bmc->dyn_mutex);
2848 	list_del(&intf->bmc_link);
2849 	mutex_unlock(&bmc->dyn_mutex);
2850 	intf->bmc = &intf->tmp_bmc;
2851 	kref_put(&bmc->usecount, cleanup_bmc_device);
2852 	intf->bmc_registered = false;
2853 }
2854 
2855 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2856 {
2857 	mutex_lock(&intf->bmc_reg_mutex);
2858 	__ipmi_bmc_unregister(intf);
2859 	mutex_unlock(&intf->bmc_reg_mutex);
2860 }
2861 
2862 /*
2863  * Must be called with intf->bmc_reg_mutex held.
2864  */
2865 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2866 			       struct ipmi_device_id *id,
2867 			       bool guid_set, guid_t *guid, int intf_num)
2868 {
2869 	int               rv;
2870 	struct bmc_device *bmc;
2871 	struct bmc_device *old_bmc;
2872 
2873 	/*
2874 	 * platform_device_register() can cause bmc_reg_mutex to
2875 	 * be claimed because of the is_visible functions of
2876 	 * the attributes.  Eliminate possible recursion and
2877 	 * release the lock.
2878 	 */
2879 	intf->in_bmc_register = true;
2880 	mutex_unlock(&intf->bmc_reg_mutex);
2881 
2882 	/*
2883 	 * Try to find if there is an bmc_device struct
2884 	 * representing the interfaced BMC already
2885 	 */
2886 	mutex_lock(&ipmidriver_mutex);
2887 	if (guid_set)
2888 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2889 	else
2890 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2891 						    id->product_id,
2892 						    id->device_id);
2893 
2894 	/*
2895 	 * If there is already an bmc_device, free the new one,
2896 	 * otherwise register the new BMC device
2897 	 */
2898 	if (old_bmc) {
2899 		bmc = old_bmc;
2900 		/*
2901 		 * Note: old_bmc already has usecount incremented by
2902 		 * the BMC find functions.
2903 		 */
2904 		intf->bmc = old_bmc;
2905 		mutex_lock(&bmc->dyn_mutex);
2906 		list_add_tail(&intf->bmc_link, &bmc->intfs);
2907 		mutex_unlock(&bmc->dyn_mutex);
2908 
2909 		dev_info(intf->si_dev,
2910 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2911 			 bmc->id.manufacturer_id,
2912 			 bmc->id.product_id,
2913 			 bmc->id.device_id);
2914 	} else {
2915 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2916 		if (!bmc) {
2917 			rv = -ENOMEM;
2918 			goto out;
2919 		}
2920 		INIT_LIST_HEAD(&bmc->intfs);
2921 		mutex_init(&bmc->dyn_mutex);
2922 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
2923 
2924 		bmc->id = *id;
2925 		bmc->dyn_id_set = 1;
2926 		bmc->dyn_guid_set = guid_set;
2927 		bmc->guid = *guid;
2928 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2929 
2930 		bmc->pdev.name = "ipmi_bmc";
2931 
2932 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
2933 		if (rv < 0)
2934 			goto out;
2935 		bmc->pdev.dev.driver = &ipmidriver.driver;
2936 		bmc->pdev.id = rv;
2937 		bmc->pdev.dev.release = release_bmc_device;
2938 		bmc->pdev.dev.type = &bmc_device_type;
2939 		kref_init(&bmc->usecount);
2940 
2941 		intf->bmc = bmc;
2942 		mutex_lock(&bmc->dyn_mutex);
2943 		list_add_tail(&intf->bmc_link, &bmc->intfs);
2944 		mutex_unlock(&bmc->dyn_mutex);
2945 
2946 		rv = platform_device_register(&bmc->pdev);
2947 		if (rv) {
2948 			dev_err(intf->si_dev,
2949 				"Unable to register bmc device: %d\n",
2950 				rv);
2951 			goto out_list_del;
2952 		}
2953 
2954 		dev_info(intf->si_dev,
2955 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2956 			 bmc->id.manufacturer_id,
2957 			 bmc->id.product_id,
2958 			 bmc->id.device_id);
2959 	}
2960 
2961 	/*
2962 	 * create symlink from system interface device to bmc device
2963 	 * and back.
2964 	 */
2965 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2966 	if (rv) {
2967 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
2968 		goto out_put_bmc;
2969 	}
2970 
2971 	if (intf_num == -1)
2972 		intf_num = intf->intf_num;
2973 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
2974 	if (!intf->my_dev_name) {
2975 		rv = -ENOMEM;
2976 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
2977 			rv);
2978 		goto out_unlink1;
2979 	}
2980 
2981 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2982 			       intf->my_dev_name);
2983 	if (rv) {
2984 		kfree(intf->my_dev_name);
2985 		intf->my_dev_name = NULL;
2986 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
2987 			rv);
2988 		goto out_free_my_dev_name;
2989 	}
2990 
2991 	intf->bmc_registered = true;
2992 
2993 out:
2994 	mutex_unlock(&ipmidriver_mutex);
2995 	mutex_lock(&intf->bmc_reg_mutex);
2996 	intf->in_bmc_register = false;
2997 	return rv;
2998 
2999 
3000 out_free_my_dev_name:
3001 	kfree(intf->my_dev_name);
3002 	intf->my_dev_name = NULL;
3003 
3004 out_unlink1:
3005 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3006 
3007 out_put_bmc:
3008 	mutex_lock(&bmc->dyn_mutex);
3009 	list_del(&intf->bmc_link);
3010 	mutex_unlock(&bmc->dyn_mutex);
3011 	intf->bmc = &intf->tmp_bmc;
3012 	kref_put(&bmc->usecount, cleanup_bmc_device);
3013 	goto out;
3014 
3015 out_list_del:
3016 	mutex_lock(&bmc->dyn_mutex);
3017 	list_del(&intf->bmc_link);
3018 	mutex_unlock(&bmc->dyn_mutex);
3019 	intf->bmc = &intf->tmp_bmc;
3020 	put_device(&bmc->pdev.dev);
3021 	goto out;
3022 }
3023 
3024 static int
3025 send_guid_cmd(struct ipmi_smi *intf, int chan)
3026 {
3027 	struct kernel_ipmi_msg            msg;
3028 	struct ipmi_system_interface_addr si;
3029 
3030 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3031 	si.channel = IPMI_BMC_CHANNEL;
3032 	si.lun = 0;
3033 
3034 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3035 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3036 	msg.data = NULL;
3037 	msg.data_len = 0;
3038 	return i_ipmi_request(NULL,
3039 			      intf,
3040 			      (struct ipmi_addr *) &si,
3041 			      0,
3042 			      &msg,
3043 			      intf,
3044 			      NULL,
3045 			      NULL,
3046 			      0,
3047 			      intf->addrinfo[0].address,
3048 			      intf->addrinfo[0].lun,
3049 			      -1, 0);
3050 }
3051 
3052 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3053 {
3054 	struct bmc_device *bmc = intf->bmc;
3055 
3056 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3057 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3058 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3059 		/* Not for me */
3060 		return;
3061 
3062 	if (msg->msg.data[0] != 0) {
3063 		/* Error from getting the GUID, the BMC doesn't have one. */
3064 		bmc->dyn_guid_set = 0;
3065 		goto out;
3066 	}
3067 
3068 	if (msg->msg.data_len < 17) {
3069 		bmc->dyn_guid_set = 0;
3070 		dev_warn(intf->si_dev,
3071 			 "The GUID response from the BMC was too short, it was %d but should have been 17.  Assuming GUID is not available.\n",
3072 			 msg->msg.data_len);
3073 		goto out;
3074 	}
3075 
3076 	memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3077 	/*
3078 	 * Make sure the guid data is available before setting
3079 	 * dyn_guid_set.
3080 	 */
3081 	smp_wmb();
3082 	bmc->dyn_guid_set = 1;
3083  out:
3084 	wake_up(&intf->waitq);
3085 }
3086 
3087 static void __get_guid(struct ipmi_smi *intf)
3088 {
3089 	int rv;
3090 	struct bmc_device *bmc = intf->bmc;
3091 
3092 	bmc->dyn_guid_set = 2;
3093 	intf->null_user_handler = guid_handler;
3094 	rv = send_guid_cmd(intf, 0);
3095 	if (rv)
3096 		/* Send failed, no GUID available. */
3097 		bmc->dyn_guid_set = 0;
3098 
3099 	wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3100 
3101 	/* dyn_guid_set makes the guid data available. */
3102 	smp_rmb();
3103 
3104 	intf->null_user_handler = NULL;
3105 }
3106 
3107 static int
3108 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3109 {
3110 	struct kernel_ipmi_msg            msg;
3111 	unsigned char                     data[1];
3112 	struct ipmi_system_interface_addr si;
3113 
3114 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3115 	si.channel = IPMI_BMC_CHANNEL;
3116 	si.lun = 0;
3117 
3118 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3119 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3120 	msg.data = data;
3121 	msg.data_len = 1;
3122 	data[0] = chan;
3123 	return i_ipmi_request(NULL,
3124 			      intf,
3125 			      (struct ipmi_addr *) &si,
3126 			      0,
3127 			      &msg,
3128 			      intf,
3129 			      NULL,
3130 			      NULL,
3131 			      0,
3132 			      intf->addrinfo[0].address,
3133 			      intf->addrinfo[0].lun,
3134 			      -1, 0);
3135 }
3136 
3137 static void
3138 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3139 {
3140 	int rv = 0;
3141 	int ch;
3142 	unsigned int set = intf->curr_working_cset;
3143 	struct ipmi_channel *chans;
3144 
3145 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3146 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3147 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3148 		/* It's the one we want */
3149 		if (msg->msg.data[0] != 0) {
3150 			/* Got an error from the channel, just go on. */
3151 
3152 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3153 				/*
3154 				 * If the MC does not support this
3155 				 * command, that is legal.  We just
3156 				 * assume it has one IPMB at channel
3157 				 * zero.
3158 				 */
3159 				intf->wchannels[set].c[0].medium
3160 					= IPMI_CHANNEL_MEDIUM_IPMB;
3161 				intf->wchannels[set].c[0].protocol
3162 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3163 
3164 				intf->channel_list = intf->wchannels + set;
3165 				intf->channels_ready = true;
3166 				wake_up(&intf->waitq);
3167 				goto out;
3168 			}
3169 			goto next_channel;
3170 		}
3171 		if (msg->msg.data_len < 4) {
3172 			/* Message not big enough, just go on. */
3173 			goto next_channel;
3174 		}
3175 		ch = intf->curr_channel;
3176 		chans = intf->wchannels[set].c;
3177 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3178 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3179 
3180  next_channel:
3181 		intf->curr_channel++;
3182 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3183 			intf->channel_list = intf->wchannels + set;
3184 			intf->channels_ready = true;
3185 			wake_up(&intf->waitq);
3186 		} else {
3187 			intf->channel_list = intf->wchannels + set;
3188 			intf->channels_ready = true;
3189 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3190 		}
3191 
3192 		if (rv) {
3193 			/* Got an error somehow, just give up. */
3194 			dev_warn(intf->si_dev,
3195 				 "Error sending channel information for channel %d: %d\n",
3196 				 intf->curr_channel, rv);
3197 
3198 			intf->channel_list = intf->wchannels + set;
3199 			intf->channels_ready = true;
3200 			wake_up(&intf->waitq);
3201 		}
3202 	}
3203  out:
3204 	return;
3205 }
3206 
3207 /*
3208  * Must be holding intf->bmc_reg_mutex to call this.
3209  */
3210 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3211 {
3212 	int rv;
3213 
3214 	if (ipmi_version_major(id) > 1
3215 			|| (ipmi_version_major(id) == 1
3216 			    && ipmi_version_minor(id) >= 5)) {
3217 		unsigned int set;
3218 
3219 		/*
3220 		 * Start scanning the channels to see what is
3221 		 * available.
3222 		 */
3223 		set = !intf->curr_working_cset;
3224 		intf->curr_working_cset = set;
3225 		memset(&intf->wchannels[set], 0,
3226 		       sizeof(struct ipmi_channel_set));
3227 
3228 		intf->null_user_handler = channel_handler;
3229 		intf->curr_channel = 0;
3230 		rv = send_channel_info_cmd(intf, 0);
3231 		if (rv) {
3232 			dev_warn(intf->si_dev,
3233 				 "Error sending channel information for channel 0, %d\n",
3234 				 rv);
3235 			return -EIO;
3236 		}
3237 
3238 		/* Wait for the channel info to be read. */
3239 		wait_event(intf->waitq, intf->channels_ready);
3240 		intf->null_user_handler = NULL;
3241 	} else {
3242 		unsigned int set = intf->curr_working_cset;
3243 
3244 		/* Assume a single IPMB channel at zero. */
3245 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3246 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3247 		intf->channel_list = intf->wchannels + set;
3248 		intf->channels_ready = true;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 static void ipmi_poll(struct ipmi_smi *intf)
3255 {
3256 	if (intf->handlers->poll)
3257 		intf->handlers->poll(intf->send_info);
3258 	/* In case something came in */
3259 	handle_new_recv_msgs(intf);
3260 }
3261 
3262 void ipmi_poll_interface(struct ipmi_user *user)
3263 {
3264 	ipmi_poll(user->intf);
3265 }
3266 EXPORT_SYMBOL(ipmi_poll_interface);
3267 
3268 static void redo_bmc_reg(struct work_struct *work)
3269 {
3270 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3271 					     bmc_reg_work);
3272 
3273 	if (!intf->in_shutdown)
3274 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3275 
3276 	kref_put(&intf->refcount, intf_free);
3277 }
3278 
3279 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3280 		      void		       *send_info,
3281 		      struct device            *si_dev,
3282 		      unsigned char            slave_addr)
3283 {
3284 	int              i, j;
3285 	int              rv;
3286 	struct ipmi_smi *intf, *tintf;
3287 	struct list_head *link;
3288 	struct ipmi_device_id id;
3289 
3290 	/*
3291 	 * Make sure the driver is actually initialized, this handles
3292 	 * problems with initialization order.
3293 	 */
3294 	if (!initialized) {
3295 		rv = ipmi_init_msghandler();
3296 		if (rv)
3297 			return rv;
3298 		/*
3299 		 * The init code doesn't return an error if it was turned
3300 		 * off, but it won't initialize.  Check that.
3301 		 */
3302 		if (!initialized)
3303 			return -ENODEV;
3304 	}
3305 
3306 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3307 	if (!intf)
3308 		return -ENOMEM;
3309 
3310 	rv = init_srcu_struct(&intf->users_srcu);
3311 	if (rv) {
3312 		kfree(intf);
3313 		return rv;
3314 	}
3315 
3316 
3317 	intf->bmc = &intf->tmp_bmc;
3318 	INIT_LIST_HEAD(&intf->bmc->intfs);
3319 	mutex_init(&intf->bmc->dyn_mutex);
3320 	INIT_LIST_HEAD(&intf->bmc_link);
3321 	mutex_init(&intf->bmc_reg_mutex);
3322 	intf->intf_num = -1; /* Mark it invalid for now. */
3323 	kref_init(&intf->refcount);
3324 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3325 	intf->si_dev = si_dev;
3326 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3327 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3328 		intf->addrinfo[j].lun = 2;
3329 	}
3330 	if (slave_addr != 0)
3331 		intf->addrinfo[0].address = slave_addr;
3332 	INIT_LIST_HEAD(&intf->users);
3333 	intf->handlers = handlers;
3334 	intf->send_info = send_info;
3335 	spin_lock_init(&intf->seq_lock);
3336 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3337 		intf->seq_table[j].inuse = 0;
3338 		intf->seq_table[j].seqid = 0;
3339 	}
3340 	intf->curr_seq = 0;
3341 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3342 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3343 	tasklet_init(&intf->recv_tasklet,
3344 		     smi_recv_tasklet,
3345 		     (unsigned long) intf);
3346 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3347 	spin_lock_init(&intf->xmit_msgs_lock);
3348 	INIT_LIST_HEAD(&intf->xmit_msgs);
3349 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3350 	spin_lock_init(&intf->events_lock);
3351 	atomic_set(&intf->event_waiters, 0);
3352 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3353 	INIT_LIST_HEAD(&intf->waiting_events);
3354 	intf->waiting_events_count = 0;
3355 	mutex_init(&intf->cmd_rcvrs_mutex);
3356 	spin_lock_init(&intf->maintenance_mode_lock);
3357 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3358 	init_waitqueue_head(&intf->waitq);
3359 	for (i = 0; i < IPMI_NUM_STATS; i++)
3360 		atomic_set(&intf->stats[i], 0);
3361 
3362 	mutex_lock(&ipmi_interfaces_mutex);
3363 	/* Look for a hole in the numbers. */
3364 	i = 0;
3365 	link = &ipmi_interfaces;
3366 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3367 		if (tintf->intf_num != i) {
3368 			link = &tintf->link;
3369 			break;
3370 		}
3371 		i++;
3372 	}
3373 	/* Add the new interface in numeric order. */
3374 	if (i == 0)
3375 		list_add_rcu(&intf->link, &ipmi_interfaces);
3376 	else
3377 		list_add_tail_rcu(&intf->link, link);
3378 
3379 	rv = handlers->start_processing(send_info, intf);
3380 	if (rv)
3381 		goto out_err;
3382 
3383 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3384 	if (rv) {
3385 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3386 		goto out_err_started;
3387 	}
3388 
3389 	mutex_lock(&intf->bmc_reg_mutex);
3390 	rv = __scan_channels(intf, &id);
3391 	mutex_unlock(&intf->bmc_reg_mutex);
3392 	if (rv)
3393 		goto out_err_bmc_reg;
3394 
3395 	/*
3396 	 * Keep memory order straight for RCU readers.  Make
3397 	 * sure everything else is committed to memory before
3398 	 * setting intf_num to mark the interface valid.
3399 	 */
3400 	smp_wmb();
3401 	intf->intf_num = i;
3402 	mutex_unlock(&ipmi_interfaces_mutex);
3403 
3404 	/* After this point the interface is legal to use. */
3405 	call_smi_watchers(i, intf->si_dev);
3406 
3407 	return 0;
3408 
3409  out_err_bmc_reg:
3410 	ipmi_bmc_unregister(intf);
3411  out_err_started:
3412 	if (intf->handlers->shutdown)
3413 		intf->handlers->shutdown(intf->send_info);
3414  out_err:
3415 	list_del_rcu(&intf->link);
3416 	mutex_unlock(&ipmi_interfaces_mutex);
3417 	synchronize_srcu(&ipmi_interfaces_srcu);
3418 	cleanup_srcu_struct(&intf->users_srcu);
3419 	kref_put(&intf->refcount, intf_free);
3420 
3421 	return rv;
3422 }
3423 EXPORT_SYMBOL(ipmi_register_smi);
3424 
3425 static void deliver_smi_err_response(struct ipmi_smi *intf,
3426 				     struct ipmi_smi_msg *msg,
3427 				     unsigned char err)
3428 {
3429 	msg->rsp[0] = msg->data[0] | 4;
3430 	msg->rsp[1] = msg->data[1];
3431 	msg->rsp[2] = err;
3432 	msg->rsp_size = 3;
3433 	/* It's an error, so it will never requeue, no need to check return. */
3434 	handle_one_recv_msg(intf, msg);
3435 }
3436 
3437 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3438 {
3439 	int              i;
3440 	struct seq_table *ent;
3441 	struct ipmi_smi_msg *msg;
3442 	struct list_head *entry;
3443 	struct list_head tmplist;
3444 
3445 	/* Clear out our transmit queues and hold the messages. */
3446 	INIT_LIST_HEAD(&tmplist);
3447 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3448 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3449 
3450 	/* Current message first, to preserve order */
3451 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3452 		/* Wait for the message to clear out. */
3453 		schedule_timeout(1);
3454 	}
3455 
3456 	/* No need for locks, the interface is down. */
3457 
3458 	/*
3459 	 * Return errors for all pending messages in queue and in the
3460 	 * tables waiting for remote responses.
3461 	 */
3462 	while (!list_empty(&tmplist)) {
3463 		entry = tmplist.next;
3464 		list_del(entry);
3465 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3466 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3467 	}
3468 
3469 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3470 		ent = &intf->seq_table[i];
3471 		if (!ent->inuse)
3472 			continue;
3473 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3474 	}
3475 }
3476 
3477 void ipmi_unregister_smi(struct ipmi_smi *intf)
3478 {
3479 	struct ipmi_smi_watcher *w;
3480 	int intf_num = intf->intf_num, index;
3481 
3482 	mutex_lock(&ipmi_interfaces_mutex);
3483 	intf->intf_num = -1;
3484 	intf->in_shutdown = true;
3485 	list_del_rcu(&intf->link);
3486 	mutex_unlock(&ipmi_interfaces_mutex);
3487 	synchronize_srcu(&ipmi_interfaces_srcu);
3488 
3489 	/* At this point no users can be added to the interface. */
3490 
3491 	/*
3492 	 * Call all the watcher interfaces to tell them that
3493 	 * an interface is going away.
3494 	 */
3495 	mutex_lock(&smi_watchers_mutex);
3496 	list_for_each_entry(w, &smi_watchers, link)
3497 		w->smi_gone(intf_num);
3498 	mutex_unlock(&smi_watchers_mutex);
3499 
3500 	index = srcu_read_lock(&intf->users_srcu);
3501 	while (!list_empty(&intf->users)) {
3502 		struct ipmi_user *user =
3503 			container_of(list_next_rcu(&intf->users),
3504 				     struct ipmi_user, link);
3505 
3506 		_ipmi_destroy_user(user);
3507 	}
3508 	srcu_read_unlock(&intf->users_srcu, index);
3509 
3510 	if (intf->handlers->shutdown)
3511 		intf->handlers->shutdown(intf->send_info);
3512 
3513 	cleanup_smi_msgs(intf);
3514 
3515 	ipmi_bmc_unregister(intf);
3516 
3517 	cleanup_srcu_struct(&intf->users_srcu);
3518 	kref_put(&intf->refcount, intf_free);
3519 }
3520 EXPORT_SYMBOL(ipmi_unregister_smi);
3521 
3522 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3523 				   struct ipmi_smi_msg *msg)
3524 {
3525 	struct ipmi_ipmb_addr ipmb_addr;
3526 	struct ipmi_recv_msg  *recv_msg;
3527 
3528 	/*
3529 	 * This is 11, not 10, because the response must contain a
3530 	 * completion code.
3531 	 */
3532 	if (msg->rsp_size < 11) {
3533 		/* Message not big enough, just ignore it. */
3534 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3535 		return 0;
3536 	}
3537 
3538 	if (msg->rsp[2] != 0) {
3539 		/* An error getting the response, just ignore it. */
3540 		return 0;
3541 	}
3542 
3543 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3544 	ipmb_addr.slave_addr = msg->rsp[6];
3545 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3546 	ipmb_addr.lun = msg->rsp[7] & 3;
3547 
3548 	/*
3549 	 * It's a response from a remote entity.  Look up the sequence
3550 	 * number and handle the response.
3551 	 */
3552 	if (intf_find_seq(intf,
3553 			  msg->rsp[7] >> 2,
3554 			  msg->rsp[3] & 0x0f,
3555 			  msg->rsp[8],
3556 			  (msg->rsp[4] >> 2) & (~1),
3557 			  (struct ipmi_addr *) &ipmb_addr,
3558 			  &recv_msg)) {
3559 		/*
3560 		 * We were unable to find the sequence number,
3561 		 * so just nuke the message.
3562 		 */
3563 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3564 		return 0;
3565 	}
3566 
3567 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3568 	/*
3569 	 * The other fields matched, so no need to set them, except
3570 	 * for netfn, which needs to be the response that was
3571 	 * returned, not the request value.
3572 	 */
3573 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3574 	recv_msg->msg.data = recv_msg->msg_data;
3575 	recv_msg->msg.data_len = msg->rsp_size - 10;
3576 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3577 	if (deliver_response(intf, recv_msg))
3578 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3579 	else
3580 		ipmi_inc_stat(intf, handled_ipmb_responses);
3581 
3582 	return 0;
3583 }
3584 
3585 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3586 				   struct ipmi_smi_msg *msg)
3587 {
3588 	struct cmd_rcvr          *rcvr;
3589 	int                      rv = 0;
3590 	unsigned char            netfn;
3591 	unsigned char            cmd;
3592 	unsigned char            chan;
3593 	struct ipmi_user         *user = NULL;
3594 	struct ipmi_ipmb_addr    *ipmb_addr;
3595 	struct ipmi_recv_msg     *recv_msg;
3596 
3597 	if (msg->rsp_size < 10) {
3598 		/* Message not big enough, just ignore it. */
3599 		ipmi_inc_stat(intf, invalid_commands);
3600 		return 0;
3601 	}
3602 
3603 	if (msg->rsp[2] != 0) {
3604 		/* An error getting the response, just ignore it. */
3605 		return 0;
3606 	}
3607 
3608 	netfn = msg->rsp[4] >> 2;
3609 	cmd = msg->rsp[8];
3610 	chan = msg->rsp[3] & 0xf;
3611 
3612 	rcu_read_lock();
3613 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3614 	if (rcvr) {
3615 		user = rcvr->user;
3616 		kref_get(&user->refcount);
3617 	} else
3618 		user = NULL;
3619 	rcu_read_unlock();
3620 
3621 	if (user == NULL) {
3622 		/* We didn't find a user, deliver an error response. */
3623 		ipmi_inc_stat(intf, unhandled_commands);
3624 
3625 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3626 		msg->data[1] = IPMI_SEND_MSG_CMD;
3627 		msg->data[2] = msg->rsp[3];
3628 		msg->data[3] = msg->rsp[6];
3629 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3630 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3631 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3632 		/* rqseq/lun */
3633 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3634 		msg->data[8] = msg->rsp[8]; /* cmd */
3635 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3636 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3637 		msg->data_size = 11;
3638 
3639 		ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3640 
3641 		rcu_read_lock();
3642 		if (!intf->in_shutdown) {
3643 			smi_send(intf, intf->handlers, msg, 0);
3644 			/*
3645 			 * We used the message, so return the value
3646 			 * that causes it to not be freed or
3647 			 * queued.
3648 			 */
3649 			rv = -1;
3650 		}
3651 		rcu_read_unlock();
3652 	} else {
3653 		recv_msg = ipmi_alloc_recv_msg();
3654 		if (!recv_msg) {
3655 			/*
3656 			 * We couldn't allocate memory for the
3657 			 * message, so requeue it for handling
3658 			 * later.
3659 			 */
3660 			rv = 1;
3661 			kref_put(&user->refcount, free_user);
3662 		} else {
3663 			/* Extract the source address from the data. */
3664 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3665 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3666 			ipmb_addr->slave_addr = msg->rsp[6];
3667 			ipmb_addr->lun = msg->rsp[7] & 3;
3668 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3669 
3670 			/*
3671 			 * Extract the rest of the message information
3672 			 * from the IPMB header.
3673 			 */
3674 			recv_msg->user = user;
3675 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3676 			recv_msg->msgid = msg->rsp[7] >> 2;
3677 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3678 			recv_msg->msg.cmd = msg->rsp[8];
3679 			recv_msg->msg.data = recv_msg->msg_data;
3680 
3681 			/*
3682 			 * We chop off 10, not 9 bytes because the checksum
3683 			 * at the end also needs to be removed.
3684 			 */
3685 			recv_msg->msg.data_len = msg->rsp_size - 10;
3686 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3687 			       msg->rsp_size - 10);
3688 			if (deliver_response(intf, recv_msg))
3689 				ipmi_inc_stat(intf, unhandled_commands);
3690 			else
3691 				ipmi_inc_stat(intf, handled_commands);
3692 		}
3693 	}
3694 
3695 	return rv;
3696 }
3697 
3698 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3699 				  struct ipmi_smi_msg *msg)
3700 {
3701 	struct ipmi_lan_addr  lan_addr;
3702 	struct ipmi_recv_msg  *recv_msg;
3703 
3704 
3705 	/*
3706 	 * This is 13, not 12, because the response must contain a
3707 	 * completion code.
3708 	 */
3709 	if (msg->rsp_size < 13) {
3710 		/* Message not big enough, just ignore it. */
3711 		ipmi_inc_stat(intf, invalid_lan_responses);
3712 		return 0;
3713 	}
3714 
3715 	if (msg->rsp[2] != 0) {
3716 		/* An error getting the response, just ignore it. */
3717 		return 0;
3718 	}
3719 
3720 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3721 	lan_addr.session_handle = msg->rsp[4];
3722 	lan_addr.remote_SWID = msg->rsp[8];
3723 	lan_addr.local_SWID = msg->rsp[5];
3724 	lan_addr.channel = msg->rsp[3] & 0x0f;
3725 	lan_addr.privilege = msg->rsp[3] >> 4;
3726 	lan_addr.lun = msg->rsp[9] & 3;
3727 
3728 	/*
3729 	 * It's a response from a remote entity.  Look up the sequence
3730 	 * number and handle the response.
3731 	 */
3732 	if (intf_find_seq(intf,
3733 			  msg->rsp[9] >> 2,
3734 			  msg->rsp[3] & 0x0f,
3735 			  msg->rsp[10],
3736 			  (msg->rsp[6] >> 2) & (~1),
3737 			  (struct ipmi_addr *) &lan_addr,
3738 			  &recv_msg)) {
3739 		/*
3740 		 * We were unable to find the sequence number,
3741 		 * so just nuke the message.
3742 		 */
3743 		ipmi_inc_stat(intf, unhandled_lan_responses);
3744 		return 0;
3745 	}
3746 
3747 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3748 	/*
3749 	 * The other fields matched, so no need to set them, except
3750 	 * for netfn, which needs to be the response that was
3751 	 * returned, not the request value.
3752 	 */
3753 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3754 	recv_msg->msg.data = recv_msg->msg_data;
3755 	recv_msg->msg.data_len = msg->rsp_size - 12;
3756 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3757 	if (deliver_response(intf, recv_msg))
3758 		ipmi_inc_stat(intf, unhandled_lan_responses);
3759 	else
3760 		ipmi_inc_stat(intf, handled_lan_responses);
3761 
3762 	return 0;
3763 }
3764 
3765 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3766 				  struct ipmi_smi_msg *msg)
3767 {
3768 	struct cmd_rcvr          *rcvr;
3769 	int                      rv = 0;
3770 	unsigned char            netfn;
3771 	unsigned char            cmd;
3772 	unsigned char            chan;
3773 	struct ipmi_user         *user = NULL;
3774 	struct ipmi_lan_addr     *lan_addr;
3775 	struct ipmi_recv_msg     *recv_msg;
3776 
3777 	if (msg->rsp_size < 12) {
3778 		/* Message not big enough, just ignore it. */
3779 		ipmi_inc_stat(intf, invalid_commands);
3780 		return 0;
3781 	}
3782 
3783 	if (msg->rsp[2] != 0) {
3784 		/* An error getting the response, just ignore it. */
3785 		return 0;
3786 	}
3787 
3788 	netfn = msg->rsp[6] >> 2;
3789 	cmd = msg->rsp[10];
3790 	chan = msg->rsp[3] & 0xf;
3791 
3792 	rcu_read_lock();
3793 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3794 	if (rcvr) {
3795 		user = rcvr->user;
3796 		kref_get(&user->refcount);
3797 	} else
3798 		user = NULL;
3799 	rcu_read_unlock();
3800 
3801 	if (user == NULL) {
3802 		/* We didn't find a user, just give up. */
3803 		ipmi_inc_stat(intf, unhandled_commands);
3804 
3805 		/*
3806 		 * Don't do anything with these messages, just allow
3807 		 * them to be freed.
3808 		 */
3809 		rv = 0;
3810 	} else {
3811 		recv_msg = ipmi_alloc_recv_msg();
3812 		if (!recv_msg) {
3813 			/*
3814 			 * We couldn't allocate memory for the
3815 			 * message, so requeue it for handling later.
3816 			 */
3817 			rv = 1;
3818 			kref_put(&user->refcount, free_user);
3819 		} else {
3820 			/* Extract the source address from the data. */
3821 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3822 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3823 			lan_addr->session_handle = msg->rsp[4];
3824 			lan_addr->remote_SWID = msg->rsp[8];
3825 			lan_addr->local_SWID = msg->rsp[5];
3826 			lan_addr->lun = msg->rsp[9] & 3;
3827 			lan_addr->channel = msg->rsp[3] & 0xf;
3828 			lan_addr->privilege = msg->rsp[3] >> 4;
3829 
3830 			/*
3831 			 * Extract the rest of the message information
3832 			 * from the IPMB header.
3833 			 */
3834 			recv_msg->user = user;
3835 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3836 			recv_msg->msgid = msg->rsp[9] >> 2;
3837 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3838 			recv_msg->msg.cmd = msg->rsp[10];
3839 			recv_msg->msg.data = recv_msg->msg_data;
3840 
3841 			/*
3842 			 * We chop off 12, not 11 bytes because the checksum
3843 			 * at the end also needs to be removed.
3844 			 */
3845 			recv_msg->msg.data_len = msg->rsp_size - 12;
3846 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3847 			       msg->rsp_size - 12);
3848 			if (deliver_response(intf, recv_msg))
3849 				ipmi_inc_stat(intf, unhandled_commands);
3850 			else
3851 				ipmi_inc_stat(intf, handled_commands);
3852 		}
3853 	}
3854 
3855 	return rv;
3856 }
3857 
3858 /*
3859  * This routine will handle "Get Message" command responses with
3860  * channels that use an OEM Medium. The message format belongs to
3861  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3862  * Chapter 22, sections 22.6 and 22.24 for more details.
3863  */
3864 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3865 				  struct ipmi_smi_msg *msg)
3866 {
3867 	struct cmd_rcvr       *rcvr;
3868 	int                   rv = 0;
3869 	unsigned char         netfn;
3870 	unsigned char         cmd;
3871 	unsigned char         chan;
3872 	struct ipmi_user *user = NULL;
3873 	struct ipmi_system_interface_addr *smi_addr;
3874 	struct ipmi_recv_msg  *recv_msg;
3875 
3876 	/*
3877 	 * We expect the OEM SW to perform error checking
3878 	 * so we just do some basic sanity checks
3879 	 */
3880 	if (msg->rsp_size < 4) {
3881 		/* Message not big enough, just ignore it. */
3882 		ipmi_inc_stat(intf, invalid_commands);
3883 		return 0;
3884 	}
3885 
3886 	if (msg->rsp[2] != 0) {
3887 		/* An error getting the response, just ignore it. */
3888 		return 0;
3889 	}
3890 
3891 	/*
3892 	 * This is an OEM Message so the OEM needs to know how
3893 	 * handle the message. We do no interpretation.
3894 	 */
3895 	netfn = msg->rsp[0] >> 2;
3896 	cmd = msg->rsp[1];
3897 	chan = msg->rsp[3] & 0xf;
3898 
3899 	rcu_read_lock();
3900 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3901 	if (rcvr) {
3902 		user = rcvr->user;
3903 		kref_get(&user->refcount);
3904 	} else
3905 		user = NULL;
3906 	rcu_read_unlock();
3907 
3908 	if (user == NULL) {
3909 		/* We didn't find a user, just give up. */
3910 		ipmi_inc_stat(intf, unhandled_commands);
3911 
3912 		/*
3913 		 * Don't do anything with these messages, just allow
3914 		 * them to be freed.
3915 		 */
3916 
3917 		rv = 0;
3918 	} else {
3919 		recv_msg = ipmi_alloc_recv_msg();
3920 		if (!recv_msg) {
3921 			/*
3922 			 * We couldn't allocate memory for the
3923 			 * message, so requeue it for handling
3924 			 * later.
3925 			 */
3926 			rv = 1;
3927 			kref_put(&user->refcount, free_user);
3928 		} else {
3929 			/*
3930 			 * OEM Messages are expected to be delivered via
3931 			 * the system interface to SMS software.  We might
3932 			 * need to visit this again depending on OEM
3933 			 * requirements
3934 			 */
3935 			smi_addr = ((struct ipmi_system_interface_addr *)
3936 				    &recv_msg->addr);
3937 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3938 			smi_addr->channel = IPMI_BMC_CHANNEL;
3939 			smi_addr->lun = msg->rsp[0] & 3;
3940 
3941 			recv_msg->user = user;
3942 			recv_msg->user_msg_data = NULL;
3943 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3944 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3945 			recv_msg->msg.cmd = msg->rsp[1];
3946 			recv_msg->msg.data = recv_msg->msg_data;
3947 
3948 			/*
3949 			 * The message starts at byte 4 which follows the
3950 			 * the Channel Byte in the "GET MESSAGE" command
3951 			 */
3952 			recv_msg->msg.data_len = msg->rsp_size - 4;
3953 			memcpy(recv_msg->msg_data, &msg->rsp[4],
3954 			       msg->rsp_size - 4);
3955 			if (deliver_response(intf, recv_msg))
3956 				ipmi_inc_stat(intf, unhandled_commands);
3957 			else
3958 				ipmi_inc_stat(intf, handled_commands);
3959 		}
3960 	}
3961 
3962 	return rv;
3963 }
3964 
3965 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3966 				     struct ipmi_smi_msg  *msg)
3967 {
3968 	struct ipmi_system_interface_addr *smi_addr;
3969 
3970 	recv_msg->msgid = 0;
3971 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
3972 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3973 	smi_addr->channel = IPMI_BMC_CHANNEL;
3974 	smi_addr->lun = msg->rsp[0] & 3;
3975 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3976 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3977 	recv_msg->msg.cmd = msg->rsp[1];
3978 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
3979 	recv_msg->msg.data = recv_msg->msg_data;
3980 	recv_msg->msg.data_len = msg->rsp_size - 3;
3981 }
3982 
3983 static int handle_read_event_rsp(struct ipmi_smi *intf,
3984 				 struct ipmi_smi_msg *msg)
3985 {
3986 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3987 	struct list_head     msgs;
3988 	struct ipmi_user     *user;
3989 	int rv = 0, deliver_count = 0, index;
3990 	unsigned long        flags;
3991 
3992 	if (msg->rsp_size < 19) {
3993 		/* Message is too small to be an IPMB event. */
3994 		ipmi_inc_stat(intf, invalid_events);
3995 		return 0;
3996 	}
3997 
3998 	if (msg->rsp[2] != 0) {
3999 		/* An error getting the event, just ignore it. */
4000 		return 0;
4001 	}
4002 
4003 	INIT_LIST_HEAD(&msgs);
4004 
4005 	spin_lock_irqsave(&intf->events_lock, flags);
4006 
4007 	ipmi_inc_stat(intf, events);
4008 
4009 	/*
4010 	 * Allocate and fill in one message for every user that is
4011 	 * getting events.
4012 	 */
4013 	index = srcu_read_lock(&intf->users_srcu);
4014 	list_for_each_entry_rcu(user, &intf->users, link) {
4015 		if (!user->gets_events)
4016 			continue;
4017 
4018 		recv_msg = ipmi_alloc_recv_msg();
4019 		if (!recv_msg) {
4020 			rcu_read_unlock();
4021 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4022 						 link) {
4023 				list_del(&recv_msg->link);
4024 				ipmi_free_recv_msg(recv_msg);
4025 			}
4026 			/*
4027 			 * We couldn't allocate memory for the
4028 			 * message, so requeue it for handling
4029 			 * later.
4030 			 */
4031 			rv = 1;
4032 			goto out;
4033 		}
4034 
4035 		deliver_count++;
4036 
4037 		copy_event_into_recv_msg(recv_msg, msg);
4038 		recv_msg->user = user;
4039 		kref_get(&user->refcount);
4040 		list_add_tail(&recv_msg->link, &msgs);
4041 	}
4042 	srcu_read_unlock(&intf->users_srcu, index);
4043 
4044 	if (deliver_count) {
4045 		/* Now deliver all the messages. */
4046 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4047 			list_del(&recv_msg->link);
4048 			deliver_local_response(intf, recv_msg);
4049 		}
4050 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4051 		/*
4052 		 * No one to receive the message, put it in queue if there's
4053 		 * not already too many things in the queue.
4054 		 */
4055 		recv_msg = ipmi_alloc_recv_msg();
4056 		if (!recv_msg) {
4057 			/*
4058 			 * We couldn't allocate memory for the
4059 			 * message, so requeue it for handling
4060 			 * later.
4061 			 */
4062 			rv = 1;
4063 			goto out;
4064 		}
4065 
4066 		copy_event_into_recv_msg(recv_msg, msg);
4067 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4068 		intf->waiting_events_count++;
4069 	} else if (!intf->event_msg_printed) {
4070 		/*
4071 		 * There's too many things in the queue, discard this
4072 		 * message.
4073 		 */
4074 		dev_warn(intf->si_dev,
4075 			 "Event queue full, discarding incoming events\n");
4076 		intf->event_msg_printed = 1;
4077 	}
4078 
4079  out:
4080 	spin_unlock_irqrestore(&intf->events_lock, flags);
4081 
4082 	return rv;
4083 }
4084 
4085 static int handle_bmc_rsp(struct ipmi_smi *intf,
4086 			  struct ipmi_smi_msg *msg)
4087 {
4088 	struct ipmi_recv_msg *recv_msg;
4089 	struct ipmi_system_interface_addr *smi_addr;
4090 
4091 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4092 	if (recv_msg == NULL) {
4093 		dev_warn(intf->si_dev,
4094 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4095 		return 0;
4096 	}
4097 
4098 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4099 	recv_msg->msgid = msg->msgid;
4100 	smi_addr = ((struct ipmi_system_interface_addr *)
4101 		    &recv_msg->addr);
4102 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4103 	smi_addr->channel = IPMI_BMC_CHANNEL;
4104 	smi_addr->lun = msg->rsp[0] & 3;
4105 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4106 	recv_msg->msg.cmd = msg->rsp[1];
4107 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4108 	recv_msg->msg.data = recv_msg->msg_data;
4109 	recv_msg->msg.data_len = msg->rsp_size - 2;
4110 	deliver_local_response(intf, recv_msg);
4111 
4112 	return 0;
4113 }
4114 
4115 /*
4116  * Handle a received message.  Return 1 if the message should be requeued,
4117  * 0 if the message should be freed, or -1 if the message should not
4118  * be freed or requeued.
4119  */
4120 static int handle_one_recv_msg(struct ipmi_smi *intf,
4121 			       struct ipmi_smi_msg *msg)
4122 {
4123 	int requeue;
4124 	int chan;
4125 
4126 	ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4127 	if (msg->rsp_size < 2) {
4128 		/* Message is too small to be correct. */
4129 		dev_warn(intf->si_dev,
4130 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4131 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4132 
4133 		/* Generate an error response for the message. */
4134 		msg->rsp[0] = msg->data[0] | (1 << 2);
4135 		msg->rsp[1] = msg->data[1];
4136 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4137 		msg->rsp_size = 3;
4138 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4139 		   || (msg->rsp[1] != msg->data[1])) {
4140 		/*
4141 		 * The NetFN and Command in the response is not even
4142 		 * marginally correct.
4143 		 */
4144 		dev_warn(intf->si_dev,
4145 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4146 			 (msg->data[0] >> 2) | 1, msg->data[1],
4147 			 msg->rsp[0] >> 2, msg->rsp[1]);
4148 
4149 		/* Generate an error response for the message. */
4150 		msg->rsp[0] = msg->data[0] | (1 << 2);
4151 		msg->rsp[1] = msg->data[1];
4152 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4153 		msg->rsp_size = 3;
4154 	}
4155 
4156 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4157 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4158 	    && (msg->user_data != NULL)) {
4159 		/*
4160 		 * It's a response to a response we sent.  For this we
4161 		 * deliver a send message response to the user.
4162 		 */
4163 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4164 
4165 		requeue = 0;
4166 		if (msg->rsp_size < 2)
4167 			/* Message is too small to be correct. */
4168 			goto out;
4169 
4170 		chan = msg->data[2] & 0x0f;
4171 		if (chan >= IPMI_MAX_CHANNELS)
4172 			/* Invalid channel number */
4173 			goto out;
4174 
4175 		if (!recv_msg)
4176 			goto out;
4177 
4178 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4179 		recv_msg->msg.data = recv_msg->msg_data;
4180 		recv_msg->msg.data_len = 1;
4181 		recv_msg->msg_data[0] = msg->rsp[2];
4182 		deliver_local_response(intf, recv_msg);
4183 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4184 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4185 		struct ipmi_channel   *chans;
4186 
4187 		/* It's from the receive queue. */
4188 		chan = msg->rsp[3] & 0xf;
4189 		if (chan >= IPMI_MAX_CHANNELS) {
4190 			/* Invalid channel number */
4191 			requeue = 0;
4192 			goto out;
4193 		}
4194 
4195 		/*
4196 		 * We need to make sure the channels have been initialized.
4197 		 * The channel_handler routine will set the "curr_channel"
4198 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4199 		 * channels for this interface have been initialized.
4200 		 */
4201 		if (!intf->channels_ready) {
4202 			requeue = 0; /* Throw the message away */
4203 			goto out;
4204 		}
4205 
4206 		chans = READ_ONCE(intf->channel_list)->c;
4207 
4208 		switch (chans[chan].medium) {
4209 		case IPMI_CHANNEL_MEDIUM_IPMB:
4210 			if (msg->rsp[4] & 0x04) {
4211 				/*
4212 				 * It's a response, so find the
4213 				 * requesting message and send it up.
4214 				 */
4215 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4216 			} else {
4217 				/*
4218 				 * It's a command to the SMS from some other
4219 				 * entity.  Handle that.
4220 				 */
4221 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4222 			}
4223 			break;
4224 
4225 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4226 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4227 			if (msg->rsp[6] & 0x04) {
4228 				/*
4229 				 * It's a response, so find the
4230 				 * requesting message and send it up.
4231 				 */
4232 				requeue = handle_lan_get_msg_rsp(intf, msg);
4233 			} else {
4234 				/*
4235 				 * It's a command to the SMS from some other
4236 				 * entity.  Handle that.
4237 				 */
4238 				requeue = handle_lan_get_msg_cmd(intf, msg);
4239 			}
4240 			break;
4241 
4242 		default:
4243 			/* Check for OEM Channels.  Clients had better
4244 			   register for these commands. */
4245 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4246 			    && (chans[chan].medium
4247 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4248 				requeue = handle_oem_get_msg_cmd(intf, msg);
4249 			} else {
4250 				/*
4251 				 * We don't handle the channel type, so just
4252 				 * free the message.
4253 				 */
4254 				requeue = 0;
4255 			}
4256 		}
4257 
4258 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4259 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4260 		/* It's an asynchronous event. */
4261 		requeue = handle_read_event_rsp(intf, msg);
4262 	} else {
4263 		/* It's a response from the local BMC. */
4264 		requeue = handle_bmc_rsp(intf, msg);
4265 	}
4266 
4267  out:
4268 	return requeue;
4269 }
4270 
4271 /*
4272  * If there are messages in the queue or pretimeouts, handle them.
4273  */
4274 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4275 {
4276 	struct ipmi_smi_msg  *smi_msg;
4277 	unsigned long        flags = 0;
4278 	int                  rv;
4279 	int                  run_to_completion = intf->run_to_completion;
4280 
4281 	/* See if any waiting messages need to be processed. */
4282 	if (!run_to_completion)
4283 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4284 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4285 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4286 				     struct ipmi_smi_msg, link);
4287 		list_del(&smi_msg->link);
4288 		if (!run_to_completion)
4289 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4290 					       flags);
4291 		rv = handle_one_recv_msg(intf, smi_msg);
4292 		if (!run_to_completion)
4293 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4294 		if (rv > 0) {
4295 			/*
4296 			 * To preserve message order, quit if we
4297 			 * can't handle a message.  Add the message
4298 			 * back at the head, this is safe because this
4299 			 * tasklet is the only thing that pulls the
4300 			 * messages.
4301 			 */
4302 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4303 			break;
4304 		} else {
4305 			if (rv == 0)
4306 				/* Message handled */
4307 				ipmi_free_smi_msg(smi_msg);
4308 			/* If rv < 0, fatal error, del but don't free. */
4309 		}
4310 	}
4311 	if (!run_to_completion)
4312 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4313 
4314 	/*
4315 	 * If the pretimout count is non-zero, decrement one from it and
4316 	 * deliver pretimeouts to all the users.
4317 	 */
4318 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4319 		struct ipmi_user *user;
4320 		int index;
4321 
4322 		index = srcu_read_lock(&intf->users_srcu);
4323 		list_for_each_entry_rcu(user, &intf->users, link) {
4324 			if (user->handler->ipmi_watchdog_pretimeout)
4325 				user->handler->ipmi_watchdog_pretimeout(
4326 					user->handler_data);
4327 		}
4328 		srcu_read_unlock(&intf->users_srcu, index);
4329 	}
4330 }
4331 
4332 static void smi_recv_tasklet(unsigned long val)
4333 {
4334 	unsigned long flags = 0; /* keep us warning-free. */
4335 	struct ipmi_smi *intf = (struct ipmi_smi *) val;
4336 	int run_to_completion = intf->run_to_completion;
4337 	struct ipmi_smi_msg *newmsg = NULL;
4338 
4339 	/*
4340 	 * Start the next message if available.
4341 	 *
4342 	 * Do this here, not in the actual receiver, because we may deadlock
4343 	 * because the lower layer is allowed to hold locks while calling
4344 	 * message delivery.
4345 	 */
4346 
4347 	rcu_read_lock();
4348 
4349 	if (!run_to_completion)
4350 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4351 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4352 		struct list_head *entry = NULL;
4353 
4354 		/* Pick the high priority queue first. */
4355 		if (!list_empty(&intf->hp_xmit_msgs))
4356 			entry = intf->hp_xmit_msgs.next;
4357 		else if (!list_empty(&intf->xmit_msgs))
4358 			entry = intf->xmit_msgs.next;
4359 
4360 		if (entry) {
4361 			list_del(entry);
4362 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4363 			intf->curr_msg = newmsg;
4364 		}
4365 	}
4366 	if (!run_to_completion)
4367 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4368 	if (newmsg)
4369 		intf->handlers->sender(intf->send_info, newmsg);
4370 
4371 	rcu_read_unlock();
4372 
4373 	handle_new_recv_msgs(intf);
4374 }
4375 
4376 /* Handle a new message from the lower layer. */
4377 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4378 			   struct ipmi_smi_msg *msg)
4379 {
4380 	unsigned long flags = 0; /* keep us warning-free. */
4381 	int run_to_completion = intf->run_to_completion;
4382 
4383 	if ((msg->data_size >= 2)
4384 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4385 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4386 	    && (msg->user_data == NULL)) {
4387 
4388 		if (intf->in_shutdown)
4389 			goto free_msg;
4390 
4391 		/*
4392 		 * This is the local response to a command send, start
4393 		 * the timer for these.  The user_data will not be
4394 		 * NULL if this is a response send, and we will let
4395 		 * response sends just go through.
4396 		 */
4397 
4398 		/*
4399 		 * Check for errors, if we get certain errors (ones
4400 		 * that mean basically we can try again later), we
4401 		 * ignore them and start the timer.  Otherwise we
4402 		 * report the error immediately.
4403 		 */
4404 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4405 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4406 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4407 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4408 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4409 			int ch = msg->rsp[3] & 0xf;
4410 			struct ipmi_channel *chans;
4411 
4412 			/* Got an error sending the message, handle it. */
4413 
4414 			chans = READ_ONCE(intf->channel_list)->c;
4415 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4416 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4417 				ipmi_inc_stat(intf, sent_lan_command_errs);
4418 			else
4419 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4420 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4421 		} else
4422 			/* The message was sent, start the timer. */
4423 			intf_start_seq_timer(intf, msg->msgid);
4424 
4425 free_msg:
4426 		ipmi_free_smi_msg(msg);
4427 	} else {
4428 		/*
4429 		 * To preserve message order, we keep a queue and deliver from
4430 		 * a tasklet.
4431 		 */
4432 		if (!run_to_completion)
4433 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4434 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4435 		if (!run_to_completion)
4436 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4437 					       flags);
4438 	}
4439 
4440 	if (!run_to_completion)
4441 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4442 	/*
4443 	 * We can get an asynchronous event or receive message in addition
4444 	 * to commands we send.
4445 	 */
4446 	if (msg == intf->curr_msg)
4447 		intf->curr_msg = NULL;
4448 	if (!run_to_completion)
4449 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4450 
4451 	if (run_to_completion)
4452 		smi_recv_tasklet((unsigned long) intf);
4453 	else
4454 		tasklet_schedule(&intf->recv_tasklet);
4455 }
4456 EXPORT_SYMBOL(ipmi_smi_msg_received);
4457 
4458 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4459 {
4460 	if (intf->in_shutdown)
4461 		return;
4462 
4463 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4464 	tasklet_schedule(&intf->recv_tasklet);
4465 }
4466 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4467 
4468 static struct ipmi_smi_msg *
4469 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4470 		  unsigned char seq, long seqid)
4471 {
4472 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4473 	if (!smi_msg)
4474 		/*
4475 		 * If we can't allocate the message, then just return, we
4476 		 * get 4 retries, so this should be ok.
4477 		 */
4478 		return NULL;
4479 
4480 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4481 	smi_msg->data_size = recv_msg->msg.data_len;
4482 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4483 
4484 	ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4485 
4486 	return smi_msg;
4487 }
4488 
4489 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4490 			      struct list_head *timeouts,
4491 			      unsigned long timeout_period,
4492 			      int slot, unsigned long *flags,
4493 			      unsigned int *waiting_msgs)
4494 {
4495 	struct ipmi_recv_msg *msg;
4496 
4497 	if (intf->in_shutdown)
4498 		return;
4499 
4500 	if (!ent->inuse)
4501 		return;
4502 
4503 	if (timeout_period < ent->timeout) {
4504 		ent->timeout -= timeout_period;
4505 		(*waiting_msgs)++;
4506 		return;
4507 	}
4508 
4509 	if (ent->retries_left == 0) {
4510 		/* The message has used all its retries. */
4511 		ent->inuse = 0;
4512 		msg = ent->recv_msg;
4513 		list_add_tail(&msg->link, timeouts);
4514 		if (ent->broadcast)
4515 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4516 		else if (is_lan_addr(&ent->recv_msg->addr))
4517 			ipmi_inc_stat(intf, timed_out_lan_commands);
4518 		else
4519 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4520 	} else {
4521 		struct ipmi_smi_msg *smi_msg;
4522 		/* More retries, send again. */
4523 
4524 		(*waiting_msgs)++;
4525 
4526 		/*
4527 		 * Start with the max timer, set to normal timer after
4528 		 * the message is sent.
4529 		 */
4530 		ent->timeout = MAX_MSG_TIMEOUT;
4531 		ent->retries_left--;
4532 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4533 					    ent->seqid);
4534 		if (!smi_msg) {
4535 			if (is_lan_addr(&ent->recv_msg->addr))
4536 				ipmi_inc_stat(intf,
4537 					      dropped_rexmit_lan_commands);
4538 			else
4539 				ipmi_inc_stat(intf,
4540 					      dropped_rexmit_ipmb_commands);
4541 			return;
4542 		}
4543 
4544 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4545 
4546 		/*
4547 		 * Send the new message.  We send with a zero
4548 		 * priority.  It timed out, I doubt time is that
4549 		 * critical now, and high priority messages are really
4550 		 * only for messages to the local MC, which don't get
4551 		 * resent.
4552 		 */
4553 		if (intf->handlers) {
4554 			if (is_lan_addr(&ent->recv_msg->addr))
4555 				ipmi_inc_stat(intf,
4556 					      retransmitted_lan_commands);
4557 			else
4558 				ipmi_inc_stat(intf,
4559 					      retransmitted_ipmb_commands);
4560 
4561 			smi_send(intf, intf->handlers, smi_msg, 0);
4562 		} else
4563 			ipmi_free_smi_msg(smi_msg);
4564 
4565 		spin_lock_irqsave(&intf->seq_lock, *flags);
4566 	}
4567 }
4568 
4569 static unsigned int ipmi_timeout_handler(struct ipmi_smi *intf,
4570 					 unsigned long timeout_period)
4571 {
4572 	struct list_head     timeouts;
4573 	struct ipmi_recv_msg *msg, *msg2;
4574 	unsigned long        flags;
4575 	int                  i;
4576 	unsigned int         waiting_msgs = 0;
4577 
4578 	if (!intf->bmc_registered) {
4579 		kref_get(&intf->refcount);
4580 		if (!schedule_work(&intf->bmc_reg_work)) {
4581 			kref_put(&intf->refcount, intf_free);
4582 			waiting_msgs++;
4583 		}
4584 	}
4585 
4586 	/*
4587 	 * Go through the seq table and find any messages that
4588 	 * have timed out, putting them in the timeouts
4589 	 * list.
4590 	 */
4591 	INIT_LIST_HEAD(&timeouts);
4592 	spin_lock_irqsave(&intf->seq_lock, flags);
4593 	if (intf->ipmb_maintenance_mode_timeout) {
4594 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4595 			intf->ipmb_maintenance_mode_timeout = 0;
4596 		else
4597 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4598 	}
4599 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4600 		check_msg_timeout(intf, &intf->seq_table[i],
4601 				  &timeouts, timeout_period, i,
4602 				  &flags, &waiting_msgs);
4603 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4604 
4605 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4606 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4607 
4608 	/*
4609 	 * Maintenance mode handling.  Check the timeout
4610 	 * optimistically before we claim the lock.  It may
4611 	 * mean a timeout gets missed occasionally, but that
4612 	 * only means the timeout gets extended by one period
4613 	 * in that case.  No big deal, and it avoids the lock
4614 	 * most of the time.
4615 	 */
4616 	if (intf->auto_maintenance_timeout > 0) {
4617 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4618 		if (intf->auto_maintenance_timeout > 0) {
4619 			intf->auto_maintenance_timeout
4620 				-= timeout_period;
4621 			if (!intf->maintenance_mode
4622 			    && (intf->auto_maintenance_timeout <= 0)) {
4623 				intf->maintenance_mode_enable = false;
4624 				maintenance_mode_update(intf);
4625 			}
4626 		}
4627 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4628 				       flags);
4629 	}
4630 
4631 	tasklet_schedule(&intf->recv_tasklet);
4632 
4633 	return waiting_msgs;
4634 }
4635 
4636 static void ipmi_request_event(struct ipmi_smi *intf)
4637 {
4638 	/* No event requests when in maintenance mode. */
4639 	if (intf->maintenance_mode_enable)
4640 		return;
4641 
4642 	if (!intf->in_shutdown)
4643 		intf->handlers->request_events(intf->send_info);
4644 }
4645 
4646 static struct timer_list ipmi_timer;
4647 
4648 static atomic_t stop_operation;
4649 
4650 static void ipmi_timeout(struct timer_list *unused)
4651 {
4652 	struct ipmi_smi *intf;
4653 	int nt = 0, index;
4654 
4655 	if (atomic_read(&stop_operation))
4656 		return;
4657 
4658 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4659 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4660 		int lnt = 0;
4661 
4662 		if (atomic_read(&intf->event_waiters)) {
4663 			intf->ticks_to_req_ev--;
4664 			if (intf->ticks_to_req_ev == 0) {
4665 				ipmi_request_event(intf);
4666 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4667 			}
4668 			lnt++;
4669 		}
4670 
4671 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4672 
4673 		lnt = !!lnt;
4674 		if (lnt != intf->last_needs_timer &&
4675 					intf->handlers->set_need_watch)
4676 			intf->handlers->set_need_watch(intf->send_info, lnt);
4677 		intf->last_needs_timer = lnt;
4678 
4679 		nt += lnt;
4680 	}
4681 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4682 
4683 	if (nt)
4684 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4685 }
4686 
4687 static void need_waiter(struct ipmi_smi *intf)
4688 {
4689 	/* Racy, but worst case we start the timer twice. */
4690 	if (!timer_pending(&ipmi_timer))
4691 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4692 }
4693 
4694 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4695 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4696 
4697 static void free_smi_msg(struct ipmi_smi_msg *msg)
4698 {
4699 	atomic_dec(&smi_msg_inuse_count);
4700 	kfree(msg);
4701 }
4702 
4703 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4704 {
4705 	struct ipmi_smi_msg *rv;
4706 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4707 	if (rv) {
4708 		rv->done = free_smi_msg;
4709 		rv->user_data = NULL;
4710 		atomic_inc(&smi_msg_inuse_count);
4711 	}
4712 	return rv;
4713 }
4714 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4715 
4716 static void free_recv_msg(struct ipmi_recv_msg *msg)
4717 {
4718 	atomic_dec(&recv_msg_inuse_count);
4719 	kfree(msg);
4720 }
4721 
4722 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4723 {
4724 	struct ipmi_recv_msg *rv;
4725 
4726 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4727 	if (rv) {
4728 		rv->user = NULL;
4729 		rv->done = free_recv_msg;
4730 		atomic_inc(&recv_msg_inuse_count);
4731 	}
4732 	return rv;
4733 }
4734 
4735 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4736 {
4737 	if (msg->user)
4738 		kref_put(&msg->user->refcount, free_user);
4739 	msg->done(msg);
4740 }
4741 EXPORT_SYMBOL(ipmi_free_recv_msg);
4742 
4743 static atomic_t panic_done_count = ATOMIC_INIT(0);
4744 
4745 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4746 {
4747 	atomic_dec(&panic_done_count);
4748 }
4749 
4750 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4751 {
4752 	atomic_dec(&panic_done_count);
4753 }
4754 
4755 /*
4756  * Inside a panic, send a message and wait for a response.
4757  */
4758 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4759 					struct ipmi_addr *addr,
4760 					struct kernel_ipmi_msg *msg)
4761 {
4762 	struct ipmi_smi_msg  smi_msg;
4763 	struct ipmi_recv_msg recv_msg;
4764 	int rv;
4765 
4766 	smi_msg.done = dummy_smi_done_handler;
4767 	recv_msg.done = dummy_recv_done_handler;
4768 	atomic_add(2, &panic_done_count);
4769 	rv = i_ipmi_request(NULL,
4770 			    intf,
4771 			    addr,
4772 			    0,
4773 			    msg,
4774 			    intf,
4775 			    &smi_msg,
4776 			    &recv_msg,
4777 			    0,
4778 			    intf->addrinfo[0].address,
4779 			    intf->addrinfo[0].lun,
4780 			    0, 1); /* Don't retry, and don't wait. */
4781 	if (rv)
4782 		atomic_sub(2, &panic_done_count);
4783 	else if (intf->handlers->flush_messages)
4784 		intf->handlers->flush_messages(intf->send_info);
4785 
4786 	while (atomic_read(&panic_done_count) != 0)
4787 		ipmi_poll(intf);
4788 }
4789 
4790 static void event_receiver_fetcher(struct ipmi_smi *intf,
4791 				   struct ipmi_recv_msg *msg)
4792 {
4793 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4794 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4795 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4796 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4797 		/* A get event receiver command, save it. */
4798 		intf->event_receiver = msg->msg.data[1];
4799 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4800 	}
4801 }
4802 
4803 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4804 {
4805 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4806 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4807 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4808 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4809 		/*
4810 		 * A get device id command, save if we are an event
4811 		 * receiver or generator.
4812 		 */
4813 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4814 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4815 	}
4816 }
4817 
4818 static void send_panic_events(struct ipmi_smi *intf, char *str)
4819 {
4820 	struct kernel_ipmi_msg msg;
4821 	unsigned char data[16];
4822 	struct ipmi_system_interface_addr *si;
4823 	struct ipmi_addr addr;
4824 	char *p = str;
4825 	struct ipmi_ipmb_addr *ipmb;
4826 	int j;
4827 
4828 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4829 		return;
4830 
4831 	si = (struct ipmi_system_interface_addr *) &addr;
4832 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4833 	si->channel = IPMI_BMC_CHANNEL;
4834 	si->lun = 0;
4835 
4836 	/* Fill in an event telling that we have failed. */
4837 	msg.netfn = 0x04; /* Sensor or Event. */
4838 	msg.cmd = 2; /* Platform event command. */
4839 	msg.data = data;
4840 	msg.data_len = 8;
4841 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4842 	data[1] = 0x03; /* This is for IPMI 1.0. */
4843 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4844 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4845 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4846 
4847 	/*
4848 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4849 	 * to make the panic events more useful.
4850 	 */
4851 	if (str) {
4852 		data[3] = str[0];
4853 		data[6] = str[1];
4854 		data[7] = str[2];
4855 	}
4856 
4857 	/* Send the event announcing the panic. */
4858 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4859 
4860 	/*
4861 	 * On every interface, dump a bunch of OEM event holding the
4862 	 * string.
4863 	 */
4864 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4865 		return;
4866 
4867 	/*
4868 	 * intf_num is used as an marker to tell if the
4869 	 * interface is valid.  Thus we need a read barrier to
4870 	 * make sure data fetched before checking intf_num
4871 	 * won't be used.
4872 	 */
4873 	smp_rmb();
4874 
4875 	/*
4876 	 * First job here is to figure out where to send the
4877 	 * OEM events.  There's no way in IPMI to send OEM
4878 	 * events using an event send command, so we have to
4879 	 * find the SEL to put them in and stick them in
4880 	 * there.
4881 	 */
4882 
4883 	/* Get capabilities from the get device id. */
4884 	intf->local_sel_device = 0;
4885 	intf->local_event_generator = 0;
4886 	intf->event_receiver = 0;
4887 
4888 	/* Request the device info from the local MC. */
4889 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4890 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4891 	msg.data = NULL;
4892 	msg.data_len = 0;
4893 	intf->null_user_handler = device_id_fetcher;
4894 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4895 
4896 	if (intf->local_event_generator) {
4897 		/* Request the event receiver from the local MC. */
4898 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4899 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4900 		msg.data = NULL;
4901 		msg.data_len = 0;
4902 		intf->null_user_handler = event_receiver_fetcher;
4903 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4904 	}
4905 	intf->null_user_handler = NULL;
4906 
4907 	/*
4908 	 * Validate the event receiver.  The low bit must not
4909 	 * be 1 (it must be a valid IPMB address), it cannot
4910 	 * be zero, and it must not be my address.
4911 	 */
4912 	if (((intf->event_receiver & 1) == 0)
4913 	    && (intf->event_receiver != 0)
4914 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
4915 		/*
4916 		 * The event receiver is valid, send an IPMB
4917 		 * message.
4918 		 */
4919 		ipmb = (struct ipmi_ipmb_addr *) &addr;
4920 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4921 		ipmb->channel = 0; /* FIXME - is this right? */
4922 		ipmb->lun = intf->event_receiver_lun;
4923 		ipmb->slave_addr = intf->event_receiver;
4924 	} else if (intf->local_sel_device) {
4925 		/*
4926 		 * The event receiver was not valid (or was
4927 		 * me), but I am an SEL device, just dump it
4928 		 * in my SEL.
4929 		 */
4930 		si = (struct ipmi_system_interface_addr *) &addr;
4931 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4932 		si->channel = IPMI_BMC_CHANNEL;
4933 		si->lun = 0;
4934 	} else
4935 		return; /* No where to send the event. */
4936 
4937 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4938 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4939 	msg.data = data;
4940 	msg.data_len = 16;
4941 
4942 	j = 0;
4943 	while (*p) {
4944 		int size = strlen(p);
4945 
4946 		if (size > 11)
4947 			size = 11;
4948 		data[0] = 0;
4949 		data[1] = 0;
4950 		data[2] = 0xf0; /* OEM event without timestamp. */
4951 		data[3] = intf->addrinfo[0].address;
4952 		data[4] = j++; /* sequence # */
4953 		/*
4954 		 * Always give 11 bytes, so strncpy will fill
4955 		 * it with zeroes for me.
4956 		 */
4957 		strncpy(data+5, p, 11);
4958 		p += size;
4959 
4960 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4961 	}
4962 }
4963 
4964 static int has_panicked;
4965 
4966 static int panic_event(struct notifier_block *this,
4967 		       unsigned long         event,
4968 		       void                  *ptr)
4969 {
4970 	struct ipmi_smi *intf;
4971 	struct ipmi_user *user;
4972 
4973 	if (has_panicked)
4974 		return NOTIFY_DONE;
4975 	has_panicked = 1;
4976 
4977 	/* For every registered interface, set it to run to completion. */
4978 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4979 		if (!intf->handlers || intf->intf_num == -1)
4980 			/* Interface is not ready. */
4981 			continue;
4982 
4983 		if (!intf->handlers->poll)
4984 			continue;
4985 
4986 		/*
4987 		 * If we were interrupted while locking xmit_msgs_lock or
4988 		 * waiting_rcv_msgs_lock, the corresponding list may be
4989 		 * corrupted.  In this case, drop items on the list for
4990 		 * the safety.
4991 		 */
4992 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4993 			INIT_LIST_HEAD(&intf->xmit_msgs);
4994 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4995 		} else
4996 			spin_unlock(&intf->xmit_msgs_lock);
4997 
4998 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4999 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5000 		else
5001 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5002 
5003 		intf->run_to_completion = 1;
5004 		if (intf->handlers->set_run_to_completion)
5005 			intf->handlers->set_run_to_completion(intf->send_info,
5006 							      1);
5007 
5008 		list_for_each_entry_rcu(user, &intf->users, link) {
5009 			if (user->handler->ipmi_panic_handler)
5010 				user->handler->ipmi_panic_handler(
5011 					user->handler_data);
5012 		}
5013 
5014 		send_panic_events(intf, ptr);
5015 	}
5016 
5017 	return NOTIFY_DONE;
5018 }
5019 
5020 static struct notifier_block panic_block = {
5021 	.notifier_call	= panic_event,
5022 	.next		= NULL,
5023 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5024 };
5025 
5026 static int ipmi_init_msghandler(void)
5027 {
5028 	int rv;
5029 
5030 	if (initialized)
5031 		return 0;
5032 
5033 	rv = driver_register(&ipmidriver.driver);
5034 	if (rv) {
5035 		pr_err("Could not register IPMI driver\n");
5036 		return rv;
5037 	}
5038 
5039 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5040 
5041 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5042 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5043 
5044 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5045 
5046 	initialized = 1;
5047 
5048 	return 0;
5049 }
5050 
5051 static int __init ipmi_init_msghandler_mod(void)
5052 {
5053 	ipmi_init_msghandler();
5054 	return 0;
5055 }
5056 
5057 static void __exit cleanup_ipmi(void)
5058 {
5059 	int count;
5060 
5061 	if (!initialized)
5062 		return;
5063 
5064 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
5065 
5066 	/*
5067 	 * This can't be called if any interfaces exist, so no worry
5068 	 * about shutting down the interfaces.
5069 	 */
5070 
5071 	/*
5072 	 * Tell the timer to stop, then wait for it to stop.  This
5073 	 * avoids problems with race conditions removing the timer
5074 	 * here.
5075 	 */
5076 	atomic_inc(&stop_operation);
5077 	del_timer_sync(&ipmi_timer);
5078 
5079 	driver_unregister(&ipmidriver.driver);
5080 
5081 	initialized = 0;
5082 
5083 	/* Check for buffer leaks. */
5084 	count = atomic_read(&smi_msg_inuse_count);
5085 	if (count != 0)
5086 		pr_warn("SMI message count %d at exit\n", count);
5087 	count = atomic_read(&recv_msg_inuse_count);
5088 	if (count != 0)
5089 		pr_warn("recv message count %d at exit\n", count);
5090 }
5091 module_exit(cleanup_ipmi);
5092 
5093 module_init(ipmi_init_msghandler_mod);
5094 MODULE_LICENSE("GPL");
5095 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5096 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5097 		   " interface.");
5098 MODULE_VERSION(IPMI_DRIVER_VERSION);
5099 MODULE_SOFTDEP("post: ipmi_devintf");
5100