1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_msghandler.c 4 * 5 * Incoming and outgoing message routing for an IPMI interface. 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 */ 13 14 #define pr_fmt(fmt) "IPMI message handler: " fmt 15 #define dev_fmt(fmt) pr_fmt(fmt) 16 17 #include <linux/module.h> 18 #include <linux/errno.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/spinlock.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/ipmi.h> 27 #include <linux/ipmi_smi.h> 28 #include <linux/notifier.h> 29 #include <linux/init.h> 30 #include <linux/proc_fs.h> 31 #include <linux/rcupdate.h> 32 #include <linux/interrupt.h> 33 #include <linux/moduleparam.h> 34 #include <linux/workqueue.h> 35 #include <linux/uuid.h> 36 #include <linux/nospec.h> 37 #include <linux/vmalloc.h> 38 #include <linux/delay.h> 39 40 #define IPMI_DRIVER_VERSION "39.2" 41 42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 43 static int ipmi_init_msghandler(void); 44 static void smi_recv_tasklet(struct tasklet_struct *t); 45 static void handle_new_recv_msgs(struct ipmi_smi *intf); 46 static void need_waiter(struct ipmi_smi *intf); 47 static int handle_one_recv_msg(struct ipmi_smi *intf, 48 struct ipmi_smi_msg *msg); 49 50 static bool initialized; 51 static bool drvregistered; 52 53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */ 54 enum ipmi_panic_event_op { 55 IPMI_SEND_PANIC_EVENT_NONE, 56 IPMI_SEND_PANIC_EVENT, 57 IPMI_SEND_PANIC_EVENT_STRING, 58 IPMI_SEND_PANIC_EVENT_MAX 59 }; 60 61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */ 62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL }; 63 64 #ifdef CONFIG_IPMI_PANIC_STRING 65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING 66 #elif defined(CONFIG_IPMI_PANIC_EVENT) 67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT 68 #else 69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE 70 #endif 71 72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT; 73 74 static int panic_op_write_handler(const char *val, 75 const struct kernel_param *kp) 76 { 77 char valcp[16]; 78 int e; 79 80 strscpy(valcp, val, sizeof(valcp)); 81 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp)); 82 if (e < 0) 83 return e; 84 85 ipmi_send_panic_event = e; 86 return 0; 87 } 88 89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp) 90 { 91 const char *event_str; 92 93 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX) 94 event_str = "???"; 95 else 96 event_str = ipmi_panic_event_str[ipmi_send_panic_event]; 97 98 return sprintf(buffer, "%s\n", event_str); 99 } 100 101 static const struct kernel_param_ops panic_op_ops = { 102 .set = panic_op_write_handler, 103 .get = panic_op_read_handler 104 }; 105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600); 106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events."); 107 108 109 #define MAX_EVENTS_IN_QUEUE 25 110 111 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 112 static unsigned long maintenance_mode_timeout_ms = 30000; 113 module_param(maintenance_mode_timeout_ms, ulong, 0644); 114 MODULE_PARM_DESC(maintenance_mode_timeout_ms, 115 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode."); 116 117 /* 118 * Don't let a message sit in a queue forever, always time it with at lest 119 * the max message timer. This is in milliseconds. 120 */ 121 #define MAX_MSG_TIMEOUT 60000 122 123 /* 124 * Timeout times below are in milliseconds, and are done off a 1 125 * second timer. So setting the value to 1000 would mean anything 126 * between 0 and 1000ms. So really the only reasonable minimum 127 * setting it 2000ms, which is between 1 and 2 seconds. 128 */ 129 130 /* The default timeout for message retries. */ 131 static unsigned long default_retry_ms = 2000; 132 module_param(default_retry_ms, ulong, 0644); 133 MODULE_PARM_DESC(default_retry_ms, 134 "The time (milliseconds) between retry sends"); 135 136 /* The default timeout for maintenance mode message retries. */ 137 static unsigned long default_maintenance_retry_ms = 3000; 138 module_param(default_maintenance_retry_ms, ulong, 0644); 139 MODULE_PARM_DESC(default_maintenance_retry_ms, 140 "The time (milliseconds) between retry sends in maintenance mode"); 141 142 /* The default maximum number of retries */ 143 static unsigned int default_max_retries = 4; 144 module_param(default_max_retries, uint, 0644); 145 MODULE_PARM_DESC(default_max_retries, 146 "The time (milliseconds) between retry sends in maintenance mode"); 147 148 /* The default maximum number of users that may register. */ 149 static unsigned int max_users = 30; 150 module_param(max_users, uint, 0644); 151 MODULE_PARM_DESC(max_users, 152 "The most users that may use the IPMI stack at one time."); 153 154 /* The default maximum number of message a user may have outstanding. */ 155 static unsigned int max_msgs_per_user = 100; 156 module_param(max_msgs_per_user, uint, 0644); 157 MODULE_PARM_DESC(max_msgs_per_user, 158 "The most message a user may have outstanding."); 159 160 /* Call every ~1000 ms. */ 161 #define IPMI_TIMEOUT_TIME 1000 162 163 /* How many jiffies does it take to get to the timeout time. */ 164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 165 166 /* 167 * Request events from the queue every second (this is the number of 168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 169 * future, IPMI will add a way to know immediately if an event is in 170 * the queue and this silliness can go away. 171 */ 172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 173 174 /* How long should we cache dynamic device IDs? */ 175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ) 176 177 /* 178 * The main "user" data structure. 179 */ 180 struct ipmi_user { 181 struct list_head link; 182 183 /* 184 * Set to NULL when the user is destroyed, a pointer to myself 185 * so srcu_dereference can be used on it. 186 */ 187 struct ipmi_user *self; 188 struct srcu_struct release_barrier; 189 190 struct kref refcount; 191 192 /* The upper layer that handles receive messages. */ 193 const struct ipmi_user_hndl *handler; 194 void *handler_data; 195 196 /* The interface this user is bound to. */ 197 struct ipmi_smi *intf; 198 199 /* Does this interface receive IPMI events? */ 200 bool gets_events; 201 202 atomic_t nr_msgs; 203 204 /* Free must run in process context for RCU cleanup. */ 205 struct work_struct remove_work; 206 }; 207 208 static struct workqueue_struct *remove_work_wq; 209 210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index) 211 __acquires(user->release_barrier) 212 { 213 struct ipmi_user *ruser; 214 215 *index = srcu_read_lock(&user->release_barrier); 216 ruser = srcu_dereference(user->self, &user->release_barrier); 217 if (!ruser) 218 srcu_read_unlock(&user->release_barrier, *index); 219 return ruser; 220 } 221 222 static void release_ipmi_user(struct ipmi_user *user, int index) 223 { 224 srcu_read_unlock(&user->release_barrier, index); 225 } 226 227 struct cmd_rcvr { 228 struct list_head link; 229 230 struct ipmi_user *user; 231 unsigned char netfn; 232 unsigned char cmd; 233 unsigned int chans; 234 235 /* 236 * This is used to form a linked lised during mass deletion. 237 * Since this is in an RCU list, we cannot use the link above 238 * or change any data until the RCU period completes. So we 239 * use this next variable during mass deletion so we can have 240 * a list and don't have to wait and restart the search on 241 * every individual deletion of a command. 242 */ 243 struct cmd_rcvr *next; 244 }; 245 246 struct seq_table { 247 unsigned int inuse : 1; 248 unsigned int broadcast : 1; 249 250 unsigned long timeout; 251 unsigned long orig_timeout; 252 unsigned int retries_left; 253 254 /* 255 * To verify on an incoming send message response that this is 256 * the message that the response is for, we keep a sequence id 257 * and increment it every time we send a message. 258 */ 259 long seqid; 260 261 /* 262 * This is held so we can properly respond to the message on a 263 * timeout, and it is used to hold the temporary data for 264 * retransmission, too. 265 */ 266 struct ipmi_recv_msg *recv_msg; 267 }; 268 269 /* 270 * Store the information in a msgid (long) to allow us to find a 271 * sequence table entry from the msgid. 272 */ 273 #define STORE_SEQ_IN_MSGID(seq, seqid) \ 274 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff)) 275 276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 277 do { \ 278 seq = (((msgid) >> 26) & 0x3f); \ 279 seqid = ((msgid) & 0x3ffffff); \ 280 } while (0) 281 282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff) 283 284 #define IPMI_MAX_CHANNELS 16 285 struct ipmi_channel { 286 unsigned char medium; 287 unsigned char protocol; 288 }; 289 290 struct ipmi_channel_set { 291 struct ipmi_channel c[IPMI_MAX_CHANNELS]; 292 }; 293 294 struct ipmi_my_addrinfo { 295 /* 296 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 297 * but may be changed by the user. 298 */ 299 unsigned char address; 300 301 /* 302 * My LUN. This should generally stay the SMS LUN, but just in 303 * case... 304 */ 305 unsigned char lun; 306 }; 307 308 /* 309 * Note that the product id, manufacturer id, guid, and device id are 310 * immutable in this structure, so dyn_mutex is not required for 311 * accessing those. If those change on a BMC, a new BMC is allocated. 312 */ 313 struct bmc_device { 314 struct platform_device pdev; 315 struct list_head intfs; /* Interfaces on this BMC. */ 316 struct ipmi_device_id id; 317 struct ipmi_device_id fetch_id; 318 int dyn_id_set; 319 unsigned long dyn_id_expiry; 320 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */ 321 guid_t guid; 322 guid_t fetch_guid; 323 int dyn_guid_set; 324 struct kref usecount; 325 struct work_struct remove_work; 326 unsigned char cc; /* completion code */ 327 }; 328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 329 330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 331 struct ipmi_device_id *id, 332 bool *guid_set, guid_t *guid); 333 334 /* 335 * Various statistics for IPMI, these index stats[] in the ipmi_smi 336 * structure. 337 */ 338 enum ipmi_stat_indexes { 339 /* Commands we got from the user that were invalid. */ 340 IPMI_STAT_sent_invalid_commands = 0, 341 342 /* Commands we sent to the MC. */ 343 IPMI_STAT_sent_local_commands, 344 345 /* Responses from the MC that were delivered to a user. */ 346 IPMI_STAT_handled_local_responses, 347 348 /* Responses from the MC that were not delivered to a user. */ 349 IPMI_STAT_unhandled_local_responses, 350 351 /* Commands we sent out to the IPMB bus. */ 352 IPMI_STAT_sent_ipmb_commands, 353 354 /* Commands sent on the IPMB that had errors on the SEND CMD */ 355 IPMI_STAT_sent_ipmb_command_errs, 356 357 /* Each retransmit increments this count. */ 358 IPMI_STAT_retransmitted_ipmb_commands, 359 360 /* 361 * When a message times out (runs out of retransmits) this is 362 * incremented. 363 */ 364 IPMI_STAT_timed_out_ipmb_commands, 365 366 /* 367 * This is like above, but for broadcasts. Broadcasts are 368 * *not* included in the above count (they are expected to 369 * time out). 370 */ 371 IPMI_STAT_timed_out_ipmb_broadcasts, 372 373 /* Responses I have sent to the IPMB bus. */ 374 IPMI_STAT_sent_ipmb_responses, 375 376 /* The response was delivered to the user. */ 377 IPMI_STAT_handled_ipmb_responses, 378 379 /* The response had invalid data in it. */ 380 IPMI_STAT_invalid_ipmb_responses, 381 382 /* The response didn't have anyone waiting for it. */ 383 IPMI_STAT_unhandled_ipmb_responses, 384 385 /* Commands we sent out to the IPMB bus. */ 386 IPMI_STAT_sent_lan_commands, 387 388 /* Commands sent on the IPMB that had errors on the SEND CMD */ 389 IPMI_STAT_sent_lan_command_errs, 390 391 /* Each retransmit increments this count. */ 392 IPMI_STAT_retransmitted_lan_commands, 393 394 /* 395 * When a message times out (runs out of retransmits) this is 396 * incremented. 397 */ 398 IPMI_STAT_timed_out_lan_commands, 399 400 /* Responses I have sent to the IPMB bus. */ 401 IPMI_STAT_sent_lan_responses, 402 403 /* The response was delivered to the user. */ 404 IPMI_STAT_handled_lan_responses, 405 406 /* The response had invalid data in it. */ 407 IPMI_STAT_invalid_lan_responses, 408 409 /* The response didn't have anyone waiting for it. */ 410 IPMI_STAT_unhandled_lan_responses, 411 412 /* The command was delivered to the user. */ 413 IPMI_STAT_handled_commands, 414 415 /* The command had invalid data in it. */ 416 IPMI_STAT_invalid_commands, 417 418 /* The command didn't have anyone waiting for it. */ 419 IPMI_STAT_unhandled_commands, 420 421 /* Invalid data in an event. */ 422 IPMI_STAT_invalid_events, 423 424 /* Events that were received with the proper format. */ 425 IPMI_STAT_events, 426 427 /* Retransmissions on IPMB that failed. */ 428 IPMI_STAT_dropped_rexmit_ipmb_commands, 429 430 /* Retransmissions on LAN that failed. */ 431 IPMI_STAT_dropped_rexmit_lan_commands, 432 433 /* This *must* remain last, add new values above this. */ 434 IPMI_NUM_STATS 435 }; 436 437 438 #define IPMI_IPMB_NUM_SEQ 64 439 struct ipmi_smi { 440 struct module *owner; 441 442 /* What interface number are we? */ 443 int intf_num; 444 445 struct kref refcount; 446 447 /* Set when the interface is being unregistered. */ 448 bool in_shutdown; 449 450 /* Used for a list of interfaces. */ 451 struct list_head link; 452 453 /* 454 * The list of upper layers that are using me. seq_lock write 455 * protects this. Read protection is with srcu. 456 */ 457 struct list_head users; 458 struct srcu_struct users_srcu; 459 atomic_t nr_users; 460 struct device_attribute nr_users_devattr; 461 struct device_attribute nr_msgs_devattr; 462 463 464 /* Used for wake ups at startup. */ 465 wait_queue_head_t waitq; 466 467 /* 468 * Prevents the interface from being unregistered when the 469 * interface is used by being looked up through the BMC 470 * structure. 471 */ 472 struct mutex bmc_reg_mutex; 473 474 struct bmc_device tmp_bmc; 475 struct bmc_device *bmc; 476 bool bmc_registered; 477 struct list_head bmc_link; 478 char *my_dev_name; 479 bool in_bmc_register; /* Handle recursive situations. Yuck. */ 480 struct work_struct bmc_reg_work; 481 482 const struct ipmi_smi_handlers *handlers; 483 void *send_info; 484 485 /* Driver-model device for the system interface. */ 486 struct device *si_dev; 487 488 /* 489 * A table of sequence numbers for this interface. We use the 490 * sequence numbers for IPMB messages that go out of the 491 * interface to match them up with their responses. A routine 492 * is called periodically to time the items in this list. 493 */ 494 spinlock_t seq_lock; 495 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 496 int curr_seq; 497 498 /* 499 * Messages queued for delivery. If delivery fails (out of memory 500 * for instance), They will stay in here to be processed later in a 501 * periodic timer interrupt. The tasklet is for handling received 502 * messages directly from the handler. 503 */ 504 spinlock_t waiting_rcv_msgs_lock; 505 struct list_head waiting_rcv_msgs; 506 atomic_t watchdog_pretimeouts_to_deliver; 507 struct tasklet_struct recv_tasklet; 508 509 spinlock_t xmit_msgs_lock; 510 struct list_head xmit_msgs; 511 struct ipmi_smi_msg *curr_msg; 512 struct list_head hp_xmit_msgs; 513 514 /* 515 * The list of command receivers that are registered for commands 516 * on this interface. 517 */ 518 struct mutex cmd_rcvrs_mutex; 519 struct list_head cmd_rcvrs; 520 521 /* 522 * Events that were queues because no one was there to receive 523 * them. 524 */ 525 spinlock_t events_lock; /* For dealing with event stuff. */ 526 struct list_head waiting_events; 527 unsigned int waiting_events_count; /* How many events in queue? */ 528 char delivering_events; 529 char event_msg_printed; 530 531 /* How many users are waiting for events? */ 532 atomic_t event_waiters; 533 unsigned int ticks_to_req_ev; 534 535 spinlock_t watch_lock; /* For dealing with watch stuff below. */ 536 537 /* How many users are waiting for commands? */ 538 unsigned int command_waiters; 539 540 /* How many users are waiting for watchdogs? */ 541 unsigned int watchdog_waiters; 542 543 /* How many users are waiting for message responses? */ 544 unsigned int response_waiters; 545 546 /* 547 * Tells what the lower layer has last been asked to watch for, 548 * messages and/or watchdogs. Protected by watch_lock. 549 */ 550 unsigned int last_watch_mask; 551 552 /* 553 * The event receiver for my BMC, only really used at panic 554 * shutdown as a place to store this. 555 */ 556 unsigned char event_receiver; 557 unsigned char event_receiver_lun; 558 unsigned char local_sel_device; 559 unsigned char local_event_generator; 560 561 /* For handling of maintenance mode. */ 562 int maintenance_mode; 563 bool maintenance_mode_enable; 564 int auto_maintenance_timeout; 565 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 566 567 /* 568 * If we are doing maintenance on something on IPMB, extend 569 * the timeout time to avoid timeouts writing firmware and 570 * such. 571 */ 572 int ipmb_maintenance_mode_timeout; 573 574 /* 575 * A cheap hack, if this is non-null and a message to an 576 * interface comes in with a NULL user, call this routine with 577 * it. Note that the message will still be freed by the 578 * caller. This only works on the system interface. 579 * 580 * Protected by bmc_reg_mutex. 581 */ 582 void (*null_user_handler)(struct ipmi_smi *intf, 583 struct ipmi_recv_msg *msg); 584 585 /* 586 * When we are scanning the channels for an SMI, this will 587 * tell which channel we are scanning. 588 */ 589 int curr_channel; 590 591 /* Channel information */ 592 struct ipmi_channel_set *channel_list; 593 unsigned int curr_working_cset; /* First index into the following. */ 594 struct ipmi_channel_set wchannels[2]; 595 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS]; 596 bool channels_ready; 597 598 atomic_t stats[IPMI_NUM_STATS]; 599 600 /* 601 * run_to_completion duplicate of smb_info, smi_info 602 * and ipmi_serial_info structures. Used to decrease numbers of 603 * parameters passed by "low" level IPMI code. 604 */ 605 int run_to_completion; 606 }; 607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 608 609 static void __get_guid(struct ipmi_smi *intf); 610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf); 611 static int __ipmi_bmc_register(struct ipmi_smi *intf, 612 struct ipmi_device_id *id, 613 bool guid_set, guid_t *guid, int intf_num); 614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id); 615 616 617 /* 618 * The driver model view of the IPMI messaging driver. 619 */ 620 static struct platform_driver ipmidriver = { 621 .driver = { 622 .name = "ipmi", 623 .bus = &platform_bus_type 624 } 625 }; 626 /* 627 * This mutex keeps us from adding the same BMC twice. 628 */ 629 static DEFINE_MUTEX(ipmidriver_mutex); 630 631 static LIST_HEAD(ipmi_interfaces); 632 static DEFINE_MUTEX(ipmi_interfaces_mutex); 633 #define ipmi_interfaces_mutex_held() \ 634 lockdep_is_held(&ipmi_interfaces_mutex) 635 static struct srcu_struct ipmi_interfaces_srcu; 636 637 /* 638 * List of watchers that want to know when smi's are added and deleted. 639 */ 640 static LIST_HEAD(smi_watchers); 641 static DEFINE_MUTEX(smi_watchers_mutex); 642 643 #define ipmi_inc_stat(intf, stat) \ 644 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 645 #define ipmi_get_stat(intf, stat) \ 646 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 647 648 static const char * const addr_src_to_str[] = { 649 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI", 650 "device-tree", "platform" 651 }; 652 653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 654 { 655 if (src >= SI_LAST) 656 src = 0; /* Invalid */ 657 return addr_src_to_str[src]; 658 } 659 EXPORT_SYMBOL(ipmi_addr_src_to_str); 660 661 static int is_lan_addr(struct ipmi_addr *addr) 662 { 663 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 664 } 665 666 static int is_ipmb_addr(struct ipmi_addr *addr) 667 { 668 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 669 } 670 671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 672 { 673 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 674 } 675 676 static int is_ipmb_direct_addr(struct ipmi_addr *addr) 677 { 678 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE; 679 } 680 681 static void free_recv_msg_list(struct list_head *q) 682 { 683 struct ipmi_recv_msg *msg, *msg2; 684 685 list_for_each_entry_safe(msg, msg2, q, link) { 686 list_del(&msg->link); 687 ipmi_free_recv_msg(msg); 688 } 689 } 690 691 static void free_smi_msg_list(struct list_head *q) 692 { 693 struct ipmi_smi_msg *msg, *msg2; 694 695 list_for_each_entry_safe(msg, msg2, q, link) { 696 list_del(&msg->link); 697 ipmi_free_smi_msg(msg); 698 } 699 } 700 701 static void clean_up_interface_data(struct ipmi_smi *intf) 702 { 703 int i; 704 struct cmd_rcvr *rcvr, *rcvr2; 705 struct list_head list; 706 707 tasklet_kill(&intf->recv_tasklet); 708 709 free_smi_msg_list(&intf->waiting_rcv_msgs); 710 free_recv_msg_list(&intf->waiting_events); 711 712 /* 713 * Wholesale remove all the entries from the list in the 714 * interface and wait for RCU to know that none are in use. 715 */ 716 mutex_lock(&intf->cmd_rcvrs_mutex); 717 INIT_LIST_HEAD(&list); 718 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 719 mutex_unlock(&intf->cmd_rcvrs_mutex); 720 721 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 722 kfree(rcvr); 723 724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 725 if ((intf->seq_table[i].inuse) 726 && (intf->seq_table[i].recv_msg)) 727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 728 } 729 } 730 731 static void intf_free(struct kref *ref) 732 { 733 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount); 734 735 clean_up_interface_data(intf); 736 kfree(intf); 737 } 738 739 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 740 { 741 struct ipmi_smi *intf; 742 int index, rv; 743 744 /* 745 * Make sure the driver is actually initialized, this handles 746 * problems with initialization order. 747 */ 748 rv = ipmi_init_msghandler(); 749 if (rv) 750 return rv; 751 752 mutex_lock(&smi_watchers_mutex); 753 754 list_add(&watcher->link, &smi_watchers); 755 756 index = srcu_read_lock(&ipmi_interfaces_srcu); 757 list_for_each_entry_rcu(intf, &ipmi_interfaces, link, 758 lockdep_is_held(&smi_watchers_mutex)) { 759 int intf_num = READ_ONCE(intf->intf_num); 760 761 if (intf_num == -1) 762 continue; 763 watcher->new_smi(intf_num, intf->si_dev); 764 } 765 srcu_read_unlock(&ipmi_interfaces_srcu, index); 766 767 mutex_unlock(&smi_watchers_mutex); 768 769 return 0; 770 } 771 EXPORT_SYMBOL(ipmi_smi_watcher_register); 772 773 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 774 { 775 mutex_lock(&smi_watchers_mutex); 776 list_del(&watcher->link); 777 mutex_unlock(&smi_watchers_mutex); 778 return 0; 779 } 780 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 781 782 /* 783 * Must be called with smi_watchers_mutex held. 784 */ 785 static void 786 call_smi_watchers(int i, struct device *dev) 787 { 788 struct ipmi_smi_watcher *w; 789 790 mutex_lock(&smi_watchers_mutex); 791 list_for_each_entry(w, &smi_watchers, link) { 792 if (try_module_get(w->owner)) { 793 w->new_smi(i, dev); 794 module_put(w->owner); 795 } 796 } 797 mutex_unlock(&smi_watchers_mutex); 798 } 799 800 static int 801 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 802 { 803 if (addr1->addr_type != addr2->addr_type) 804 return 0; 805 806 if (addr1->channel != addr2->channel) 807 return 0; 808 809 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 810 struct ipmi_system_interface_addr *smi_addr1 811 = (struct ipmi_system_interface_addr *) addr1; 812 struct ipmi_system_interface_addr *smi_addr2 813 = (struct ipmi_system_interface_addr *) addr2; 814 return (smi_addr1->lun == smi_addr2->lun); 815 } 816 817 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 818 struct ipmi_ipmb_addr *ipmb_addr1 819 = (struct ipmi_ipmb_addr *) addr1; 820 struct ipmi_ipmb_addr *ipmb_addr2 821 = (struct ipmi_ipmb_addr *) addr2; 822 823 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 824 && (ipmb_addr1->lun == ipmb_addr2->lun)); 825 } 826 827 if (is_ipmb_direct_addr(addr1)) { 828 struct ipmi_ipmb_direct_addr *daddr1 829 = (struct ipmi_ipmb_direct_addr *) addr1; 830 struct ipmi_ipmb_direct_addr *daddr2 831 = (struct ipmi_ipmb_direct_addr *) addr2; 832 833 return daddr1->slave_addr == daddr2->slave_addr && 834 daddr1->rq_lun == daddr2->rq_lun && 835 daddr1->rs_lun == daddr2->rs_lun; 836 } 837 838 if (is_lan_addr(addr1)) { 839 struct ipmi_lan_addr *lan_addr1 840 = (struct ipmi_lan_addr *) addr1; 841 struct ipmi_lan_addr *lan_addr2 842 = (struct ipmi_lan_addr *) addr2; 843 844 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 845 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 846 && (lan_addr1->session_handle 847 == lan_addr2->session_handle) 848 && (lan_addr1->lun == lan_addr2->lun)); 849 } 850 851 return 1; 852 } 853 854 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 855 { 856 if (len < sizeof(struct ipmi_system_interface_addr)) 857 return -EINVAL; 858 859 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 860 if (addr->channel != IPMI_BMC_CHANNEL) 861 return -EINVAL; 862 return 0; 863 } 864 865 if ((addr->channel == IPMI_BMC_CHANNEL) 866 || (addr->channel >= IPMI_MAX_CHANNELS) 867 || (addr->channel < 0)) 868 return -EINVAL; 869 870 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 871 if (len < sizeof(struct ipmi_ipmb_addr)) 872 return -EINVAL; 873 return 0; 874 } 875 876 if (is_ipmb_direct_addr(addr)) { 877 struct ipmi_ipmb_direct_addr *daddr = (void *) addr; 878 879 if (addr->channel != 0) 880 return -EINVAL; 881 if (len < sizeof(struct ipmi_ipmb_direct_addr)) 882 return -EINVAL; 883 884 if (daddr->slave_addr & 0x01) 885 return -EINVAL; 886 if (daddr->rq_lun >= 4) 887 return -EINVAL; 888 if (daddr->rs_lun >= 4) 889 return -EINVAL; 890 return 0; 891 } 892 893 if (is_lan_addr(addr)) { 894 if (len < sizeof(struct ipmi_lan_addr)) 895 return -EINVAL; 896 return 0; 897 } 898 899 return -EINVAL; 900 } 901 EXPORT_SYMBOL(ipmi_validate_addr); 902 903 unsigned int ipmi_addr_length(int addr_type) 904 { 905 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 906 return sizeof(struct ipmi_system_interface_addr); 907 908 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 909 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 910 return sizeof(struct ipmi_ipmb_addr); 911 912 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE) 913 return sizeof(struct ipmi_ipmb_direct_addr); 914 915 if (addr_type == IPMI_LAN_ADDR_TYPE) 916 return sizeof(struct ipmi_lan_addr); 917 918 return 0; 919 } 920 EXPORT_SYMBOL(ipmi_addr_length); 921 922 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 923 { 924 int rv = 0; 925 926 if (!msg->user) { 927 /* Special handling for NULL users. */ 928 if (intf->null_user_handler) { 929 intf->null_user_handler(intf, msg); 930 } else { 931 /* No handler, so give up. */ 932 rv = -EINVAL; 933 } 934 ipmi_free_recv_msg(msg); 935 } else if (oops_in_progress) { 936 /* 937 * If we are running in the panic context, calling the 938 * receive handler doesn't much meaning and has a deadlock 939 * risk. At this moment, simply skip it in that case. 940 */ 941 ipmi_free_recv_msg(msg); 942 atomic_dec(&msg->user->nr_msgs); 943 } else { 944 int index; 945 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index); 946 947 if (user) { 948 atomic_dec(&user->nr_msgs); 949 user->handler->ipmi_recv_hndl(msg, user->handler_data); 950 release_ipmi_user(user, index); 951 } else { 952 /* User went away, give up. */ 953 ipmi_free_recv_msg(msg); 954 rv = -EINVAL; 955 } 956 } 957 958 return rv; 959 } 960 961 static void deliver_local_response(struct ipmi_smi *intf, 962 struct ipmi_recv_msg *msg) 963 { 964 if (deliver_response(intf, msg)) 965 ipmi_inc_stat(intf, unhandled_local_responses); 966 else 967 ipmi_inc_stat(intf, handled_local_responses); 968 } 969 970 static void deliver_err_response(struct ipmi_smi *intf, 971 struct ipmi_recv_msg *msg, int err) 972 { 973 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 974 msg->msg_data[0] = err; 975 msg->msg.netfn |= 1; /* Convert to a response. */ 976 msg->msg.data_len = 1; 977 msg->msg.data = msg->msg_data; 978 deliver_local_response(intf, msg); 979 } 980 981 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags) 982 { 983 unsigned long iflags; 984 985 if (!intf->handlers->set_need_watch) 986 return; 987 988 spin_lock_irqsave(&intf->watch_lock, iflags); 989 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 990 intf->response_waiters++; 991 992 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 993 intf->watchdog_waiters++; 994 995 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 996 intf->command_waiters++; 997 998 if ((intf->last_watch_mask & flags) != flags) { 999 intf->last_watch_mask |= flags; 1000 intf->handlers->set_need_watch(intf->send_info, 1001 intf->last_watch_mask); 1002 } 1003 spin_unlock_irqrestore(&intf->watch_lock, iflags); 1004 } 1005 1006 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags) 1007 { 1008 unsigned long iflags; 1009 1010 if (!intf->handlers->set_need_watch) 1011 return; 1012 1013 spin_lock_irqsave(&intf->watch_lock, iflags); 1014 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES) 1015 intf->response_waiters--; 1016 1017 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG) 1018 intf->watchdog_waiters--; 1019 1020 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS) 1021 intf->command_waiters--; 1022 1023 flags = 0; 1024 if (intf->response_waiters) 1025 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES; 1026 if (intf->watchdog_waiters) 1027 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG; 1028 if (intf->command_waiters) 1029 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS; 1030 1031 if (intf->last_watch_mask != flags) { 1032 intf->last_watch_mask = flags; 1033 intf->handlers->set_need_watch(intf->send_info, 1034 intf->last_watch_mask); 1035 } 1036 spin_unlock_irqrestore(&intf->watch_lock, iflags); 1037 } 1038 1039 /* 1040 * Find the next sequence number not being used and add the given 1041 * message with the given timeout to the sequence table. This must be 1042 * called with the interface's seq_lock held. 1043 */ 1044 static int intf_next_seq(struct ipmi_smi *intf, 1045 struct ipmi_recv_msg *recv_msg, 1046 unsigned long timeout, 1047 int retries, 1048 int broadcast, 1049 unsigned char *seq, 1050 long *seqid) 1051 { 1052 int rv = 0; 1053 unsigned int i; 1054 1055 if (timeout == 0) 1056 timeout = default_retry_ms; 1057 if (retries < 0) 1058 retries = default_max_retries; 1059 1060 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 1061 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 1062 if (!intf->seq_table[i].inuse) 1063 break; 1064 } 1065 1066 if (!intf->seq_table[i].inuse) { 1067 intf->seq_table[i].recv_msg = recv_msg; 1068 1069 /* 1070 * Start with the maximum timeout, when the send response 1071 * comes in we will start the real timer. 1072 */ 1073 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 1074 intf->seq_table[i].orig_timeout = timeout; 1075 intf->seq_table[i].retries_left = retries; 1076 intf->seq_table[i].broadcast = broadcast; 1077 intf->seq_table[i].inuse = 1; 1078 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 1079 *seq = i; 1080 *seqid = intf->seq_table[i].seqid; 1081 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 1082 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1083 need_waiter(intf); 1084 } else { 1085 rv = -EAGAIN; 1086 } 1087 1088 return rv; 1089 } 1090 1091 /* 1092 * Return the receive message for the given sequence number and 1093 * release the sequence number so it can be reused. Some other data 1094 * is passed in to be sure the message matches up correctly (to help 1095 * guard against message coming in after their timeout and the 1096 * sequence number being reused). 1097 */ 1098 static int intf_find_seq(struct ipmi_smi *intf, 1099 unsigned char seq, 1100 short channel, 1101 unsigned char cmd, 1102 unsigned char netfn, 1103 struct ipmi_addr *addr, 1104 struct ipmi_recv_msg **recv_msg) 1105 { 1106 int rv = -ENODEV; 1107 unsigned long flags; 1108 1109 if (seq >= IPMI_IPMB_NUM_SEQ) 1110 return -EINVAL; 1111 1112 spin_lock_irqsave(&intf->seq_lock, flags); 1113 if (intf->seq_table[seq].inuse) { 1114 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 1115 1116 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 1117 && (msg->msg.netfn == netfn) 1118 && (ipmi_addr_equal(addr, &msg->addr))) { 1119 *recv_msg = msg; 1120 intf->seq_table[seq].inuse = 0; 1121 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1122 rv = 0; 1123 } 1124 } 1125 spin_unlock_irqrestore(&intf->seq_lock, flags); 1126 1127 return rv; 1128 } 1129 1130 1131 /* Start the timer for a specific sequence table entry. */ 1132 static int intf_start_seq_timer(struct ipmi_smi *intf, 1133 long msgid) 1134 { 1135 int rv = -ENODEV; 1136 unsigned long flags; 1137 unsigned char seq; 1138 unsigned long seqid; 1139 1140 1141 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1142 1143 spin_lock_irqsave(&intf->seq_lock, flags); 1144 /* 1145 * We do this verification because the user can be deleted 1146 * while a message is outstanding. 1147 */ 1148 if ((intf->seq_table[seq].inuse) 1149 && (intf->seq_table[seq].seqid == seqid)) { 1150 struct seq_table *ent = &intf->seq_table[seq]; 1151 ent->timeout = ent->orig_timeout; 1152 rv = 0; 1153 } 1154 spin_unlock_irqrestore(&intf->seq_lock, flags); 1155 1156 return rv; 1157 } 1158 1159 /* Got an error for the send message for a specific sequence number. */ 1160 static int intf_err_seq(struct ipmi_smi *intf, 1161 long msgid, 1162 unsigned int err) 1163 { 1164 int rv = -ENODEV; 1165 unsigned long flags; 1166 unsigned char seq; 1167 unsigned long seqid; 1168 struct ipmi_recv_msg *msg = NULL; 1169 1170 1171 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1172 1173 spin_lock_irqsave(&intf->seq_lock, flags); 1174 /* 1175 * We do this verification because the user can be deleted 1176 * while a message is outstanding. 1177 */ 1178 if ((intf->seq_table[seq].inuse) 1179 && (intf->seq_table[seq].seqid == seqid)) { 1180 struct seq_table *ent = &intf->seq_table[seq]; 1181 1182 ent->inuse = 0; 1183 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1184 msg = ent->recv_msg; 1185 rv = 0; 1186 } 1187 spin_unlock_irqrestore(&intf->seq_lock, flags); 1188 1189 if (msg) 1190 deliver_err_response(intf, msg, err); 1191 1192 return rv; 1193 } 1194 1195 static void free_user_work(struct work_struct *work) 1196 { 1197 struct ipmi_user *user = container_of(work, struct ipmi_user, 1198 remove_work); 1199 1200 cleanup_srcu_struct(&user->release_barrier); 1201 vfree(user); 1202 } 1203 1204 int ipmi_create_user(unsigned int if_num, 1205 const struct ipmi_user_hndl *handler, 1206 void *handler_data, 1207 struct ipmi_user **user) 1208 { 1209 unsigned long flags; 1210 struct ipmi_user *new_user; 1211 int rv, index; 1212 struct ipmi_smi *intf; 1213 1214 /* 1215 * There is no module usecount here, because it's not 1216 * required. Since this can only be used by and called from 1217 * other modules, they will implicitly use this module, and 1218 * thus this can't be removed unless the other modules are 1219 * removed. 1220 */ 1221 1222 if (handler == NULL) 1223 return -EINVAL; 1224 1225 /* 1226 * Make sure the driver is actually initialized, this handles 1227 * problems with initialization order. 1228 */ 1229 rv = ipmi_init_msghandler(); 1230 if (rv) 1231 return rv; 1232 1233 new_user = vzalloc(sizeof(*new_user)); 1234 if (!new_user) 1235 return -ENOMEM; 1236 1237 index = srcu_read_lock(&ipmi_interfaces_srcu); 1238 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1239 if (intf->intf_num == if_num) 1240 goto found; 1241 } 1242 /* Not found, return an error */ 1243 rv = -EINVAL; 1244 goto out_kfree; 1245 1246 found: 1247 if (atomic_add_return(1, &intf->nr_users) > max_users) { 1248 rv = -EBUSY; 1249 goto out_kfree; 1250 } 1251 1252 INIT_WORK(&new_user->remove_work, free_user_work); 1253 1254 rv = init_srcu_struct(&new_user->release_barrier); 1255 if (rv) 1256 goto out_kfree; 1257 1258 if (!try_module_get(intf->owner)) { 1259 rv = -ENODEV; 1260 goto out_kfree; 1261 } 1262 1263 /* Note that each existing user holds a refcount to the interface. */ 1264 kref_get(&intf->refcount); 1265 1266 atomic_set(&new_user->nr_msgs, 0); 1267 kref_init(&new_user->refcount); 1268 new_user->handler = handler; 1269 new_user->handler_data = handler_data; 1270 new_user->intf = intf; 1271 new_user->gets_events = false; 1272 1273 rcu_assign_pointer(new_user->self, new_user); 1274 spin_lock_irqsave(&intf->seq_lock, flags); 1275 list_add_rcu(&new_user->link, &intf->users); 1276 spin_unlock_irqrestore(&intf->seq_lock, flags); 1277 if (handler->ipmi_watchdog_pretimeout) 1278 /* User wants pretimeouts, so make sure to watch for them. */ 1279 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1280 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1281 *user = new_user; 1282 return 0; 1283 1284 out_kfree: 1285 atomic_dec(&intf->nr_users); 1286 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1287 vfree(new_user); 1288 return rv; 1289 } 1290 EXPORT_SYMBOL(ipmi_create_user); 1291 1292 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1293 { 1294 int rv, index; 1295 struct ipmi_smi *intf; 1296 1297 index = srcu_read_lock(&ipmi_interfaces_srcu); 1298 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1299 if (intf->intf_num == if_num) 1300 goto found; 1301 } 1302 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1303 1304 /* Not found, return an error */ 1305 return -EINVAL; 1306 1307 found: 1308 if (!intf->handlers->get_smi_info) 1309 rv = -ENOTTY; 1310 else 1311 rv = intf->handlers->get_smi_info(intf->send_info, data); 1312 srcu_read_unlock(&ipmi_interfaces_srcu, index); 1313 1314 return rv; 1315 } 1316 EXPORT_SYMBOL(ipmi_get_smi_info); 1317 1318 static void free_user(struct kref *ref) 1319 { 1320 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount); 1321 1322 /* SRCU cleanup must happen in task context. */ 1323 queue_work(remove_work_wq, &user->remove_work); 1324 } 1325 1326 static void _ipmi_destroy_user(struct ipmi_user *user) 1327 { 1328 struct ipmi_smi *intf = user->intf; 1329 int i; 1330 unsigned long flags; 1331 struct cmd_rcvr *rcvr; 1332 struct cmd_rcvr *rcvrs = NULL; 1333 struct module *owner; 1334 1335 if (!acquire_ipmi_user(user, &i)) { 1336 /* 1337 * The user has already been cleaned up, just make sure 1338 * nothing is using it and return. 1339 */ 1340 synchronize_srcu(&user->release_barrier); 1341 return; 1342 } 1343 1344 rcu_assign_pointer(user->self, NULL); 1345 release_ipmi_user(user, i); 1346 1347 synchronize_srcu(&user->release_barrier); 1348 1349 if (user->handler->shutdown) 1350 user->handler->shutdown(user->handler_data); 1351 1352 if (user->handler->ipmi_watchdog_pretimeout) 1353 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG); 1354 1355 if (user->gets_events) 1356 atomic_dec(&intf->event_waiters); 1357 1358 /* Remove the user from the interface's sequence table. */ 1359 spin_lock_irqsave(&intf->seq_lock, flags); 1360 list_del_rcu(&user->link); 1361 atomic_dec(&intf->nr_users); 1362 1363 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1364 if (intf->seq_table[i].inuse 1365 && (intf->seq_table[i].recv_msg->user == user)) { 1366 intf->seq_table[i].inuse = 0; 1367 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 1368 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1369 } 1370 } 1371 spin_unlock_irqrestore(&intf->seq_lock, flags); 1372 1373 /* 1374 * Remove the user from the command receiver's table. First 1375 * we build a list of everything (not using the standard link, 1376 * since other things may be using it till we do 1377 * synchronize_srcu()) then free everything in that list. 1378 */ 1379 mutex_lock(&intf->cmd_rcvrs_mutex); 1380 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1381 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1382 if (rcvr->user == user) { 1383 list_del_rcu(&rcvr->link); 1384 rcvr->next = rcvrs; 1385 rcvrs = rcvr; 1386 } 1387 } 1388 mutex_unlock(&intf->cmd_rcvrs_mutex); 1389 synchronize_rcu(); 1390 while (rcvrs) { 1391 rcvr = rcvrs; 1392 rcvrs = rcvr->next; 1393 kfree(rcvr); 1394 } 1395 1396 owner = intf->owner; 1397 kref_put(&intf->refcount, intf_free); 1398 module_put(owner); 1399 } 1400 1401 int ipmi_destroy_user(struct ipmi_user *user) 1402 { 1403 _ipmi_destroy_user(user); 1404 1405 kref_put(&user->refcount, free_user); 1406 1407 return 0; 1408 } 1409 EXPORT_SYMBOL(ipmi_destroy_user); 1410 1411 int ipmi_get_version(struct ipmi_user *user, 1412 unsigned char *major, 1413 unsigned char *minor) 1414 { 1415 struct ipmi_device_id id; 1416 int rv, index; 1417 1418 user = acquire_ipmi_user(user, &index); 1419 if (!user) 1420 return -ENODEV; 1421 1422 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL); 1423 if (!rv) { 1424 *major = ipmi_version_major(&id); 1425 *minor = ipmi_version_minor(&id); 1426 } 1427 release_ipmi_user(user, index); 1428 1429 return rv; 1430 } 1431 EXPORT_SYMBOL(ipmi_get_version); 1432 1433 int ipmi_set_my_address(struct ipmi_user *user, 1434 unsigned int channel, 1435 unsigned char address) 1436 { 1437 int index, rv = 0; 1438 1439 user = acquire_ipmi_user(user, &index); 1440 if (!user) 1441 return -ENODEV; 1442 1443 if (channel >= IPMI_MAX_CHANNELS) { 1444 rv = -EINVAL; 1445 } else { 1446 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1447 user->intf->addrinfo[channel].address = address; 1448 } 1449 release_ipmi_user(user, index); 1450 1451 return rv; 1452 } 1453 EXPORT_SYMBOL(ipmi_set_my_address); 1454 1455 int ipmi_get_my_address(struct ipmi_user *user, 1456 unsigned int channel, 1457 unsigned char *address) 1458 { 1459 int index, rv = 0; 1460 1461 user = acquire_ipmi_user(user, &index); 1462 if (!user) 1463 return -ENODEV; 1464 1465 if (channel >= IPMI_MAX_CHANNELS) { 1466 rv = -EINVAL; 1467 } else { 1468 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1469 *address = user->intf->addrinfo[channel].address; 1470 } 1471 release_ipmi_user(user, index); 1472 1473 return rv; 1474 } 1475 EXPORT_SYMBOL(ipmi_get_my_address); 1476 1477 int ipmi_set_my_LUN(struct ipmi_user *user, 1478 unsigned int channel, 1479 unsigned char LUN) 1480 { 1481 int index, rv = 0; 1482 1483 user = acquire_ipmi_user(user, &index); 1484 if (!user) 1485 return -ENODEV; 1486 1487 if (channel >= IPMI_MAX_CHANNELS) { 1488 rv = -EINVAL; 1489 } else { 1490 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1491 user->intf->addrinfo[channel].lun = LUN & 0x3; 1492 } 1493 release_ipmi_user(user, index); 1494 1495 return rv; 1496 } 1497 EXPORT_SYMBOL(ipmi_set_my_LUN); 1498 1499 int ipmi_get_my_LUN(struct ipmi_user *user, 1500 unsigned int channel, 1501 unsigned char *address) 1502 { 1503 int index, rv = 0; 1504 1505 user = acquire_ipmi_user(user, &index); 1506 if (!user) 1507 return -ENODEV; 1508 1509 if (channel >= IPMI_MAX_CHANNELS) { 1510 rv = -EINVAL; 1511 } else { 1512 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS); 1513 *address = user->intf->addrinfo[channel].lun; 1514 } 1515 release_ipmi_user(user, index); 1516 1517 return rv; 1518 } 1519 EXPORT_SYMBOL(ipmi_get_my_LUN); 1520 1521 int ipmi_get_maintenance_mode(struct ipmi_user *user) 1522 { 1523 int mode, index; 1524 unsigned long flags; 1525 1526 user = acquire_ipmi_user(user, &index); 1527 if (!user) 1528 return -ENODEV; 1529 1530 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1531 mode = user->intf->maintenance_mode; 1532 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1533 release_ipmi_user(user, index); 1534 1535 return mode; 1536 } 1537 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1538 1539 static void maintenance_mode_update(struct ipmi_smi *intf) 1540 { 1541 if (intf->handlers->set_maintenance_mode) 1542 intf->handlers->set_maintenance_mode( 1543 intf->send_info, intf->maintenance_mode_enable); 1544 } 1545 1546 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode) 1547 { 1548 int rv = 0, index; 1549 unsigned long flags; 1550 struct ipmi_smi *intf = user->intf; 1551 1552 user = acquire_ipmi_user(user, &index); 1553 if (!user) 1554 return -ENODEV; 1555 1556 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1557 if (intf->maintenance_mode != mode) { 1558 switch (mode) { 1559 case IPMI_MAINTENANCE_MODE_AUTO: 1560 intf->maintenance_mode_enable 1561 = (intf->auto_maintenance_timeout > 0); 1562 break; 1563 1564 case IPMI_MAINTENANCE_MODE_OFF: 1565 intf->maintenance_mode_enable = false; 1566 break; 1567 1568 case IPMI_MAINTENANCE_MODE_ON: 1569 intf->maintenance_mode_enable = true; 1570 break; 1571 1572 default: 1573 rv = -EINVAL; 1574 goto out_unlock; 1575 } 1576 intf->maintenance_mode = mode; 1577 1578 maintenance_mode_update(intf); 1579 } 1580 out_unlock: 1581 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1582 release_ipmi_user(user, index); 1583 1584 return rv; 1585 } 1586 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1587 1588 int ipmi_set_gets_events(struct ipmi_user *user, bool val) 1589 { 1590 unsigned long flags; 1591 struct ipmi_smi *intf = user->intf; 1592 struct ipmi_recv_msg *msg, *msg2; 1593 struct list_head msgs; 1594 int index; 1595 1596 user = acquire_ipmi_user(user, &index); 1597 if (!user) 1598 return -ENODEV; 1599 1600 INIT_LIST_HEAD(&msgs); 1601 1602 spin_lock_irqsave(&intf->events_lock, flags); 1603 if (user->gets_events == val) 1604 goto out; 1605 1606 user->gets_events = val; 1607 1608 if (val) { 1609 if (atomic_inc_return(&intf->event_waiters) == 1) 1610 need_waiter(intf); 1611 } else { 1612 atomic_dec(&intf->event_waiters); 1613 } 1614 1615 if (intf->delivering_events) 1616 /* 1617 * Another thread is delivering events for this, so 1618 * let it handle any new events. 1619 */ 1620 goto out; 1621 1622 /* Deliver any queued events. */ 1623 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1624 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1625 list_move_tail(&msg->link, &msgs); 1626 intf->waiting_events_count = 0; 1627 if (intf->event_msg_printed) { 1628 dev_warn(intf->si_dev, "Event queue no longer full\n"); 1629 intf->event_msg_printed = 0; 1630 } 1631 1632 intf->delivering_events = 1; 1633 spin_unlock_irqrestore(&intf->events_lock, flags); 1634 1635 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1636 msg->user = user; 1637 kref_get(&user->refcount); 1638 deliver_local_response(intf, msg); 1639 } 1640 1641 spin_lock_irqsave(&intf->events_lock, flags); 1642 intf->delivering_events = 0; 1643 } 1644 1645 out: 1646 spin_unlock_irqrestore(&intf->events_lock, flags); 1647 release_ipmi_user(user, index); 1648 1649 return 0; 1650 } 1651 EXPORT_SYMBOL(ipmi_set_gets_events); 1652 1653 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf, 1654 unsigned char netfn, 1655 unsigned char cmd, 1656 unsigned char chan) 1657 { 1658 struct cmd_rcvr *rcvr; 1659 1660 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1661 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1662 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1663 && (rcvr->chans & (1 << chan))) 1664 return rcvr; 1665 } 1666 return NULL; 1667 } 1668 1669 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf, 1670 unsigned char netfn, 1671 unsigned char cmd, 1672 unsigned int chans) 1673 { 1674 struct cmd_rcvr *rcvr; 1675 1676 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link, 1677 lockdep_is_held(&intf->cmd_rcvrs_mutex)) { 1678 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1679 && (rcvr->chans & chans)) 1680 return 0; 1681 } 1682 return 1; 1683 } 1684 1685 int ipmi_register_for_cmd(struct ipmi_user *user, 1686 unsigned char netfn, 1687 unsigned char cmd, 1688 unsigned int chans) 1689 { 1690 struct ipmi_smi *intf = user->intf; 1691 struct cmd_rcvr *rcvr; 1692 int rv = 0, index; 1693 1694 user = acquire_ipmi_user(user, &index); 1695 if (!user) 1696 return -ENODEV; 1697 1698 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1699 if (!rcvr) { 1700 rv = -ENOMEM; 1701 goto out_release; 1702 } 1703 rcvr->cmd = cmd; 1704 rcvr->netfn = netfn; 1705 rcvr->chans = chans; 1706 rcvr->user = user; 1707 1708 mutex_lock(&intf->cmd_rcvrs_mutex); 1709 /* Make sure the command/netfn is not already registered. */ 1710 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1711 rv = -EBUSY; 1712 goto out_unlock; 1713 } 1714 1715 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1716 1717 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1718 1719 out_unlock: 1720 mutex_unlock(&intf->cmd_rcvrs_mutex); 1721 if (rv) 1722 kfree(rcvr); 1723 out_release: 1724 release_ipmi_user(user, index); 1725 1726 return rv; 1727 } 1728 EXPORT_SYMBOL(ipmi_register_for_cmd); 1729 1730 int ipmi_unregister_for_cmd(struct ipmi_user *user, 1731 unsigned char netfn, 1732 unsigned char cmd, 1733 unsigned int chans) 1734 { 1735 struct ipmi_smi *intf = user->intf; 1736 struct cmd_rcvr *rcvr; 1737 struct cmd_rcvr *rcvrs = NULL; 1738 int i, rv = -ENOENT, index; 1739 1740 user = acquire_ipmi_user(user, &index); 1741 if (!user) 1742 return -ENODEV; 1743 1744 mutex_lock(&intf->cmd_rcvrs_mutex); 1745 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1746 if (((1 << i) & chans) == 0) 1747 continue; 1748 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1749 if (rcvr == NULL) 1750 continue; 1751 if (rcvr->user == user) { 1752 rv = 0; 1753 rcvr->chans &= ~chans; 1754 if (rcvr->chans == 0) { 1755 list_del_rcu(&rcvr->link); 1756 rcvr->next = rcvrs; 1757 rcvrs = rcvr; 1758 } 1759 } 1760 } 1761 mutex_unlock(&intf->cmd_rcvrs_mutex); 1762 synchronize_rcu(); 1763 release_ipmi_user(user, index); 1764 while (rcvrs) { 1765 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS); 1766 rcvr = rcvrs; 1767 rcvrs = rcvr->next; 1768 kfree(rcvr); 1769 } 1770 1771 return rv; 1772 } 1773 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1774 1775 unsigned char 1776 ipmb_checksum(unsigned char *data, int size) 1777 { 1778 unsigned char csum = 0; 1779 1780 for (; size > 0; size--, data++) 1781 csum += *data; 1782 1783 return -csum; 1784 } 1785 EXPORT_SYMBOL(ipmb_checksum); 1786 1787 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1788 struct kernel_ipmi_msg *msg, 1789 struct ipmi_ipmb_addr *ipmb_addr, 1790 long msgid, 1791 unsigned char ipmb_seq, 1792 int broadcast, 1793 unsigned char source_address, 1794 unsigned char source_lun) 1795 { 1796 int i = broadcast; 1797 1798 /* Format the IPMB header data. */ 1799 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1800 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1801 smi_msg->data[2] = ipmb_addr->channel; 1802 if (broadcast) 1803 smi_msg->data[3] = 0; 1804 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1805 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1806 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2); 1807 smi_msg->data[i+6] = source_address; 1808 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1809 smi_msg->data[i+8] = msg->cmd; 1810 1811 /* Now tack on the data to the message. */ 1812 if (msg->data_len > 0) 1813 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len); 1814 smi_msg->data_size = msg->data_len + 9; 1815 1816 /* Now calculate the checksum and tack it on. */ 1817 smi_msg->data[i+smi_msg->data_size] 1818 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6); 1819 1820 /* 1821 * Add on the checksum size and the offset from the 1822 * broadcast. 1823 */ 1824 smi_msg->data_size += 1 + i; 1825 1826 smi_msg->msgid = msgid; 1827 } 1828 1829 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1830 struct kernel_ipmi_msg *msg, 1831 struct ipmi_lan_addr *lan_addr, 1832 long msgid, 1833 unsigned char ipmb_seq, 1834 unsigned char source_lun) 1835 { 1836 /* Format the IPMB header data. */ 1837 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1838 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1839 smi_msg->data[2] = lan_addr->channel; 1840 smi_msg->data[3] = lan_addr->session_handle; 1841 smi_msg->data[4] = lan_addr->remote_SWID; 1842 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1843 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2); 1844 smi_msg->data[7] = lan_addr->local_SWID; 1845 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1846 smi_msg->data[9] = msg->cmd; 1847 1848 /* Now tack on the data to the message. */ 1849 if (msg->data_len > 0) 1850 memcpy(&smi_msg->data[10], msg->data, msg->data_len); 1851 smi_msg->data_size = msg->data_len + 10; 1852 1853 /* Now calculate the checksum and tack it on. */ 1854 smi_msg->data[smi_msg->data_size] 1855 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7); 1856 1857 /* 1858 * Add on the checksum size and the offset from the 1859 * broadcast. 1860 */ 1861 smi_msg->data_size += 1; 1862 1863 smi_msg->msgid = msgid; 1864 } 1865 1866 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf, 1867 struct ipmi_smi_msg *smi_msg, 1868 int priority) 1869 { 1870 if (intf->curr_msg) { 1871 if (priority > 0) 1872 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1873 else 1874 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1875 smi_msg = NULL; 1876 } else { 1877 intf->curr_msg = smi_msg; 1878 } 1879 1880 return smi_msg; 1881 } 1882 1883 static void smi_send(struct ipmi_smi *intf, 1884 const struct ipmi_smi_handlers *handlers, 1885 struct ipmi_smi_msg *smi_msg, int priority) 1886 { 1887 int run_to_completion = intf->run_to_completion; 1888 unsigned long flags = 0; 1889 1890 if (!run_to_completion) 1891 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1892 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1893 1894 if (!run_to_completion) 1895 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1896 1897 if (smi_msg) 1898 handlers->sender(intf->send_info, smi_msg); 1899 } 1900 1901 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg) 1902 { 1903 return (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1904 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1905 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1906 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)); 1907 } 1908 1909 static int i_ipmi_req_sysintf(struct ipmi_smi *intf, 1910 struct ipmi_addr *addr, 1911 long msgid, 1912 struct kernel_ipmi_msg *msg, 1913 struct ipmi_smi_msg *smi_msg, 1914 struct ipmi_recv_msg *recv_msg, 1915 int retries, 1916 unsigned int retry_time_ms) 1917 { 1918 struct ipmi_system_interface_addr *smi_addr; 1919 1920 if (msg->netfn & 1) 1921 /* Responses are not allowed to the SMI. */ 1922 return -EINVAL; 1923 1924 smi_addr = (struct ipmi_system_interface_addr *) addr; 1925 if (smi_addr->lun > 3) { 1926 ipmi_inc_stat(intf, sent_invalid_commands); 1927 return -EINVAL; 1928 } 1929 1930 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1931 1932 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1933 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1934 || (msg->cmd == IPMI_GET_MSG_CMD) 1935 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1936 /* 1937 * We don't let the user do these, since we manage 1938 * the sequence numbers. 1939 */ 1940 ipmi_inc_stat(intf, sent_invalid_commands); 1941 return -EINVAL; 1942 } 1943 1944 if (is_maintenance_mode_cmd(msg)) { 1945 unsigned long flags; 1946 1947 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1948 intf->auto_maintenance_timeout 1949 = maintenance_mode_timeout_ms; 1950 if (!intf->maintenance_mode 1951 && !intf->maintenance_mode_enable) { 1952 intf->maintenance_mode_enable = true; 1953 maintenance_mode_update(intf); 1954 } 1955 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1956 flags); 1957 } 1958 1959 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) { 1960 ipmi_inc_stat(intf, sent_invalid_commands); 1961 return -EMSGSIZE; 1962 } 1963 1964 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1965 smi_msg->data[1] = msg->cmd; 1966 smi_msg->msgid = msgid; 1967 smi_msg->user_data = recv_msg; 1968 if (msg->data_len > 0) 1969 memcpy(&smi_msg->data[2], msg->data, msg->data_len); 1970 smi_msg->data_size = msg->data_len + 2; 1971 ipmi_inc_stat(intf, sent_local_commands); 1972 1973 return 0; 1974 } 1975 1976 static int i_ipmi_req_ipmb(struct ipmi_smi *intf, 1977 struct ipmi_addr *addr, 1978 long msgid, 1979 struct kernel_ipmi_msg *msg, 1980 struct ipmi_smi_msg *smi_msg, 1981 struct ipmi_recv_msg *recv_msg, 1982 unsigned char source_address, 1983 unsigned char source_lun, 1984 int retries, 1985 unsigned int retry_time_ms) 1986 { 1987 struct ipmi_ipmb_addr *ipmb_addr; 1988 unsigned char ipmb_seq; 1989 long seqid; 1990 int broadcast = 0; 1991 struct ipmi_channel *chans; 1992 int rv = 0; 1993 1994 if (addr->channel >= IPMI_MAX_CHANNELS) { 1995 ipmi_inc_stat(intf, sent_invalid_commands); 1996 return -EINVAL; 1997 } 1998 1999 chans = READ_ONCE(intf->channel_list)->c; 2000 2001 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) { 2002 ipmi_inc_stat(intf, sent_invalid_commands); 2003 return -EINVAL; 2004 } 2005 2006 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 2007 /* 2008 * Broadcasts add a zero at the beginning of the 2009 * message, but otherwise is the same as an IPMB 2010 * address. 2011 */ 2012 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 2013 broadcast = 1; 2014 retries = 0; /* Don't retry broadcasts. */ 2015 } 2016 2017 /* 2018 * 9 for the header and 1 for the checksum, plus 2019 * possibly one for the broadcast. 2020 */ 2021 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 2022 ipmi_inc_stat(intf, sent_invalid_commands); 2023 return -EMSGSIZE; 2024 } 2025 2026 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 2027 if (ipmb_addr->lun > 3) { 2028 ipmi_inc_stat(intf, sent_invalid_commands); 2029 return -EINVAL; 2030 } 2031 2032 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 2033 2034 if (recv_msg->msg.netfn & 0x1) { 2035 /* 2036 * It's a response, so use the user's sequence 2037 * from msgid. 2038 */ 2039 ipmi_inc_stat(intf, sent_ipmb_responses); 2040 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 2041 msgid, broadcast, 2042 source_address, source_lun); 2043 2044 /* 2045 * Save the receive message so we can use it 2046 * to deliver the response. 2047 */ 2048 smi_msg->user_data = recv_msg; 2049 } else { 2050 /* It's a command, so get a sequence for it. */ 2051 unsigned long flags; 2052 2053 spin_lock_irqsave(&intf->seq_lock, flags); 2054 2055 if (is_maintenance_mode_cmd(msg)) 2056 intf->ipmb_maintenance_mode_timeout = 2057 maintenance_mode_timeout_ms; 2058 2059 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0) 2060 /* Different default in maintenance mode */ 2061 retry_time_ms = default_maintenance_retry_ms; 2062 2063 /* 2064 * Create a sequence number with a 1 second 2065 * timeout and 4 retries. 2066 */ 2067 rv = intf_next_seq(intf, 2068 recv_msg, 2069 retry_time_ms, 2070 retries, 2071 broadcast, 2072 &ipmb_seq, 2073 &seqid); 2074 if (rv) 2075 /* 2076 * We have used up all the sequence numbers, 2077 * probably, so abort. 2078 */ 2079 goto out_err; 2080 2081 ipmi_inc_stat(intf, sent_ipmb_commands); 2082 2083 /* 2084 * Store the sequence number in the message, 2085 * so that when the send message response 2086 * comes back we can start the timer. 2087 */ 2088 format_ipmb_msg(smi_msg, msg, ipmb_addr, 2089 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2090 ipmb_seq, broadcast, 2091 source_address, source_lun); 2092 2093 /* 2094 * Copy the message into the recv message data, so we 2095 * can retransmit it later if necessary. 2096 */ 2097 memcpy(recv_msg->msg_data, smi_msg->data, 2098 smi_msg->data_size); 2099 recv_msg->msg.data = recv_msg->msg_data; 2100 recv_msg->msg.data_len = smi_msg->data_size; 2101 2102 /* 2103 * We don't unlock until here, because we need 2104 * to copy the completed message into the 2105 * recv_msg before we release the lock. 2106 * Otherwise, race conditions may bite us. I 2107 * know that's pretty paranoid, but I prefer 2108 * to be correct. 2109 */ 2110 out_err: 2111 spin_unlock_irqrestore(&intf->seq_lock, flags); 2112 } 2113 2114 return rv; 2115 } 2116 2117 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf, 2118 struct ipmi_addr *addr, 2119 long msgid, 2120 struct kernel_ipmi_msg *msg, 2121 struct ipmi_smi_msg *smi_msg, 2122 struct ipmi_recv_msg *recv_msg, 2123 unsigned char source_lun) 2124 { 2125 struct ipmi_ipmb_direct_addr *daddr; 2126 bool is_cmd = !(recv_msg->msg.netfn & 0x1); 2127 2128 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT)) 2129 return -EAFNOSUPPORT; 2130 2131 /* Responses must have a completion code. */ 2132 if (!is_cmd && msg->data_len < 1) { 2133 ipmi_inc_stat(intf, sent_invalid_commands); 2134 return -EINVAL; 2135 } 2136 2137 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) { 2138 ipmi_inc_stat(intf, sent_invalid_commands); 2139 return -EMSGSIZE; 2140 } 2141 2142 daddr = (struct ipmi_ipmb_direct_addr *) addr; 2143 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) { 2144 ipmi_inc_stat(intf, sent_invalid_commands); 2145 return -EINVAL; 2146 } 2147 2148 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT; 2149 smi_msg->msgid = msgid; 2150 2151 if (is_cmd) { 2152 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun; 2153 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun; 2154 } else { 2155 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun; 2156 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun; 2157 } 2158 smi_msg->data[1] = daddr->slave_addr; 2159 smi_msg->data[3] = msg->cmd; 2160 2161 memcpy(smi_msg->data + 4, msg->data, msg->data_len); 2162 smi_msg->data_size = msg->data_len + 4; 2163 2164 smi_msg->user_data = recv_msg; 2165 2166 return 0; 2167 } 2168 2169 static int i_ipmi_req_lan(struct ipmi_smi *intf, 2170 struct ipmi_addr *addr, 2171 long msgid, 2172 struct kernel_ipmi_msg *msg, 2173 struct ipmi_smi_msg *smi_msg, 2174 struct ipmi_recv_msg *recv_msg, 2175 unsigned char source_lun, 2176 int retries, 2177 unsigned int retry_time_ms) 2178 { 2179 struct ipmi_lan_addr *lan_addr; 2180 unsigned char ipmb_seq; 2181 long seqid; 2182 struct ipmi_channel *chans; 2183 int rv = 0; 2184 2185 if (addr->channel >= IPMI_MAX_CHANNELS) { 2186 ipmi_inc_stat(intf, sent_invalid_commands); 2187 return -EINVAL; 2188 } 2189 2190 chans = READ_ONCE(intf->channel_list)->c; 2191 2192 if ((chans[addr->channel].medium 2193 != IPMI_CHANNEL_MEDIUM_8023LAN) 2194 && (chans[addr->channel].medium 2195 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 2196 ipmi_inc_stat(intf, sent_invalid_commands); 2197 return -EINVAL; 2198 } 2199 2200 /* 11 for the header and 1 for the checksum. */ 2201 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 2202 ipmi_inc_stat(intf, sent_invalid_commands); 2203 return -EMSGSIZE; 2204 } 2205 2206 lan_addr = (struct ipmi_lan_addr *) addr; 2207 if (lan_addr->lun > 3) { 2208 ipmi_inc_stat(intf, sent_invalid_commands); 2209 return -EINVAL; 2210 } 2211 2212 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 2213 2214 if (recv_msg->msg.netfn & 0x1) { 2215 /* 2216 * It's a response, so use the user's sequence 2217 * from msgid. 2218 */ 2219 ipmi_inc_stat(intf, sent_lan_responses); 2220 format_lan_msg(smi_msg, msg, lan_addr, msgid, 2221 msgid, source_lun); 2222 2223 /* 2224 * Save the receive message so we can use it 2225 * to deliver the response. 2226 */ 2227 smi_msg->user_data = recv_msg; 2228 } else { 2229 /* It's a command, so get a sequence for it. */ 2230 unsigned long flags; 2231 2232 spin_lock_irqsave(&intf->seq_lock, flags); 2233 2234 /* 2235 * Create a sequence number with a 1 second 2236 * timeout and 4 retries. 2237 */ 2238 rv = intf_next_seq(intf, 2239 recv_msg, 2240 retry_time_ms, 2241 retries, 2242 0, 2243 &ipmb_seq, 2244 &seqid); 2245 if (rv) 2246 /* 2247 * We have used up all the sequence numbers, 2248 * probably, so abort. 2249 */ 2250 goto out_err; 2251 2252 ipmi_inc_stat(intf, sent_lan_commands); 2253 2254 /* 2255 * Store the sequence number in the message, 2256 * so that when the send message response 2257 * comes back we can start the timer. 2258 */ 2259 format_lan_msg(smi_msg, msg, lan_addr, 2260 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2261 ipmb_seq, source_lun); 2262 2263 /* 2264 * Copy the message into the recv message data, so we 2265 * can retransmit it later if necessary. 2266 */ 2267 memcpy(recv_msg->msg_data, smi_msg->data, 2268 smi_msg->data_size); 2269 recv_msg->msg.data = recv_msg->msg_data; 2270 recv_msg->msg.data_len = smi_msg->data_size; 2271 2272 /* 2273 * We don't unlock until here, because we need 2274 * to copy the completed message into the 2275 * recv_msg before we release the lock. 2276 * Otherwise, race conditions may bite us. I 2277 * know that's pretty paranoid, but I prefer 2278 * to be correct. 2279 */ 2280 out_err: 2281 spin_unlock_irqrestore(&intf->seq_lock, flags); 2282 } 2283 2284 return rv; 2285 } 2286 2287 /* 2288 * Separate from ipmi_request so that the user does not have to be 2289 * supplied in certain circumstances (mainly at panic time). If 2290 * messages are supplied, they will be freed, even if an error 2291 * occurs. 2292 */ 2293 static int i_ipmi_request(struct ipmi_user *user, 2294 struct ipmi_smi *intf, 2295 struct ipmi_addr *addr, 2296 long msgid, 2297 struct kernel_ipmi_msg *msg, 2298 void *user_msg_data, 2299 void *supplied_smi, 2300 struct ipmi_recv_msg *supplied_recv, 2301 int priority, 2302 unsigned char source_address, 2303 unsigned char source_lun, 2304 int retries, 2305 unsigned int retry_time_ms) 2306 { 2307 struct ipmi_smi_msg *smi_msg; 2308 struct ipmi_recv_msg *recv_msg; 2309 int rv = 0; 2310 2311 if (user) { 2312 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) { 2313 /* Decrement will happen at the end of the routine. */ 2314 rv = -EBUSY; 2315 goto out; 2316 } 2317 } 2318 2319 if (supplied_recv) 2320 recv_msg = supplied_recv; 2321 else { 2322 recv_msg = ipmi_alloc_recv_msg(); 2323 if (recv_msg == NULL) { 2324 rv = -ENOMEM; 2325 goto out; 2326 } 2327 } 2328 recv_msg->user_msg_data = user_msg_data; 2329 2330 if (supplied_smi) 2331 smi_msg = supplied_smi; 2332 else { 2333 smi_msg = ipmi_alloc_smi_msg(); 2334 if (smi_msg == NULL) { 2335 if (!supplied_recv) 2336 ipmi_free_recv_msg(recv_msg); 2337 rv = -ENOMEM; 2338 goto out; 2339 } 2340 } 2341 2342 rcu_read_lock(); 2343 if (intf->in_shutdown) { 2344 rv = -ENODEV; 2345 goto out_err; 2346 } 2347 2348 recv_msg->user = user; 2349 if (user) 2350 /* The put happens when the message is freed. */ 2351 kref_get(&user->refcount); 2352 recv_msg->msgid = msgid; 2353 /* 2354 * Store the message to send in the receive message so timeout 2355 * responses can get the proper response data. 2356 */ 2357 recv_msg->msg = *msg; 2358 2359 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 2360 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg, 2361 recv_msg, retries, retry_time_ms); 2362 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 2363 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg, 2364 source_address, source_lun, 2365 retries, retry_time_ms); 2366 } else if (is_ipmb_direct_addr(addr)) { 2367 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg, 2368 recv_msg, source_lun); 2369 } else if (is_lan_addr(addr)) { 2370 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg, 2371 source_lun, retries, retry_time_ms); 2372 } else { 2373 /* Unknown address type. */ 2374 ipmi_inc_stat(intf, sent_invalid_commands); 2375 rv = -EINVAL; 2376 } 2377 2378 if (rv) { 2379 out_err: 2380 ipmi_free_smi_msg(smi_msg); 2381 ipmi_free_recv_msg(recv_msg); 2382 } else { 2383 dev_dbg(intf->si_dev, "Send: %*ph\n", 2384 smi_msg->data_size, smi_msg->data); 2385 2386 smi_send(intf, intf->handlers, smi_msg, priority); 2387 } 2388 rcu_read_unlock(); 2389 2390 out: 2391 if (rv && user) 2392 atomic_dec(&user->nr_msgs); 2393 return rv; 2394 } 2395 2396 static int check_addr(struct ipmi_smi *intf, 2397 struct ipmi_addr *addr, 2398 unsigned char *saddr, 2399 unsigned char *lun) 2400 { 2401 if (addr->channel >= IPMI_MAX_CHANNELS) 2402 return -EINVAL; 2403 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS); 2404 *lun = intf->addrinfo[addr->channel].lun; 2405 *saddr = intf->addrinfo[addr->channel].address; 2406 return 0; 2407 } 2408 2409 int ipmi_request_settime(struct ipmi_user *user, 2410 struct ipmi_addr *addr, 2411 long msgid, 2412 struct kernel_ipmi_msg *msg, 2413 void *user_msg_data, 2414 int priority, 2415 int retries, 2416 unsigned int retry_time_ms) 2417 { 2418 unsigned char saddr = 0, lun = 0; 2419 int rv, index; 2420 2421 if (!user) 2422 return -EINVAL; 2423 2424 user = acquire_ipmi_user(user, &index); 2425 if (!user) 2426 return -ENODEV; 2427 2428 rv = check_addr(user->intf, addr, &saddr, &lun); 2429 if (!rv) 2430 rv = i_ipmi_request(user, 2431 user->intf, 2432 addr, 2433 msgid, 2434 msg, 2435 user_msg_data, 2436 NULL, NULL, 2437 priority, 2438 saddr, 2439 lun, 2440 retries, 2441 retry_time_ms); 2442 2443 release_ipmi_user(user, index); 2444 return rv; 2445 } 2446 EXPORT_SYMBOL(ipmi_request_settime); 2447 2448 int ipmi_request_supply_msgs(struct ipmi_user *user, 2449 struct ipmi_addr *addr, 2450 long msgid, 2451 struct kernel_ipmi_msg *msg, 2452 void *user_msg_data, 2453 void *supplied_smi, 2454 struct ipmi_recv_msg *supplied_recv, 2455 int priority) 2456 { 2457 unsigned char saddr = 0, lun = 0; 2458 int rv, index; 2459 2460 if (!user) 2461 return -EINVAL; 2462 2463 user = acquire_ipmi_user(user, &index); 2464 if (!user) 2465 return -ENODEV; 2466 2467 rv = check_addr(user->intf, addr, &saddr, &lun); 2468 if (!rv) 2469 rv = i_ipmi_request(user, 2470 user->intf, 2471 addr, 2472 msgid, 2473 msg, 2474 user_msg_data, 2475 supplied_smi, 2476 supplied_recv, 2477 priority, 2478 saddr, 2479 lun, 2480 -1, 0); 2481 2482 release_ipmi_user(user, index); 2483 return rv; 2484 } 2485 EXPORT_SYMBOL(ipmi_request_supply_msgs); 2486 2487 static void bmc_device_id_handler(struct ipmi_smi *intf, 2488 struct ipmi_recv_msg *msg) 2489 { 2490 int rv; 2491 2492 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2493 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2494 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) { 2495 dev_warn(intf->si_dev, 2496 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n", 2497 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd); 2498 return; 2499 } 2500 2501 if (msg->msg.data[0]) { 2502 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n", 2503 msg->msg.data[0]); 2504 intf->bmc->dyn_id_set = 0; 2505 goto out; 2506 } 2507 2508 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd, 2509 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id); 2510 if (rv) { 2511 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv); 2512 /* record completion code when error */ 2513 intf->bmc->cc = msg->msg.data[0]; 2514 intf->bmc->dyn_id_set = 0; 2515 } else { 2516 /* 2517 * Make sure the id data is available before setting 2518 * dyn_id_set. 2519 */ 2520 smp_wmb(); 2521 intf->bmc->dyn_id_set = 1; 2522 } 2523 out: 2524 wake_up(&intf->waitq); 2525 } 2526 2527 static int 2528 send_get_device_id_cmd(struct ipmi_smi *intf) 2529 { 2530 struct ipmi_system_interface_addr si; 2531 struct kernel_ipmi_msg msg; 2532 2533 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2534 si.channel = IPMI_BMC_CHANNEL; 2535 si.lun = 0; 2536 2537 msg.netfn = IPMI_NETFN_APP_REQUEST; 2538 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 2539 msg.data = NULL; 2540 msg.data_len = 0; 2541 2542 return i_ipmi_request(NULL, 2543 intf, 2544 (struct ipmi_addr *) &si, 2545 0, 2546 &msg, 2547 intf, 2548 NULL, 2549 NULL, 2550 0, 2551 intf->addrinfo[0].address, 2552 intf->addrinfo[0].lun, 2553 -1, 0); 2554 } 2555 2556 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc) 2557 { 2558 int rv; 2559 unsigned int retry_count = 0; 2560 2561 intf->null_user_handler = bmc_device_id_handler; 2562 2563 retry: 2564 bmc->cc = 0; 2565 bmc->dyn_id_set = 2; 2566 2567 rv = send_get_device_id_cmd(intf); 2568 if (rv) 2569 goto out_reset_handler; 2570 2571 wait_event(intf->waitq, bmc->dyn_id_set != 2); 2572 2573 if (!bmc->dyn_id_set) { 2574 if (bmc->cc != IPMI_CC_NO_ERROR && 2575 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { 2576 msleep(500); 2577 dev_warn(intf->si_dev, 2578 "BMC returned 0x%2.2x, retry get bmc device id\n", 2579 bmc->cc); 2580 goto retry; 2581 } 2582 2583 rv = -EIO; /* Something went wrong in the fetch. */ 2584 } 2585 2586 /* dyn_id_set makes the id data available. */ 2587 smp_rmb(); 2588 2589 out_reset_handler: 2590 intf->null_user_handler = NULL; 2591 2592 return rv; 2593 } 2594 2595 /* 2596 * Fetch the device id for the bmc/interface. You must pass in either 2597 * bmc or intf, this code will get the other one. If the data has 2598 * been recently fetched, this will just use the cached data. Otherwise 2599 * it will run a new fetch. 2600 * 2601 * Except for the first time this is called (in ipmi_add_smi()), 2602 * this will always return good data; 2603 */ 2604 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2605 struct ipmi_device_id *id, 2606 bool *guid_set, guid_t *guid, int intf_num) 2607 { 2608 int rv = 0; 2609 int prev_dyn_id_set, prev_guid_set; 2610 bool intf_set = intf != NULL; 2611 2612 if (!intf) { 2613 mutex_lock(&bmc->dyn_mutex); 2614 retry_bmc_lock: 2615 if (list_empty(&bmc->intfs)) { 2616 mutex_unlock(&bmc->dyn_mutex); 2617 return -ENOENT; 2618 } 2619 intf = list_first_entry(&bmc->intfs, struct ipmi_smi, 2620 bmc_link); 2621 kref_get(&intf->refcount); 2622 mutex_unlock(&bmc->dyn_mutex); 2623 mutex_lock(&intf->bmc_reg_mutex); 2624 mutex_lock(&bmc->dyn_mutex); 2625 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi, 2626 bmc_link)) { 2627 mutex_unlock(&intf->bmc_reg_mutex); 2628 kref_put(&intf->refcount, intf_free); 2629 goto retry_bmc_lock; 2630 } 2631 } else { 2632 mutex_lock(&intf->bmc_reg_mutex); 2633 bmc = intf->bmc; 2634 mutex_lock(&bmc->dyn_mutex); 2635 kref_get(&intf->refcount); 2636 } 2637 2638 /* If we have a valid and current ID, just return that. */ 2639 if (intf->in_bmc_register || 2640 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry))) 2641 goto out_noprocessing; 2642 2643 prev_guid_set = bmc->dyn_guid_set; 2644 __get_guid(intf); 2645 2646 prev_dyn_id_set = bmc->dyn_id_set; 2647 rv = __get_device_id(intf, bmc); 2648 if (rv) 2649 goto out; 2650 2651 /* 2652 * The guid, device id, manufacturer id, and product id should 2653 * not change on a BMC. If it does we have to do some dancing. 2654 */ 2655 if (!intf->bmc_registered 2656 || (!prev_guid_set && bmc->dyn_guid_set) 2657 || (!prev_dyn_id_set && bmc->dyn_id_set) 2658 || (prev_guid_set && bmc->dyn_guid_set 2659 && !guid_equal(&bmc->guid, &bmc->fetch_guid)) 2660 || bmc->id.device_id != bmc->fetch_id.device_id 2661 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id 2662 || bmc->id.product_id != bmc->fetch_id.product_id) { 2663 struct ipmi_device_id id = bmc->fetch_id; 2664 int guid_set = bmc->dyn_guid_set; 2665 guid_t guid; 2666 2667 guid = bmc->fetch_guid; 2668 mutex_unlock(&bmc->dyn_mutex); 2669 2670 __ipmi_bmc_unregister(intf); 2671 /* Fill in the temporary BMC for good measure. */ 2672 intf->bmc->id = id; 2673 intf->bmc->dyn_guid_set = guid_set; 2674 intf->bmc->guid = guid; 2675 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num)) 2676 need_waiter(intf); /* Retry later on an error. */ 2677 else 2678 __scan_channels(intf, &id); 2679 2680 2681 if (!intf_set) { 2682 /* 2683 * We weren't given the interface on the 2684 * command line, so restart the operation on 2685 * the next interface for the BMC. 2686 */ 2687 mutex_unlock(&intf->bmc_reg_mutex); 2688 mutex_lock(&bmc->dyn_mutex); 2689 goto retry_bmc_lock; 2690 } 2691 2692 /* We have a new BMC, set it up. */ 2693 bmc = intf->bmc; 2694 mutex_lock(&bmc->dyn_mutex); 2695 goto out_noprocessing; 2696 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id))) 2697 /* Version info changes, scan the channels again. */ 2698 __scan_channels(intf, &bmc->fetch_id); 2699 2700 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 2701 2702 out: 2703 if (rv && prev_dyn_id_set) { 2704 rv = 0; /* Ignore failures if we have previous data. */ 2705 bmc->dyn_id_set = prev_dyn_id_set; 2706 } 2707 if (!rv) { 2708 bmc->id = bmc->fetch_id; 2709 if (bmc->dyn_guid_set) 2710 bmc->guid = bmc->fetch_guid; 2711 else if (prev_guid_set) 2712 /* 2713 * The guid used to be valid and it failed to fetch, 2714 * just use the cached value. 2715 */ 2716 bmc->dyn_guid_set = prev_guid_set; 2717 } 2718 out_noprocessing: 2719 if (!rv) { 2720 if (id) 2721 *id = bmc->id; 2722 2723 if (guid_set) 2724 *guid_set = bmc->dyn_guid_set; 2725 2726 if (guid && bmc->dyn_guid_set) 2727 *guid = bmc->guid; 2728 } 2729 2730 mutex_unlock(&bmc->dyn_mutex); 2731 mutex_unlock(&intf->bmc_reg_mutex); 2732 2733 kref_put(&intf->refcount, intf_free); 2734 return rv; 2735 } 2736 2737 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, 2738 struct ipmi_device_id *id, 2739 bool *guid_set, guid_t *guid) 2740 { 2741 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1); 2742 } 2743 2744 static ssize_t device_id_show(struct device *dev, 2745 struct device_attribute *attr, 2746 char *buf) 2747 { 2748 struct bmc_device *bmc = to_bmc_device(dev); 2749 struct ipmi_device_id id; 2750 int rv; 2751 2752 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2753 if (rv) 2754 return rv; 2755 2756 return sysfs_emit(buf, "%u\n", id.device_id); 2757 } 2758 static DEVICE_ATTR_RO(device_id); 2759 2760 static ssize_t provides_device_sdrs_show(struct device *dev, 2761 struct device_attribute *attr, 2762 char *buf) 2763 { 2764 struct bmc_device *bmc = to_bmc_device(dev); 2765 struct ipmi_device_id id; 2766 int rv; 2767 2768 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2769 if (rv) 2770 return rv; 2771 2772 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7); 2773 } 2774 static DEVICE_ATTR_RO(provides_device_sdrs); 2775 2776 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2777 char *buf) 2778 { 2779 struct bmc_device *bmc = to_bmc_device(dev); 2780 struct ipmi_device_id id; 2781 int rv; 2782 2783 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2784 if (rv) 2785 return rv; 2786 2787 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F); 2788 } 2789 static DEVICE_ATTR_RO(revision); 2790 2791 static ssize_t firmware_revision_show(struct device *dev, 2792 struct device_attribute *attr, 2793 char *buf) 2794 { 2795 struct bmc_device *bmc = to_bmc_device(dev); 2796 struct ipmi_device_id id; 2797 int rv; 2798 2799 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2800 if (rv) 2801 return rv; 2802 2803 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1, 2804 id.firmware_revision_2); 2805 } 2806 static DEVICE_ATTR_RO(firmware_revision); 2807 2808 static ssize_t ipmi_version_show(struct device *dev, 2809 struct device_attribute *attr, 2810 char *buf) 2811 { 2812 struct bmc_device *bmc = to_bmc_device(dev); 2813 struct ipmi_device_id id; 2814 int rv; 2815 2816 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2817 if (rv) 2818 return rv; 2819 2820 return sysfs_emit(buf, "%u.%u\n", 2821 ipmi_version_major(&id), 2822 ipmi_version_minor(&id)); 2823 } 2824 static DEVICE_ATTR_RO(ipmi_version); 2825 2826 static ssize_t add_dev_support_show(struct device *dev, 2827 struct device_attribute *attr, 2828 char *buf) 2829 { 2830 struct bmc_device *bmc = to_bmc_device(dev); 2831 struct ipmi_device_id id; 2832 int rv; 2833 2834 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2835 if (rv) 2836 return rv; 2837 2838 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support); 2839 } 2840 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2841 NULL); 2842 2843 static ssize_t manufacturer_id_show(struct device *dev, 2844 struct device_attribute *attr, 2845 char *buf) 2846 { 2847 struct bmc_device *bmc = to_bmc_device(dev); 2848 struct ipmi_device_id id; 2849 int rv; 2850 2851 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2852 if (rv) 2853 return rv; 2854 2855 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id); 2856 } 2857 static DEVICE_ATTR_RO(manufacturer_id); 2858 2859 static ssize_t product_id_show(struct device *dev, 2860 struct device_attribute *attr, 2861 char *buf) 2862 { 2863 struct bmc_device *bmc = to_bmc_device(dev); 2864 struct ipmi_device_id id; 2865 int rv; 2866 2867 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2868 if (rv) 2869 return rv; 2870 2871 return sysfs_emit(buf, "0x%4.4x\n", id.product_id); 2872 } 2873 static DEVICE_ATTR_RO(product_id); 2874 2875 static ssize_t aux_firmware_rev_show(struct device *dev, 2876 struct device_attribute *attr, 2877 char *buf) 2878 { 2879 struct bmc_device *bmc = to_bmc_device(dev); 2880 struct ipmi_device_id id; 2881 int rv; 2882 2883 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2884 if (rv) 2885 return rv; 2886 2887 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2888 id.aux_firmware_revision[3], 2889 id.aux_firmware_revision[2], 2890 id.aux_firmware_revision[1], 2891 id.aux_firmware_revision[0]); 2892 } 2893 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2894 2895 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2896 char *buf) 2897 { 2898 struct bmc_device *bmc = to_bmc_device(dev); 2899 bool guid_set; 2900 guid_t guid; 2901 int rv; 2902 2903 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid); 2904 if (rv) 2905 return rv; 2906 if (!guid_set) 2907 return -ENOENT; 2908 2909 return sysfs_emit(buf, "%pUl\n", &guid); 2910 } 2911 static DEVICE_ATTR_RO(guid); 2912 2913 static struct attribute *bmc_dev_attrs[] = { 2914 &dev_attr_device_id.attr, 2915 &dev_attr_provides_device_sdrs.attr, 2916 &dev_attr_revision.attr, 2917 &dev_attr_firmware_revision.attr, 2918 &dev_attr_ipmi_version.attr, 2919 &dev_attr_additional_device_support.attr, 2920 &dev_attr_manufacturer_id.attr, 2921 &dev_attr_product_id.attr, 2922 &dev_attr_aux_firmware_revision.attr, 2923 &dev_attr_guid.attr, 2924 NULL 2925 }; 2926 2927 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2928 struct attribute *attr, int idx) 2929 { 2930 struct device *dev = kobj_to_dev(kobj); 2931 struct bmc_device *bmc = to_bmc_device(dev); 2932 umode_t mode = attr->mode; 2933 int rv; 2934 2935 if (attr == &dev_attr_aux_firmware_revision.attr) { 2936 struct ipmi_device_id id; 2937 2938 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2939 return (!rv && id.aux_firmware_revision_set) ? mode : 0; 2940 } 2941 if (attr == &dev_attr_guid.attr) { 2942 bool guid_set; 2943 2944 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL); 2945 return (!rv && guid_set) ? mode : 0; 2946 } 2947 return mode; 2948 } 2949 2950 static const struct attribute_group bmc_dev_attr_group = { 2951 .attrs = bmc_dev_attrs, 2952 .is_visible = bmc_dev_attr_is_visible, 2953 }; 2954 2955 static const struct attribute_group *bmc_dev_attr_groups[] = { 2956 &bmc_dev_attr_group, 2957 NULL 2958 }; 2959 2960 static const struct device_type bmc_device_type = { 2961 .groups = bmc_dev_attr_groups, 2962 }; 2963 2964 static int __find_bmc_guid(struct device *dev, const void *data) 2965 { 2966 const guid_t *guid = data; 2967 struct bmc_device *bmc; 2968 int rv; 2969 2970 if (dev->type != &bmc_device_type) 2971 return 0; 2972 2973 bmc = to_bmc_device(dev); 2974 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid); 2975 if (rv) 2976 rv = kref_get_unless_zero(&bmc->usecount); 2977 return rv; 2978 } 2979 2980 /* 2981 * Returns with the bmc's usecount incremented, if it is non-NULL. 2982 */ 2983 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2984 guid_t *guid) 2985 { 2986 struct device *dev; 2987 struct bmc_device *bmc = NULL; 2988 2989 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2990 if (dev) { 2991 bmc = to_bmc_device(dev); 2992 put_device(dev); 2993 } 2994 return bmc; 2995 } 2996 2997 struct prod_dev_id { 2998 unsigned int product_id; 2999 unsigned char device_id; 3000 }; 3001 3002 static int __find_bmc_prod_dev_id(struct device *dev, const void *data) 3003 { 3004 const struct prod_dev_id *cid = data; 3005 struct bmc_device *bmc; 3006 int rv; 3007 3008 if (dev->type != &bmc_device_type) 3009 return 0; 3010 3011 bmc = to_bmc_device(dev); 3012 rv = (bmc->id.product_id == cid->product_id 3013 && bmc->id.device_id == cid->device_id); 3014 if (rv) 3015 rv = kref_get_unless_zero(&bmc->usecount); 3016 return rv; 3017 } 3018 3019 /* 3020 * Returns with the bmc's usecount incremented, if it is non-NULL. 3021 */ 3022 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 3023 struct device_driver *drv, 3024 unsigned int product_id, unsigned char device_id) 3025 { 3026 struct prod_dev_id id = { 3027 .product_id = product_id, 3028 .device_id = device_id, 3029 }; 3030 struct device *dev; 3031 struct bmc_device *bmc = NULL; 3032 3033 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 3034 if (dev) { 3035 bmc = to_bmc_device(dev); 3036 put_device(dev); 3037 } 3038 return bmc; 3039 } 3040 3041 static DEFINE_IDA(ipmi_bmc_ida); 3042 3043 static void 3044 release_bmc_device(struct device *dev) 3045 { 3046 kfree(to_bmc_device(dev)); 3047 } 3048 3049 static void cleanup_bmc_work(struct work_struct *work) 3050 { 3051 struct bmc_device *bmc = container_of(work, struct bmc_device, 3052 remove_work); 3053 int id = bmc->pdev.id; /* Unregister overwrites id */ 3054 3055 platform_device_unregister(&bmc->pdev); 3056 ida_simple_remove(&ipmi_bmc_ida, id); 3057 } 3058 3059 static void 3060 cleanup_bmc_device(struct kref *ref) 3061 { 3062 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 3063 3064 /* 3065 * Remove the platform device in a work queue to avoid issues 3066 * with removing the device attributes while reading a device 3067 * attribute. 3068 */ 3069 queue_work(remove_work_wq, &bmc->remove_work); 3070 } 3071 3072 /* 3073 * Must be called with intf->bmc_reg_mutex held. 3074 */ 3075 static void __ipmi_bmc_unregister(struct ipmi_smi *intf) 3076 { 3077 struct bmc_device *bmc = intf->bmc; 3078 3079 if (!intf->bmc_registered) 3080 return; 3081 3082 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3083 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 3084 kfree(intf->my_dev_name); 3085 intf->my_dev_name = NULL; 3086 3087 mutex_lock(&bmc->dyn_mutex); 3088 list_del(&intf->bmc_link); 3089 mutex_unlock(&bmc->dyn_mutex); 3090 intf->bmc = &intf->tmp_bmc; 3091 kref_put(&bmc->usecount, cleanup_bmc_device); 3092 intf->bmc_registered = false; 3093 } 3094 3095 static void ipmi_bmc_unregister(struct ipmi_smi *intf) 3096 { 3097 mutex_lock(&intf->bmc_reg_mutex); 3098 __ipmi_bmc_unregister(intf); 3099 mutex_unlock(&intf->bmc_reg_mutex); 3100 } 3101 3102 /* 3103 * Must be called with intf->bmc_reg_mutex held. 3104 */ 3105 static int __ipmi_bmc_register(struct ipmi_smi *intf, 3106 struct ipmi_device_id *id, 3107 bool guid_set, guid_t *guid, int intf_num) 3108 { 3109 int rv; 3110 struct bmc_device *bmc; 3111 struct bmc_device *old_bmc; 3112 3113 /* 3114 * platform_device_register() can cause bmc_reg_mutex to 3115 * be claimed because of the is_visible functions of 3116 * the attributes. Eliminate possible recursion and 3117 * release the lock. 3118 */ 3119 intf->in_bmc_register = true; 3120 mutex_unlock(&intf->bmc_reg_mutex); 3121 3122 /* 3123 * Try to find if there is an bmc_device struct 3124 * representing the interfaced BMC already 3125 */ 3126 mutex_lock(&ipmidriver_mutex); 3127 if (guid_set) 3128 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid); 3129 else 3130 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 3131 id->product_id, 3132 id->device_id); 3133 3134 /* 3135 * If there is already an bmc_device, free the new one, 3136 * otherwise register the new BMC device 3137 */ 3138 if (old_bmc) { 3139 bmc = old_bmc; 3140 /* 3141 * Note: old_bmc already has usecount incremented by 3142 * the BMC find functions. 3143 */ 3144 intf->bmc = old_bmc; 3145 mutex_lock(&bmc->dyn_mutex); 3146 list_add_tail(&intf->bmc_link, &bmc->intfs); 3147 mutex_unlock(&bmc->dyn_mutex); 3148 3149 dev_info(intf->si_dev, 3150 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3151 bmc->id.manufacturer_id, 3152 bmc->id.product_id, 3153 bmc->id.device_id); 3154 } else { 3155 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL); 3156 if (!bmc) { 3157 rv = -ENOMEM; 3158 goto out; 3159 } 3160 INIT_LIST_HEAD(&bmc->intfs); 3161 mutex_init(&bmc->dyn_mutex); 3162 INIT_WORK(&bmc->remove_work, cleanup_bmc_work); 3163 3164 bmc->id = *id; 3165 bmc->dyn_id_set = 1; 3166 bmc->dyn_guid_set = guid_set; 3167 bmc->guid = *guid; 3168 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 3169 3170 bmc->pdev.name = "ipmi_bmc"; 3171 3172 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL); 3173 if (rv < 0) { 3174 kfree(bmc); 3175 goto out; 3176 } 3177 3178 bmc->pdev.dev.driver = &ipmidriver.driver; 3179 bmc->pdev.id = rv; 3180 bmc->pdev.dev.release = release_bmc_device; 3181 bmc->pdev.dev.type = &bmc_device_type; 3182 kref_init(&bmc->usecount); 3183 3184 intf->bmc = bmc; 3185 mutex_lock(&bmc->dyn_mutex); 3186 list_add_tail(&intf->bmc_link, &bmc->intfs); 3187 mutex_unlock(&bmc->dyn_mutex); 3188 3189 rv = platform_device_register(&bmc->pdev); 3190 if (rv) { 3191 dev_err(intf->si_dev, 3192 "Unable to register bmc device: %d\n", 3193 rv); 3194 goto out_list_del; 3195 } 3196 3197 dev_info(intf->si_dev, 3198 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3199 bmc->id.manufacturer_id, 3200 bmc->id.product_id, 3201 bmc->id.device_id); 3202 } 3203 3204 /* 3205 * create symlink from system interface device to bmc device 3206 * and back. 3207 */ 3208 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 3209 if (rv) { 3210 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv); 3211 goto out_put_bmc; 3212 } 3213 3214 if (intf_num == -1) 3215 intf_num = intf->intf_num; 3216 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num); 3217 if (!intf->my_dev_name) { 3218 rv = -ENOMEM; 3219 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n", 3220 rv); 3221 goto out_unlink1; 3222 } 3223 3224 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 3225 intf->my_dev_name); 3226 if (rv) { 3227 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n", 3228 rv); 3229 goto out_free_my_dev_name; 3230 } 3231 3232 intf->bmc_registered = true; 3233 3234 out: 3235 mutex_unlock(&ipmidriver_mutex); 3236 mutex_lock(&intf->bmc_reg_mutex); 3237 intf->in_bmc_register = false; 3238 return rv; 3239 3240 3241 out_free_my_dev_name: 3242 kfree(intf->my_dev_name); 3243 intf->my_dev_name = NULL; 3244 3245 out_unlink1: 3246 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3247 3248 out_put_bmc: 3249 mutex_lock(&bmc->dyn_mutex); 3250 list_del(&intf->bmc_link); 3251 mutex_unlock(&bmc->dyn_mutex); 3252 intf->bmc = &intf->tmp_bmc; 3253 kref_put(&bmc->usecount, cleanup_bmc_device); 3254 goto out; 3255 3256 out_list_del: 3257 mutex_lock(&bmc->dyn_mutex); 3258 list_del(&intf->bmc_link); 3259 mutex_unlock(&bmc->dyn_mutex); 3260 intf->bmc = &intf->tmp_bmc; 3261 put_device(&bmc->pdev.dev); 3262 goto out; 3263 } 3264 3265 static int 3266 send_guid_cmd(struct ipmi_smi *intf, int chan) 3267 { 3268 struct kernel_ipmi_msg msg; 3269 struct ipmi_system_interface_addr si; 3270 3271 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3272 si.channel = IPMI_BMC_CHANNEL; 3273 si.lun = 0; 3274 3275 msg.netfn = IPMI_NETFN_APP_REQUEST; 3276 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 3277 msg.data = NULL; 3278 msg.data_len = 0; 3279 return i_ipmi_request(NULL, 3280 intf, 3281 (struct ipmi_addr *) &si, 3282 0, 3283 &msg, 3284 intf, 3285 NULL, 3286 NULL, 3287 0, 3288 intf->addrinfo[0].address, 3289 intf->addrinfo[0].lun, 3290 -1, 0); 3291 } 3292 3293 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3294 { 3295 struct bmc_device *bmc = intf->bmc; 3296 3297 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3298 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 3299 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 3300 /* Not for me */ 3301 return; 3302 3303 if (msg->msg.data[0] != 0) { 3304 /* Error from getting the GUID, the BMC doesn't have one. */ 3305 bmc->dyn_guid_set = 0; 3306 goto out; 3307 } 3308 3309 if (msg->msg.data_len < UUID_SIZE + 1) { 3310 bmc->dyn_guid_set = 0; 3311 dev_warn(intf->si_dev, 3312 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n", 3313 msg->msg.data_len, UUID_SIZE + 1); 3314 goto out; 3315 } 3316 3317 import_guid(&bmc->fetch_guid, msg->msg.data + 1); 3318 /* 3319 * Make sure the guid data is available before setting 3320 * dyn_guid_set. 3321 */ 3322 smp_wmb(); 3323 bmc->dyn_guid_set = 1; 3324 out: 3325 wake_up(&intf->waitq); 3326 } 3327 3328 static void __get_guid(struct ipmi_smi *intf) 3329 { 3330 int rv; 3331 struct bmc_device *bmc = intf->bmc; 3332 3333 bmc->dyn_guid_set = 2; 3334 intf->null_user_handler = guid_handler; 3335 rv = send_guid_cmd(intf, 0); 3336 if (rv) 3337 /* Send failed, no GUID available. */ 3338 bmc->dyn_guid_set = 0; 3339 else 3340 wait_event(intf->waitq, bmc->dyn_guid_set != 2); 3341 3342 /* dyn_guid_set makes the guid data available. */ 3343 smp_rmb(); 3344 3345 intf->null_user_handler = NULL; 3346 } 3347 3348 static int 3349 send_channel_info_cmd(struct ipmi_smi *intf, int chan) 3350 { 3351 struct kernel_ipmi_msg msg; 3352 unsigned char data[1]; 3353 struct ipmi_system_interface_addr si; 3354 3355 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3356 si.channel = IPMI_BMC_CHANNEL; 3357 si.lun = 0; 3358 3359 msg.netfn = IPMI_NETFN_APP_REQUEST; 3360 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 3361 msg.data = data; 3362 msg.data_len = 1; 3363 data[0] = chan; 3364 return i_ipmi_request(NULL, 3365 intf, 3366 (struct ipmi_addr *) &si, 3367 0, 3368 &msg, 3369 intf, 3370 NULL, 3371 NULL, 3372 0, 3373 intf->addrinfo[0].address, 3374 intf->addrinfo[0].lun, 3375 -1, 0); 3376 } 3377 3378 static void 3379 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 3380 { 3381 int rv = 0; 3382 int ch; 3383 unsigned int set = intf->curr_working_cset; 3384 struct ipmi_channel *chans; 3385 3386 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3387 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 3388 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 3389 /* It's the one we want */ 3390 if (msg->msg.data[0] != 0) { 3391 /* Got an error from the channel, just go on. */ 3392 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 3393 /* 3394 * If the MC does not support this 3395 * command, that is legal. We just 3396 * assume it has one IPMB at channel 3397 * zero. 3398 */ 3399 intf->wchannels[set].c[0].medium 3400 = IPMI_CHANNEL_MEDIUM_IPMB; 3401 intf->wchannels[set].c[0].protocol 3402 = IPMI_CHANNEL_PROTOCOL_IPMB; 3403 3404 intf->channel_list = intf->wchannels + set; 3405 intf->channels_ready = true; 3406 wake_up(&intf->waitq); 3407 goto out; 3408 } 3409 goto next_channel; 3410 } 3411 if (msg->msg.data_len < 4) { 3412 /* Message not big enough, just go on. */ 3413 goto next_channel; 3414 } 3415 ch = intf->curr_channel; 3416 chans = intf->wchannels[set].c; 3417 chans[ch].medium = msg->msg.data[2] & 0x7f; 3418 chans[ch].protocol = msg->msg.data[3] & 0x1f; 3419 3420 next_channel: 3421 intf->curr_channel++; 3422 if (intf->curr_channel >= IPMI_MAX_CHANNELS) { 3423 intf->channel_list = intf->wchannels + set; 3424 intf->channels_ready = true; 3425 wake_up(&intf->waitq); 3426 } else { 3427 intf->channel_list = intf->wchannels + set; 3428 intf->channels_ready = true; 3429 rv = send_channel_info_cmd(intf, intf->curr_channel); 3430 } 3431 3432 if (rv) { 3433 /* Got an error somehow, just give up. */ 3434 dev_warn(intf->si_dev, 3435 "Error sending channel information for channel %d: %d\n", 3436 intf->curr_channel, rv); 3437 3438 intf->channel_list = intf->wchannels + set; 3439 intf->channels_ready = true; 3440 wake_up(&intf->waitq); 3441 } 3442 } 3443 out: 3444 return; 3445 } 3446 3447 /* 3448 * Must be holding intf->bmc_reg_mutex to call this. 3449 */ 3450 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id) 3451 { 3452 int rv; 3453 3454 if (ipmi_version_major(id) > 1 3455 || (ipmi_version_major(id) == 1 3456 && ipmi_version_minor(id) >= 5)) { 3457 unsigned int set; 3458 3459 /* 3460 * Start scanning the channels to see what is 3461 * available. 3462 */ 3463 set = !intf->curr_working_cset; 3464 intf->curr_working_cset = set; 3465 memset(&intf->wchannels[set], 0, 3466 sizeof(struct ipmi_channel_set)); 3467 3468 intf->null_user_handler = channel_handler; 3469 intf->curr_channel = 0; 3470 rv = send_channel_info_cmd(intf, 0); 3471 if (rv) { 3472 dev_warn(intf->si_dev, 3473 "Error sending channel information for channel 0, %d\n", 3474 rv); 3475 intf->null_user_handler = NULL; 3476 return -EIO; 3477 } 3478 3479 /* Wait for the channel info to be read. */ 3480 wait_event(intf->waitq, intf->channels_ready); 3481 intf->null_user_handler = NULL; 3482 } else { 3483 unsigned int set = intf->curr_working_cset; 3484 3485 /* Assume a single IPMB channel at zero. */ 3486 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 3487 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 3488 intf->channel_list = intf->wchannels + set; 3489 intf->channels_ready = true; 3490 } 3491 3492 return 0; 3493 } 3494 3495 static void ipmi_poll(struct ipmi_smi *intf) 3496 { 3497 if (intf->handlers->poll) 3498 intf->handlers->poll(intf->send_info); 3499 /* In case something came in */ 3500 handle_new_recv_msgs(intf); 3501 } 3502 3503 void ipmi_poll_interface(struct ipmi_user *user) 3504 { 3505 ipmi_poll(user->intf); 3506 } 3507 EXPORT_SYMBOL(ipmi_poll_interface); 3508 3509 static ssize_t nr_users_show(struct device *dev, 3510 struct device_attribute *attr, 3511 char *buf) 3512 { 3513 struct ipmi_smi *intf = container_of(attr, 3514 struct ipmi_smi, nr_users_devattr); 3515 3516 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users)); 3517 } 3518 static DEVICE_ATTR_RO(nr_users); 3519 3520 static ssize_t nr_msgs_show(struct device *dev, 3521 struct device_attribute *attr, 3522 char *buf) 3523 { 3524 struct ipmi_smi *intf = container_of(attr, 3525 struct ipmi_smi, nr_msgs_devattr); 3526 struct ipmi_user *user; 3527 int index; 3528 unsigned int count = 0; 3529 3530 index = srcu_read_lock(&intf->users_srcu); 3531 list_for_each_entry_rcu(user, &intf->users, link) 3532 count += atomic_read(&user->nr_msgs); 3533 srcu_read_unlock(&intf->users_srcu, index); 3534 3535 return sysfs_emit(buf, "%u\n", count); 3536 } 3537 static DEVICE_ATTR_RO(nr_msgs); 3538 3539 static void redo_bmc_reg(struct work_struct *work) 3540 { 3541 struct ipmi_smi *intf = container_of(work, struct ipmi_smi, 3542 bmc_reg_work); 3543 3544 if (!intf->in_shutdown) 3545 bmc_get_device_id(intf, NULL, NULL, NULL, NULL); 3546 3547 kref_put(&intf->refcount, intf_free); 3548 } 3549 3550 int ipmi_add_smi(struct module *owner, 3551 const struct ipmi_smi_handlers *handlers, 3552 void *send_info, 3553 struct device *si_dev, 3554 unsigned char slave_addr) 3555 { 3556 int i, j; 3557 int rv; 3558 struct ipmi_smi *intf, *tintf; 3559 struct list_head *link; 3560 struct ipmi_device_id id; 3561 3562 /* 3563 * Make sure the driver is actually initialized, this handles 3564 * problems with initialization order. 3565 */ 3566 rv = ipmi_init_msghandler(); 3567 if (rv) 3568 return rv; 3569 3570 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 3571 if (!intf) 3572 return -ENOMEM; 3573 3574 rv = init_srcu_struct(&intf->users_srcu); 3575 if (rv) { 3576 kfree(intf); 3577 return rv; 3578 } 3579 3580 intf->owner = owner; 3581 intf->bmc = &intf->tmp_bmc; 3582 INIT_LIST_HEAD(&intf->bmc->intfs); 3583 mutex_init(&intf->bmc->dyn_mutex); 3584 INIT_LIST_HEAD(&intf->bmc_link); 3585 mutex_init(&intf->bmc_reg_mutex); 3586 intf->intf_num = -1; /* Mark it invalid for now. */ 3587 kref_init(&intf->refcount); 3588 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg); 3589 intf->si_dev = si_dev; 3590 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 3591 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR; 3592 intf->addrinfo[j].lun = 2; 3593 } 3594 if (slave_addr != 0) 3595 intf->addrinfo[0].address = slave_addr; 3596 INIT_LIST_HEAD(&intf->users); 3597 atomic_set(&intf->nr_users, 0); 3598 intf->handlers = handlers; 3599 intf->send_info = send_info; 3600 spin_lock_init(&intf->seq_lock); 3601 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 3602 intf->seq_table[j].inuse = 0; 3603 intf->seq_table[j].seqid = 0; 3604 } 3605 intf->curr_seq = 0; 3606 spin_lock_init(&intf->waiting_rcv_msgs_lock); 3607 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 3608 tasklet_setup(&intf->recv_tasklet, 3609 smi_recv_tasklet); 3610 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 3611 spin_lock_init(&intf->xmit_msgs_lock); 3612 INIT_LIST_HEAD(&intf->xmit_msgs); 3613 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 3614 spin_lock_init(&intf->events_lock); 3615 spin_lock_init(&intf->watch_lock); 3616 atomic_set(&intf->event_waiters, 0); 3617 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 3618 INIT_LIST_HEAD(&intf->waiting_events); 3619 intf->waiting_events_count = 0; 3620 mutex_init(&intf->cmd_rcvrs_mutex); 3621 spin_lock_init(&intf->maintenance_mode_lock); 3622 INIT_LIST_HEAD(&intf->cmd_rcvrs); 3623 init_waitqueue_head(&intf->waitq); 3624 for (i = 0; i < IPMI_NUM_STATS; i++) 3625 atomic_set(&intf->stats[i], 0); 3626 3627 mutex_lock(&ipmi_interfaces_mutex); 3628 /* Look for a hole in the numbers. */ 3629 i = 0; 3630 link = &ipmi_interfaces; 3631 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link, 3632 ipmi_interfaces_mutex_held()) { 3633 if (tintf->intf_num != i) { 3634 link = &tintf->link; 3635 break; 3636 } 3637 i++; 3638 } 3639 /* Add the new interface in numeric order. */ 3640 if (i == 0) 3641 list_add_rcu(&intf->link, &ipmi_interfaces); 3642 else 3643 list_add_tail_rcu(&intf->link, link); 3644 3645 rv = handlers->start_processing(send_info, intf); 3646 if (rv) 3647 goto out_err; 3648 3649 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i); 3650 if (rv) { 3651 dev_err(si_dev, "Unable to get the device id: %d\n", rv); 3652 goto out_err_started; 3653 } 3654 3655 mutex_lock(&intf->bmc_reg_mutex); 3656 rv = __scan_channels(intf, &id); 3657 mutex_unlock(&intf->bmc_reg_mutex); 3658 if (rv) 3659 goto out_err_bmc_reg; 3660 3661 intf->nr_users_devattr = dev_attr_nr_users; 3662 sysfs_attr_init(&intf->nr_users_devattr.attr); 3663 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr); 3664 if (rv) 3665 goto out_err_bmc_reg; 3666 3667 intf->nr_msgs_devattr = dev_attr_nr_msgs; 3668 sysfs_attr_init(&intf->nr_msgs_devattr.attr); 3669 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr); 3670 if (rv) { 3671 device_remove_file(intf->si_dev, &intf->nr_users_devattr); 3672 goto out_err_bmc_reg; 3673 } 3674 3675 /* 3676 * Keep memory order straight for RCU readers. Make 3677 * sure everything else is committed to memory before 3678 * setting intf_num to mark the interface valid. 3679 */ 3680 smp_wmb(); 3681 intf->intf_num = i; 3682 mutex_unlock(&ipmi_interfaces_mutex); 3683 3684 /* After this point the interface is legal to use. */ 3685 call_smi_watchers(i, intf->si_dev); 3686 3687 return 0; 3688 3689 out_err_bmc_reg: 3690 ipmi_bmc_unregister(intf); 3691 out_err_started: 3692 if (intf->handlers->shutdown) 3693 intf->handlers->shutdown(intf->send_info); 3694 out_err: 3695 list_del_rcu(&intf->link); 3696 mutex_unlock(&ipmi_interfaces_mutex); 3697 synchronize_srcu(&ipmi_interfaces_srcu); 3698 cleanup_srcu_struct(&intf->users_srcu); 3699 kref_put(&intf->refcount, intf_free); 3700 3701 return rv; 3702 } 3703 EXPORT_SYMBOL(ipmi_add_smi); 3704 3705 static void deliver_smi_err_response(struct ipmi_smi *intf, 3706 struct ipmi_smi_msg *msg, 3707 unsigned char err) 3708 { 3709 int rv; 3710 msg->rsp[0] = msg->data[0] | 4; 3711 msg->rsp[1] = msg->data[1]; 3712 msg->rsp[2] = err; 3713 msg->rsp_size = 3; 3714 3715 /* This will never requeue, but it may ask us to free the message. */ 3716 rv = handle_one_recv_msg(intf, msg); 3717 if (rv == 0) 3718 ipmi_free_smi_msg(msg); 3719 } 3720 3721 static void cleanup_smi_msgs(struct ipmi_smi *intf) 3722 { 3723 int i; 3724 struct seq_table *ent; 3725 struct ipmi_smi_msg *msg; 3726 struct list_head *entry; 3727 struct list_head tmplist; 3728 3729 /* Clear out our transmit queues and hold the messages. */ 3730 INIT_LIST_HEAD(&tmplist); 3731 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 3732 list_splice_tail(&intf->xmit_msgs, &tmplist); 3733 3734 /* Current message first, to preserve order */ 3735 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 3736 /* Wait for the message to clear out. */ 3737 schedule_timeout(1); 3738 } 3739 3740 /* No need for locks, the interface is down. */ 3741 3742 /* 3743 * Return errors for all pending messages in queue and in the 3744 * tables waiting for remote responses. 3745 */ 3746 while (!list_empty(&tmplist)) { 3747 entry = tmplist.next; 3748 list_del(entry); 3749 msg = list_entry(entry, struct ipmi_smi_msg, link); 3750 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 3751 } 3752 3753 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 3754 ent = &intf->seq_table[i]; 3755 if (!ent->inuse) 3756 continue; 3757 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED); 3758 } 3759 } 3760 3761 void ipmi_unregister_smi(struct ipmi_smi *intf) 3762 { 3763 struct ipmi_smi_watcher *w; 3764 int intf_num, index; 3765 3766 if (!intf) 3767 return; 3768 intf_num = intf->intf_num; 3769 mutex_lock(&ipmi_interfaces_mutex); 3770 intf->intf_num = -1; 3771 intf->in_shutdown = true; 3772 list_del_rcu(&intf->link); 3773 mutex_unlock(&ipmi_interfaces_mutex); 3774 synchronize_srcu(&ipmi_interfaces_srcu); 3775 3776 /* At this point no users can be added to the interface. */ 3777 3778 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr); 3779 device_remove_file(intf->si_dev, &intf->nr_users_devattr); 3780 3781 /* 3782 * Call all the watcher interfaces to tell them that 3783 * an interface is going away. 3784 */ 3785 mutex_lock(&smi_watchers_mutex); 3786 list_for_each_entry(w, &smi_watchers, link) 3787 w->smi_gone(intf_num); 3788 mutex_unlock(&smi_watchers_mutex); 3789 3790 index = srcu_read_lock(&intf->users_srcu); 3791 while (!list_empty(&intf->users)) { 3792 struct ipmi_user *user = 3793 container_of(list_next_rcu(&intf->users), 3794 struct ipmi_user, link); 3795 3796 _ipmi_destroy_user(user); 3797 } 3798 srcu_read_unlock(&intf->users_srcu, index); 3799 3800 if (intf->handlers->shutdown) 3801 intf->handlers->shutdown(intf->send_info); 3802 3803 cleanup_smi_msgs(intf); 3804 3805 ipmi_bmc_unregister(intf); 3806 3807 cleanup_srcu_struct(&intf->users_srcu); 3808 kref_put(&intf->refcount, intf_free); 3809 } 3810 EXPORT_SYMBOL(ipmi_unregister_smi); 3811 3812 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf, 3813 struct ipmi_smi_msg *msg) 3814 { 3815 struct ipmi_ipmb_addr ipmb_addr; 3816 struct ipmi_recv_msg *recv_msg; 3817 3818 /* 3819 * This is 11, not 10, because the response must contain a 3820 * completion code. 3821 */ 3822 if (msg->rsp_size < 11) { 3823 /* Message not big enough, just ignore it. */ 3824 ipmi_inc_stat(intf, invalid_ipmb_responses); 3825 return 0; 3826 } 3827 3828 if (msg->rsp[2] != 0) { 3829 /* An error getting the response, just ignore it. */ 3830 return 0; 3831 } 3832 3833 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3834 ipmb_addr.slave_addr = msg->rsp[6]; 3835 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3836 ipmb_addr.lun = msg->rsp[7] & 3; 3837 3838 /* 3839 * It's a response from a remote entity. Look up the sequence 3840 * number and handle the response. 3841 */ 3842 if (intf_find_seq(intf, 3843 msg->rsp[7] >> 2, 3844 msg->rsp[3] & 0x0f, 3845 msg->rsp[8], 3846 (msg->rsp[4] >> 2) & (~1), 3847 (struct ipmi_addr *) &ipmb_addr, 3848 &recv_msg)) { 3849 /* 3850 * We were unable to find the sequence number, 3851 * so just nuke the message. 3852 */ 3853 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3854 return 0; 3855 } 3856 3857 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9); 3858 /* 3859 * The other fields matched, so no need to set them, except 3860 * for netfn, which needs to be the response that was 3861 * returned, not the request value. 3862 */ 3863 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3864 recv_msg->msg.data = recv_msg->msg_data; 3865 recv_msg->msg.data_len = msg->rsp_size - 10; 3866 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3867 if (deliver_response(intf, recv_msg)) 3868 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3869 else 3870 ipmi_inc_stat(intf, handled_ipmb_responses); 3871 3872 return 0; 3873 } 3874 3875 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf, 3876 struct ipmi_smi_msg *msg) 3877 { 3878 struct cmd_rcvr *rcvr; 3879 int rv = 0; 3880 unsigned char netfn; 3881 unsigned char cmd; 3882 unsigned char chan; 3883 struct ipmi_user *user = NULL; 3884 struct ipmi_ipmb_addr *ipmb_addr; 3885 struct ipmi_recv_msg *recv_msg; 3886 3887 if (msg->rsp_size < 10) { 3888 /* Message not big enough, just ignore it. */ 3889 ipmi_inc_stat(intf, invalid_commands); 3890 return 0; 3891 } 3892 3893 if (msg->rsp[2] != 0) { 3894 /* An error getting the response, just ignore it. */ 3895 return 0; 3896 } 3897 3898 netfn = msg->rsp[4] >> 2; 3899 cmd = msg->rsp[8]; 3900 chan = msg->rsp[3] & 0xf; 3901 3902 rcu_read_lock(); 3903 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3904 if (rcvr) { 3905 user = rcvr->user; 3906 kref_get(&user->refcount); 3907 } else 3908 user = NULL; 3909 rcu_read_unlock(); 3910 3911 if (user == NULL) { 3912 /* We didn't find a user, deliver an error response. */ 3913 ipmi_inc_stat(intf, unhandled_commands); 3914 3915 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3916 msg->data[1] = IPMI_SEND_MSG_CMD; 3917 msg->data[2] = msg->rsp[3]; 3918 msg->data[3] = msg->rsp[6]; 3919 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3920 msg->data[5] = ipmb_checksum(&msg->data[3], 2); 3921 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address; 3922 /* rqseq/lun */ 3923 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3924 msg->data[8] = msg->rsp[8]; /* cmd */ 3925 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3926 msg->data[10] = ipmb_checksum(&msg->data[6], 4); 3927 msg->data_size = 11; 3928 3929 dev_dbg(intf->si_dev, "Invalid command: %*ph\n", 3930 msg->data_size, msg->data); 3931 3932 rcu_read_lock(); 3933 if (!intf->in_shutdown) { 3934 smi_send(intf, intf->handlers, msg, 0); 3935 /* 3936 * We used the message, so return the value 3937 * that causes it to not be freed or 3938 * queued. 3939 */ 3940 rv = -1; 3941 } 3942 rcu_read_unlock(); 3943 } else { 3944 recv_msg = ipmi_alloc_recv_msg(); 3945 if (!recv_msg) { 3946 /* 3947 * We couldn't allocate memory for the 3948 * message, so requeue it for handling 3949 * later. 3950 */ 3951 rv = 1; 3952 kref_put(&user->refcount, free_user); 3953 } else { 3954 /* Extract the source address from the data. */ 3955 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3956 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3957 ipmb_addr->slave_addr = msg->rsp[6]; 3958 ipmb_addr->lun = msg->rsp[7] & 3; 3959 ipmb_addr->channel = msg->rsp[3] & 0xf; 3960 3961 /* 3962 * Extract the rest of the message information 3963 * from the IPMB header. 3964 */ 3965 recv_msg->user = user; 3966 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3967 recv_msg->msgid = msg->rsp[7] >> 2; 3968 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3969 recv_msg->msg.cmd = msg->rsp[8]; 3970 recv_msg->msg.data = recv_msg->msg_data; 3971 3972 /* 3973 * We chop off 10, not 9 bytes because the checksum 3974 * at the end also needs to be removed. 3975 */ 3976 recv_msg->msg.data_len = msg->rsp_size - 10; 3977 memcpy(recv_msg->msg_data, &msg->rsp[9], 3978 msg->rsp_size - 10); 3979 if (deliver_response(intf, recv_msg)) 3980 ipmi_inc_stat(intf, unhandled_commands); 3981 else 3982 ipmi_inc_stat(intf, handled_commands); 3983 } 3984 } 3985 3986 return rv; 3987 } 3988 3989 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf, 3990 struct ipmi_smi_msg *msg) 3991 { 3992 struct cmd_rcvr *rcvr; 3993 int rv = 0; 3994 struct ipmi_user *user = NULL; 3995 struct ipmi_ipmb_direct_addr *daddr; 3996 struct ipmi_recv_msg *recv_msg; 3997 unsigned char netfn = msg->rsp[0] >> 2; 3998 unsigned char cmd = msg->rsp[3]; 3999 4000 rcu_read_lock(); 4001 /* We always use channel 0 for direct messages. */ 4002 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0); 4003 if (rcvr) { 4004 user = rcvr->user; 4005 kref_get(&user->refcount); 4006 } else 4007 user = NULL; 4008 rcu_read_unlock(); 4009 4010 if (user == NULL) { 4011 /* We didn't find a user, deliver an error response. */ 4012 ipmi_inc_stat(intf, unhandled_commands); 4013 4014 msg->data[0] = (netfn + 1) << 2; 4015 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */ 4016 msg->data[1] = msg->rsp[1]; /* Addr */ 4017 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */ 4018 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */ 4019 msg->data[3] = cmd; 4020 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE; 4021 msg->data_size = 5; 4022 4023 rcu_read_lock(); 4024 if (!intf->in_shutdown) { 4025 smi_send(intf, intf->handlers, msg, 0); 4026 /* 4027 * We used the message, so return the value 4028 * that causes it to not be freed or 4029 * queued. 4030 */ 4031 rv = -1; 4032 } 4033 rcu_read_unlock(); 4034 } else { 4035 recv_msg = ipmi_alloc_recv_msg(); 4036 if (!recv_msg) { 4037 /* 4038 * We couldn't allocate memory for the 4039 * message, so requeue it for handling 4040 * later. 4041 */ 4042 rv = 1; 4043 kref_put(&user->refcount, free_user); 4044 } else { 4045 /* Extract the source address from the data. */ 4046 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr; 4047 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 4048 daddr->channel = 0; 4049 daddr->slave_addr = msg->rsp[1]; 4050 daddr->rs_lun = msg->rsp[0] & 3; 4051 daddr->rq_lun = msg->rsp[2] & 3; 4052 4053 /* 4054 * Extract the rest of the message information 4055 * from the IPMB header. 4056 */ 4057 recv_msg->user = user; 4058 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 4059 recv_msg->msgid = (msg->rsp[2] >> 2); 4060 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4061 recv_msg->msg.cmd = msg->rsp[3]; 4062 recv_msg->msg.data = recv_msg->msg_data; 4063 4064 recv_msg->msg.data_len = msg->rsp_size - 4; 4065 memcpy(recv_msg->msg_data, msg->rsp + 4, 4066 msg->rsp_size - 4); 4067 if (deliver_response(intf, recv_msg)) 4068 ipmi_inc_stat(intf, unhandled_commands); 4069 else 4070 ipmi_inc_stat(intf, handled_commands); 4071 } 4072 } 4073 4074 return rv; 4075 } 4076 4077 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf, 4078 struct ipmi_smi_msg *msg) 4079 { 4080 struct ipmi_recv_msg *recv_msg; 4081 struct ipmi_ipmb_direct_addr *daddr; 4082 4083 recv_msg = msg->user_data; 4084 if (recv_msg == NULL) { 4085 dev_warn(intf->si_dev, 4086 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 4087 return 0; 4088 } 4089 4090 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4091 recv_msg->msgid = msg->msgid; 4092 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr; 4093 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE; 4094 daddr->channel = 0; 4095 daddr->slave_addr = msg->rsp[1]; 4096 daddr->rq_lun = msg->rsp[0] & 3; 4097 daddr->rs_lun = msg->rsp[2] & 3; 4098 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4099 recv_msg->msg.cmd = msg->rsp[3]; 4100 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4); 4101 recv_msg->msg.data = recv_msg->msg_data; 4102 recv_msg->msg.data_len = msg->rsp_size - 4; 4103 deliver_local_response(intf, recv_msg); 4104 4105 return 0; 4106 } 4107 4108 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf, 4109 struct ipmi_smi_msg *msg) 4110 { 4111 struct ipmi_lan_addr lan_addr; 4112 struct ipmi_recv_msg *recv_msg; 4113 4114 4115 /* 4116 * This is 13, not 12, because the response must contain a 4117 * completion code. 4118 */ 4119 if (msg->rsp_size < 13) { 4120 /* Message not big enough, just ignore it. */ 4121 ipmi_inc_stat(intf, invalid_lan_responses); 4122 return 0; 4123 } 4124 4125 if (msg->rsp[2] != 0) { 4126 /* An error getting the response, just ignore it. */ 4127 return 0; 4128 } 4129 4130 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 4131 lan_addr.session_handle = msg->rsp[4]; 4132 lan_addr.remote_SWID = msg->rsp[8]; 4133 lan_addr.local_SWID = msg->rsp[5]; 4134 lan_addr.channel = msg->rsp[3] & 0x0f; 4135 lan_addr.privilege = msg->rsp[3] >> 4; 4136 lan_addr.lun = msg->rsp[9] & 3; 4137 4138 /* 4139 * It's a response from a remote entity. Look up the sequence 4140 * number and handle the response. 4141 */ 4142 if (intf_find_seq(intf, 4143 msg->rsp[9] >> 2, 4144 msg->rsp[3] & 0x0f, 4145 msg->rsp[10], 4146 (msg->rsp[6] >> 2) & (~1), 4147 (struct ipmi_addr *) &lan_addr, 4148 &recv_msg)) { 4149 /* 4150 * We were unable to find the sequence number, 4151 * so just nuke the message. 4152 */ 4153 ipmi_inc_stat(intf, unhandled_lan_responses); 4154 return 0; 4155 } 4156 4157 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11); 4158 /* 4159 * The other fields matched, so no need to set them, except 4160 * for netfn, which needs to be the response that was 4161 * returned, not the request value. 4162 */ 4163 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4164 recv_msg->msg.data = recv_msg->msg_data; 4165 recv_msg->msg.data_len = msg->rsp_size - 12; 4166 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4167 if (deliver_response(intf, recv_msg)) 4168 ipmi_inc_stat(intf, unhandled_lan_responses); 4169 else 4170 ipmi_inc_stat(intf, handled_lan_responses); 4171 4172 return 0; 4173 } 4174 4175 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf, 4176 struct ipmi_smi_msg *msg) 4177 { 4178 struct cmd_rcvr *rcvr; 4179 int rv = 0; 4180 unsigned char netfn; 4181 unsigned char cmd; 4182 unsigned char chan; 4183 struct ipmi_user *user = NULL; 4184 struct ipmi_lan_addr *lan_addr; 4185 struct ipmi_recv_msg *recv_msg; 4186 4187 if (msg->rsp_size < 12) { 4188 /* Message not big enough, just ignore it. */ 4189 ipmi_inc_stat(intf, invalid_commands); 4190 return 0; 4191 } 4192 4193 if (msg->rsp[2] != 0) { 4194 /* An error getting the response, just ignore it. */ 4195 return 0; 4196 } 4197 4198 netfn = msg->rsp[6] >> 2; 4199 cmd = msg->rsp[10]; 4200 chan = msg->rsp[3] & 0xf; 4201 4202 rcu_read_lock(); 4203 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4204 if (rcvr) { 4205 user = rcvr->user; 4206 kref_get(&user->refcount); 4207 } else 4208 user = NULL; 4209 rcu_read_unlock(); 4210 4211 if (user == NULL) { 4212 /* We didn't find a user, just give up. */ 4213 ipmi_inc_stat(intf, unhandled_commands); 4214 4215 /* 4216 * Don't do anything with these messages, just allow 4217 * them to be freed. 4218 */ 4219 rv = 0; 4220 } else { 4221 recv_msg = ipmi_alloc_recv_msg(); 4222 if (!recv_msg) { 4223 /* 4224 * We couldn't allocate memory for the 4225 * message, so requeue it for handling later. 4226 */ 4227 rv = 1; 4228 kref_put(&user->refcount, free_user); 4229 } else { 4230 /* Extract the source address from the data. */ 4231 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 4232 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 4233 lan_addr->session_handle = msg->rsp[4]; 4234 lan_addr->remote_SWID = msg->rsp[8]; 4235 lan_addr->local_SWID = msg->rsp[5]; 4236 lan_addr->lun = msg->rsp[9] & 3; 4237 lan_addr->channel = msg->rsp[3] & 0xf; 4238 lan_addr->privilege = msg->rsp[3] >> 4; 4239 4240 /* 4241 * Extract the rest of the message information 4242 * from the IPMB header. 4243 */ 4244 recv_msg->user = user; 4245 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 4246 recv_msg->msgid = msg->rsp[9] >> 2; 4247 recv_msg->msg.netfn = msg->rsp[6] >> 2; 4248 recv_msg->msg.cmd = msg->rsp[10]; 4249 recv_msg->msg.data = recv_msg->msg_data; 4250 4251 /* 4252 * We chop off 12, not 11 bytes because the checksum 4253 * at the end also needs to be removed. 4254 */ 4255 recv_msg->msg.data_len = msg->rsp_size - 12; 4256 memcpy(recv_msg->msg_data, &msg->rsp[11], 4257 msg->rsp_size - 12); 4258 if (deliver_response(intf, recv_msg)) 4259 ipmi_inc_stat(intf, unhandled_commands); 4260 else 4261 ipmi_inc_stat(intf, handled_commands); 4262 } 4263 } 4264 4265 return rv; 4266 } 4267 4268 /* 4269 * This routine will handle "Get Message" command responses with 4270 * channels that use an OEM Medium. The message format belongs to 4271 * the OEM. See IPMI 2.0 specification, Chapter 6 and 4272 * Chapter 22, sections 22.6 and 22.24 for more details. 4273 */ 4274 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf, 4275 struct ipmi_smi_msg *msg) 4276 { 4277 struct cmd_rcvr *rcvr; 4278 int rv = 0; 4279 unsigned char netfn; 4280 unsigned char cmd; 4281 unsigned char chan; 4282 struct ipmi_user *user = NULL; 4283 struct ipmi_system_interface_addr *smi_addr; 4284 struct ipmi_recv_msg *recv_msg; 4285 4286 /* 4287 * We expect the OEM SW to perform error checking 4288 * so we just do some basic sanity checks 4289 */ 4290 if (msg->rsp_size < 4) { 4291 /* Message not big enough, just ignore it. */ 4292 ipmi_inc_stat(intf, invalid_commands); 4293 return 0; 4294 } 4295 4296 if (msg->rsp[2] != 0) { 4297 /* An error getting the response, just ignore it. */ 4298 return 0; 4299 } 4300 4301 /* 4302 * This is an OEM Message so the OEM needs to know how 4303 * handle the message. We do no interpretation. 4304 */ 4305 netfn = msg->rsp[0] >> 2; 4306 cmd = msg->rsp[1]; 4307 chan = msg->rsp[3] & 0xf; 4308 4309 rcu_read_lock(); 4310 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 4311 if (rcvr) { 4312 user = rcvr->user; 4313 kref_get(&user->refcount); 4314 } else 4315 user = NULL; 4316 rcu_read_unlock(); 4317 4318 if (user == NULL) { 4319 /* We didn't find a user, just give up. */ 4320 ipmi_inc_stat(intf, unhandled_commands); 4321 4322 /* 4323 * Don't do anything with these messages, just allow 4324 * them to be freed. 4325 */ 4326 4327 rv = 0; 4328 } else { 4329 recv_msg = ipmi_alloc_recv_msg(); 4330 if (!recv_msg) { 4331 /* 4332 * We couldn't allocate memory for the 4333 * message, so requeue it for handling 4334 * later. 4335 */ 4336 rv = 1; 4337 kref_put(&user->refcount, free_user); 4338 } else { 4339 /* 4340 * OEM Messages are expected to be delivered via 4341 * the system interface to SMS software. We might 4342 * need to visit this again depending on OEM 4343 * requirements 4344 */ 4345 smi_addr = ((struct ipmi_system_interface_addr *) 4346 &recv_msg->addr); 4347 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4348 smi_addr->channel = IPMI_BMC_CHANNEL; 4349 smi_addr->lun = msg->rsp[0] & 3; 4350 4351 recv_msg->user = user; 4352 recv_msg->user_msg_data = NULL; 4353 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 4354 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4355 recv_msg->msg.cmd = msg->rsp[1]; 4356 recv_msg->msg.data = recv_msg->msg_data; 4357 4358 /* 4359 * The message starts at byte 4 which follows the 4360 * Channel Byte in the "GET MESSAGE" command 4361 */ 4362 recv_msg->msg.data_len = msg->rsp_size - 4; 4363 memcpy(recv_msg->msg_data, &msg->rsp[4], 4364 msg->rsp_size - 4); 4365 if (deliver_response(intf, recv_msg)) 4366 ipmi_inc_stat(intf, unhandled_commands); 4367 else 4368 ipmi_inc_stat(intf, handled_commands); 4369 } 4370 } 4371 4372 return rv; 4373 } 4374 4375 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 4376 struct ipmi_smi_msg *msg) 4377 { 4378 struct ipmi_system_interface_addr *smi_addr; 4379 4380 recv_msg->msgid = 0; 4381 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr; 4382 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4383 smi_addr->channel = IPMI_BMC_CHANNEL; 4384 smi_addr->lun = msg->rsp[0] & 3; 4385 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 4386 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4387 recv_msg->msg.cmd = msg->rsp[1]; 4388 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3); 4389 recv_msg->msg.data = recv_msg->msg_data; 4390 recv_msg->msg.data_len = msg->rsp_size - 3; 4391 } 4392 4393 static int handle_read_event_rsp(struct ipmi_smi *intf, 4394 struct ipmi_smi_msg *msg) 4395 { 4396 struct ipmi_recv_msg *recv_msg, *recv_msg2; 4397 struct list_head msgs; 4398 struct ipmi_user *user; 4399 int rv = 0, deliver_count = 0, index; 4400 unsigned long flags; 4401 4402 if (msg->rsp_size < 19) { 4403 /* Message is too small to be an IPMB event. */ 4404 ipmi_inc_stat(intf, invalid_events); 4405 return 0; 4406 } 4407 4408 if (msg->rsp[2] != 0) { 4409 /* An error getting the event, just ignore it. */ 4410 return 0; 4411 } 4412 4413 INIT_LIST_HEAD(&msgs); 4414 4415 spin_lock_irqsave(&intf->events_lock, flags); 4416 4417 ipmi_inc_stat(intf, events); 4418 4419 /* 4420 * Allocate and fill in one message for every user that is 4421 * getting events. 4422 */ 4423 index = srcu_read_lock(&intf->users_srcu); 4424 list_for_each_entry_rcu(user, &intf->users, link) { 4425 if (!user->gets_events) 4426 continue; 4427 4428 recv_msg = ipmi_alloc_recv_msg(); 4429 if (!recv_msg) { 4430 rcu_read_unlock(); 4431 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 4432 link) { 4433 list_del(&recv_msg->link); 4434 ipmi_free_recv_msg(recv_msg); 4435 } 4436 /* 4437 * We couldn't allocate memory for the 4438 * message, so requeue it for handling 4439 * later. 4440 */ 4441 rv = 1; 4442 goto out; 4443 } 4444 4445 deliver_count++; 4446 4447 copy_event_into_recv_msg(recv_msg, msg); 4448 recv_msg->user = user; 4449 kref_get(&user->refcount); 4450 list_add_tail(&recv_msg->link, &msgs); 4451 } 4452 srcu_read_unlock(&intf->users_srcu, index); 4453 4454 if (deliver_count) { 4455 /* Now deliver all the messages. */ 4456 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 4457 list_del(&recv_msg->link); 4458 deliver_local_response(intf, recv_msg); 4459 } 4460 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 4461 /* 4462 * No one to receive the message, put it in queue if there's 4463 * not already too many things in the queue. 4464 */ 4465 recv_msg = ipmi_alloc_recv_msg(); 4466 if (!recv_msg) { 4467 /* 4468 * We couldn't allocate memory for the 4469 * message, so requeue it for handling 4470 * later. 4471 */ 4472 rv = 1; 4473 goto out; 4474 } 4475 4476 copy_event_into_recv_msg(recv_msg, msg); 4477 list_add_tail(&recv_msg->link, &intf->waiting_events); 4478 intf->waiting_events_count++; 4479 } else if (!intf->event_msg_printed) { 4480 /* 4481 * There's too many things in the queue, discard this 4482 * message. 4483 */ 4484 dev_warn(intf->si_dev, 4485 "Event queue full, discarding incoming events\n"); 4486 intf->event_msg_printed = 1; 4487 } 4488 4489 out: 4490 spin_unlock_irqrestore(&intf->events_lock, flags); 4491 4492 return rv; 4493 } 4494 4495 static int handle_bmc_rsp(struct ipmi_smi *intf, 4496 struct ipmi_smi_msg *msg) 4497 { 4498 struct ipmi_recv_msg *recv_msg; 4499 struct ipmi_system_interface_addr *smi_addr; 4500 4501 recv_msg = msg->user_data; 4502 if (recv_msg == NULL) { 4503 dev_warn(intf->si_dev, 4504 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n"); 4505 return 0; 4506 } 4507 4508 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4509 recv_msg->msgid = msg->msgid; 4510 smi_addr = ((struct ipmi_system_interface_addr *) 4511 &recv_msg->addr); 4512 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4513 smi_addr->channel = IPMI_BMC_CHANNEL; 4514 smi_addr->lun = msg->rsp[0] & 3; 4515 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4516 recv_msg->msg.cmd = msg->rsp[1]; 4517 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2); 4518 recv_msg->msg.data = recv_msg->msg_data; 4519 recv_msg->msg.data_len = msg->rsp_size - 2; 4520 deliver_local_response(intf, recv_msg); 4521 4522 return 0; 4523 } 4524 4525 /* 4526 * Handle a received message. Return 1 if the message should be requeued, 4527 * 0 if the message should be freed, or -1 if the message should not 4528 * be freed or requeued. 4529 */ 4530 static int handle_one_recv_msg(struct ipmi_smi *intf, 4531 struct ipmi_smi_msg *msg) 4532 { 4533 int requeue = 0; 4534 int chan; 4535 unsigned char cc; 4536 bool is_cmd = !((msg->rsp[0] >> 2) & 1); 4537 4538 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp); 4539 4540 if (msg->rsp_size < 2) { 4541 /* Message is too small to be correct. */ 4542 dev_warn(intf->si_dev, 4543 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n", 4544 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 4545 4546 return_unspecified: 4547 /* Generate an error response for the message. */ 4548 msg->rsp[0] = msg->data[0] | (1 << 2); 4549 msg->rsp[1] = msg->data[1]; 4550 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 4551 msg->rsp_size = 3; 4552 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4553 /* commands must have at least 4 bytes, responses 5. */ 4554 if (is_cmd && (msg->rsp_size < 4)) { 4555 ipmi_inc_stat(intf, invalid_commands); 4556 goto out; 4557 } 4558 if (!is_cmd && (msg->rsp_size < 5)) { 4559 ipmi_inc_stat(intf, invalid_ipmb_responses); 4560 /* Construct a valid error response. */ 4561 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */ 4562 msg->rsp[0] |= (1 << 2); /* Make it a response */ 4563 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */ 4564 msg->rsp[1] = msg->data[1]; /* Addr */ 4565 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */ 4566 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */ 4567 msg->rsp[3] = msg->data[3]; /* Cmd */ 4568 msg->rsp[4] = IPMI_ERR_UNSPECIFIED; 4569 msg->rsp_size = 5; 4570 } 4571 } else if ((msg->data_size >= 2) 4572 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 4573 && (msg->data[1] == IPMI_SEND_MSG_CMD) 4574 && (msg->user_data == NULL)) { 4575 4576 if (intf->in_shutdown) 4577 goto out; 4578 4579 /* 4580 * This is the local response to a command send, start 4581 * the timer for these. The user_data will not be 4582 * NULL if this is a response send, and we will let 4583 * response sends just go through. 4584 */ 4585 4586 /* 4587 * Check for errors, if we get certain errors (ones 4588 * that mean basically we can try again later), we 4589 * ignore them and start the timer. Otherwise we 4590 * report the error immediately. 4591 */ 4592 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 4593 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 4594 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 4595 && (msg->rsp[2] != IPMI_BUS_ERR) 4596 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 4597 int ch = msg->rsp[3] & 0xf; 4598 struct ipmi_channel *chans; 4599 4600 /* Got an error sending the message, handle it. */ 4601 4602 chans = READ_ONCE(intf->channel_list)->c; 4603 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN) 4604 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC)) 4605 ipmi_inc_stat(intf, sent_lan_command_errs); 4606 else 4607 ipmi_inc_stat(intf, sent_ipmb_command_errs); 4608 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 4609 } else 4610 /* The message was sent, start the timer. */ 4611 intf_start_seq_timer(intf, msg->msgid); 4612 requeue = 0; 4613 goto out; 4614 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 4615 || (msg->rsp[1] != msg->data[1])) { 4616 /* 4617 * The NetFN and Command in the response is not even 4618 * marginally correct. 4619 */ 4620 dev_warn(intf->si_dev, 4621 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n", 4622 (msg->data[0] >> 2) | 1, msg->data[1], 4623 msg->rsp[0] >> 2, msg->rsp[1]); 4624 4625 goto return_unspecified; 4626 } 4627 4628 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) { 4629 if ((msg->data[0] >> 2) & 1) { 4630 /* It's a response to a sent response. */ 4631 chan = 0; 4632 cc = msg->rsp[4]; 4633 goto process_response_response; 4634 } 4635 if (is_cmd) 4636 requeue = handle_ipmb_direct_rcv_cmd(intf, msg); 4637 else 4638 requeue = handle_ipmb_direct_rcv_rsp(intf, msg); 4639 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4640 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 4641 && (msg->user_data != NULL)) { 4642 /* 4643 * It's a response to a response we sent. For this we 4644 * deliver a send message response to the user. 4645 */ 4646 struct ipmi_recv_msg *recv_msg; 4647 4648 chan = msg->data[2] & 0x0f; 4649 if (chan >= IPMI_MAX_CHANNELS) 4650 /* Invalid channel number */ 4651 goto out; 4652 cc = msg->rsp[2]; 4653 4654 process_response_response: 4655 recv_msg = msg->user_data; 4656 4657 requeue = 0; 4658 if (!recv_msg) 4659 goto out; 4660 4661 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 4662 recv_msg->msg.data = recv_msg->msg_data; 4663 recv_msg->msg_data[0] = cc; 4664 recv_msg->msg.data_len = 1; 4665 deliver_local_response(intf, recv_msg); 4666 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4667 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 4668 struct ipmi_channel *chans; 4669 4670 /* It's from the receive queue. */ 4671 chan = msg->rsp[3] & 0xf; 4672 if (chan >= IPMI_MAX_CHANNELS) { 4673 /* Invalid channel number */ 4674 requeue = 0; 4675 goto out; 4676 } 4677 4678 /* 4679 * We need to make sure the channels have been initialized. 4680 * The channel_handler routine will set the "curr_channel" 4681 * equal to or greater than IPMI_MAX_CHANNELS when all the 4682 * channels for this interface have been initialized. 4683 */ 4684 if (!intf->channels_ready) { 4685 requeue = 0; /* Throw the message away */ 4686 goto out; 4687 } 4688 4689 chans = READ_ONCE(intf->channel_list)->c; 4690 4691 switch (chans[chan].medium) { 4692 case IPMI_CHANNEL_MEDIUM_IPMB: 4693 if (msg->rsp[4] & 0x04) { 4694 /* 4695 * It's a response, so find the 4696 * requesting message and send it up. 4697 */ 4698 requeue = handle_ipmb_get_msg_rsp(intf, msg); 4699 } else { 4700 /* 4701 * It's a command to the SMS from some other 4702 * entity. Handle that. 4703 */ 4704 requeue = handle_ipmb_get_msg_cmd(intf, msg); 4705 } 4706 break; 4707 4708 case IPMI_CHANNEL_MEDIUM_8023LAN: 4709 case IPMI_CHANNEL_MEDIUM_ASYNC: 4710 if (msg->rsp[6] & 0x04) { 4711 /* 4712 * It's a response, so find the 4713 * requesting message and send it up. 4714 */ 4715 requeue = handle_lan_get_msg_rsp(intf, msg); 4716 } else { 4717 /* 4718 * It's a command to the SMS from some other 4719 * entity. Handle that. 4720 */ 4721 requeue = handle_lan_get_msg_cmd(intf, msg); 4722 } 4723 break; 4724 4725 default: 4726 /* Check for OEM Channels. Clients had better 4727 register for these commands. */ 4728 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 4729 && (chans[chan].medium 4730 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 4731 requeue = handle_oem_get_msg_cmd(intf, msg); 4732 } else { 4733 /* 4734 * We don't handle the channel type, so just 4735 * free the message. 4736 */ 4737 requeue = 0; 4738 } 4739 } 4740 4741 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4742 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 4743 /* It's an asynchronous event. */ 4744 requeue = handle_read_event_rsp(intf, msg); 4745 } else { 4746 /* It's a response from the local BMC. */ 4747 requeue = handle_bmc_rsp(intf, msg); 4748 } 4749 4750 out: 4751 return requeue; 4752 } 4753 4754 /* 4755 * If there are messages in the queue or pretimeouts, handle them. 4756 */ 4757 static void handle_new_recv_msgs(struct ipmi_smi *intf) 4758 { 4759 struct ipmi_smi_msg *smi_msg; 4760 unsigned long flags = 0; 4761 int rv; 4762 int run_to_completion = intf->run_to_completion; 4763 4764 /* See if any waiting messages need to be processed. */ 4765 if (!run_to_completion) 4766 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4767 while (!list_empty(&intf->waiting_rcv_msgs)) { 4768 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 4769 struct ipmi_smi_msg, link); 4770 list_del(&smi_msg->link); 4771 if (!run_to_completion) 4772 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4773 flags); 4774 rv = handle_one_recv_msg(intf, smi_msg); 4775 if (!run_to_completion) 4776 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4777 if (rv > 0) { 4778 /* 4779 * To preserve message order, quit if we 4780 * can't handle a message. Add the message 4781 * back at the head, this is safe because this 4782 * tasklet is the only thing that pulls the 4783 * messages. 4784 */ 4785 list_add(&smi_msg->link, &intf->waiting_rcv_msgs); 4786 break; 4787 } else { 4788 if (rv == 0) 4789 /* Message handled */ 4790 ipmi_free_smi_msg(smi_msg); 4791 /* If rv < 0, fatal error, del but don't free. */ 4792 } 4793 } 4794 if (!run_to_completion) 4795 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 4796 4797 /* 4798 * If the pretimout count is non-zero, decrement one from it and 4799 * deliver pretimeouts to all the users. 4800 */ 4801 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 4802 struct ipmi_user *user; 4803 int index; 4804 4805 index = srcu_read_lock(&intf->users_srcu); 4806 list_for_each_entry_rcu(user, &intf->users, link) { 4807 if (user->handler->ipmi_watchdog_pretimeout) 4808 user->handler->ipmi_watchdog_pretimeout( 4809 user->handler_data); 4810 } 4811 srcu_read_unlock(&intf->users_srcu, index); 4812 } 4813 } 4814 4815 static void smi_recv_tasklet(struct tasklet_struct *t) 4816 { 4817 unsigned long flags = 0; /* keep us warning-free. */ 4818 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet); 4819 int run_to_completion = intf->run_to_completion; 4820 struct ipmi_smi_msg *newmsg = NULL; 4821 4822 /* 4823 * Start the next message if available. 4824 * 4825 * Do this here, not in the actual receiver, because we may deadlock 4826 * because the lower layer is allowed to hold locks while calling 4827 * message delivery. 4828 */ 4829 4830 rcu_read_lock(); 4831 4832 if (!run_to_completion) 4833 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4834 if (intf->curr_msg == NULL && !intf->in_shutdown) { 4835 struct list_head *entry = NULL; 4836 4837 /* Pick the high priority queue first. */ 4838 if (!list_empty(&intf->hp_xmit_msgs)) 4839 entry = intf->hp_xmit_msgs.next; 4840 else if (!list_empty(&intf->xmit_msgs)) 4841 entry = intf->xmit_msgs.next; 4842 4843 if (entry) { 4844 list_del(entry); 4845 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 4846 intf->curr_msg = newmsg; 4847 } 4848 } 4849 4850 if (!run_to_completion) 4851 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4852 if (newmsg) 4853 intf->handlers->sender(intf->send_info, newmsg); 4854 4855 rcu_read_unlock(); 4856 4857 handle_new_recv_msgs(intf); 4858 } 4859 4860 /* Handle a new message from the lower layer. */ 4861 void ipmi_smi_msg_received(struct ipmi_smi *intf, 4862 struct ipmi_smi_msg *msg) 4863 { 4864 unsigned long flags = 0; /* keep us warning-free. */ 4865 int run_to_completion = intf->run_to_completion; 4866 4867 /* 4868 * To preserve message order, we keep a queue and deliver from 4869 * a tasklet. 4870 */ 4871 if (!run_to_completion) 4872 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4873 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 4874 if (!run_to_completion) 4875 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4876 flags); 4877 4878 if (!run_to_completion) 4879 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4880 /* 4881 * We can get an asynchronous event or receive message in addition 4882 * to commands we send. 4883 */ 4884 if (msg == intf->curr_msg) 4885 intf->curr_msg = NULL; 4886 if (!run_to_completion) 4887 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4888 4889 if (run_to_completion) 4890 smi_recv_tasklet(&intf->recv_tasklet); 4891 else 4892 tasklet_schedule(&intf->recv_tasklet); 4893 } 4894 EXPORT_SYMBOL(ipmi_smi_msg_received); 4895 4896 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf) 4897 { 4898 if (intf->in_shutdown) 4899 return; 4900 4901 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 4902 tasklet_schedule(&intf->recv_tasklet); 4903 } 4904 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 4905 4906 static struct ipmi_smi_msg * 4907 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, 4908 unsigned char seq, long seqid) 4909 { 4910 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 4911 if (!smi_msg) 4912 /* 4913 * If we can't allocate the message, then just return, we 4914 * get 4 retries, so this should be ok. 4915 */ 4916 return NULL; 4917 4918 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4919 smi_msg->data_size = recv_msg->msg.data_len; 4920 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4921 4922 dev_dbg(intf->si_dev, "Resend: %*ph\n", 4923 smi_msg->data_size, smi_msg->data); 4924 4925 return smi_msg; 4926 } 4927 4928 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent, 4929 struct list_head *timeouts, 4930 unsigned long timeout_period, 4931 int slot, unsigned long *flags, 4932 bool *need_timer) 4933 { 4934 struct ipmi_recv_msg *msg; 4935 4936 if (intf->in_shutdown) 4937 return; 4938 4939 if (!ent->inuse) 4940 return; 4941 4942 if (timeout_period < ent->timeout) { 4943 ent->timeout -= timeout_period; 4944 *need_timer = true; 4945 return; 4946 } 4947 4948 if (ent->retries_left == 0) { 4949 /* The message has used all its retries. */ 4950 ent->inuse = 0; 4951 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES); 4952 msg = ent->recv_msg; 4953 list_add_tail(&msg->link, timeouts); 4954 if (ent->broadcast) 4955 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4956 else if (is_lan_addr(&ent->recv_msg->addr)) 4957 ipmi_inc_stat(intf, timed_out_lan_commands); 4958 else 4959 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4960 } else { 4961 struct ipmi_smi_msg *smi_msg; 4962 /* More retries, send again. */ 4963 4964 *need_timer = true; 4965 4966 /* 4967 * Start with the max timer, set to normal timer after 4968 * the message is sent. 4969 */ 4970 ent->timeout = MAX_MSG_TIMEOUT; 4971 ent->retries_left--; 4972 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4973 ent->seqid); 4974 if (!smi_msg) { 4975 if (is_lan_addr(&ent->recv_msg->addr)) 4976 ipmi_inc_stat(intf, 4977 dropped_rexmit_lan_commands); 4978 else 4979 ipmi_inc_stat(intf, 4980 dropped_rexmit_ipmb_commands); 4981 return; 4982 } 4983 4984 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4985 4986 /* 4987 * Send the new message. We send with a zero 4988 * priority. It timed out, I doubt time is that 4989 * critical now, and high priority messages are really 4990 * only for messages to the local MC, which don't get 4991 * resent. 4992 */ 4993 if (intf->handlers) { 4994 if (is_lan_addr(&ent->recv_msg->addr)) 4995 ipmi_inc_stat(intf, 4996 retransmitted_lan_commands); 4997 else 4998 ipmi_inc_stat(intf, 4999 retransmitted_ipmb_commands); 5000 5001 smi_send(intf, intf->handlers, smi_msg, 0); 5002 } else 5003 ipmi_free_smi_msg(smi_msg); 5004 5005 spin_lock_irqsave(&intf->seq_lock, *flags); 5006 } 5007 } 5008 5009 static bool ipmi_timeout_handler(struct ipmi_smi *intf, 5010 unsigned long timeout_period) 5011 { 5012 struct list_head timeouts; 5013 struct ipmi_recv_msg *msg, *msg2; 5014 unsigned long flags; 5015 int i; 5016 bool need_timer = false; 5017 5018 if (!intf->bmc_registered) { 5019 kref_get(&intf->refcount); 5020 if (!schedule_work(&intf->bmc_reg_work)) { 5021 kref_put(&intf->refcount, intf_free); 5022 need_timer = true; 5023 } 5024 } 5025 5026 /* 5027 * Go through the seq table and find any messages that 5028 * have timed out, putting them in the timeouts 5029 * list. 5030 */ 5031 INIT_LIST_HEAD(&timeouts); 5032 spin_lock_irqsave(&intf->seq_lock, flags); 5033 if (intf->ipmb_maintenance_mode_timeout) { 5034 if (intf->ipmb_maintenance_mode_timeout <= timeout_period) 5035 intf->ipmb_maintenance_mode_timeout = 0; 5036 else 5037 intf->ipmb_maintenance_mode_timeout -= timeout_period; 5038 } 5039 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 5040 check_msg_timeout(intf, &intf->seq_table[i], 5041 &timeouts, timeout_period, i, 5042 &flags, &need_timer); 5043 spin_unlock_irqrestore(&intf->seq_lock, flags); 5044 5045 list_for_each_entry_safe(msg, msg2, &timeouts, link) 5046 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE); 5047 5048 /* 5049 * Maintenance mode handling. Check the timeout 5050 * optimistically before we claim the lock. It may 5051 * mean a timeout gets missed occasionally, but that 5052 * only means the timeout gets extended by one period 5053 * in that case. No big deal, and it avoids the lock 5054 * most of the time. 5055 */ 5056 if (intf->auto_maintenance_timeout > 0) { 5057 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 5058 if (intf->auto_maintenance_timeout > 0) { 5059 intf->auto_maintenance_timeout 5060 -= timeout_period; 5061 if (!intf->maintenance_mode 5062 && (intf->auto_maintenance_timeout <= 0)) { 5063 intf->maintenance_mode_enable = false; 5064 maintenance_mode_update(intf); 5065 } 5066 } 5067 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 5068 flags); 5069 } 5070 5071 tasklet_schedule(&intf->recv_tasklet); 5072 5073 return need_timer; 5074 } 5075 5076 static void ipmi_request_event(struct ipmi_smi *intf) 5077 { 5078 /* No event requests when in maintenance mode. */ 5079 if (intf->maintenance_mode_enable) 5080 return; 5081 5082 if (!intf->in_shutdown) 5083 intf->handlers->request_events(intf->send_info); 5084 } 5085 5086 static struct timer_list ipmi_timer; 5087 5088 static atomic_t stop_operation; 5089 5090 static void ipmi_timeout(struct timer_list *unused) 5091 { 5092 struct ipmi_smi *intf; 5093 bool need_timer = false; 5094 int index; 5095 5096 if (atomic_read(&stop_operation)) 5097 return; 5098 5099 index = srcu_read_lock(&ipmi_interfaces_srcu); 5100 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 5101 if (atomic_read(&intf->event_waiters)) { 5102 intf->ticks_to_req_ev--; 5103 if (intf->ticks_to_req_ev == 0) { 5104 ipmi_request_event(intf); 5105 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 5106 } 5107 need_timer = true; 5108 } 5109 5110 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 5111 } 5112 srcu_read_unlock(&ipmi_interfaces_srcu, index); 5113 5114 if (need_timer) 5115 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5116 } 5117 5118 static void need_waiter(struct ipmi_smi *intf) 5119 { 5120 /* Racy, but worst case we start the timer twice. */ 5121 if (!timer_pending(&ipmi_timer)) 5122 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5123 } 5124 5125 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 5126 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 5127 5128 static void free_smi_msg(struct ipmi_smi_msg *msg) 5129 { 5130 atomic_dec(&smi_msg_inuse_count); 5131 /* Try to keep as much stuff out of the panic path as possible. */ 5132 if (!oops_in_progress) 5133 kfree(msg); 5134 } 5135 5136 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 5137 { 5138 struct ipmi_smi_msg *rv; 5139 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 5140 if (rv) { 5141 rv->done = free_smi_msg; 5142 rv->user_data = NULL; 5143 rv->type = IPMI_SMI_MSG_TYPE_NORMAL; 5144 atomic_inc(&smi_msg_inuse_count); 5145 } 5146 return rv; 5147 } 5148 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 5149 5150 static void free_recv_msg(struct ipmi_recv_msg *msg) 5151 { 5152 atomic_dec(&recv_msg_inuse_count); 5153 /* Try to keep as much stuff out of the panic path as possible. */ 5154 if (!oops_in_progress) 5155 kfree(msg); 5156 } 5157 5158 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 5159 { 5160 struct ipmi_recv_msg *rv; 5161 5162 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 5163 if (rv) { 5164 rv->user = NULL; 5165 rv->done = free_recv_msg; 5166 atomic_inc(&recv_msg_inuse_count); 5167 } 5168 return rv; 5169 } 5170 5171 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 5172 { 5173 if (msg->user && !oops_in_progress) 5174 kref_put(&msg->user->refcount, free_user); 5175 msg->done(msg); 5176 } 5177 EXPORT_SYMBOL(ipmi_free_recv_msg); 5178 5179 static atomic_t panic_done_count = ATOMIC_INIT(0); 5180 5181 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 5182 { 5183 atomic_dec(&panic_done_count); 5184 } 5185 5186 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 5187 { 5188 atomic_dec(&panic_done_count); 5189 } 5190 5191 /* 5192 * Inside a panic, send a message and wait for a response. 5193 */ 5194 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf, 5195 struct ipmi_addr *addr, 5196 struct kernel_ipmi_msg *msg) 5197 { 5198 struct ipmi_smi_msg smi_msg; 5199 struct ipmi_recv_msg recv_msg; 5200 int rv; 5201 5202 smi_msg.done = dummy_smi_done_handler; 5203 recv_msg.done = dummy_recv_done_handler; 5204 atomic_add(2, &panic_done_count); 5205 rv = i_ipmi_request(NULL, 5206 intf, 5207 addr, 5208 0, 5209 msg, 5210 intf, 5211 &smi_msg, 5212 &recv_msg, 5213 0, 5214 intf->addrinfo[0].address, 5215 intf->addrinfo[0].lun, 5216 0, 1); /* Don't retry, and don't wait. */ 5217 if (rv) 5218 atomic_sub(2, &panic_done_count); 5219 else if (intf->handlers->flush_messages) 5220 intf->handlers->flush_messages(intf->send_info); 5221 5222 while (atomic_read(&panic_done_count) != 0) 5223 ipmi_poll(intf); 5224 } 5225 5226 static void event_receiver_fetcher(struct ipmi_smi *intf, 5227 struct ipmi_recv_msg *msg) 5228 { 5229 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5230 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 5231 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 5232 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5233 /* A get event receiver command, save it. */ 5234 intf->event_receiver = msg->msg.data[1]; 5235 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 5236 } 5237 } 5238 5239 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg) 5240 { 5241 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 5242 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 5243 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 5244 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 5245 /* 5246 * A get device id command, save if we are an event 5247 * receiver or generator. 5248 */ 5249 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 5250 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 5251 } 5252 } 5253 5254 static void send_panic_events(struct ipmi_smi *intf, char *str) 5255 { 5256 struct kernel_ipmi_msg msg; 5257 unsigned char data[16]; 5258 struct ipmi_system_interface_addr *si; 5259 struct ipmi_addr addr; 5260 char *p = str; 5261 struct ipmi_ipmb_addr *ipmb; 5262 int j; 5263 5264 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE) 5265 return; 5266 5267 si = (struct ipmi_system_interface_addr *) &addr; 5268 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5269 si->channel = IPMI_BMC_CHANNEL; 5270 si->lun = 0; 5271 5272 /* Fill in an event telling that we have failed. */ 5273 msg.netfn = 0x04; /* Sensor or Event. */ 5274 msg.cmd = 2; /* Platform event command. */ 5275 msg.data = data; 5276 msg.data_len = 8; 5277 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 5278 data[1] = 0x03; /* This is for IPMI 1.0. */ 5279 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 5280 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 5281 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 5282 5283 /* 5284 * Put a few breadcrumbs in. Hopefully later we can add more things 5285 * to make the panic events more useful. 5286 */ 5287 if (str) { 5288 data[3] = str[0]; 5289 data[6] = str[1]; 5290 data[7] = str[2]; 5291 } 5292 5293 /* Send the event announcing the panic. */ 5294 ipmi_panic_request_and_wait(intf, &addr, &msg); 5295 5296 /* 5297 * On every interface, dump a bunch of OEM event holding the 5298 * string. 5299 */ 5300 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str) 5301 return; 5302 5303 /* 5304 * intf_num is used as an marker to tell if the 5305 * interface is valid. Thus we need a read barrier to 5306 * make sure data fetched before checking intf_num 5307 * won't be used. 5308 */ 5309 smp_rmb(); 5310 5311 /* 5312 * First job here is to figure out where to send the 5313 * OEM events. There's no way in IPMI to send OEM 5314 * events using an event send command, so we have to 5315 * find the SEL to put them in and stick them in 5316 * there. 5317 */ 5318 5319 /* Get capabilities from the get device id. */ 5320 intf->local_sel_device = 0; 5321 intf->local_event_generator = 0; 5322 intf->event_receiver = 0; 5323 5324 /* Request the device info from the local MC. */ 5325 msg.netfn = IPMI_NETFN_APP_REQUEST; 5326 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 5327 msg.data = NULL; 5328 msg.data_len = 0; 5329 intf->null_user_handler = device_id_fetcher; 5330 ipmi_panic_request_and_wait(intf, &addr, &msg); 5331 5332 if (intf->local_event_generator) { 5333 /* Request the event receiver from the local MC. */ 5334 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 5335 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 5336 msg.data = NULL; 5337 msg.data_len = 0; 5338 intf->null_user_handler = event_receiver_fetcher; 5339 ipmi_panic_request_and_wait(intf, &addr, &msg); 5340 } 5341 intf->null_user_handler = NULL; 5342 5343 /* 5344 * Validate the event receiver. The low bit must not 5345 * be 1 (it must be a valid IPMB address), it cannot 5346 * be zero, and it must not be my address. 5347 */ 5348 if (((intf->event_receiver & 1) == 0) 5349 && (intf->event_receiver != 0) 5350 && (intf->event_receiver != intf->addrinfo[0].address)) { 5351 /* 5352 * The event receiver is valid, send an IPMB 5353 * message. 5354 */ 5355 ipmb = (struct ipmi_ipmb_addr *) &addr; 5356 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 5357 ipmb->channel = 0; /* FIXME - is this right? */ 5358 ipmb->lun = intf->event_receiver_lun; 5359 ipmb->slave_addr = intf->event_receiver; 5360 } else if (intf->local_sel_device) { 5361 /* 5362 * The event receiver was not valid (or was 5363 * me), but I am an SEL device, just dump it 5364 * in my SEL. 5365 */ 5366 si = (struct ipmi_system_interface_addr *) &addr; 5367 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5368 si->channel = IPMI_BMC_CHANNEL; 5369 si->lun = 0; 5370 } else 5371 return; /* No where to send the event. */ 5372 5373 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 5374 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 5375 msg.data = data; 5376 msg.data_len = 16; 5377 5378 j = 0; 5379 while (*p) { 5380 int size = strlen(p); 5381 5382 if (size > 11) 5383 size = 11; 5384 data[0] = 0; 5385 data[1] = 0; 5386 data[2] = 0xf0; /* OEM event without timestamp. */ 5387 data[3] = intf->addrinfo[0].address; 5388 data[4] = j++; /* sequence # */ 5389 /* 5390 * Always give 11 bytes, so strncpy will fill 5391 * it with zeroes for me. 5392 */ 5393 strncpy(data+5, p, 11); 5394 p += size; 5395 5396 ipmi_panic_request_and_wait(intf, &addr, &msg); 5397 } 5398 } 5399 5400 static int has_panicked; 5401 5402 static int panic_event(struct notifier_block *this, 5403 unsigned long event, 5404 void *ptr) 5405 { 5406 struct ipmi_smi *intf; 5407 struct ipmi_user *user; 5408 5409 if (has_panicked) 5410 return NOTIFY_DONE; 5411 has_panicked = 1; 5412 5413 /* For every registered interface, set it to run to completion. */ 5414 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 5415 if (!intf->handlers || intf->intf_num == -1) 5416 /* Interface is not ready. */ 5417 continue; 5418 5419 if (!intf->handlers->poll) 5420 continue; 5421 5422 /* 5423 * If we were interrupted while locking xmit_msgs_lock or 5424 * waiting_rcv_msgs_lock, the corresponding list may be 5425 * corrupted. In this case, drop items on the list for 5426 * the safety. 5427 */ 5428 if (!spin_trylock(&intf->xmit_msgs_lock)) { 5429 INIT_LIST_HEAD(&intf->xmit_msgs); 5430 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 5431 } else 5432 spin_unlock(&intf->xmit_msgs_lock); 5433 5434 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 5435 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 5436 else 5437 spin_unlock(&intf->waiting_rcv_msgs_lock); 5438 5439 intf->run_to_completion = 1; 5440 if (intf->handlers->set_run_to_completion) 5441 intf->handlers->set_run_to_completion(intf->send_info, 5442 1); 5443 5444 list_for_each_entry_rcu(user, &intf->users, link) { 5445 if (user->handler->ipmi_panic_handler) 5446 user->handler->ipmi_panic_handler( 5447 user->handler_data); 5448 } 5449 5450 send_panic_events(intf, ptr); 5451 } 5452 5453 return NOTIFY_DONE; 5454 } 5455 5456 /* Must be called with ipmi_interfaces_mutex held. */ 5457 static int ipmi_register_driver(void) 5458 { 5459 int rv; 5460 5461 if (drvregistered) 5462 return 0; 5463 5464 rv = driver_register(&ipmidriver.driver); 5465 if (rv) 5466 pr_err("Could not register IPMI driver\n"); 5467 else 5468 drvregistered = true; 5469 return rv; 5470 } 5471 5472 static struct notifier_block panic_block = { 5473 .notifier_call = panic_event, 5474 .next = NULL, 5475 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 5476 }; 5477 5478 static int ipmi_init_msghandler(void) 5479 { 5480 int rv; 5481 5482 mutex_lock(&ipmi_interfaces_mutex); 5483 rv = ipmi_register_driver(); 5484 if (rv) 5485 goto out; 5486 if (initialized) 5487 goto out; 5488 5489 rv = init_srcu_struct(&ipmi_interfaces_srcu); 5490 if (rv) 5491 goto out; 5492 5493 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq"); 5494 if (!remove_work_wq) { 5495 pr_err("unable to create ipmi-msghandler-remove-wq workqueue"); 5496 rv = -ENOMEM; 5497 goto out_wq; 5498 } 5499 5500 timer_setup(&ipmi_timer, ipmi_timeout, 0); 5501 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5502 5503 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 5504 5505 initialized = true; 5506 5507 out_wq: 5508 if (rv) 5509 cleanup_srcu_struct(&ipmi_interfaces_srcu); 5510 out: 5511 mutex_unlock(&ipmi_interfaces_mutex); 5512 return rv; 5513 } 5514 5515 static int __init ipmi_init_msghandler_mod(void) 5516 { 5517 int rv; 5518 5519 pr_info("version " IPMI_DRIVER_VERSION "\n"); 5520 5521 mutex_lock(&ipmi_interfaces_mutex); 5522 rv = ipmi_register_driver(); 5523 mutex_unlock(&ipmi_interfaces_mutex); 5524 5525 return rv; 5526 } 5527 5528 static void __exit cleanup_ipmi(void) 5529 { 5530 int count; 5531 5532 if (initialized) { 5533 destroy_workqueue(remove_work_wq); 5534 5535 atomic_notifier_chain_unregister(&panic_notifier_list, 5536 &panic_block); 5537 5538 /* 5539 * This can't be called if any interfaces exist, so no worry 5540 * about shutting down the interfaces. 5541 */ 5542 5543 /* 5544 * Tell the timer to stop, then wait for it to stop. This 5545 * avoids problems with race conditions removing the timer 5546 * here. 5547 */ 5548 atomic_set(&stop_operation, 1); 5549 del_timer_sync(&ipmi_timer); 5550 5551 initialized = false; 5552 5553 /* Check for buffer leaks. */ 5554 count = atomic_read(&smi_msg_inuse_count); 5555 if (count != 0) 5556 pr_warn("SMI message count %d at exit\n", count); 5557 count = atomic_read(&recv_msg_inuse_count); 5558 if (count != 0) 5559 pr_warn("recv message count %d at exit\n", count); 5560 5561 cleanup_srcu_struct(&ipmi_interfaces_srcu); 5562 } 5563 if (drvregistered) 5564 driver_unregister(&ipmidriver.driver); 5565 } 5566 module_exit(cleanup_ipmi); 5567 5568 module_init(ipmi_init_msghandler_mod); 5569 MODULE_LICENSE("GPL"); 5570 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 5571 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface."); 5572 MODULE_VERSION(IPMI_DRIVER_VERSION); 5573 MODULE_SOFTDEP("post: ipmi_devintf"); 5574