xref: /openbmc/linux/drivers/char/ipmi/ipmi_kcs_sm.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_kcs_sm.c
4  *
5  * State machine for handling IPMI KCS interfaces.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 /*
15  * This state machine is taken from the state machine in the IPMI spec,
16  * pretty much verbatim.  If you have questions about the states, see
17  * that document.
18  */
19 
20 #define DEBUG /* So dev_dbg() is always available. */
21 
22 #include <linux/kernel.h> /* For printk. */
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/string.h>
26 #include <linux/jiffies.h>
27 #include <linux/ipmi_msgdefs.h>		/* for completion codes */
28 #include "ipmi_si_sm.h"
29 
30 /* kcs_debug is a bit-field
31  *	KCS_DEBUG_ENABLE -	turned on for now
32  *	KCS_DEBUG_MSG    -	commands and their responses
33  *	KCS_DEBUG_STATES -	state machine
34  */
35 #define KCS_DEBUG_STATES	4
36 #define KCS_DEBUG_MSG		2
37 #define	KCS_DEBUG_ENABLE	1
38 
39 static int kcs_debug;
40 module_param(kcs_debug, int, 0644);
41 MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
42 
43 /* The states the KCS driver may be in. */
44 enum kcs_states {
45 	/* The KCS interface is currently doing nothing. */
46 	KCS_IDLE,
47 
48 	/*
49 	 * We are starting an operation.  The data is in the output
50 	 * buffer, but nothing has been done to the interface yet.  This
51 	 * was added to the state machine in the spec to wait for the
52 	 * initial IBF.
53 	 */
54 	KCS_START_OP,
55 
56 	/* We have written a write cmd to the interface. */
57 	KCS_WAIT_WRITE_START,
58 
59 	/* We are writing bytes to the interface. */
60 	KCS_WAIT_WRITE,
61 
62 	/*
63 	 * We have written the write end cmd to the interface, and
64 	 * still need to write the last byte.
65 	 */
66 	KCS_WAIT_WRITE_END,
67 
68 	/* We are waiting to read data from the interface. */
69 	KCS_WAIT_READ,
70 
71 	/*
72 	 * State to transition to the error handler, this was added to
73 	 * the state machine in the spec to be sure IBF was there.
74 	 */
75 	KCS_ERROR0,
76 
77 	/*
78 	 * First stage error handler, wait for the interface to
79 	 * respond.
80 	 */
81 	KCS_ERROR1,
82 
83 	/*
84 	 * The abort cmd has been written, wait for the interface to
85 	 * respond.
86 	 */
87 	KCS_ERROR2,
88 
89 	/*
90 	 * We wrote some data to the interface, wait for it to switch
91 	 * to read mode.
92 	 */
93 	KCS_ERROR3,
94 
95 	/* The hardware failed to follow the state machine. */
96 	KCS_HOSED
97 };
98 
99 #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
100 #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
101 
102 /* Timeouts in microseconds. */
103 #define IBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
104 #define OBF_RETRY_TIMEOUT (5*USEC_PER_SEC)
105 #define MAX_ERROR_RETRIES 10
106 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
107 
108 struct si_sm_data {
109 	enum kcs_states  state;
110 	struct si_sm_io *io;
111 	unsigned char    write_data[MAX_KCS_WRITE_SIZE];
112 	int              write_pos;
113 	int              write_count;
114 	int              orig_write_count;
115 	unsigned char    read_data[MAX_KCS_READ_SIZE];
116 	int              read_pos;
117 	int	         truncated;
118 
119 	unsigned int  error_retries;
120 	long          ibf_timeout;
121 	long          obf_timeout;
122 	unsigned long  error0_timeout;
123 };
124 
125 static unsigned int init_kcs_data_with_state(struct si_sm_data *kcs,
126 				  struct si_sm_io *io, enum kcs_states state)
127 {
128 	kcs->state = state;
129 	kcs->io = io;
130 	kcs->write_pos = 0;
131 	kcs->write_count = 0;
132 	kcs->orig_write_count = 0;
133 	kcs->read_pos = 0;
134 	kcs->error_retries = 0;
135 	kcs->truncated = 0;
136 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
137 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
138 
139 	/* Reserve 2 I/O bytes. */
140 	return 2;
141 }
142 
143 static unsigned int init_kcs_data(struct si_sm_data *kcs,
144 				  struct si_sm_io *io)
145 {
146 	return init_kcs_data_with_state(kcs, io, KCS_IDLE);
147 }
148 
149 static inline unsigned char read_status(struct si_sm_data *kcs)
150 {
151 	return kcs->io->inputb(kcs->io, 1);
152 }
153 
154 static inline unsigned char read_data(struct si_sm_data *kcs)
155 {
156 	return kcs->io->inputb(kcs->io, 0);
157 }
158 
159 static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
160 {
161 	kcs->io->outputb(kcs->io, 1, data);
162 }
163 
164 static inline void write_data(struct si_sm_data *kcs, unsigned char data)
165 {
166 	kcs->io->outputb(kcs->io, 0, data);
167 }
168 
169 /* Control codes. */
170 #define KCS_GET_STATUS_ABORT	0x60
171 #define KCS_WRITE_START		0x61
172 #define KCS_WRITE_END		0x62
173 #define KCS_READ_BYTE		0x68
174 
175 /* Status bits. */
176 #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
177 #define KCS_IDLE_STATE	0
178 #define KCS_READ_STATE	1
179 #define KCS_WRITE_STATE	2
180 #define KCS_ERROR_STATE	3
181 #define GET_STATUS_ATN(status) ((status) & 0x04)
182 #define GET_STATUS_IBF(status) ((status) & 0x02)
183 #define GET_STATUS_OBF(status) ((status) & 0x01)
184 
185 
186 static inline void write_next_byte(struct si_sm_data *kcs)
187 {
188 	write_data(kcs, kcs->write_data[kcs->write_pos]);
189 	(kcs->write_pos)++;
190 	(kcs->write_count)--;
191 }
192 
193 static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
194 {
195 	(kcs->error_retries)++;
196 	if (kcs->error_retries > MAX_ERROR_RETRIES) {
197 		if (kcs_debug & KCS_DEBUG_ENABLE)
198 			dev_dbg(kcs->io->dev, "ipmi_kcs_sm: kcs hosed: %s\n",
199 				reason);
200 		kcs->state = KCS_HOSED;
201 	} else {
202 		kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
203 		kcs->state = KCS_ERROR0;
204 	}
205 }
206 
207 static inline void read_next_byte(struct si_sm_data *kcs)
208 {
209 	if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
210 		/* Throw the data away and mark it truncated. */
211 		read_data(kcs);
212 		kcs->truncated = 1;
213 	} else {
214 		kcs->read_data[kcs->read_pos] = read_data(kcs);
215 		(kcs->read_pos)++;
216 	}
217 	write_data(kcs, KCS_READ_BYTE);
218 }
219 
220 static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
221 			    long time)
222 {
223 	if (GET_STATUS_IBF(status)) {
224 		kcs->ibf_timeout -= time;
225 		if (kcs->ibf_timeout < 0) {
226 			start_error_recovery(kcs, "IBF not ready in time");
227 			kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
228 			return 1;
229 		}
230 		return 0;
231 	}
232 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
233 	return 1;
234 }
235 
236 static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
237 			    long time)
238 {
239 	if (!GET_STATUS_OBF(status)) {
240 		kcs->obf_timeout -= time;
241 		if (kcs->obf_timeout < 0) {
242 			kcs->obf_timeout = OBF_RETRY_TIMEOUT;
243 			start_error_recovery(kcs, "OBF not ready in time");
244 			return 1;
245 		}
246 		return 0;
247 	}
248 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
249 	return 1;
250 }
251 
252 static void clear_obf(struct si_sm_data *kcs, unsigned char status)
253 {
254 	if (GET_STATUS_OBF(status))
255 		read_data(kcs);
256 }
257 
258 static void restart_kcs_transaction(struct si_sm_data *kcs)
259 {
260 	kcs->write_count = kcs->orig_write_count;
261 	kcs->write_pos = 0;
262 	kcs->read_pos = 0;
263 	kcs->state = KCS_WAIT_WRITE_START;
264 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
265 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
266 	write_cmd(kcs, KCS_WRITE_START);
267 }
268 
269 static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
270 				 unsigned int size)
271 {
272 	unsigned int i;
273 
274 	if (size < 2)
275 		return IPMI_REQ_LEN_INVALID_ERR;
276 	if (size > MAX_KCS_WRITE_SIZE)
277 		return IPMI_REQ_LEN_EXCEEDED_ERR;
278 
279 	if (kcs->state != KCS_IDLE) {
280 		dev_warn(kcs->io->dev, "KCS in invalid state %d\n", kcs->state);
281 		return IPMI_NOT_IN_MY_STATE_ERR;
282 	}
283 
284 	if (kcs_debug & KCS_DEBUG_MSG) {
285 		dev_dbg(kcs->io->dev, "%s -", __func__);
286 		for (i = 0; i < size; i++)
287 			pr_cont(" %02x", data[i]);
288 		pr_cont("\n");
289 	}
290 	kcs->error_retries = 0;
291 	memcpy(kcs->write_data, data, size);
292 	kcs->write_count = size;
293 	kcs->orig_write_count = size;
294 	kcs->write_pos = 0;
295 	kcs->read_pos = 0;
296 	kcs->state = KCS_START_OP;
297 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
298 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
299 	return 0;
300 }
301 
302 static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
303 			  unsigned int length)
304 {
305 	if (length < kcs->read_pos) {
306 		kcs->read_pos = length;
307 		kcs->truncated = 1;
308 	}
309 
310 	memcpy(data, kcs->read_data, kcs->read_pos);
311 
312 	if ((length >= 3) && (kcs->read_pos < 3)) {
313 		/* Guarantee that we return at least 3 bytes, with an
314 		   error in the third byte if it is too short. */
315 		data[2] = IPMI_ERR_UNSPECIFIED;
316 		kcs->read_pos = 3;
317 	}
318 	if (kcs->truncated) {
319 		/*
320 		 * Report a truncated error.  We might overwrite
321 		 * another error, but that's too bad, the user needs
322 		 * to know it was truncated.
323 		 */
324 		data[2] = IPMI_ERR_MSG_TRUNCATED;
325 		kcs->truncated = 0;
326 	}
327 
328 	return kcs->read_pos;
329 }
330 
331 /*
332  * This implements the state machine defined in the IPMI manual, see
333  * that for details on how this works.  Divide that flowchart into
334  * sections delimited by "Wait for IBF" and this will become clear.
335  */
336 static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
337 {
338 	unsigned char status;
339 	unsigned char state;
340 
341 	status = read_status(kcs);
342 
343 	if (kcs_debug & KCS_DEBUG_STATES)
344 		dev_dbg(kcs->io->dev,
345 			"KCS: State = %d, %x\n", kcs->state, status);
346 
347 	/* All states wait for ibf, so just do it here. */
348 	if (!check_ibf(kcs, status, time))
349 		return SI_SM_CALL_WITH_DELAY;
350 
351 	/* Just about everything looks at the KCS state, so grab that, too. */
352 	state = GET_STATUS_STATE(status);
353 
354 	switch (kcs->state) {
355 	case KCS_IDLE:
356 		/* If there's and interrupt source, turn it off. */
357 		clear_obf(kcs, status);
358 
359 		if (GET_STATUS_ATN(status))
360 			return SI_SM_ATTN;
361 		else
362 			return SI_SM_IDLE;
363 
364 	case KCS_START_OP:
365 		if (state != KCS_IDLE_STATE) {
366 			start_error_recovery(kcs,
367 					     "State machine not idle at start");
368 			break;
369 		}
370 
371 		clear_obf(kcs, status);
372 		write_cmd(kcs, KCS_WRITE_START);
373 		kcs->state = KCS_WAIT_WRITE_START;
374 		break;
375 
376 	case KCS_WAIT_WRITE_START:
377 		if (state != KCS_WRITE_STATE) {
378 			start_error_recovery(
379 				kcs,
380 				"Not in write state at write start");
381 			break;
382 		}
383 		read_data(kcs);
384 		if (kcs->write_count == 1) {
385 			write_cmd(kcs, KCS_WRITE_END);
386 			kcs->state = KCS_WAIT_WRITE_END;
387 		} else {
388 			write_next_byte(kcs);
389 			kcs->state = KCS_WAIT_WRITE;
390 		}
391 		break;
392 
393 	case KCS_WAIT_WRITE:
394 		if (state != KCS_WRITE_STATE) {
395 			start_error_recovery(kcs,
396 					     "Not in write state for write");
397 			break;
398 		}
399 		clear_obf(kcs, status);
400 		if (kcs->write_count == 1) {
401 			write_cmd(kcs, KCS_WRITE_END);
402 			kcs->state = KCS_WAIT_WRITE_END;
403 		} else {
404 			write_next_byte(kcs);
405 		}
406 		break;
407 
408 	case KCS_WAIT_WRITE_END:
409 		if (state != KCS_WRITE_STATE) {
410 			start_error_recovery(kcs,
411 					     "Not in write state"
412 					     " for write end");
413 			break;
414 		}
415 		clear_obf(kcs, status);
416 		write_next_byte(kcs);
417 		kcs->state = KCS_WAIT_READ;
418 		break;
419 
420 	case KCS_WAIT_READ:
421 		if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
422 			start_error_recovery(
423 				kcs,
424 				"Not in read or idle in read state");
425 			break;
426 		}
427 
428 		if (state == KCS_READ_STATE) {
429 			if (!check_obf(kcs, status, time))
430 				return SI_SM_CALL_WITH_DELAY;
431 			read_next_byte(kcs);
432 		} else {
433 			/*
434 			 * We don't implement this exactly like the state
435 			 * machine in the spec.  Some broken hardware
436 			 * does not write the final dummy byte to the
437 			 * read register.  Thus obf will never go high
438 			 * here.  We just go straight to idle, and we
439 			 * handle clearing out obf in idle state if it
440 			 * happens to come in.
441 			 */
442 			clear_obf(kcs, status);
443 			kcs->orig_write_count = 0;
444 			kcs->state = KCS_IDLE;
445 			return SI_SM_TRANSACTION_COMPLETE;
446 		}
447 		break;
448 
449 	case KCS_ERROR0:
450 		clear_obf(kcs, status);
451 		status = read_status(kcs);
452 		if (GET_STATUS_OBF(status))
453 			/* controller isn't responding */
454 			if (time_before(jiffies, kcs->error0_timeout))
455 				return SI_SM_CALL_WITH_TICK_DELAY;
456 		write_cmd(kcs, KCS_GET_STATUS_ABORT);
457 		kcs->state = KCS_ERROR1;
458 		break;
459 
460 	case KCS_ERROR1:
461 		clear_obf(kcs, status);
462 		write_data(kcs, 0);
463 		kcs->state = KCS_ERROR2;
464 		break;
465 
466 	case KCS_ERROR2:
467 		if (state != KCS_READ_STATE) {
468 			start_error_recovery(kcs,
469 					     "Not in read state for error2");
470 			break;
471 		}
472 		if (!check_obf(kcs, status, time))
473 			return SI_SM_CALL_WITH_DELAY;
474 
475 		clear_obf(kcs, status);
476 		write_data(kcs, KCS_READ_BYTE);
477 		kcs->state = KCS_ERROR3;
478 		break;
479 
480 	case KCS_ERROR3:
481 		if (state != KCS_IDLE_STATE) {
482 			start_error_recovery(kcs,
483 					     "Not in idle state for error3");
484 			break;
485 		}
486 
487 		if (!check_obf(kcs, status, time))
488 			return SI_SM_CALL_WITH_DELAY;
489 
490 		clear_obf(kcs, status);
491 		if (kcs->orig_write_count) {
492 			restart_kcs_transaction(kcs);
493 		} else {
494 			kcs->state = KCS_IDLE;
495 			return SI_SM_TRANSACTION_COMPLETE;
496 		}
497 		break;
498 
499 	case KCS_HOSED:
500 		break;
501 	}
502 
503 	if (kcs->state == KCS_HOSED) {
504 		init_kcs_data_with_state(kcs, kcs->io, KCS_ERROR0);
505 		return SI_SM_HOSED;
506 	}
507 
508 	return SI_SM_CALL_WITHOUT_DELAY;
509 }
510 
511 static int kcs_size(void)
512 {
513 	return sizeof(struct si_sm_data);
514 }
515 
516 static int kcs_detect(struct si_sm_data *kcs)
517 {
518 	/*
519 	 * It's impossible for the KCS status register to be all 1's,
520 	 * (assuming a properly functioning, self-initialized BMC)
521 	 * but that's what you get from reading a bogus address, so we
522 	 * test that first.
523 	 */
524 	if (read_status(kcs) == 0xff)
525 		return 1;
526 
527 	return 0;
528 }
529 
530 static void kcs_cleanup(struct si_sm_data *kcs)
531 {
532 }
533 
534 const struct si_sm_handlers kcs_smi_handlers = {
535 	.init_data         = init_kcs_data,
536 	.start_transaction = start_kcs_transaction,
537 	.get_result        = get_kcs_result,
538 	.event             = kcs_event,
539 	.detect            = kcs_detect,
540 	.cleanup           = kcs_cleanup,
541 	.size              = kcs_size,
542 };
543