xref: /openbmc/linux/drivers/char/ipmi/ipmi_kcs_sm.c (revision a09d2831)
1 /*
2  * ipmi_kcs_sm.c
3  *
4  * State machine for handling IPMI KCS interfaces.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 /*
35  * This state machine is taken from the state machine in the IPMI spec,
36  * pretty much verbatim.  If you have questions about the states, see
37  * that document.
38  */
39 
40 #include <linux/kernel.h> /* For printk. */
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <linux/string.h>
44 #include <linux/jiffies.h>
45 #include <linux/ipmi_msgdefs.h>		/* for completion codes */
46 #include "ipmi_si_sm.h"
47 
48 /* kcs_debug is a bit-field
49  *	KCS_DEBUG_ENABLE -	turned on for now
50  *	KCS_DEBUG_MSG    -	commands and their responses
51  *	KCS_DEBUG_STATES -	state machine
52  */
53 #define KCS_DEBUG_STATES	4
54 #define KCS_DEBUG_MSG		2
55 #define	KCS_DEBUG_ENABLE	1
56 
57 static int kcs_debug;
58 module_param(kcs_debug, int, 0644);
59 MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
60 
61 /* The states the KCS driver may be in. */
62 enum kcs_states {
63 	/* The KCS interface is currently doing nothing. */
64 	KCS_IDLE,
65 
66 	/*
67 	 * We are starting an operation.  The data is in the output
68 	 * buffer, but nothing has been done to the interface yet.  This
69 	 * was added to the state machine in the spec to wait for the
70 	 * initial IBF.
71 	 */
72 	KCS_START_OP,
73 
74 	/* We have written a write cmd to the interface. */
75 	KCS_WAIT_WRITE_START,
76 
77 	/* We are writing bytes to the interface. */
78 	KCS_WAIT_WRITE,
79 
80 	/*
81 	 * We have written the write end cmd to the interface, and
82 	 * still need to write the last byte.
83 	 */
84 	KCS_WAIT_WRITE_END,
85 
86 	/* We are waiting to read data from the interface. */
87 	KCS_WAIT_READ,
88 
89 	/*
90 	 * State to transition to the error handler, this was added to
91 	 * the state machine in the spec to be sure IBF was there.
92 	 */
93 	KCS_ERROR0,
94 
95 	/*
96 	 * First stage error handler, wait for the interface to
97 	 * respond.
98 	 */
99 	KCS_ERROR1,
100 
101 	/*
102 	 * The abort cmd has been written, wait for the interface to
103 	 * respond.
104 	 */
105 	KCS_ERROR2,
106 
107 	/*
108 	 * We wrote some data to the interface, wait for it to switch
109 	 * to read mode.
110 	 */
111 	KCS_ERROR3,
112 
113 	/* The hardware failed to follow the state machine. */
114 	KCS_HOSED
115 };
116 
117 #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
118 #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
119 
120 /* Timeouts in microseconds. */
121 #define IBF_RETRY_TIMEOUT 1000000
122 #define OBF_RETRY_TIMEOUT 1000000
123 #define MAX_ERROR_RETRIES 10
124 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
125 
126 struct si_sm_data {
127 	enum kcs_states  state;
128 	struct si_sm_io *io;
129 	unsigned char    write_data[MAX_KCS_WRITE_SIZE];
130 	int              write_pos;
131 	int              write_count;
132 	int              orig_write_count;
133 	unsigned char    read_data[MAX_KCS_READ_SIZE];
134 	int              read_pos;
135 	int	         truncated;
136 
137 	unsigned int  error_retries;
138 	long          ibf_timeout;
139 	long          obf_timeout;
140 	unsigned long  error0_timeout;
141 };
142 
143 static unsigned int init_kcs_data(struct si_sm_data *kcs,
144 				  struct si_sm_io *io)
145 {
146 	kcs->state = KCS_IDLE;
147 	kcs->io = io;
148 	kcs->write_pos = 0;
149 	kcs->write_count = 0;
150 	kcs->orig_write_count = 0;
151 	kcs->read_pos = 0;
152 	kcs->error_retries = 0;
153 	kcs->truncated = 0;
154 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
155 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
156 
157 	/* Reserve 2 I/O bytes. */
158 	return 2;
159 }
160 
161 static inline unsigned char read_status(struct si_sm_data *kcs)
162 {
163 	return kcs->io->inputb(kcs->io, 1);
164 }
165 
166 static inline unsigned char read_data(struct si_sm_data *kcs)
167 {
168 	return kcs->io->inputb(kcs->io, 0);
169 }
170 
171 static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
172 {
173 	kcs->io->outputb(kcs->io, 1, data);
174 }
175 
176 static inline void write_data(struct si_sm_data *kcs, unsigned char data)
177 {
178 	kcs->io->outputb(kcs->io, 0, data);
179 }
180 
181 /* Control codes. */
182 #define KCS_GET_STATUS_ABORT	0x60
183 #define KCS_WRITE_START		0x61
184 #define KCS_WRITE_END		0x62
185 #define KCS_READ_BYTE		0x68
186 
187 /* Status bits. */
188 #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
189 #define KCS_IDLE_STATE	0
190 #define KCS_READ_STATE	1
191 #define KCS_WRITE_STATE	2
192 #define KCS_ERROR_STATE	3
193 #define GET_STATUS_ATN(status) ((status) & 0x04)
194 #define GET_STATUS_IBF(status) ((status) & 0x02)
195 #define GET_STATUS_OBF(status) ((status) & 0x01)
196 
197 
198 static inline void write_next_byte(struct si_sm_data *kcs)
199 {
200 	write_data(kcs, kcs->write_data[kcs->write_pos]);
201 	(kcs->write_pos)++;
202 	(kcs->write_count)--;
203 }
204 
205 static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
206 {
207 	(kcs->error_retries)++;
208 	if (kcs->error_retries > MAX_ERROR_RETRIES) {
209 		if (kcs_debug & KCS_DEBUG_ENABLE)
210 			printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n",
211 			       reason);
212 		kcs->state = KCS_HOSED;
213 	} else {
214 		kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
215 		kcs->state = KCS_ERROR0;
216 	}
217 }
218 
219 static inline void read_next_byte(struct si_sm_data *kcs)
220 {
221 	if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
222 		/* Throw the data away and mark it truncated. */
223 		read_data(kcs);
224 		kcs->truncated = 1;
225 	} else {
226 		kcs->read_data[kcs->read_pos] = read_data(kcs);
227 		(kcs->read_pos)++;
228 	}
229 	write_data(kcs, KCS_READ_BYTE);
230 }
231 
232 static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
233 			    long time)
234 {
235 	if (GET_STATUS_IBF(status)) {
236 		kcs->ibf_timeout -= time;
237 		if (kcs->ibf_timeout < 0) {
238 			start_error_recovery(kcs, "IBF not ready in time");
239 			kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
240 			return 1;
241 		}
242 		return 0;
243 	}
244 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
245 	return 1;
246 }
247 
248 static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
249 			    long time)
250 {
251 	if (!GET_STATUS_OBF(status)) {
252 		kcs->obf_timeout -= time;
253 		if (kcs->obf_timeout < 0) {
254 		    start_error_recovery(kcs, "OBF not ready in time");
255 		    return 1;
256 		}
257 		return 0;
258 	}
259 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
260 	return 1;
261 }
262 
263 static void clear_obf(struct si_sm_data *kcs, unsigned char status)
264 {
265 	if (GET_STATUS_OBF(status))
266 		read_data(kcs);
267 }
268 
269 static void restart_kcs_transaction(struct si_sm_data *kcs)
270 {
271 	kcs->write_count = kcs->orig_write_count;
272 	kcs->write_pos = 0;
273 	kcs->read_pos = 0;
274 	kcs->state = KCS_WAIT_WRITE_START;
275 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
276 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
277 	write_cmd(kcs, KCS_WRITE_START);
278 }
279 
280 static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
281 				 unsigned int size)
282 {
283 	unsigned int i;
284 
285 	if (size < 2)
286 		return IPMI_REQ_LEN_INVALID_ERR;
287 	if (size > MAX_KCS_WRITE_SIZE)
288 		return IPMI_REQ_LEN_EXCEEDED_ERR;
289 
290 	if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED))
291 		return IPMI_NOT_IN_MY_STATE_ERR;
292 
293 	if (kcs_debug & KCS_DEBUG_MSG) {
294 		printk(KERN_DEBUG "start_kcs_transaction -");
295 		for (i = 0; i < size; i++)
296 			printk(" %02x", (unsigned char) (data [i]));
297 		printk("\n");
298 	}
299 	kcs->error_retries = 0;
300 	memcpy(kcs->write_data, data, size);
301 	kcs->write_count = size;
302 	kcs->orig_write_count = size;
303 	kcs->write_pos = 0;
304 	kcs->read_pos = 0;
305 	kcs->state = KCS_START_OP;
306 	kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
307 	kcs->obf_timeout = OBF_RETRY_TIMEOUT;
308 	return 0;
309 }
310 
311 static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
312 			  unsigned int length)
313 {
314 	if (length < kcs->read_pos) {
315 		kcs->read_pos = length;
316 		kcs->truncated = 1;
317 	}
318 
319 	memcpy(data, kcs->read_data, kcs->read_pos);
320 
321 	if ((length >= 3) && (kcs->read_pos < 3)) {
322 		/* Guarantee that we return at least 3 bytes, with an
323 		   error in the third byte if it is too short. */
324 		data[2] = IPMI_ERR_UNSPECIFIED;
325 		kcs->read_pos = 3;
326 	}
327 	if (kcs->truncated) {
328 		/*
329 		 * Report a truncated error.  We might overwrite
330 		 * another error, but that's too bad, the user needs
331 		 * to know it was truncated.
332 		 */
333 		data[2] = IPMI_ERR_MSG_TRUNCATED;
334 		kcs->truncated = 0;
335 	}
336 
337 	return kcs->read_pos;
338 }
339 
340 /*
341  * This implements the state machine defined in the IPMI manual, see
342  * that for details on how this works.  Divide that flowchart into
343  * sections delimited by "Wait for IBF" and this will become clear.
344  */
345 static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
346 {
347 	unsigned char status;
348 	unsigned char state;
349 
350 	status = read_status(kcs);
351 
352 	if (kcs_debug & KCS_DEBUG_STATES)
353 		printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status);
354 
355 	/* All states wait for ibf, so just do it here. */
356 	if (!check_ibf(kcs, status, time))
357 		return SI_SM_CALL_WITH_DELAY;
358 
359 	/* Just about everything looks at the KCS state, so grab that, too. */
360 	state = GET_STATUS_STATE(status);
361 
362 	switch (kcs->state) {
363 	case KCS_IDLE:
364 		/* If there's and interrupt source, turn it off. */
365 		clear_obf(kcs, status);
366 
367 		if (GET_STATUS_ATN(status))
368 			return SI_SM_ATTN;
369 		else
370 			return SI_SM_IDLE;
371 
372 	case KCS_START_OP:
373 		if (state != KCS_IDLE_STATE) {
374 			start_error_recovery(kcs,
375 					     "State machine not idle at start");
376 			break;
377 		}
378 
379 		clear_obf(kcs, status);
380 		write_cmd(kcs, KCS_WRITE_START);
381 		kcs->state = KCS_WAIT_WRITE_START;
382 		break;
383 
384 	case KCS_WAIT_WRITE_START:
385 		if (state != KCS_WRITE_STATE) {
386 			start_error_recovery(
387 				kcs,
388 				"Not in write state at write start");
389 			break;
390 		}
391 		read_data(kcs);
392 		if (kcs->write_count == 1) {
393 			write_cmd(kcs, KCS_WRITE_END);
394 			kcs->state = KCS_WAIT_WRITE_END;
395 		} else {
396 			write_next_byte(kcs);
397 			kcs->state = KCS_WAIT_WRITE;
398 		}
399 		break;
400 
401 	case KCS_WAIT_WRITE:
402 		if (state != KCS_WRITE_STATE) {
403 			start_error_recovery(kcs,
404 					     "Not in write state for write");
405 			break;
406 		}
407 		clear_obf(kcs, status);
408 		if (kcs->write_count == 1) {
409 			write_cmd(kcs, KCS_WRITE_END);
410 			kcs->state = KCS_WAIT_WRITE_END;
411 		} else {
412 			write_next_byte(kcs);
413 		}
414 		break;
415 
416 	case KCS_WAIT_WRITE_END:
417 		if (state != KCS_WRITE_STATE) {
418 			start_error_recovery(kcs,
419 					     "Not in write state"
420 					     " for write end");
421 			break;
422 		}
423 		clear_obf(kcs, status);
424 		write_next_byte(kcs);
425 		kcs->state = KCS_WAIT_READ;
426 		break;
427 
428 	case KCS_WAIT_READ:
429 		if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
430 			start_error_recovery(
431 				kcs,
432 				"Not in read or idle in read state");
433 			break;
434 		}
435 
436 		if (state == KCS_READ_STATE) {
437 			if (!check_obf(kcs, status, time))
438 				return SI_SM_CALL_WITH_DELAY;
439 			read_next_byte(kcs);
440 		} else {
441 			/*
442 			 * We don't implement this exactly like the state
443 			 * machine in the spec.  Some broken hardware
444 			 * does not write the final dummy byte to the
445 			 * read register.  Thus obf will never go high
446 			 * here.  We just go straight to idle, and we
447 			 * handle clearing out obf in idle state if it
448 			 * happens to come in.
449 			 */
450 			clear_obf(kcs, status);
451 			kcs->orig_write_count = 0;
452 			kcs->state = KCS_IDLE;
453 			return SI_SM_TRANSACTION_COMPLETE;
454 		}
455 		break;
456 
457 	case KCS_ERROR0:
458 		clear_obf(kcs, status);
459 		status = read_status(kcs);
460 		if (GET_STATUS_OBF(status))
461 			/* controller isn't responding */
462 			if (time_before(jiffies, kcs->error0_timeout))
463 				return SI_SM_CALL_WITH_TICK_DELAY;
464 		write_cmd(kcs, KCS_GET_STATUS_ABORT);
465 		kcs->state = KCS_ERROR1;
466 		break;
467 
468 	case KCS_ERROR1:
469 		clear_obf(kcs, status);
470 		write_data(kcs, 0);
471 		kcs->state = KCS_ERROR2;
472 		break;
473 
474 	case KCS_ERROR2:
475 		if (state != KCS_READ_STATE) {
476 			start_error_recovery(kcs,
477 					     "Not in read state for error2");
478 			break;
479 		}
480 		if (!check_obf(kcs, status, time))
481 			return SI_SM_CALL_WITH_DELAY;
482 
483 		clear_obf(kcs, status);
484 		write_data(kcs, KCS_READ_BYTE);
485 		kcs->state = KCS_ERROR3;
486 		break;
487 
488 	case KCS_ERROR3:
489 		if (state != KCS_IDLE_STATE) {
490 			start_error_recovery(kcs,
491 					     "Not in idle state for error3");
492 			break;
493 		}
494 
495 		if (!check_obf(kcs, status, time))
496 			return SI_SM_CALL_WITH_DELAY;
497 
498 		clear_obf(kcs, status);
499 		if (kcs->orig_write_count) {
500 			restart_kcs_transaction(kcs);
501 		} else {
502 			kcs->state = KCS_IDLE;
503 			return SI_SM_TRANSACTION_COMPLETE;
504 		}
505 		break;
506 
507 	case KCS_HOSED:
508 		break;
509 	}
510 
511 	if (kcs->state == KCS_HOSED) {
512 		init_kcs_data(kcs, kcs->io);
513 		return SI_SM_HOSED;
514 	}
515 
516 	return SI_SM_CALL_WITHOUT_DELAY;
517 }
518 
519 static int kcs_size(void)
520 {
521 	return sizeof(struct si_sm_data);
522 }
523 
524 static int kcs_detect(struct si_sm_data *kcs)
525 {
526 	/*
527 	 * It's impossible for the KCS status register to be all 1's,
528 	 * (assuming a properly functioning, self-initialized BMC)
529 	 * but that's what you get from reading a bogus address, so we
530 	 * test that first.
531 	 */
532 	if (read_status(kcs) == 0xff)
533 		return 1;
534 
535 	return 0;
536 }
537 
538 static void kcs_cleanup(struct si_sm_data *kcs)
539 {
540 }
541 
542 struct si_sm_handlers kcs_smi_handlers = {
543 	.init_data         = init_kcs_data,
544 	.start_transaction = start_kcs_transaction,
545 	.get_result        = get_kcs_result,
546 	.event             = kcs_event,
547 	.detect            = kcs_detect,
548 	.cleanup           = kcs_cleanup,
549 	.size              = kcs_size,
550 };
551