xref: /openbmc/linux/drivers/char/ipmi/ipmi_dmi.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * A hack to create a platform device from a DMI entry.  This will
4  * allow autoloading of the IPMI drive based on SMBIOS entries.
5  */
6 
7 #include <linux/ipmi.h>
8 #include <linux/init.h>
9 #include <linux/dmi.h>
10 #include <linux/platform_device.h>
11 #include <linux/property.h>
12 #include "ipmi_si_sm.h"
13 #include "ipmi_dmi.h"
14 
15 #define IPMI_DMI_TYPE_KCS	0x01
16 #define IPMI_DMI_TYPE_SMIC	0x02
17 #define IPMI_DMI_TYPE_BT	0x03
18 #define IPMI_DMI_TYPE_SSIF	0x04
19 
20 struct ipmi_dmi_info {
21 	enum si_type si_type;
22 	u32 flags;
23 	unsigned long addr;
24 	u8 slave_addr;
25 	struct ipmi_dmi_info *next;
26 };
27 
28 static struct ipmi_dmi_info *ipmi_dmi_infos;
29 
30 static int ipmi_dmi_nr __initdata;
31 
32 static void __init dmi_add_platform_ipmi(unsigned long base_addr,
33 					 u32 flags,
34 					 u8 slave_addr,
35 					 int irq,
36 					 int offset,
37 					 int type)
38 {
39 	struct platform_device *pdev;
40 	struct resource r[4];
41 	unsigned int num_r = 1, size;
42 	struct property_entry p[5];
43 	unsigned int pidx = 0;
44 	char *name, *override;
45 	int rv;
46 	enum si_type si_type;
47 	struct ipmi_dmi_info *info;
48 
49 	memset(p, 0, sizeof(p));
50 
51 	name = "dmi-ipmi-si";
52 	override = "ipmi_si";
53 	switch (type) {
54 	case IPMI_DMI_TYPE_SSIF:
55 		name = "dmi-ipmi-ssif";
56 		override = "ipmi_ssif";
57 		offset = 1;
58 		size = 1;
59 		si_type = SI_TYPE_INVALID;
60 		break;
61 	case IPMI_DMI_TYPE_BT:
62 		size = 3;
63 		si_type = SI_BT;
64 		break;
65 	case IPMI_DMI_TYPE_KCS:
66 		size = 2;
67 		si_type = SI_KCS;
68 		break;
69 	case IPMI_DMI_TYPE_SMIC:
70 		size = 2;
71 		si_type = SI_SMIC;
72 		break;
73 	default:
74 		pr_err("ipmi:dmi: Invalid IPMI type: %d\n", type);
75 		return;
76 	}
77 
78 	if (si_type != SI_TYPE_INVALID)
79 		p[pidx++] = PROPERTY_ENTRY_U8("ipmi-type", si_type);
80 
81 	p[pidx++] = PROPERTY_ENTRY_U8("slave-addr", slave_addr);
82 	p[pidx++] = PROPERTY_ENTRY_U8("addr-source", SI_SMBIOS);
83 
84 	info = kmalloc(sizeof(*info), GFP_KERNEL);
85 	if (!info) {
86 		pr_warn("ipmi:dmi: Could not allocate dmi info\n");
87 	} else {
88 		info->si_type = si_type;
89 		info->flags = flags;
90 		info->addr = base_addr;
91 		info->slave_addr = slave_addr;
92 		info->next = ipmi_dmi_infos;
93 		ipmi_dmi_infos = info;
94 	}
95 
96 	pdev = platform_device_alloc(name, ipmi_dmi_nr);
97 	if (!pdev) {
98 		pr_err("ipmi:dmi: Error allocation IPMI platform device\n");
99 		return;
100 	}
101 	pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
102 					  override);
103 	if (!pdev->driver_override)
104 		goto err;
105 
106 	if (type == IPMI_DMI_TYPE_SSIF) {
107 		p[pidx++] = PROPERTY_ENTRY_U16("i2c-addr", base_addr);
108 		goto add_properties;
109 	}
110 
111 	memset(r, 0, sizeof(r));
112 
113 	r[0].start = base_addr;
114 	r[0].end = r[0].start + offset - 1;
115 	r[0].name = "IPMI Address 1";
116 	r[0].flags = flags;
117 
118 	if (size > 1) {
119 		r[1].start = r[0].start + offset;
120 		r[1].end = r[1].start + offset - 1;
121 		r[1].name = "IPMI Address 2";
122 		r[1].flags = flags;
123 		num_r++;
124 	}
125 
126 	if (size > 2) {
127 		r[2].start = r[1].start + offset;
128 		r[2].end = r[2].start + offset - 1;
129 		r[2].name = "IPMI Address 3";
130 		r[2].flags = flags;
131 		num_r++;
132 	}
133 
134 	if (irq) {
135 		r[num_r].start = irq;
136 		r[num_r].end = irq;
137 		r[num_r].name = "IPMI IRQ";
138 		r[num_r].flags = IORESOURCE_IRQ;
139 		num_r++;
140 	}
141 
142 	rv = platform_device_add_resources(pdev, r, num_r);
143 	if (rv) {
144 		dev_err(&pdev->dev,
145 			"ipmi:dmi: Unable to add resources: %d\n", rv);
146 		goto err;
147 	}
148 
149 add_properties:
150 	rv = platform_device_add_properties(pdev, p);
151 	if (rv) {
152 		dev_err(&pdev->dev,
153 			"ipmi:dmi: Unable to add properties: %d\n", rv);
154 		goto err;
155 	}
156 
157 	rv = platform_device_add(pdev);
158 	if (rv) {
159 		dev_err(&pdev->dev, "ipmi:dmi: Unable to add device: %d\n", rv);
160 		goto err;
161 	}
162 
163 	ipmi_dmi_nr++;
164 	return;
165 
166 err:
167 	platform_device_put(pdev);
168 }
169 
170 /*
171  * Look up the slave address for a given interface.  This is here
172  * because ACPI doesn't have a slave address while SMBIOS does, but we
173  * prefer using ACPI so the ACPI code can use the IPMI namespace.
174  * This function allows an ACPI-specified IPMI device to look up the
175  * slave address from the DMI table.
176  */
177 int ipmi_dmi_get_slave_addr(enum si_type si_type, u32 flags,
178 			    unsigned long base_addr)
179 {
180 	struct ipmi_dmi_info *info = ipmi_dmi_infos;
181 
182 	while (info) {
183 		if (info->si_type == si_type &&
184 		    info->flags == flags &&
185 		    info->addr == base_addr)
186 			return info->slave_addr;
187 		info = info->next;
188 	}
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL(ipmi_dmi_get_slave_addr);
193 
194 #define DMI_IPMI_MIN_LENGTH	0x10
195 #define DMI_IPMI_VER2_LENGTH	0x12
196 #define DMI_IPMI_TYPE		4
197 #define DMI_IPMI_SLAVEADDR	6
198 #define DMI_IPMI_ADDR		8
199 #define DMI_IPMI_ACCESS		0x10
200 #define DMI_IPMI_IRQ		0x11
201 #define DMI_IPMI_IO_MASK	0xfffe
202 
203 static void __init dmi_decode_ipmi(const struct dmi_header *dm)
204 {
205 	const u8	*data = (const u8 *) dm;
206 	u32             flags = IORESOURCE_IO;
207 	unsigned long	base_addr;
208 	u8              len = dm->length;
209 	u8              slave_addr;
210 	int             irq = 0, offset;
211 	int             type;
212 
213 	if (len < DMI_IPMI_MIN_LENGTH)
214 		return;
215 
216 	type = data[DMI_IPMI_TYPE];
217 	slave_addr = data[DMI_IPMI_SLAVEADDR];
218 
219 	memcpy(&base_addr, data + DMI_IPMI_ADDR, sizeof(unsigned long));
220 	if (len >= DMI_IPMI_VER2_LENGTH) {
221 		if (type == IPMI_DMI_TYPE_SSIF) {
222 			offset = 0;
223 			flags = 0;
224 			base_addr = data[DMI_IPMI_ADDR] >> 1;
225 			if (base_addr == 0) {
226 				/*
227 				 * Some broken systems put the I2C address in
228 				 * the slave address field.  We try to
229 				 * accommodate them here.
230 				 */
231 				base_addr = data[DMI_IPMI_SLAVEADDR] >> 1;
232 				slave_addr = 0;
233 			}
234 		} else {
235 			if (base_addr & 1) {
236 				/* I/O */
237 				base_addr &= DMI_IPMI_IO_MASK;
238 			} else {
239 				/* Memory */
240 				flags = IORESOURCE_MEM;
241 			}
242 
243 			/*
244 			 * If bit 4 of byte 0x10 is set, then the lsb
245 			 * for the address is odd.
246 			 */
247 			base_addr |= (data[DMI_IPMI_ACCESS] >> 4) & 1;
248 
249 			irq = data[DMI_IPMI_IRQ];
250 
251 			/*
252 			 * The top two bits of byte 0x10 hold the
253 			 * register spacing.
254 			 */
255 			switch ((data[DMI_IPMI_ACCESS] >> 6) & 3) {
256 			case 0: /* Byte boundaries */
257 				offset = 1;
258 				break;
259 			case 1: /* 32-bit boundaries */
260 				offset = 4;
261 				break;
262 			case 2: /* 16-byte boundaries */
263 				offset = 16;
264 				break;
265 			default:
266 				pr_err("ipmi:dmi: Invalid offset: 0\n");
267 				return;
268 			}
269 		}
270 	} else {
271 		/* Old DMI spec. */
272 		/*
273 		 * Note that technically, the lower bit of the base
274 		 * address should be 1 if the address is I/O and 0 if
275 		 * the address is in memory.  So many systems get that
276 		 * wrong (and all that I have seen are I/O) so we just
277 		 * ignore that bit and assume I/O.  Systems that use
278 		 * memory should use the newer spec, anyway.
279 		 */
280 		base_addr = base_addr & DMI_IPMI_IO_MASK;
281 		offset = 1;
282 	}
283 
284 	dmi_add_platform_ipmi(base_addr, flags, slave_addr, irq,
285 			      offset, type);
286 }
287 
288 static int __init scan_for_dmi_ipmi(void)
289 {
290 	const struct dmi_device *dev = NULL;
291 
292 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev)))
293 		dmi_decode_ipmi((const struct dmi_header *) dev->device_data);
294 
295 	return 0;
296 }
297 subsys_initcall(scan_for_dmi_ipmi);
298