xref: /openbmc/linux/drivers/char/ipmi/ipmi_bt_sm.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  ipmi_bt_sm.c
4  *
5  *  The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part
6  *  of the driver architecture at http://sourceforge.net/projects/openipmi
7  *
8  *  Author:	Rocky Craig <first.last@hp.com>
9  */
10 
11 #define DEBUG /* So dev_dbg() is always available. */
12 
13 #include <linux/kernel.h> /* For printk. */
14 #include <linux/string.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/ipmi_msgdefs.h>		/* for completion codes */
18 #include "ipmi_si_sm.h"
19 
20 #define BT_DEBUG_OFF	0	/* Used in production */
21 #define BT_DEBUG_ENABLE	1	/* Generic messages */
22 #define BT_DEBUG_MSG	2	/* Prints all request/response buffers */
23 #define BT_DEBUG_STATES	4	/* Verbose look at state changes */
24 /*
25  * BT_DEBUG_OFF must be zero to correspond to the default uninitialized
26  * value
27  */
28 
29 static int bt_debug; /* 0 == BT_DEBUG_OFF */
30 
31 module_param(bt_debug, int, 0644);
32 MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
33 
34 /*
35  * Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds,
36  * and 64 byte buffers.  However, one HP implementation wants 255 bytes of
37  * buffer (with a documented message of 160 bytes) so go for the max.
38  * Since the Open IPMI architecture is single-message oriented at this
39  * stage, the queue depth of BT is of no concern.
40  */
41 
42 #define BT_NORMAL_TIMEOUT	5	/* seconds */
43 #define BT_NORMAL_RETRY_LIMIT	2
44 #define BT_RESET_DELAY		6	/* seconds after warm reset */
45 
46 /*
47  * States are written in chronological order and usually cover
48  * multiple rows of the state table discussion in the IPMI spec.
49  */
50 
51 enum bt_states {
52 	BT_STATE_IDLE = 0,	/* Order is critical in this list */
53 	BT_STATE_XACTION_START,
54 	BT_STATE_WRITE_BYTES,
55 	BT_STATE_WRITE_CONSUME,
56 	BT_STATE_READ_WAIT,
57 	BT_STATE_CLEAR_B2H,
58 	BT_STATE_READ_BYTES,
59 	BT_STATE_RESET1,	/* These must come last */
60 	BT_STATE_RESET2,
61 	BT_STATE_RESET3,
62 	BT_STATE_RESTART,
63 	BT_STATE_PRINTME,
64 	BT_STATE_LONG_BUSY	/* BT doesn't get hosed :-) */
65 };
66 
67 /*
68  * Macros seen at the end of state "case" blocks.  They help with legibility
69  * and debugging.
70  */
71 
72 #define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; }
73 
74 #define BT_SI_SM_RETURN(Y)   { last_printed = BT_STATE_PRINTME; return Y; }
75 
76 struct si_sm_data {
77 	enum bt_states	state;
78 	unsigned char	seq;		/* BT sequence number */
79 	struct si_sm_io	*io;
80 	unsigned char	write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
81 	int		write_count;
82 	unsigned char	read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
83 	int		read_count;
84 	int		truncated;
85 	long		timeout;	/* microseconds countdown */
86 	int		error_retries;	/* end of "common" fields */
87 	int		nonzero_status;	/* hung BMCs stay all 0 */
88 	enum bt_states	complete;	/* to divert the state machine */
89 	long		BT_CAP_req2rsp;
90 	int		BT_CAP_retries;	/* Recommended retries */
91 };
92 
93 #define BT_CLR_WR_PTR	0x01	/* See IPMI 1.5 table 11.6.4 */
94 #define BT_CLR_RD_PTR	0x02
95 #define BT_H2B_ATN	0x04
96 #define BT_B2H_ATN	0x08
97 #define BT_SMS_ATN	0x10
98 #define BT_OEM0		0x20
99 #define BT_H_BUSY	0x40
100 #define BT_B_BUSY	0x80
101 
102 /*
103  * Some bits are toggled on each write: write once to set it, once
104  * more to clear it; writing a zero does nothing.  To absolutely
105  * clear it, check its state and write if set.  This avoids the "get
106  * current then use as mask" scheme to modify one bit.  Note that the
107  * variable "bt" is hardcoded into these macros.
108  */
109 
110 #define BT_STATUS	bt->io->inputb(bt->io, 0)
111 #define BT_CONTROL(x)	bt->io->outputb(bt->io, 0, x)
112 
113 #define BMC2HOST	bt->io->inputb(bt->io, 1)
114 #define HOST2BMC(x)	bt->io->outputb(bt->io, 1, x)
115 
116 #define BT_INTMASK_R	bt->io->inputb(bt->io, 2)
117 #define BT_INTMASK_W(x)	bt->io->outputb(bt->io, 2, x)
118 
119 /*
120  * Convenience routines for debugging.  These are not multi-open safe!
121  * Note the macros have hardcoded variables in them.
122  */
123 
124 static char *state2txt(unsigned char state)
125 {
126 	switch (state) {
127 	case BT_STATE_IDLE:		return("IDLE");
128 	case BT_STATE_XACTION_START:	return("XACTION");
129 	case BT_STATE_WRITE_BYTES:	return("WR_BYTES");
130 	case BT_STATE_WRITE_CONSUME:	return("WR_CONSUME");
131 	case BT_STATE_READ_WAIT:	return("RD_WAIT");
132 	case BT_STATE_CLEAR_B2H:	return("CLEAR_B2H");
133 	case BT_STATE_READ_BYTES:	return("RD_BYTES");
134 	case BT_STATE_RESET1:		return("RESET1");
135 	case BT_STATE_RESET2:		return("RESET2");
136 	case BT_STATE_RESET3:		return("RESET3");
137 	case BT_STATE_RESTART:		return("RESTART");
138 	case BT_STATE_LONG_BUSY:	return("LONG_BUSY");
139 	}
140 	return("BAD STATE");
141 }
142 #define STATE2TXT state2txt(bt->state)
143 
144 static char *status2txt(unsigned char status)
145 {
146 	/*
147 	 * This cannot be called by two threads at the same time and
148 	 * the buffer is always consumed immediately, so the static is
149 	 * safe to use.
150 	 */
151 	static char buf[40];
152 
153 	strcpy(buf, "[ ");
154 	if (status & BT_B_BUSY)
155 		strcat(buf, "B_BUSY ");
156 	if (status & BT_H_BUSY)
157 		strcat(buf, "H_BUSY ");
158 	if (status & BT_OEM0)
159 		strcat(buf, "OEM0 ");
160 	if (status & BT_SMS_ATN)
161 		strcat(buf, "SMS ");
162 	if (status & BT_B2H_ATN)
163 		strcat(buf, "B2H ");
164 	if (status & BT_H2B_ATN)
165 		strcat(buf, "H2B ");
166 	strcat(buf, "]");
167 	return buf;
168 }
169 #define STATUS2TXT status2txt(status)
170 
171 /* called externally at insmod time, and internally on cleanup */
172 
173 static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io)
174 {
175 	memset(bt, 0, sizeof(struct si_sm_data));
176 	if (bt->io != io) {
177 		/* external: one-time only things */
178 		bt->io = io;
179 		bt->seq = 0;
180 	}
181 	bt->state = BT_STATE_IDLE;	/* start here */
182 	bt->complete = BT_STATE_IDLE;	/* end here */
183 	bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC;
184 	bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT;
185 	return 3; /* We claim 3 bytes of space; ought to check SPMI table */
186 }
187 
188 /* Jam a completion code (probably an error) into a response */
189 
190 static void force_result(struct si_sm_data *bt, unsigned char completion_code)
191 {
192 	bt->read_data[0] = 4;				/* # following bytes */
193 	bt->read_data[1] = bt->write_data[1] | 4;	/* Odd NetFn/LUN */
194 	bt->read_data[2] = bt->write_data[2];		/* seq (ignored) */
195 	bt->read_data[3] = bt->write_data[3];		/* Command */
196 	bt->read_data[4] = completion_code;
197 	bt->read_count = 5;
198 }
199 
200 /* The upper state machine starts here */
201 
202 static int bt_start_transaction(struct si_sm_data *bt,
203 				unsigned char *data,
204 				unsigned int size)
205 {
206 	unsigned int i;
207 
208 	if (size < 2)
209 		return IPMI_REQ_LEN_INVALID_ERR;
210 	if (size > IPMI_MAX_MSG_LENGTH)
211 		return IPMI_REQ_LEN_EXCEEDED_ERR;
212 
213 	if (bt->state == BT_STATE_LONG_BUSY)
214 		return IPMI_NODE_BUSY_ERR;
215 
216 	if (bt->state != BT_STATE_IDLE) {
217 		dev_warn(bt->io->dev, "BT in invalid state %d\n", bt->state);
218 		return IPMI_NOT_IN_MY_STATE_ERR;
219 	}
220 
221 	if (bt_debug & BT_DEBUG_MSG) {
222 		dev_dbg(bt->io->dev, "+++++++++++++++++ New command\n");
223 		dev_dbg(bt->io->dev, "NetFn/LUN CMD [%d data]:", size - 2);
224 		for (i = 0; i < size; i ++)
225 			pr_cont(" %02x", data[i]);
226 		pr_cont("\n");
227 	}
228 	bt->write_data[0] = size + 1;	/* all data plus seq byte */
229 	bt->write_data[1] = *data;	/* NetFn/LUN */
230 	bt->write_data[2] = bt->seq++;
231 	memcpy(bt->write_data + 3, data + 1, size - 1);
232 	bt->write_count = size + 2;
233 	bt->error_retries = 0;
234 	bt->nonzero_status = 0;
235 	bt->truncated = 0;
236 	bt->state = BT_STATE_XACTION_START;
237 	bt->timeout = bt->BT_CAP_req2rsp;
238 	force_result(bt, IPMI_ERR_UNSPECIFIED);
239 	return 0;
240 }
241 
242 /*
243  * After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE
244  * it calls this.  Strip out the length and seq bytes.
245  */
246 
247 static int bt_get_result(struct si_sm_data *bt,
248 			 unsigned char *data,
249 			 unsigned int length)
250 {
251 	int i, msg_len;
252 
253 	msg_len = bt->read_count - 2;		/* account for length & seq */
254 	if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) {
255 		force_result(bt, IPMI_ERR_UNSPECIFIED);
256 		msg_len = 3;
257 	}
258 	data[0] = bt->read_data[1];
259 	data[1] = bt->read_data[3];
260 	if (length < msg_len || bt->truncated) {
261 		data[2] = IPMI_ERR_MSG_TRUNCATED;
262 		msg_len = 3;
263 	} else
264 		memcpy(data + 2, bt->read_data + 4, msg_len - 2);
265 
266 	if (bt_debug & BT_DEBUG_MSG) {
267 		dev_dbg(bt->io->dev, "result %d bytes:", msg_len);
268 		for (i = 0; i < msg_len; i++)
269 			pr_cont(" %02x", data[i]);
270 		pr_cont("\n");
271 	}
272 	return msg_len;
273 }
274 
275 /* This bit's functionality is optional */
276 #define BT_BMC_HWRST	0x80
277 
278 static void reset_flags(struct si_sm_data *bt)
279 {
280 	if (bt_debug)
281 		dev_dbg(bt->io->dev, "flag reset %s\n", status2txt(BT_STATUS));
282 	if (BT_STATUS & BT_H_BUSY)
283 		BT_CONTROL(BT_H_BUSY);	/* force clear */
284 	BT_CONTROL(BT_CLR_WR_PTR);	/* always reset */
285 	BT_CONTROL(BT_SMS_ATN);		/* always clear */
286 	BT_INTMASK_W(BT_BMC_HWRST);
287 }
288 
289 /*
290  * Get rid of an unwanted/stale response.  This should only be needed for
291  * BMCs that support multiple outstanding requests.
292  */
293 
294 static void drain_BMC2HOST(struct si_sm_data *bt)
295 {
296 	int i, size;
297 
298 	if (!(BT_STATUS & BT_B2H_ATN)) 	/* Not signalling a response */
299 		return;
300 
301 	BT_CONTROL(BT_H_BUSY);		/* now set */
302 	BT_CONTROL(BT_B2H_ATN);		/* always clear */
303 	BT_STATUS;			/* pause */
304 	BT_CONTROL(BT_B2H_ATN);		/* some BMCs are stubborn */
305 	BT_CONTROL(BT_CLR_RD_PTR);	/* always reset */
306 	if (bt_debug)
307 		dev_dbg(bt->io->dev, "stale response %s; ",
308 			status2txt(BT_STATUS));
309 	size = BMC2HOST;
310 	for (i = 0; i < size ; i++)
311 		BMC2HOST;
312 	BT_CONTROL(BT_H_BUSY);		/* now clear */
313 	if (bt_debug)
314 		pr_cont("drained %d bytes\n", size + 1);
315 }
316 
317 static inline void write_all_bytes(struct si_sm_data *bt)
318 {
319 	int i;
320 
321 	if (bt_debug & BT_DEBUG_MSG) {
322 		dev_dbg(bt->io->dev, "write %d bytes seq=0x%02X",
323 			bt->write_count, bt->seq);
324 		for (i = 0; i < bt->write_count; i++)
325 			pr_cont(" %02x", bt->write_data[i]);
326 		pr_cont("\n");
327 	}
328 	for (i = 0; i < bt->write_count; i++)
329 		HOST2BMC(bt->write_data[i]);
330 }
331 
332 static inline int read_all_bytes(struct si_sm_data *bt)
333 {
334 	unsigned int i;
335 
336 	/*
337 	 * length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode.
338 	 * Keep layout of first four bytes aligned with write_data[]
339 	 */
340 
341 	bt->read_data[0] = BMC2HOST;
342 	bt->read_count = bt->read_data[0];
343 
344 	if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) {
345 		if (bt_debug & BT_DEBUG_MSG)
346 			dev_dbg(bt->io->dev,
347 				"bad raw rsp len=%d\n", bt->read_count);
348 		bt->truncated = 1;
349 		return 1;	/* let next XACTION START clean it up */
350 	}
351 	for (i = 1; i <= bt->read_count; i++)
352 		bt->read_data[i] = BMC2HOST;
353 	bt->read_count++;	/* Account internally for length byte */
354 
355 	if (bt_debug & BT_DEBUG_MSG) {
356 		int max = bt->read_count;
357 
358 		dev_dbg(bt->io->dev,
359 			"got %d bytes seq=0x%02X", max, bt->read_data[2]);
360 		if (max > 16)
361 			max = 16;
362 		for (i = 0; i < max; i++)
363 			pr_cont(" %02x", bt->read_data[i]);
364 		pr_cont("%s\n", bt->read_count == max ? "" : " ...");
365 	}
366 
367 	/* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */
368 	if ((bt->read_data[3] == bt->write_data[3]) &&
369 	    (bt->read_data[2] == bt->write_data[2]) &&
370 	    ((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8)))
371 			return 1;
372 
373 	if (bt_debug & BT_DEBUG_MSG)
374 		dev_dbg(bt->io->dev,
375 			"IPMI BT: bad packet: want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n",
376 			bt->write_data[1] | 0x04, bt->write_data[2],
377 			bt->write_data[3],
378 			bt->read_data[1],  bt->read_data[2],  bt->read_data[3]);
379 	return 0;
380 }
381 
382 /* Restart if retries are left, or return an error completion code */
383 
384 static enum si_sm_result error_recovery(struct si_sm_data *bt,
385 					unsigned char status,
386 					unsigned char cCode)
387 {
388 	char *reason;
389 
390 	bt->timeout = bt->BT_CAP_req2rsp;
391 
392 	switch (cCode) {
393 	case IPMI_TIMEOUT_ERR:
394 		reason = "timeout";
395 		break;
396 	default:
397 		reason = "internal error";
398 		break;
399 	}
400 
401 	dev_warn(bt->io->dev, "IPMI BT: %s in %s %s ", /* open-ended line */
402 		 reason, STATE2TXT, STATUS2TXT);
403 
404 	/*
405 	 * Per the IPMI spec, retries are based on the sequence number
406 	 * known only to this module, so manage a restart here.
407 	 */
408 	(bt->error_retries)++;
409 	if (bt->error_retries < bt->BT_CAP_retries) {
410 		pr_cont("%d retries left\n",
411 			bt->BT_CAP_retries - bt->error_retries);
412 		bt->state = BT_STATE_RESTART;
413 		return SI_SM_CALL_WITHOUT_DELAY;
414 	}
415 
416 	dev_warn(bt->io->dev, "failed %d retries, sending error response\n",
417 		 bt->BT_CAP_retries);
418 	if (!bt->nonzero_status)
419 		dev_err(bt->io->dev, "stuck, try power cycle\n");
420 
421 	/* this is most likely during insmod */
422 	else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) {
423 		dev_warn(bt->io->dev, "BT reset (takes 5 secs)\n");
424 		bt->state = BT_STATE_RESET1;
425 		return SI_SM_CALL_WITHOUT_DELAY;
426 	}
427 
428 	/*
429 	 * Concoct a useful error message, set up the next state, and
430 	 * be done with this sequence.
431 	 */
432 
433 	bt->state = BT_STATE_IDLE;
434 	switch (cCode) {
435 	case IPMI_TIMEOUT_ERR:
436 		if (status & BT_B_BUSY) {
437 			cCode = IPMI_NODE_BUSY_ERR;
438 			bt->state = BT_STATE_LONG_BUSY;
439 		}
440 		break;
441 	default:
442 		break;
443 	}
444 	force_result(bt, cCode);
445 	return SI_SM_TRANSACTION_COMPLETE;
446 }
447 
448 /* Check status and (usually) take action and change this state machine. */
449 
450 static enum si_sm_result bt_event(struct si_sm_data *bt, long time)
451 {
452 	unsigned char status;
453 	static enum bt_states last_printed = BT_STATE_PRINTME;
454 	int i;
455 
456 	status = BT_STATUS;
457 	bt->nonzero_status |= status;
458 	if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) {
459 		dev_dbg(bt->io->dev, "BT: %s %s TO=%ld - %ld\n",
460 			STATE2TXT,
461 			STATUS2TXT,
462 			bt->timeout,
463 			time);
464 		last_printed = bt->state;
465 	}
466 
467 	/*
468 	 * Commands that time out may still (eventually) provide a response.
469 	 * This stale response will get in the way of a new response so remove
470 	 * it if possible (hopefully during IDLE).  Even if it comes up later
471 	 * it will be rejected by its (now-forgotten) seq number.
472 	 */
473 
474 	if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) {
475 		drain_BMC2HOST(bt);
476 		BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
477 	}
478 
479 	if ((bt->state != BT_STATE_IDLE) &&
480 	    (bt->state <  BT_STATE_PRINTME)) {
481 		/* check timeout */
482 		bt->timeout -= time;
483 		if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1))
484 			return error_recovery(bt,
485 					      status,
486 					      IPMI_TIMEOUT_ERR);
487 	}
488 
489 	switch (bt->state) {
490 
491 	/*
492 	 * Idle state first checks for asynchronous messages from another
493 	 * channel, then does some opportunistic housekeeping.
494 	 */
495 
496 	case BT_STATE_IDLE:
497 		if (status & BT_SMS_ATN) {
498 			BT_CONTROL(BT_SMS_ATN);	/* clear it */
499 			return SI_SM_ATTN;
500 		}
501 
502 		if (status & BT_H_BUSY)		/* clear a leftover H_BUSY */
503 			BT_CONTROL(BT_H_BUSY);
504 
505 		BT_SI_SM_RETURN(SI_SM_IDLE);
506 
507 	case BT_STATE_XACTION_START:
508 		if (status & (BT_B_BUSY | BT_H2B_ATN))
509 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
510 		if (BT_STATUS & BT_H_BUSY)
511 			BT_CONTROL(BT_H_BUSY);	/* force clear */
512 		BT_STATE_CHANGE(BT_STATE_WRITE_BYTES,
513 				SI_SM_CALL_WITHOUT_DELAY);
514 
515 	case BT_STATE_WRITE_BYTES:
516 		if (status & BT_H_BUSY)
517 			BT_CONTROL(BT_H_BUSY);	/* clear */
518 		BT_CONTROL(BT_CLR_WR_PTR);
519 		write_all_bytes(bt);
520 		BT_CONTROL(BT_H2B_ATN);	/* can clear too fast to catch */
521 		BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME,
522 				SI_SM_CALL_WITHOUT_DELAY);
523 
524 	case BT_STATE_WRITE_CONSUME:
525 		if (status & (BT_B_BUSY | BT_H2B_ATN))
526 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
527 		BT_STATE_CHANGE(BT_STATE_READ_WAIT,
528 				SI_SM_CALL_WITHOUT_DELAY);
529 
530 	/* Spinning hard can suppress B2H_ATN and force a timeout */
531 
532 	case BT_STATE_READ_WAIT:
533 		if (!(status & BT_B2H_ATN))
534 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
535 		BT_CONTROL(BT_H_BUSY);		/* set */
536 
537 		/*
538 		 * Uncached, ordered writes should just proceed serially but
539 		 * some BMCs don't clear B2H_ATN with one hit.  Fast-path a
540 		 * workaround without too much penalty to the general case.
541 		 */
542 
543 		BT_CONTROL(BT_B2H_ATN);		/* clear it to ACK the BMC */
544 		BT_STATE_CHANGE(BT_STATE_CLEAR_B2H,
545 				SI_SM_CALL_WITHOUT_DELAY);
546 
547 	case BT_STATE_CLEAR_B2H:
548 		if (status & BT_B2H_ATN) {
549 			/* keep hitting it */
550 			BT_CONTROL(BT_B2H_ATN);
551 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
552 		}
553 		BT_STATE_CHANGE(BT_STATE_READ_BYTES,
554 				SI_SM_CALL_WITHOUT_DELAY);
555 
556 	case BT_STATE_READ_BYTES:
557 		if (!(status & BT_H_BUSY))
558 			/* check in case of retry */
559 			BT_CONTROL(BT_H_BUSY);
560 		BT_CONTROL(BT_CLR_RD_PTR);	/* start of BMC2HOST buffer */
561 		i = read_all_bytes(bt);		/* true == packet seq match */
562 		BT_CONTROL(BT_H_BUSY);		/* NOW clear */
563 		if (!i) 			/* Not my message */
564 			BT_STATE_CHANGE(BT_STATE_READ_WAIT,
565 					SI_SM_CALL_WITHOUT_DELAY);
566 		bt->state = bt->complete;
567 		return bt->state == BT_STATE_IDLE ?	/* where to next? */
568 			SI_SM_TRANSACTION_COMPLETE :	/* normal */
569 			SI_SM_CALL_WITHOUT_DELAY;	/* Startup magic */
570 
571 	case BT_STATE_LONG_BUSY:	/* For example: after FW update */
572 		if (!(status & BT_B_BUSY)) {
573 			reset_flags(bt);	/* next state is now IDLE */
574 			bt_init_data(bt, bt->io);
575 		}
576 		return SI_SM_CALL_WITH_DELAY;	/* No repeat printing */
577 
578 	case BT_STATE_RESET1:
579 		reset_flags(bt);
580 		drain_BMC2HOST(bt);
581 		BT_STATE_CHANGE(BT_STATE_RESET2,
582 				SI_SM_CALL_WITH_DELAY);
583 
584 	case BT_STATE_RESET2:		/* Send a soft reset */
585 		BT_CONTROL(BT_CLR_WR_PTR);
586 		HOST2BMC(3);		/* number of bytes following */
587 		HOST2BMC(0x18);		/* NetFn/LUN == Application, LUN 0 */
588 		HOST2BMC(42);		/* Sequence number */
589 		HOST2BMC(3);		/* Cmd == Soft reset */
590 		BT_CONTROL(BT_H2B_ATN);
591 		bt->timeout = BT_RESET_DELAY * USEC_PER_SEC;
592 		BT_STATE_CHANGE(BT_STATE_RESET3,
593 				SI_SM_CALL_WITH_DELAY);
594 
595 	case BT_STATE_RESET3:		/* Hold off everything for a bit */
596 		if (bt->timeout > 0)
597 			return SI_SM_CALL_WITH_DELAY;
598 		drain_BMC2HOST(bt);
599 		BT_STATE_CHANGE(BT_STATE_RESTART,
600 				SI_SM_CALL_WITH_DELAY);
601 
602 	case BT_STATE_RESTART:		/* don't reset retries or seq! */
603 		bt->read_count = 0;
604 		bt->nonzero_status = 0;
605 		bt->timeout = bt->BT_CAP_req2rsp;
606 		BT_STATE_CHANGE(BT_STATE_XACTION_START,
607 				SI_SM_CALL_WITH_DELAY);
608 
609 	default:	/* should never occur */
610 		return error_recovery(bt,
611 				      status,
612 				      IPMI_ERR_UNSPECIFIED);
613 	}
614 	return SI_SM_CALL_WITH_DELAY;
615 }
616 
617 static int bt_detect(struct si_sm_data *bt)
618 {
619 	unsigned char GetBT_CAP[] = { 0x18, 0x36 };
620 	unsigned char BT_CAP[8];
621 	enum si_sm_result smi_result;
622 	int rv;
623 
624 	/*
625 	 * It's impossible for the BT status and interrupt registers to be
626 	 * all 1's, (assuming a properly functioning, self-initialized BMC)
627 	 * but that's what you get from reading a bogus address, so we
628 	 * test that first.  The calling routine uses negative logic.
629 	 */
630 
631 	if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF))
632 		return 1;
633 	reset_flags(bt);
634 
635 	/*
636 	 * Try getting the BT capabilities here.
637 	 */
638 	rv = bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP));
639 	if (rv) {
640 		dev_warn(bt->io->dev,
641 			 "Can't start capabilities transaction: %d\n", rv);
642 		goto out_no_bt_cap;
643 	}
644 
645 	smi_result = SI_SM_CALL_WITHOUT_DELAY;
646 	for (;;) {
647 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
648 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
649 			schedule_timeout_uninterruptible(1);
650 			smi_result = bt_event(bt, jiffies_to_usecs(1));
651 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
652 			smi_result = bt_event(bt, 0);
653 		} else
654 			break;
655 	}
656 
657 	rv = bt_get_result(bt, BT_CAP, sizeof(BT_CAP));
658 	bt_init_data(bt, bt->io);
659 	if (rv < 8) {
660 		dev_warn(bt->io->dev, "bt cap response too short: %d\n", rv);
661 		goto out_no_bt_cap;
662 	}
663 
664 	if (BT_CAP[2]) {
665 		dev_warn(bt->io->dev, "Error fetching bt cap: %x\n", BT_CAP[2]);
666 out_no_bt_cap:
667 		dev_warn(bt->io->dev, "using default values\n");
668 	} else {
669 		bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC;
670 		bt->BT_CAP_retries = BT_CAP[7];
671 	}
672 
673 	dev_info(bt->io->dev, "req2rsp=%ld secs retries=%d\n",
674 		 bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries);
675 
676 	return 0;
677 }
678 
679 static void bt_cleanup(struct si_sm_data *bt)
680 {
681 }
682 
683 static int bt_size(void)
684 {
685 	return sizeof(struct si_sm_data);
686 }
687 
688 const struct si_sm_handlers bt_smi_handlers = {
689 	.init_data		= bt_init_data,
690 	.start_transaction	= bt_start_transaction,
691 	.get_result		= bt_get_result,
692 	.event			= bt_event,
693 	.detect			= bt_detect,
694 	.cleanup		= bt_cleanup,
695 	.size			= bt_size,
696 };
697