xref: /openbmc/linux/drivers/char/hw_random/n2-drv.c (revision 54525552)
1 /* n2-drv.c: Niagara-2 RNG driver.
2  *
3  * Copyright (C) 2008 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15 
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 
19 #include <asm/hypervisor.h>
20 
21 #include "n2rng.h"
22 
23 #define DRV_MODULE_NAME		"n2rng"
24 #define PFX DRV_MODULE_NAME	": "
25 #define DRV_MODULE_VERSION	"0.1"
26 #define DRV_MODULE_RELDATE	"May 15, 2008"
27 
28 static char version[] __devinitdata =
29 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30 
31 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32 MODULE_DESCRIPTION("Niagara2 RNG driver");
33 MODULE_LICENSE("GPL");
34 MODULE_VERSION(DRV_MODULE_VERSION);
35 
36 /* The Niagara2 RNG provides a 64-bit read-only random number
37  * register, plus a control register.  Access to the RNG is
38  * virtualized through the hypervisor so that both guests and control
39  * nodes can access the device.
40  *
41  * The entropy source consists of raw entropy sources, each
42  * constructed from a voltage controlled oscillator whose phase is
43  * jittered by thermal noise sources.
44  *
45  * The oscillator in each of the three raw entropy sources run at
46  * different frequencies.  Normally, all three generator outputs are
47  * gathered, xored together, and fed into a CRC circuit, the output of
48  * which is the 64-bit read-only register.
49  *
50  * Some time is necessary for all the necessary entropy to build up
51  * such that a full 64-bits of entropy are available in the register.
52  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53  * an interlock which blocks register reads until sufficient entropy
54  * is available.
55  *
56  * A control register is provided for adjusting various aspects of RNG
57  * operation, and to enable diagnostic modes.  Each of the three raw
58  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
59  * provided are fields for controlling the minimum time in cycles
60  * between read accesses to the register (RNG_CTL_WAIT, this controls
61  * the interlock described in the previous paragraph).
62  *
63  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64  * all three entropy sources enabled, and the interlock time set
65  * appropriately.
66  *
67  * The CRC polynomial used by the chip is:
68  *
69  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72  *
73  * The RNG_CTL_VCO value of each noise cell must be programmed
74  * separately.  This is why 4 control register values must be provided
75  * to the hypervisor.  During a write, the hypervisor writes them all,
76  * one at a time, to the actual RNG_CTL register.  The first three
77  * values are used to setup the desired RNG_CTL_VCO for each entropy
78  * source, for example:
79  *
80  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83  *
84  * And then the fourth value sets the final chip state and enables
85  * desired.
86  */
87 
88 static int n2rng_hv_err_trans(unsigned long hv_err)
89 {
90 	switch (hv_err) {
91 	case HV_EOK:
92 		return 0;
93 	case HV_EWOULDBLOCK:
94 		return -EAGAIN;
95 	case HV_ENOACCESS:
96 		return -EPERM;
97 	case HV_EIO:
98 		return -EIO;
99 	case HV_EBUSY:
100 		return -EBUSY;
101 	case HV_EBADALIGN:
102 	case HV_ENORADDR:
103 		return -EFAULT;
104 	default:
105 		return -EINVAL;
106 	}
107 }
108 
109 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 						   unsigned long unit)
111 {
112 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 	int block = 0, busy = 0;
114 
115 	while (1) {
116 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 					       &ticks,
118 					       &watchdog_delta,
119 					       &watchdog_status);
120 		if (hv_err == HV_EOK)
121 			break;
122 
123 		if (hv_err == HV_EBUSY) {
124 			if (++busy >= N2RNG_BUSY_LIMIT)
125 				break;
126 
127 			udelay(1);
128 		} else if (hv_err == HV_EWOULDBLOCK) {
129 			if (++block >= N2RNG_BLOCK_LIMIT)
130 				break;
131 
132 			__delay(ticks);
133 		} else
134 			break;
135 	}
136 
137 	return hv_err;
138 }
139 
140 /* In multi-socket situations, the hypervisor might need to
141  * queue up the RNG control register write if it's for a unit
142  * that is on a cpu socket other than the one we are executing on.
143  *
144  * We poll here waiting for a successful read of that control
145  * register to make sure the write has been actually performed.
146  */
147 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148 {
149 	unsigned long ra = __pa(&np->scratch_control[0]);
150 
151 	return n2rng_generic_read_control_v2(ra, unit);
152 }
153 
154 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 					 unsigned long state,
156 					 unsigned long control_ra,
157 					 unsigned long watchdog_timeout,
158 					 unsigned long *ticks)
159 {
160 	unsigned long hv_err;
161 
162 	if (np->hvapi_major == 1) {
163 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 						watchdog_timeout, ticks);
165 	} else {
166 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 						watchdog_timeout, unit);
168 		if (hv_err == HV_EOK)
169 			hv_err = n2rng_control_settle_v2(np, unit);
170 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171 	}
172 
173 	return hv_err;
174 }
175 
176 static int n2rng_generic_read_data(unsigned long data_ra)
177 {
178 	unsigned long ticks, hv_err;
179 	int block = 0, hcheck = 0;
180 
181 	while (1) {
182 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 		if (hv_err == HV_EOK)
184 			return 0;
185 
186 		if (hv_err == HV_EWOULDBLOCK) {
187 			if (++block >= N2RNG_BLOCK_LIMIT)
188 				return -EWOULDBLOCK;
189 			__delay(ticks);
190 		} else if (hv_err == HV_ENOACCESS) {
191 			return -EPERM;
192 		} else if (hv_err == HV_EIO) {
193 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 				return -EIO;
195 			udelay(10000);
196 		} else
197 			return -ENODEV;
198 	}
199 }
200 
201 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 					      unsigned long unit,
203 					      unsigned long data_ra,
204 					      unsigned long data_len,
205 					      unsigned long *ticks)
206 {
207 	unsigned long hv_err;
208 
209 	if (np->hvapi_major == 1) {
210 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 	} else {
212 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 						     unit, ticks);
214 		if (!*ticks)
215 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 	}
217 	return hv_err;
218 }
219 
220 static int n2rng_generic_read_diag_data(struct n2rng *np,
221 					unsigned long unit,
222 					unsigned long data_ra,
223 					unsigned long data_len)
224 {
225 	unsigned long ticks, hv_err;
226 	int block = 0;
227 
228 	while (1) {
229 		hv_err = n2rng_read_diag_data_one(np, unit,
230 						  data_ra, data_len,
231 						  &ticks);
232 		if (hv_err == HV_EOK)
233 			return 0;
234 
235 		if (hv_err == HV_EWOULDBLOCK) {
236 			if (++block >= N2RNG_BLOCK_LIMIT)
237 				return -EWOULDBLOCK;
238 			__delay(ticks);
239 		} else if (hv_err == HV_ENOACCESS) {
240 			return -EPERM;
241 		} else if (hv_err == HV_EIO) {
242 			return -EIO;
243 		} else
244 			return -ENODEV;
245 	}
246 }
247 
248 
249 static int n2rng_generic_write_control(struct n2rng *np,
250 				       unsigned long control_ra,
251 				       unsigned long unit,
252 				       unsigned long state)
253 {
254 	unsigned long hv_err, ticks;
255 	int block = 0, busy = 0;
256 
257 	while (1) {
258 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 					     np->wd_timeo, &ticks);
260 		if (hv_err == HV_EOK)
261 			return 0;
262 
263 		if (hv_err == HV_EWOULDBLOCK) {
264 			if (++block >= N2RNG_BLOCK_LIMIT)
265 				return -EWOULDBLOCK;
266 			__delay(ticks);
267 		} else if (hv_err == HV_EBUSY) {
268 			if (++busy >= N2RNG_BUSY_LIMIT)
269 				return -EBUSY;
270 			udelay(1);
271 		} else
272 			return -ENODEV;
273 	}
274 }
275 
276 /* Just try to see if we can successfully access the control register
277  * of the RNG on the domain on which we are currently executing.
278  */
279 static int n2rng_try_read_ctl(struct n2rng *np)
280 {
281 	unsigned long hv_err;
282 	unsigned long x;
283 
284 	if (np->hvapi_major == 1) {
285 		hv_err = sun4v_rng_get_diag_ctl();
286 	} else {
287 		/* We purposefully give invalid arguments, HV_NOACCESS
288 		 * is higher priority than the errors we'd get from
289 		 * these other cases, and that's the error we are
290 		 * truly interested in.
291 		 */
292 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 		switch (hv_err) {
294 		case HV_EWOULDBLOCK:
295 		case HV_ENOACCESS:
296 			break;
297 		default:
298 			hv_err = HV_EOK;
299 			break;
300 		}
301 	}
302 
303 	return n2rng_hv_err_trans(hv_err);
304 }
305 
306 #define CONTROL_DEFAULT_BASE		\
307 	((2 << RNG_CTL_ASEL_SHIFT) |	\
308 	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
309 	 RNG_CTL_LFSR)
310 
311 #define CONTROL_DEFAULT_0		\
312 	(CONTROL_DEFAULT_BASE |		\
313 	 (1 << RNG_CTL_VCO_SHIFT) |	\
314 	 RNG_CTL_ES1)
315 #define CONTROL_DEFAULT_1		\
316 	(CONTROL_DEFAULT_BASE |		\
317 	 (2 << RNG_CTL_VCO_SHIFT) |	\
318 	 RNG_CTL_ES2)
319 #define CONTROL_DEFAULT_2		\
320 	(CONTROL_DEFAULT_BASE |		\
321 	 (3 << RNG_CTL_VCO_SHIFT) |	\
322 	 RNG_CTL_ES3)
323 #define CONTROL_DEFAULT_3		\
324 	(CONTROL_DEFAULT_BASE |		\
325 	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
326 
327 static void n2rng_control_swstate_init(struct n2rng *np)
328 {
329 	int i;
330 
331 	np->flags |= N2RNG_FLAG_CONTROL;
332 
333 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
334 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
335 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
336 
337 	for (i = 0; i < np->num_units; i++) {
338 		struct n2rng_unit *up = &np->units[i];
339 
340 		up->control[0] = CONTROL_DEFAULT_0;
341 		up->control[1] = CONTROL_DEFAULT_1;
342 		up->control[2] = CONTROL_DEFAULT_2;
343 		up->control[3] = CONTROL_DEFAULT_3;
344 	}
345 
346 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
347 }
348 
349 static int n2rng_grab_diag_control(struct n2rng *np)
350 {
351 	int i, busy_count, err = -ENODEV;
352 
353 	busy_count = 0;
354 	for (i = 0; i < 100; i++) {
355 		err = n2rng_try_read_ctl(np);
356 		if (err != -EAGAIN)
357 			break;
358 
359 		if (++busy_count > 100) {
360 			dev_err(&np->op->dev,
361 				"Grab diag control timeout.\n");
362 			return -ENODEV;
363 		}
364 
365 		udelay(1);
366 	}
367 
368 	return err;
369 }
370 
371 static int n2rng_init_control(struct n2rng *np)
372 {
373 	int err = n2rng_grab_diag_control(np);
374 
375 	/* Not in the control domain, that's OK we are only a consumer
376 	 * of the RNG data, we don't setup and program it.
377 	 */
378 	if (err == -EPERM)
379 		return 0;
380 	if (err)
381 		return err;
382 
383 	n2rng_control_swstate_init(np);
384 
385 	return 0;
386 }
387 
388 static int n2rng_data_read(struct hwrng *rng, u32 *data)
389 {
390 	struct n2rng *np = (struct n2rng *) rng->priv;
391 	unsigned long ra = __pa(&np->test_data);
392 	int len;
393 
394 	if (!(np->flags & N2RNG_FLAG_READY)) {
395 		len = 0;
396 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
397 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
398 		*data = np->buffer;
399 		len = 4;
400 	} else {
401 		int err = n2rng_generic_read_data(ra);
402 		if (!err) {
403 			np->buffer = np->test_data >> 32;
404 			*data = np->test_data & 0xffffffff;
405 			len = 4;
406 		} else {
407 			dev_err(&np->op->dev, "RNG error, restesting\n");
408 			np->flags &= ~N2RNG_FLAG_READY;
409 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
410 				schedule_delayed_work(&np->work, 0);
411 			len = 0;
412 		}
413 	}
414 
415 	return len;
416 }
417 
418 /* On a guest node, just make sure we can read random data properly.
419  * If a control node reboots or reloads it's n2rng driver, this won't
420  * work during that time.  So we have to keep probing until the device
421  * becomes usable.
422  */
423 static int n2rng_guest_check(struct n2rng *np)
424 {
425 	unsigned long ra = __pa(&np->test_data);
426 
427 	return n2rng_generic_read_data(ra);
428 }
429 
430 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
431 				   u64 *pre_control, u64 pre_state,
432 				   u64 *buffer, unsigned long buf_len,
433 				   u64 *post_control, u64 post_state)
434 {
435 	unsigned long post_ctl_ra = __pa(post_control);
436 	unsigned long pre_ctl_ra = __pa(pre_control);
437 	unsigned long buffer_ra = __pa(buffer);
438 	int err;
439 
440 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
441 	if (err)
442 		return err;
443 
444 	err = n2rng_generic_read_diag_data(np, unit,
445 					   buffer_ra, buf_len);
446 
447 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
448 					   post_state);
449 
450 	return err;
451 }
452 
453 static u64 advance_polynomial(u64 poly, u64 val, int count)
454 {
455 	int i;
456 
457 	for (i = 0; i < count; i++) {
458 		int highbit_set = ((s64)val < 0);
459 
460 		val <<= 1;
461 		if (highbit_set)
462 			val ^= poly;
463 	}
464 
465 	return val;
466 }
467 
468 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
469 {
470 	int i, count = 0;
471 
472 	/* Purposefully skip over the first word.  */
473 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
474 		if (np->test_buffer[i] == val)
475 			count++;
476 	}
477 	return count;
478 }
479 
480 static void n2rng_dump_test_buffer(struct n2rng *np)
481 {
482 	int i;
483 
484 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
485 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
486 			i, np->test_buffer[i]);
487 }
488 
489 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
490 {
491 	u64 val = SELFTEST_VAL;
492 	int err, matches, limit;
493 
494 	matches = 0;
495 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
496 		matches += n2rng_test_buffer_find(np, val);
497 		if (matches >= SELFTEST_MATCH_GOAL)
498 			break;
499 		val = advance_polynomial(SELFTEST_POLY, val, 1);
500 	}
501 
502 	err = 0;
503 	if (limit >= SELFTEST_LOOPS_MAX) {
504 		err = -ENODEV;
505 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
506 		n2rng_dump_test_buffer(np);
507 	} else
508 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
509 
510 	return err;
511 }
512 
513 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
514 {
515 	int err;
516 
517 	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
520 	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
521 			       RNG_CTL_LFSR |
522 			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
523 
524 
525 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
526 				      HV_RNG_STATE_HEALTHCHECK,
527 				      np->test_buffer,
528 				      sizeof(np->test_buffer),
529 				      &np->units[unit].control[0],
530 				      np->hv_state);
531 	if (err)
532 		return err;
533 
534 	return n2rng_check_selftest_buffer(np, unit);
535 }
536 
537 static int n2rng_control_check(struct n2rng *np)
538 {
539 	int i;
540 
541 	for (i = 0; i < np->num_units; i++) {
542 		int err = n2rng_control_selftest(np, i);
543 		if (err)
544 			return err;
545 	}
546 	return 0;
547 }
548 
549 /* The sanity checks passed, install the final configuration into the
550  * chip, it's ready to use.
551  */
552 static int n2rng_control_configure_units(struct n2rng *np)
553 {
554 	int unit, err;
555 
556 	err = 0;
557 	for (unit = 0; unit < np->num_units; unit++) {
558 		struct n2rng_unit *up = &np->units[unit];
559 		unsigned long ctl_ra = __pa(&up->control[0]);
560 		int esrc;
561 		u64 base;
562 
563 		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
564 			(2 << RNG_CTL_ASEL_SHIFT) |
565 			RNG_CTL_LFSR);
566 
567 		/* XXX This isn't the best.  We should fetch a bunch
568 		 * XXX of words using each entropy source combined XXX
569 		 * with each VCO setting, and see which combinations
570 		 * XXX give the best random data.
571 		 */
572 		for (esrc = 0; esrc < 3; esrc++)
573 			up->control[esrc] = base |
574 				(esrc << RNG_CTL_VCO_SHIFT) |
575 				(RNG_CTL_ES1 << esrc);
576 
577 		up->control[3] = base |
578 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
579 
580 		err = n2rng_generic_write_control(np, ctl_ra, unit,
581 						  HV_RNG_STATE_CONFIGURED);
582 		if (err)
583 			break;
584 	}
585 
586 	return err;
587 }
588 
589 static void n2rng_work(struct work_struct *work)
590 {
591 	struct n2rng *np = container_of(work, struct n2rng, work.work);
592 	int err = 0;
593 
594 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
595 		err = n2rng_guest_check(np);
596 	} else {
597 		preempt_disable();
598 		err = n2rng_control_check(np);
599 		preempt_enable();
600 
601 		if (!err)
602 			err = n2rng_control_configure_units(np);
603 	}
604 
605 	if (!err) {
606 		np->flags |= N2RNG_FLAG_READY;
607 		dev_info(&np->op->dev, "RNG ready\n");
608 	}
609 
610 	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
611 		schedule_delayed_work(&np->work, HZ * 2);
612 }
613 
614 static void __devinit n2rng_driver_version(void)
615 {
616 	static int n2rng_version_printed;
617 
618 	if (n2rng_version_printed++ == 0)
619 		pr_info("%s", version);
620 }
621 
622 static const struct of_device_id n2rng_match[];
623 static int __devinit n2rng_probe(struct platform_device *op)
624 {
625 	const struct of_device_id *match;
626 	int victoria_falls;
627 	int err = -ENOMEM;
628 	struct n2rng *np;
629 
630 	match = of_match_device(n2rng_match, &op->dev);
631 	if (!match)
632 		return -EINVAL;
633 	victoria_falls = (match->data != NULL);
634 
635 	n2rng_driver_version();
636 	np = kzalloc(sizeof(*np), GFP_KERNEL);
637 	if (!np)
638 		goto out;
639 	np->op = op;
640 
641 	INIT_DELAYED_WORK(&np->work, n2rng_work);
642 
643 	if (victoria_falls)
644 		np->flags |= N2RNG_FLAG_VF;
645 
646 	err = -ENODEV;
647 	np->hvapi_major = 2;
648 	if (sun4v_hvapi_register(HV_GRP_RNG,
649 				 np->hvapi_major,
650 				 &np->hvapi_minor)) {
651 		np->hvapi_major = 1;
652 		if (sun4v_hvapi_register(HV_GRP_RNG,
653 					 np->hvapi_major,
654 					 &np->hvapi_minor)) {
655 			dev_err(&op->dev, "Cannot register suitable "
656 				"HVAPI version.\n");
657 			goto out_free;
658 		}
659 	}
660 
661 	if (np->flags & N2RNG_FLAG_VF) {
662 		if (np->hvapi_major < 2) {
663 			dev_err(&op->dev, "VF RNG requires HVAPI major "
664 				"version 2 or later, got %lu\n",
665 				np->hvapi_major);
666 			goto out_hvapi_unregister;
667 		}
668 		np->num_units = of_getintprop_default(op->dev.of_node,
669 						      "rng-#units", 0);
670 		if (!np->num_units) {
671 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
672 			goto out_hvapi_unregister;
673 		}
674 	} else
675 		np->num_units = 1;
676 
677 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
678 		 np->hvapi_major, np->hvapi_minor);
679 
680 	np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units,
681 			    GFP_KERNEL);
682 	err = -ENOMEM;
683 	if (!np->units)
684 		goto out_hvapi_unregister;
685 
686 	err = n2rng_init_control(np);
687 	if (err)
688 		goto out_free_units;
689 
690 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 		 ((np->flags & N2RNG_FLAG_VF) ?
692 		  "Victoria Falls" : "Niagara2"),
693 		 np->num_units);
694 
695 	np->hwrng.name = "n2rng";
696 	np->hwrng.data_read = n2rng_data_read;
697 	np->hwrng.priv = (unsigned long) np;
698 
699 	err = hwrng_register(&np->hwrng);
700 	if (err)
701 		goto out_free_units;
702 
703 	dev_set_drvdata(&op->dev, np);
704 
705 	schedule_delayed_work(&np->work, 0);
706 
707 	return 0;
708 
709 out_free_units:
710 	kfree(np->units);
711 	np->units = NULL;
712 
713 out_hvapi_unregister:
714 	sun4v_hvapi_unregister(HV_GRP_RNG);
715 
716 out_free:
717 	kfree(np);
718 out:
719 	return err;
720 }
721 
722 static int __devexit n2rng_remove(struct platform_device *op)
723 {
724 	struct n2rng *np = dev_get_drvdata(&op->dev);
725 
726 	np->flags |= N2RNG_FLAG_SHUTDOWN;
727 
728 	cancel_delayed_work_sync(&np->work);
729 
730 	hwrng_unregister(&np->hwrng);
731 
732 	sun4v_hvapi_unregister(HV_GRP_RNG);
733 
734 	kfree(np->units);
735 	np->units = NULL;
736 
737 	kfree(np);
738 
739 	dev_set_drvdata(&op->dev, NULL);
740 
741 	return 0;
742 }
743 
744 static const struct of_device_id n2rng_match[] = {
745 	{
746 		.name		= "random-number-generator",
747 		.compatible	= "SUNW,n2-rng",
748 	},
749 	{
750 		.name		= "random-number-generator",
751 		.compatible	= "SUNW,vf-rng",
752 		.data		= (void *) 1,
753 	},
754 	{},
755 };
756 MODULE_DEVICE_TABLE(of, n2rng_match);
757 
758 static struct platform_driver n2rng_driver = {
759 	.driver = {
760 		.name = "n2rng",
761 		.owner = THIS_MODULE,
762 		.of_match_table = n2rng_match,
763 	},
764 	.probe		= n2rng_probe,
765 	.remove		= __devexit_p(n2rng_remove),
766 };
767 
768 static int __init n2rng_init(void)
769 {
770 	return platform_driver_register(&n2rng_driver);
771 }
772 
773 static void __exit n2rng_exit(void)
774 {
775 	platform_driver_unregister(&n2rng_driver);
776 }
777 
778 module_init(n2rng_init);
779 module_exit(n2rng_exit);
780