xref: /openbmc/linux/drivers/char/hw_random/n2-drv.c (revision 48c926cd)
1 /* n2-drv.c: Niagara-2 RNG driver.
2  *
3  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
14 
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 
18 #include <asm/hypervisor.h>
19 
20 #include "n2rng.h"
21 
22 #define DRV_MODULE_NAME		"n2rng"
23 #define PFX DRV_MODULE_NAME	": "
24 #define DRV_MODULE_VERSION	"0.3"
25 #define DRV_MODULE_RELDATE	"Jan 7, 2017"
26 
27 static char version[] =
28 	DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29 
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
34 
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36  * register, plus a control register.  Access to the RNG is
37  * virtualized through the hypervisor so that both guests and control
38  * nodes can access the device.
39  *
40  * The entropy source consists of raw entropy sources, each
41  * constructed from a voltage controlled oscillator whose phase is
42  * jittered by thermal noise sources.
43  *
44  * The oscillator in each of the three raw entropy sources run at
45  * different frequencies.  Normally, all three generator outputs are
46  * gathered, xored together, and fed into a CRC circuit, the output of
47  * which is the 64-bit read-only register.
48  *
49  * Some time is necessary for all the necessary entropy to build up
50  * such that a full 64-bits of entropy are available in the register.
51  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52  * an interlock which blocks register reads until sufficient entropy
53  * is available.
54  *
55  * A control register is provided for adjusting various aspects of RNG
56  * operation, and to enable diagnostic modes.  Each of the three raw
57  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
58  * provided are fields for controlling the minimum time in cycles
59  * between read accesses to the register (RNG_CTL_WAIT, this controls
60  * the interlock described in the previous paragraph).
61  *
62  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63  * all three entropy sources enabled, and the interlock time set
64  * appropriately.
65  *
66  * The CRC polynomial used by the chip is:
67  *
68  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71  *
72  * The RNG_CTL_VCO value of each noise cell must be programmed
73  * separately.  This is why 4 control register values must be provided
74  * to the hypervisor.  During a write, the hypervisor writes them all,
75  * one at a time, to the actual RNG_CTL register.  The first three
76  * values are used to setup the desired RNG_CTL_VCO for each entropy
77  * source, for example:
78  *
79  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82  *
83  * And then the fourth value sets the final chip state and enables
84  * desired.
85  */
86 
87 static int n2rng_hv_err_trans(unsigned long hv_err)
88 {
89 	switch (hv_err) {
90 	case HV_EOK:
91 		return 0;
92 	case HV_EWOULDBLOCK:
93 		return -EAGAIN;
94 	case HV_ENOACCESS:
95 		return -EPERM;
96 	case HV_EIO:
97 		return -EIO;
98 	case HV_EBUSY:
99 		return -EBUSY;
100 	case HV_EBADALIGN:
101 	case HV_ENORADDR:
102 		return -EFAULT;
103 	default:
104 		return -EINVAL;
105 	}
106 }
107 
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 						   unsigned long unit)
110 {
111 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 	int block = 0, busy = 0;
113 
114 	while (1) {
115 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 					       &ticks,
117 					       &watchdog_delta,
118 					       &watchdog_status);
119 		if (hv_err == HV_EOK)
120 			break;
121 
122 		if (hv_err == HV_EBUSY) {
123 			if (++busy >= N2RNG_BUSY_LIMIT)
124 				break;
125 
126 			udelay(1);
127 		} else if (hv_err == HV_EWOULDBLOCK) {
128 			if (++block >= N2RNG_BLOCK_LIMIT)
129 				break;
130 
131 			__delay(ticks);
132 		} else
133 			break;
134 	}
135 
136 	return hv_err;
137 }
138 
139 /* In multi-socket situations, the hypervisor might need to
140  * queue up the RNG control register write if it's for a unit
141  * that is on a cpu socket other than the one we are executing on.
142  *
143  * We poll here waiting for a successful read of that control
144  * register to make sure the write has been actually performed.
145  */
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147 {
148 	unsigned long ra = __pa(&np->scratch_control[0]);
149 
150 	return n2rng_generic_read_control_v2(ra, unit);
151 }
152 
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 					 unsigned long state,
155 					 unsigned long control_ra,
156 					 unsigned long watchdog_timeout,
157 					 unsigned long *ticks)
158 {
159 	unsigned long hv_err;
160 
161 	if (np->hvapi_major == 1) {
162 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 						watchdog_timeout, ticks);
164 	} else {
165 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 						watchdog_timeout, unit);
167 		if (hv_err == HV_EOK)
168 			hv_err = n2rng_control_settle_v2(np, unit);
169 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170 	}
171 
172 	return hv_err;
173 }
174 
175 static int n2rng_generic_read_data(unsigned long data_ra)
176 {
177 	unsigned long ticks, hv_err;
178 	int block = 0, hcheck = 0;
179 
180 	while (1) {
181 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 		if (hv_err == HV_EOK)
183 			return 0;
184 
185 		if (hv_err == HV_EWOULDBLOCK) {
186 			if (++block >= N2RNG_BLOCK_LIMIT)
187 				return -EWOULDBLOCK;
188 			__delay(ticks);
189 		} else if (hv_err == HV_ENOACCESS) {
190 			return -EPERM;
191 		} else if (hv_err == HV_EIO) {
192 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 				return -EIO;
194 			udelay(10000);
195 		} else
196 			return -ENODEV;
197 	}
198 }
199 
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 					      unsigned long unit,
202 					      unsigned long data_ra,
203 					      unsigned long data_len,
204 					      unsigned long *ticks)
205 {
206 	unsigned long hv_err;
207 
208 	if (np->hvapi_major == 1) {
209 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 	} else {
211 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 						     unit, ticks);
213 		if (!*ticks)
214 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215 	}
216 	return hv_err;
217 }
218 
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220 					unsigned long unit,
221 					unsigned long data_ra,
222 					unsigned long data_len)
223 {
224 	unsigned long ticks, hv_err;
225 	int block = 0;
226 
227 	while (1) {
228 		hv_err = n2rng_read_diag_data_one(np, unit,
229 						  data_ra, data_len,
230 						  &ticks);
231 		if (hv_err == HV_EOK)
232 			return 0;
233 
234 		if (hv_err == HV_EWOULDBLOCK) {
235 			if (++block >= N2RNG_BLOCK_LIMIT)
236 				return -EWOULDBLOCK;
237 			__delay(ticks);
238 		} else if (hv_err == HV_ENOACCESS) {
239 			return -EPERM;
240 		} else if (hv_err == HV_EIO) {
241 			return -EIO;
242 		} else
243 			return -ENODEV;
244 	}
245 }
246 
247 
248 static int n2rng_generic_write_control(struct n2rng *np,
249 				       unsigned long control_ra,
250 				       unsigned long unit,
251 				       unsigned long state)
252 {
253 	unsigned long hv_err, ticks;
254 	int block = 0, busy = 0;
255 
256 	while (1) {
257 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 					     np->wd_timeo, &ticks);
259 		if (hv_err == HV_EOK)
260 			return 0;
261 
262 		if (hv_err == HV_EWOULDBLOCK) {
263 			if (++block >= N2RNG_BLOCK_LIMIT)
264 				return -EWOULDBLOCK;
265 			__delay(ticks);
266 		} else if (hv_err == HV_EBUSY) {
267 			if (++busy >= N2RNG_BUSY_LIMIT)
268 				return -EBUSY;
269 			udelay(1);
270 		} else
271 			return -ENODEV;
272 	}
273 }
274 
275 /* Just try to see if we can successfully access the control register
276  * of the RNG on the domain on which we are currently executing.
277  */
278 static int n2rng_try_read_ctl(struct n2rng *np)
279 {
280 	unsigned long hv_err;
281 	unsigned long x;
282 
283 	if (np->hvapi_major == 1) {
284 		hv_err = sun4v_rng_get_diag_ctl();
285 	} else {
286 		/* We purposefully give invalid arguments, HV_NOACCESS
287 		 * is higher priority than the errors we'd get from
288 		 * these other cases, and that's the error we are
289 		 * truly interested in.
290 		 */
291 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 		switch (hv_err) {
293 		case HV_EWOULDBLOCK:
294 		case HV_ENOACCESS:
295 			break;
296 		default:
297 			hv_err = HV_EOK;
298 			break;
299 		}
300 	}
301 
302 	return n2rng_hv_err_trans(hv_err);
303 }
304 
305 static u64 n2rng_control_default(struct n2rng *np, int ctl)
306 {
307 	u64 val = 0;
308 
309 	if (np->data->chip_version == 1) {
310 		val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
311 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
312 			 RNG_CTL_LFSR);
313 
314 		switch (ctl) {
315 		case 0:
316 			val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
317 			break;
318 		case 1:
319 			val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
320 			break;
321 		case 2:
322 			val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
323 			break;
324 		case 3:
325 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
326 			break;
327 		default:
328 			break;
329 		}
330 
331 	} else {
332 		val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
333 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
334 			 RNG_CTL_LFSR);
335 
336 		switch (ctl) {
337 		case 0:
338 			val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
339 			break;
340 		case 1:
341 			val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
342 			break;
343 		case 2:
344 			val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
345 			break;
346 		case 3:
347 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
348 			break;
349 		default:
350 			break;
351 		}
352 	}
353 
354 	return val;
355 }
356 
357 static void n2rng_control_swstate_init(struct n2rng *np)
358 {
359 	int i;
360 
361 	np->flags |= N2RNG_FLAG_CONTROL;
362 
363 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
364 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
365 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
366 
367 	for (i = 0; i < np->num_units; i++) {
368 		struct n2rng_unit *up = &np->units[i];
369 
370 		up->control[0] = n2rng_control_default(np, 0);
371 		up->control[1] = n2rng_control_default(np, 1);
372 		up->control[2] = n2rng_control_default(np, 2);
373 		up->control[3] = n2rng_control_default(np, 3);
374 	}
375 
376 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
377 }
378 
379 static int n2rng_grab_diag_control(struct n2rng *np)
380 {
381 	int i, busy_count, err = -ENODEV;
382 
383 	busy_count = 0;
384 	for (i = 0; i < 100; i++) {
385 		err = n2rng_try_read_ctl(np);
386 		if (err != -EAGAIN)
387 			break;
388 
389 		if (++busy_count > 100) {
390 			dev_err(&np->op->dev,
391 				"Grab diag control timeout.\n");
392 			return -ENODEV;
393 		}
394 
395 		udelay(1);
396 	}
397 
398 	return err;
399 }
400 
401 static int n2rng_init_control(struct n2rng *np)
402 {
403 	int err = n2rng_grab_diag_control(np);
404 
405 	/* Not in the control domain, that's OK we are only a consumer
406 	 * of the RNG data, we don't setup and program it.
407 	 */
408 	if (err == -EPERM)
409 		return 0;
410 	if (err)
411 		return err;
412 
413 	n2rng_control_swstate_init(np);
414 
415 	return 0;
416 }
417 
418 static int n2rng_data_read(struct hwrng *rng, u32 *data)
419 {
420 	struct n2rng *np = (struct n2rng *) rng->priv;
421 	unsigned long ra = __pa(&np->test_data);
422 	int len;
423 
424 	if (!(np->flags & N2RNG_FLAG_READY)) {
425 		len = 0;
426 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
427 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
428 		*data = np->buffer;
429 		len = 4;
430 	} else {
431 		int err = n2rng_generic_read_data(ra);
432 		if (!err) {
433 			np->flags |= N2RNG_FLAG_BUFFER_VALID;
434 			np->buffer = np->test_data >> 32;
435 			*data = np->test_data & 0xffffffff;
436 			len = 4;
437 		} else {
438 			dev_err(&np->op->dev, "RNG error, restesting\n");
439 			np->flags &= ~N2RNG_FLAG_READY;
440 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
441 				schedule_delayed_work(&np->work, 0);
442 			len = 0;
443 		}
444 	}
445 
446 	return len;
447 }
448 
449 /* On a guest node, just make sure we can read random data properly.
450  * If a control node reboots or reloads it's n2rng driver, this won't
451  * work during that time.  So we have to keep probing until the device
452  * becomes usable.
453  */
454 static int n2rng_guest_check(struct n2rng *np)
455 {
456 	unsigned long ra = __pa(&np->test_data);
457 
458 	return n2rng_generic_read_data(ra);
459 }
460 
461 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
462 				   u64 *pre_control, u64 pre_state,
463 				   u64 *buffer, unsigned long buf_len,
464 				   u64 *post_control, u64 post_state)
465 {
466 	unsigned long post_ctl_ra = __pa(post_control);
467 	unsigned long pre_ctl_ra = __pa(pre_control);
468 	unsigned long buffer_ra = __pa(buffer);
469 	int err;
470 
471 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
472 	if (err)
473 		return err;
474 
475 	err = n2rng_generic_read_diag_data(np, unit,
476 					   buffer_ra, buf_len);
477 
478 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
479 					   post_state);
480 
481 	return err;
482 }
483 
484 static u64 advance_polynomial(u64 poly, u64 val, int count)
485 {
486 	int i;
487 
488 	for (i = 0; i < count; i++) {
489 		int highbit_set = ((s64)val < 0);
490 
491 		val <<= 1;
492 		if (highbit_set)
493 			val ^= poly;
494 	}
495 
496 	return val;
497 }
498 
499 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
500 {
501 	int i, count = 0;
502 
503 	/* Purposefully skip over the first word.  */
504 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
505 		if (np->test_buffer[i] == val)
506 			count++;
507 	}
508 	return count;
509 }
510 
511 static void n2rng_dump_test_buffer(struct n2rng *np)
512 {
513 	int i;
514 
515 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
516 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
517 			i, np->test_buffer[i]);
518 }
519 
520 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
521 {
522 	u64 val;
523 	int err, matches, limit;
524 
525 	switch (np->data->id) {
526 	case N2_n2_rng:
527 	case N2_vf_rng:
528 	case N2_kt_rng:
529 	case N2_m4_rng:  /* yes, m4 uses the old value */
530 		val = RNG_v1_SELFTEST_VAL;
531 		break;
532 	default:
533 		val = RNG_v2_SELFTEST_VAL;
534 		break;
535 	}
536 
537 	matches = 0;
538 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
539 		matches += n2rng_test_buffer_find(np, val);
540 		if (matches >= SELFTEST_MATCH_GOAL)
541 			break;
542 		val = advance_polynomial(SELFTEST_POLY, val, 1);
543 	}
544 
545 	err = 0;
546 	if (limit >= SELFTEST_LOOPS_MAX) {
547 		err = -ENODEV;
548 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
549 		n2rng_dump_test_buffer(np);
550 	} else
551 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
552 
553 	return err;
554 }
555 
556 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
557 {
558 	int err;
559 	u64 base, base3;
560 
561 	switch (np->data->id) {
562 	case N2_n2_rng:
563 	case N2_vf_rng:
564 	case N2_kt_rng:
565 		base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
566 		base3 = base | RNG_CTL_LFSR |
567 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
568 		break;
569 	case N2_m4_rng:
570 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
571 		base3 = base | RNG_CTL_LFSR |
572 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
573 		break;
574 	default:
575 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
576 		base3 = base | RNG_CTL_LFSR |
577 			(RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
578 		break;
579 	}
580 
581 	np->test_control[0] = base;
582 	np->test_control[1] = base;
583 	np->test_control[2] = base;
584 	np->test_control[3] = base3;
585 
586 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
587 				      HV_RNG_STATE_HEALTHCHECK,
588 				      np->test_buffer,
589 				      sizeof(np->test_buffer),
590 				      &np->units[unit].control[0],
591 				      np->hv_state);
592 	if (err)
593 		return err;
594 
595 	return n2rng_check_selftest_buffer(np, unit);
596 }
597 
598 static int n2rng_control_check(struct n2rng *np)
599 {
600 	int i;
601 
602 	for (i = 0; i < np->num_units; i++) {
603 		int err = n2rng_control_selftest(np, i);
604 		if (err)
605 			return err;
606 	}
607 	return 0;
608 }
609 
610 /* The sanity checks passed, install the final configuration into the
611  * chip, it's ready to use.
612  */
613 static int n2rng_control_configure_units(struct n2rng *np)
614 {
615 	int unit, err;
616 
617 	err = 0;
618 	for (unit = 0; unit < np->num_units; unit++) {
619 		struct n2rng_unit *up = &np->units[unit];
620 		unsigned long ctl_ra = __pa(&up->control[0]);
621 		int esrc;
622 		u64 base, shift;
623 
624 		if (np->data->chip_version == 1) {
625 			base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
626 			      (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
627 			      RNG_CTL_LFSR);
628 			shift = RNG_v1_CTL_VCO_SHIFT;
629 		} else {
630 			base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
631 			      (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
632 			      RNG_CTL_LFSR);
633 			shift = RNG_v2_CTL_VCO_SHIFT;
634 		}
635 
636 		/* XXX This isn't the best.  We should fetch a bunch
637 		 * XXX of words using each entropy source combined XXX
638 		 * with each VCO setting, and see which combinations
639 		 * XXX give the best random data.
640 		 */
641 		for (esrc = 0; esrc < 3; esrc++)
642 			up->control[esrc] = base |
643 				(esrc << shift) |
644 				(RNG_CTL_ES1 << esrc);
645 
646 		up->control[3] = base |
647 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
648 
649 		err = n2rng_generic_write_control(np, ctl_ra, unit,
650 						  HV_RNG_STATE_CONFIGURED);
651 		if (err)
652 			break;
653 	}
654 
655 	return err;
656 }
657 
658 static void n2rng_work(struct work_struct *work)
659 {
660 	struct n2rng *np = container_of(work, struct n2rng, work.work);
661 	int err = 0;
662 	static int retries = 4;
663 
664 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
665 		err = n2rng_guest_check(np);
666 	} else {
667 		preempt_disable();
668 		err = n2rng_control_check(np);
669 		preempt_enable();
670 
671 		if (!err)
672 			err = n2rng_control_configure_units(np);
673 	}
674 
675 	if (!err) {
676 		np->flags |= N2RNG_FLAG_READY;
677 		dev_info(&np->op->dev, "RNG ready\n");
678 	}
679 
680 	if (--retries == 0)
681 		dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
682 	else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
683 		schedule_delayed_work(&np->work, HZ * 2);
684 }
685 
686 static void n2rng_driver_version(void)
687 {
688 	static int n2rng_version_printed;
689 
690 	if (n2rng_version_printed++ == 0)
691 		pr_info("%s", version);
692 }
693 
694 static const struct of_device_id n2rng_match[];
695 static int n2rng_probe(struct platform_device *op)
696 {
697 	const struct of_device_id *match;
698 	int err = -ENOMEM;
699 	struct n2rng *np;
700 
701 	match = of_match_device(n2rng_match, &op->dev);
702 	if (!match)
703 		return -EINVAL;
704 
705 	n2rng_driver_version();
706 	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
707 	if (!np)
708 		goto out;
709 	np->op = op;
710 	np->data = (struct n2rng_template *)match->data;
711 
712 	INIT_DELAYED_WORK(&np->work, n2rng_work);
713 
714 	if (np->data->multi_capable)
715 		np->flags |= N2RNG_FLAG_MULTI;
716 
717 	err = -ENODEV;
718 	np->hvapi_major = 2;
719 	if (sun4v_hvapi_register(HV_GRP_RNG,
720 				 np->hvapi_major,
721 				 &np->hvapi_minor)) {
722 		np->hvapi_major = 1;
723 		if (sun4v_hvapi_register(HV_GRP_RNG,
724 					 np->hvapi_major,
725 					 &np->hvapi_minor)) {
726 			dev_err(&op->dev, "Cannot register suitable "
727 				"HVAPI version.\n");
728 			goto out;
729 		}
730 	}
731 
732 	if (np->flags & N2RNG_FLAG_MULTI) {
733 		if (np->hvapi_major < 2) {
734 			dev_err(&op->dev, "multi-unit-capable RNG requires "
735 				"HVAPI major version 2 or later, got %lu\n",
736 				np->hvapi_major);
737 			goto out_hvapi_unregister;
738 		}
739 		np->num_units = of_getintprop_default(op->dev.of_node,
740 						      "rng-#units", 0);
741 		if (!np->num_units) {
742 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
743 			goto out_hvapi_unregister;
744 		}
745 	} else {
746 		np->num_units = 1;
747 	}
748 
749 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
750 		 np->hvapi_major, np->hvapi_minor);
751 	np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
752 				 GFP_KERNEL);
753 	err = -ENOMEM;
754 	if (!np->units)
755 		goto out_hvapi_unregister;
756 
757 	err = n2rng_init_control(np);
758 	if (err)
759 		goto out_hvapi_unregister;
760 
761 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
762 		 ((np->flags & N2RNG_FLAG_MULTI) ?
763 		  "multi-unit-capable" : "single-unit"),
764 		 np->num_units);
765 
766 	np->hwrng.name = DRV_MODULE_NAME;
767 	np->hwrng.data_read = n2rng_data_read;
768 	np->hwrng.priv = (unsigned long) np;
769 
770 	err = hwrng_register(&np->hwrng);
771 	if (err)
772 		goto out_hvapi_unregister;
773 
774 	platform_set_drvdata(op, np);
775 
776 	schedule_delayed_work(&np->work, 0);
777 
778 	return 0;
779 
780 out_hvapi_unregister:
781 	sun4v_hvapi_unregister(HV_GRP_RNG);
782 
783 out:
784 	return err;
785 }
786 
787 static int n2rng_remove(struct platform_device *op)
788 {
789 	struct n2rng *np = platform_get_drvdata(op);
790 
791 	np->flags |= N2RNG_FLAG_SHUTDOWN;
792 
793 	cancel_delayed_work_sync(&np->work);
794 
795 	hwrng_unregister(&np->hwrng);
796 
797 	sun4v_hvapi_unregister(HV_GRP_RNG);
798 
799 	return 0;
800 }
801 
802 static struct n2rng_template n2_template = {
803 	.id = N2_n2_rng,
804 	.multi_capable = 0,
805 	.chip_version = 1,
806 };
807 
808 static struct n2rng_template vf_template = {
809 	.id = N2_vf_rng,
810 	.multi_capable = 1,
811 	.chip_version = 1,
812 };
813 
814 static struct n2rng_template kt_template = {
815 	.id = N2_kt_rng,
816 	.multi_capable = 1,
817 	.chip_version = 1,
818 };
819 
820 static struct n2rng_template m4_template = {
821 	.id = N2_m4_rng,
822 	.multi_capable = 1,
823 	.chip_version = 2,
824 };
825 
826 static struct n2rng_template m7_template = {
827 	.id = N2_m7_rng,
828 	.multi_capable = 1,
829 	.chip_version = 2,
830 };
831 
832 static const struct of_device_id n2rng_match[] = {
833 	{
834 		.name		= "random-number-generator",
835 		.compatible	= "SUNW,n2-rng",
836 		.data		= &n2_template,
837 	},
838 	{
839 		.name		= "random-number-generator",
840 		.compatible	= "SUNW,vf-rng",
841 		.data		= &vf_template,
842 	},
843 	{
844 		.name		= "random-number-generator",
845 		.compatible	= "SUNW,kt-rng",
846 		.data		= &kt_template,
847 	},
848 	{
849 		.name		= "random-number-generator",
850 		.compatible	= "ORCL,m4-rng",
851 		.data		= &m4_template,
852 	},
853 	{
854 		.name		= "random-number-generator",
855 		.compatible	= "ORCL,m7-rng",
856 		.data		= &m7_template,
857 	},
858 	{},
859 };
860 MODULE_DEVICE_TABLE(of, n2rng_match);
861 
862 static struct platform_driver n2rng_driver = {
863 	.driver = {
864 		.name = "n2rng",
865 		.of_match_table = n2rng_match,
866 	},
867 	.probe		= n2rng_probe,
868 	.remove		= n2rng_remove,
869 };
870 
871 module_platform_driver(n2rng_driver);
872