xref: /openbmc/linux/drivers/char/hw_random/n2-drv.c (revision 22f01029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2-drv.c: Niagara-2 RNG driver.
3  *
4  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15 
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 
19 #include <asm/hypervisor.h>
20 
21 #include "n2rng.h"
22 
23 #define DRV_MODULE_NAME		"n2rng"
24 #define PFX DRV_MODULE_NAME	": "
25 #define DRV_MODULE_VERSION	"0.3"
26 #define DRV_MODULE_RELDATE	"Jan 7, 2017"
27 
28 static char version[] =
29 	DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30 
31 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32 MODULE_DESCRIPTION("Niagara2 RNG driver");
33 MODULE_LICENSE("GPL");
34 MODULE_VERSION(DRV_MODULE_VERSION);
35 
36 /* The Niagara2 RNG provides a 64-bit read-only random number
37  * register, plus a control register.  Access to the RNG is
38  * virtualized through the hypervisor so that both guests and control
39  * nodes can access the device.
40  *
41  * The entropy source consists of raw entropy sources, each
42  * constructed from a voltage controlled oscillator whose phase is
43  * jittered by thermal noise sources.
44  *
45  * The oscillator in each of the three raw entropy sources run at
46  * different frequencies.  Normally, all three generator outputs are
47  * gathered, xored together, and fed into a CRC circuit, the output of
48  * which is the 64-bit read-only register.
49  *
50  * Some time is necessary for all the necessary entropy to build up
51  * such that a full 64-bits of entropy are available in the register.
52  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53  * an interlock which blocks register reads until sufficient entropy
54  * is available.
55  *
56  * A control register is provided for adjusting various aspects of RNG
57  * operation, and to enable diagnostic modes.  Each of the three raw
58  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
59  * provided are fields for controlling the minimum time in cycles
60  * between read accesses to the register (RNG_CTL_WAIT, this controls
61  * the interlock described in the previous paragraph).
62  *
63  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64  * all three entropy sources enabled, and the interlock time set
65  * appropriately.
66  *
67  * The CRC polynomial used by the chip is:
68  *
69  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72  *
73  * The RNG_CTL_VCO value of each noise cell must be programmed
74  * separately.  This is why 4 control register values must be provided
75  * to the hypervisor.  During a write, the hypervisor writes them all,
76  * one at a time, to the actual RNG_CTL register.  The first three
77  * values are used to setup the desired RNG_CTL_VCO for each entropy
78  * source, for example:
79  *
80  *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81  *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82  *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83  *
84  * And then the fourth value sets the final chip state and enables
85  * desired.
86  */
87 
88 static int n2rng_hv_err_trans(unsigned long hv_err)
89 {
90 	switch (hv_err) {
91 	case HV_EOK:
92 		return 0;
93 	case HV_EWOULDBLOCK:
94 		return -EAGAIN;
95 	case HV_ENOACCESS:
96 		return -EPERM;
97 	case HV_EIO:
98 		return -EIO;
99 	case HV_EBUSY:
100 		return -EBUSY;
101 	case HV_EBADALIGN:
102 	case HV_ENORADDR:
103 		return -EFAULT;
104 	default:
105 		return -EINVAL;
106 	}
107 }
108 
109 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 						   unsigned long unit)
111 {
112 	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 	int block = 0, busy = 0;
114 
115 	while (1) {
116 		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 					       &ticks,
118 					       &watchdog_delta,
119 					       &watchdog_status);
120 		if (hv_err == HV_EOK)
121 			break;
122 
123 		if (hv_err == HV_EBUSY) {
124 			if (++busy >= N2RNG_BUSY_LIMIT)
125 				break;
126 
127 			udelay(1);
128 		} else if (hv_err == HV_EWOULDBLOCK) {
129 			if (++block >= N2RNG_BLOCK_LIMIT)
130 				break;
131 
132 			__delay(ticks);
133 		} else
134 			break;
135 	}
136 
137 	return hv_err;
138 }
139 
140 /* In multi-socket situations, the hypervisor might need to
141  * queue up the RNG control register write if it's for a unit
142  * that is on a cpu socket other than the one we are executing on.
143  *
144  * We poll here waiting for a successful read of that control
145  * register to make sure the write has been actually performed.
146  */
147 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148 {
149 	unsigned long ra = __pa(&np->scratch_control[0]);
150 
151 	return n2rng_generic_read_control_v2(ra, unit);
152 }
153 
154 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 					 unsigned long state,
156 					 unsigned long control_ra,
157 					 unsigned long watchdog_timeout,
158 					 unsigned long *ticks)
159 {
160 	unsigned long hv_err;
161 
162 	if (np->hvapi_major == 1) {
163 		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 						watchdog_timeout, ticks);
165 	} else {
166 		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 						watchdog_timeout, unit);
168 		if (hv_err == HV_EOK)
169 			hv_err = n2rng_control_settle_v2(np, unit);
170 		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171 	}
172 
173 	return hv_err;
174 }
175 
176 static int n2rng_generic_read_data(unsigned long data_ra)
177 {
178 	unsigned long ticks, hv_err;
179 	int block = 0, hcheck = 0;
180 
181 	while (1) {
182 		hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 		if (hv_err == HV_EOK)
184 			return 0;
185 
186 		if (hv_err == HV_EWOULDBLOCK) {
187 			if (++block >= N2RNG_BLOCK_LIMIT)
188 				return -EWOULDBLOCK;
189 			__delay(ticks);
190 		} else if (hv_err == HV_ENOACCESS) {
191 			return -EPERM;
192 		} else if (hv_err == HV_EIO) {
193 			if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 				return -EIO;
195 			udelay(10000);
196 		} else
197 			return -ENODEV;
198 	}
199 }
200 
201 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 					      unsigned long unit,
203 					      unsigned long data_ra,
204 					      unsigned long data_len,
205 					      unsigned long *ticks)
206 {
207 	unsigned long hv_err;
208 
209 	if (np->hvapi_major == 1) {
210 		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 	} else {
212 		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 						     unit, ticks);
214 		if (!*ticks)
215 			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 	}
217 	return hv_err;
218 }
219 
220 static int n2rng_generic_read_diag_data(struct n2rng *np,
221 					unsigned long unit,
222 					unsigned long data_ra,
223 					unsigned long data_len)
224 {
225 	unsigned long ticks, hv_err;
226 	int block = 0;
227 
228 	while (1) {
229 		hv_err = n2rng_read_diag_data_one(np, unit,
230 						  data_ra, data_len,
231 						  &ticks);
232 		if (hv_err == HV_EOK)
233 			return 0;
234 
235 		if (hv_err == HV_EWOULDBLOCK) {
236 			if (++block >= N2RNG_BLOCK_LIMIT)
237 				return -EWOULDBLOCK;
238 			__delay(ticks);
239 		} else if (hv_err == HV_ENOACCESS) {
240 			return -EPERM;
241 		} else if (hv_err == HV_EIO) {
242 			return -EIO;
243 		} else
244 			return -ENODEV;
245 	}
246 }
247 
248 
249 static int n2rng_generic_write_control(struct n2rng *np,
250 				       unsigned long control_ra,
251 				       unsigned long unit,
252 				       unsigned long state)
253 {
254 	unsigned long hv_err, ticks;
255 	int block = 0, busy = 0;
256 
257 	while (1) {
258 		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 					     np->wd_timeo, &ticks);
260 		if (hv_err == HV_EOK)
261 			return 0;
262 
263 		if (hv_err == HV_EWOULDBLOCK) {
264 			if (++block >= N2RNG_BLOCK_LIMIT)
265 				return -EWOULDBLOCK;
266 			__delay(ticks);
267 		} else if (hv_err == HV_EBUSY) {
268 			if (++busy >= N2RNG_BUSY_LIMIT)
269 				return -EBUSY;
270 			udelay(1);
271 		} else
272 			return -ENODEV;
273 	}
274 }
275 
276 /* Just try to see if we can successfully access the control register
277  * of the RNG on the domain on which we are currently executing.
278  */
279 static int n2rng_try_read_ctl(struct n2rng *np)
280 {
281 	unsigned long hv_err;
282 	unsigned long x;
283 
284 	if (np->hvapi_major == 1) {
285 		hv_err = sun4v_rng_get_diag_ctl();
286 	} else {
287 		/* We purposefully give invalid arguments, HV_NOACCESS
288 		 * is higher priority than the errors we'd get from
289 		 * these other cases, and that's the error we are
290 		 * truly interested in.
291 		 */
292 		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 		switch (hv_err) {
294 		case HV_EWOULDBLOCK:
295 		case HV_ENOACCESS:
296 			break;
297 		default:
298 			hv_err = HV_EOK;
299 			break;
300 		}
301 	}
302 
303 	return n2rng_hv_err_trans(hv_err);
304 }
305 
306 static u64 n2rng_control_default(struct n2rng *np, int ctl)
307 {
308 	u64 val = 0;
309 
310 	if (np->data->chip_version == 1) {
311 		val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
312 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
313 			 RNG_CTL_LFSR);
314 
315 		switch (ctl) {
316 		case 0:
317 			val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
318 			break;
319 		case 1:
320 			val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
321 			break;
322 		case 2:
323 			val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
324 			break;
325 		case 3:
326 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
327 			break;
328 		default:
329 			break;
330 		}
331 
332 	} else {
333 		val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
334 			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
335 			 RNG_CTL_LFSR);
336 
337 		switch (ctl) {
338 		case 0:
339 			val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
340 			break;
341 		case 1:
342 			val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
343 			break;
344 		case 2:
345 			val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
346 			break;
347 		case 3:
348 			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
349 			break;
350 		default:
351 			break;
352 		}
353 	}
354 
355 	return val;
356 }
357 
358 static void n2rng_control_swstate_init(struct n2rng *np)
359 {
360 	int i;
361 
362 	np->flags |= N2RNG_FLAG_CONTROL;
363 
364 	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
365 	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
366 	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
367 
368 	for (i = 0; i < np->num_units; i++) {
369 		struct n2rng_unit *up = &np->units[i];
370 
371 		up->control[0] = n2rng_control_default(np, 0);
372 		up->control[1] = n2rng_control_default(np, 1);
373 		up->control[2] = n2rng_control_default(np, 2);
374 		up->control[3] = n2rng_control_default(np, 3);
375 	}
376 
377 	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
378 }
379 
380 static int n2rng_grab_diag_control(struct n2rng *np)
381 {
382 	int i, busy_count, err = -ENODEV;
383 
384 	busy_count = 0;
385 	for (i = 0; i < 100; i++) {
386 		err = n2rng_try_read_ctl(np);
387 		if (err != -EAGAIN)
388 			break;
389 
390 		if (++busy_count > 100) {
391 			dev_err(&np->op->dev,
392 				"Grab diag control timeout.\n");
393 			return -ENODEV;
394 		}
395 
396 		udelay(1);
397 	}
398 
399 	return err;
400 }
401 
402 static int n2rng_init_control(struct n2rng *np)
403 {
404 	int err = n2rng_grab_diag_control(np);
405 
406 	/* Not in the control domain, that's OK we are only a consumer
407 	 * of the RNG data, we don't setup and program it.
408 	 */
409 	if (err == -EPERM)
410 		return 0;
411 	if (err)
412 		return err;
413 
414 	n2rng_control_swstate_init(np);
415 
416 	return 0;
417 }
418 
419 static int n2rng_data_read(struct hwrng *rng, u32 *data)
420 {
421 	struct n2rng *np = (struct n2rng *) rng->priv;
422 	unsigned long ra = __pa(&np->test_data);
423 	int len;
424 
425 	if (!(np->flags & N2RNG_FLAG_READY)) {
426 		len = 0;
427 	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
428 		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
429 		*data = np->buffer;
430 		len = 4;
431 	} else {
432 		int err = n2rng_generic_read_data(ra);
433 		if (!err) {
434 			np->flags |= N2RNG_FLAG_BUFFER_VALID;
435 			np->buffer = np->test_data >> 32;
436 			*data = np->test_data & 0xffffffff;
437 			len = 4;
438 		} else {
439 			dev_err(&np->op->dev, "RNG error, retesting\n");
440 			np->flags &= ~N2RNG_FLAG_READY;
441 			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
442 				schedule_delayed_work(&np->work, 0);
443 			len = 0;
444 		}
445 	}
446 
447 	return len;
448 }
449 
450 /* On a guest node, just make sure we can read random data properly.
451  * If a control node reboots or reloads it's n2rng driver, this won't
452  * work during that time.  So we have to keep probing until the device
453  * becomes usable.
454  */
455 static int n2rng_guest_check(struct n2rng *np)
456 {
457 	unsigned long ra = __pa(&np->test_data);
458 
459 	return n2rng_generic_read_data(ra);
460 }
461 
462 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
463 				   u64 *pre_control, u64 pre_state,
464 				   u64 *buffer, unsigned long buf_len,
465 				   u64 *post_control, u64 post_state)
466 {
467 	unsigned long post_ctl_ra = __pa(post_control);
468 	unsigned long pre_ctl_ra = __pa(pre_control);
469 	unsigned long buffer_ra = __pa(buffer);
470 	int err;
471 
472 	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
473 	if (err)
474 		return err;
475 
476 	err = n2rng_generic_read_diag_data(np, unit,
477 					   buffer_ra, buf_len);
478 
479 	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
480 					   post_state);
481 
482 	return err;
483 }
484 
485 static u64 advance_polynomial(u64 poly, u64 val, int count)
486 {
487 	int i;
488 
489 	for (i = 0; i < count; i++) {
490 		int highbit_set = ((s64)val < 0);
491 
492 		val <<= 1;
493 		if (highbit_set)
494 			val ^= poly;
495 	}
496 
497 	return val;
498 }
499 
500 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
501 {
502 	int i, count = 0;
503 
504 	/* Purposefully skip over the first word.  */
505 	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
506 		if (np->test_buffer[i] == val)
507 			count++;
508 	}
509 	return count;
510 }
511 
512 static void n2rng_dump_test_buffer(struct n2rng *np)
513 {
514 	int i;
515 
516 	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
517 		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
518 			i, np->test_buffer[i]);
519 }
520 
521 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
522 {
523 	u64 val;
524 	int err, matches, limit;
525 
526 	switch (np->data->id) {
527 	case N2_n2_rng:
528 	case N2_vf_rng:
529 	case N2_kt_rng:
530 	case N2_m4_rng:  /* yes, m4 uses the old value */
531 		val = RNG_v1_SELFTEST_VAL;
532 		break;
533 	default:
534 		val = RNG_v2_SELFTEST_VAL;
535 		break;
536 	}
537 
538 	matches = 0;
539 	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
540 		matches += n2rng_test_buffer_find(np, val);
541 		if (matches >= SELFTEST_MATCH_GOAL)
542 			break;
543 		val = advance_polynomial(SELFTEST_POLY, val, 1);
544 	}
545 
546 	err = 0;
547 	if (limit >= SELFTEST_LOOPS_MAX) {
548 		err = -ENODEV;
549 		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
550 		n2rng_dump_test_buffer(np);
551 	} else
552 		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
553 
554 	return err;
555 }
556 
557 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
558 {
559 	int err;
560 	u64 base, base3;
561 
562 	switch (np->data->id) {
563 	case N2_n2_rng:
564 	case N2_vf_rng:
565 	case N2_kt_rng:
566 		base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
567 		base3 = base | RNG_CTL_LFSR |
568 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
569 		break;
570 	case N2_m4_rng:
571 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
572 		base3 = base | RNG_CTL_LFSR |
573 			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
574 		break;
575 	default:
576 		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
577 		base3 = base | RNG_CTL_LFSR |
578 			(RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
579 		break;
580 	}
581 
582 	np->test_control[0] = base;
583 	np->test_control[1] = base;
584 	np->test_control[2] = base;
585 	np->test_control[3] = base3;
586 
587 	err = n2rng_entropy_diag_read(np, unit, np->test_control,
588 				      HV_RNG_STATE_HEALTHCHECK,
589 				      np->test_buffer,
590 				      sizeof(np->test_buffer),
591 				      &np->units[unit].control[0],
592 				      np->hv_state);
593 	if (err)
594 		return err;
595 
596 	return n2rng_check_selftest_buffer(np, unit);
597 }
598 
599 static int n2rng_control_check(struct n2rng *np)
600 {
601 	int i;
602 
603 	for (i = 0; i < np->num_units; i++) {
604 		int err = n2rng_control_selftest(np, i);
605 		if (err)
606 			return err;
607 	}
608 	return 0;
609 }
610 
611 /* The sanity checks passed, install the final configuration into the
612  * chip, it's ready to use.
613  */
614 static int n2rng_control_configure_units(struct n2rng *np)
615 {
616 	int unit, err;
617 
618 	err = 0;
619 	for (unit = 0; unit < np->num_units; unit++) {
620 		struct n2rng_unit *up = &np->units[unit];
621 		unsigned long ctl_ra = __pa(&up->control[0]);
622 		int esrc;
623 		u64 base, shift;
624 
625 		if (np->data->chip_version == 1) {
626 			base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
627 			      (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
628 			      RNG_CTL_LFSR);
629 			shift = RNG_v1_CTL_VCO_SHIFT;
630 		} else {
631 			base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
632 			      (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
633 			      RNG_CTL_LFSR);
634 			shift = RNG_v2_CTL_VCO_SHIFT;
635 		}
636 
637 		/* XXX This isn't the best.  We should fetch a bunch
638 		 * XXX of words using each entropy source combined XXX
639 		 * with each VCO setting, and see which combinations
640 		 * XXX give the best random data.
641 		 */
642 		for (esrc = 0; esrc < 3; esrc++)
643 			up->control[esrc] = base |
644 				(esrc << shift) |
645 				(RNG_CTL_ES1 << esrc);
646 
647 		up->control[3] = base |
648 			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
649 
650 		err = n2rng_generic_write_control(np, ctl_ra, unit,
651 						  HV_RNG_STATE_CONFIGURED);
652 		if (err)
653 			break;
654 	}
655 
656 	return err;
657 }
658 
659 static void n2rng_work(struct work_struct *work)
660 {
661 	struct n2rng *np = container_of(work, struct n2rng, work.work);
662 	int err = 0;
663 	static int retries = 4;
664 
665 	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
666 		err = n2rng_guest_check(np);
667 	} else {
668 		preempt_disable();
669 		err = n2rng_control_check(np);
670 		preempt_enable();
671 
672 		if (!err)
673 			err = n2rng_control_configure_units(np);
674 	}
675 
676 	if (!err) {
677 		np->flags |= N2RNG_FLAG_READY;
678 		dev_info(&np->op->dev, "RNG ready\n");
679 	}
680 
681 	if (--retries == 0)
682 		dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
683 	else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
684 		schedule_delayed_work(&np->work, HZ * 2);
685 }
686 
687 static void n2rng_driver_version(void)
688 {
689 	static int n2rng_version_printed;
690 
691 	if (n2rng_version_printed++ == 0)
692 		pr_info("%s", version);
693 }
694 
695 static const struct of_device_id n2rng_match[];
696 static int n2rng_probe(struct platform_device *op)
697 {
698 	const struct of_device_id *match;
699 	int err = -ENOMEM;
700 	struct n2rng *np;
701 
702 	match = of_match_device(n2rng_match, &op->dev);
703 	if (!match)
704 		return -EINVAL;
705 
706 	n2rng_driver_version();
707 	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
708 	if (!np)
709 		goto out;
710 	np->op = op;
711 	np->data = (struct n2rng_template *)match->data;
712 
713 	INIT_DELAYED_WORK(&np->work, n2rng_work);
714 
715 	if (np->data->multi_capable)
716 		np->flags |= N2RNG_FLAG_MULTI;
717 
718 	err = -ENODEV;
719 	np->hvapi_major = 2;
720 	if (sun4v_hvapi_register(HV_GRP_RNG,
721 				 np->hvapi_major,
722 				 &np->hvapi_minor)) {
723 		np->hvapi_major = 1;
724 		if (sun4v_hvapi_register(HV_GRP_RNG,
725 					 np->hvapi_major,
726 					 &np->hvapi_minor)) {
727 			dev_err(&op->dev, "Cannot register suitable "
728 				"HVAPI version.\n");
729 			goto out;
730 		}
731 	}
732 
733 	if (np->flags & N2RNG_FLAG_MULTI) {
734 		if (np->hvapi_major < 2) {
735 			dev_err(&op->dev, "multi-unit-capable RNG requires "
736 				"HVAPI major version 2 or later, got %lu\n",
737 				np->hvapi_major);
738 			goto out_hvapi_unregister;
739 		}
740 		np->num_units = of_getintprop_default(op->dev.of_node,
741 						      "rng-#units", 0);
742 		if (!np->num_units) {
743 			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
744 			goto out_hvapi_unregister;
745 		}
746 	} else {
747 		np->num_units = 1;
748 	}
749 
750 	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
751 		 np->hvapi_major, np->hvapi_minor);
752 	np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
753 				 GFP_KERNEL);
754 	err = -ENOMEM;
755 	if (!np->units)
756 		goto out_hvapi_unregister;
757 
758 	err = n2rng_init_control(np);
759 	if (err)
760 		goto out_hvapi_unregister;
761 
762 	dev_info(&op->dev, "Found %s RNG, units: %d\n",
763 		 ((np->flags & N2RNG_FLAG_MULTI) ?
764 		  "multi-unit-capable" : "single-unit"),
765 		 np->num_units);
766 
767 	np->hwrng.name = DRV_MODULE_NAME;
768 	np->hwrng.data_read = n2rng_data_read;
769 	np->hwrng.priv = (unsigned long) np;
770 
771 	err = devm_hwrng_register(&op->dev, &np->hwrng);
772 	if (err)
773 		goto out_hvapi_unregister;
774 
775 	platform_set_drvdata(op, np);
776 
777 	schedule_delayed_work(&np->work, 0);
778 
779 	return 0;
780 
781 out_hvapi_unregister:
782 	sun4v_hvapi_unregister(HV_GRP_RNG);
783 
784 out:
785 	return err;
786 }
787 
788 static int n2rng_remove(struct platform_device *op)
789 {
790 	struct n2rng *np = platform_get_drvdata(op);
791 
792 	np->flags |= N2RNG_FLAG_SHUTDOWN;
793 
794 	cancel_delayed_work_sync(&np->work);
795 
796 	sun4v_hvapi_unregister(HV_GRP_RNG);
797 
798 	return 0;
799 }
800 
801 static struct n2rng_template n2_template = {
802 	.id = N2_n2_rng,
803 	.multi_capable = 0,
804 	.chip_version = 1,
805 };
806 
807 static struct n2rng_template vf_template = {
808 	.id = N2_vf_rng,
809 	.multi_capable = 1,
810 	.chip_version = 1,
811 };
812 
813 static struct n2rng_template kt_template = {
814 	.id = N2_kt_rng,
815 	.multi_capable = 1,
816 	.chip_version = 1,
817 };
818 
819 static struct n2rng_template m4_template = {
820 	.id = N2_m4_rng,
821 	.multi_capable = 1,
822 	.chip_version = 2,
823 };
824 
825 static struct n2rng_template m7_template = {
826 	.id = N2_m7_rng,
827 	.multi_capable = 1,
828 	.chip_version = 2,
829 };
830 
831 static const struct of_device_id n2rng_match[] = {
832 	{
833 		.name		= "random-number-generator",
834 		.compatible	= "SUNW,n2-rng",
835 		.data		= &n2_template,
836 	},
837 	{
838 		.name		= "random-number-generator",
839 		.compatible	= "SUNW,vf-rng",
840 		.data		= &vf_template,
841 	},
842 	{
843 		.name		= "random-number-generator",
844 		.compatible	= "SUNW,kt-rng",
845 		.data		= &kt_template,
846 	},
847 	{
848 		.name		= "random-number-generator",
849 		.compatible	= "ORCL,m4-rng",
850 		.data		= &m4_template,
851 	},
852 	{
853 		.name		= "random-number-generator",
854 		.compatible	= "ORCL,m7-rng",
855 		.data		= &m7_template,
856 	},
857 	{},
858 };
859 MODULE_DEVICE_TABLE(of, n2rng_match);
860 
861 static struct platform_driver n2rng_driver = {
862 	.driver = {
863 		.name = "n2rng",
864 		.of_match_table = n2rng_match,
865 	},
866 	.probe		= n2rng_probe,
867 	.remove		= n2rng_remove,
868 };
869 
870 module_platform_driver(n2rng_driver);
871