1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2-drv.c: Niagara-2 RNG driver.
3 *
4 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18
19 #include <asm/hypervisor.h>
20
21 #include "n2rng.h"
22
23 #define DRV_MODULE_NAME "n2rng"
24 #define PFX DRV_MODULE_NAME ": "
25 #define DRV_MODULE_VERSION "0.3"
26 #define DRV_MODULE_RELDATE "Jan 7, 2017"
27
28 static char version[] =
29 DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
30
31 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
32 MODULE_DESCRIPTION("Niagara2 RNG driver");
33 MODULE_LICENSE("GPL");
34 MODULE_VERSION(DRV_MODULE_VERSION);
35
36 /* The Niagara2 RNG provides a 64-bit read-only random number
37 * register, plus a control register. Access to the RNG is
38 * virtualized through the hypervisor so that both guests and control
39 * nodes can access the device.
40 *
41 * The entropy source consists of raw entropy sources, each
42 * constructed from a voltage controlled oscillator whose phase is
43 * jittered by thermal noise sources.
44 *
45 * The oscillator in each of the three raw entropy sources run at
46 * different frequencies. Normally, all three generator outputs are
47 * gathered, xored together, and fed into a CRC circuit, the output of
48 * which is the 64-bit read-only register.
49 *
50 * Some time is necessary for all the necessary entropy to build up
51 * such that a full 64-bits of entropy are available in the register.
52 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
53 * an interlock which blocks register reads until sufficient entropy
54 * is available.
55 *
56 * A control register is provided for adjusting various aspects of RNG
57 * operation, and to enable diagnostic modes. Each of the three raw
58 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
59 * provided are fields for controlling the minimum time in cycles
60 * between read accesses to the register (RNG_CTL_WAIT, this controls
61 * the interlock described in the previous paragraph).
62 *
63 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
64 * all three entropy sources enabled, and the interlock time set
65 * appropriately.
66 *
67 * The CRC polynomial used by the chip is:
68 *
69 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
70 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
71 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
72 *
73 * The RNG_CTL_VCO value of each noise cell must be programmed
74 * separately. This is why 4 control register values must be provided
75 * to the hypervisor. During a write, the hypervisor writes them all,
76 * one at a time, to the actual RNG_CTL register. The first three
77 * values are used to setup the desired RNG_CTL_VCO for each entropy
78 * source, for example:
79 *
80 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
81 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
82 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
83 *
84 * And then the fourth value sets the final chip state and enables
85 * desired.
86 */
87
n2rng_hv_err_trans(unsigned long hv_err)88 static int n2rng_hv_err_trans(unsigned long hv_err)
89 {
90 switch (hv_err) {
91 case HV_EOK:
92 return 0;
93 case HV_EWOULDBLOCK:
94 return -EAGAIN;
95 case HV_ENOACCESS:
96 return -EPERM;
97 case HV_EIO:
98 return -EIO;
99 case HV_EBUSY:
100 return -EBUSY;
101 case HV_EBADALIGN:
102 case HV_ENORADDR:
103 return -EFAULT;
104 default:
105 return -EINVAL;
106 }
107 }
108
n2rng_generic_read_control_v2(unsigned long ra,unsigned long unit)109 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
110 unsigned long unit)
111 {
112 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
113 int block = 0, busy = 0;
114
115 while (1) {
116 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
117 &ticks,
118 &watchdog_delta,
119 &watchdog_status);
120 if (hv_err == HV_EOK)
121 break;
122
123 if (hv_err == HV_EBUSY) {
124 if (++busy >= N2RNG_BUSY_LIMIT)
125 break;
126
127 udelay(1);
128 } else if (hv_err == HV_EWOULDBLOCK) {
129 if (++block >= N2RNG_BLOCK_LIMIT)
130 break;
131
132 __delay(ticks);
133 } else
134 break;
135 }
136
137 return hv_err;
138 }
139
140 /* In multi-socket situations, the hypervisor might need to
141 * queue up the RNG control register write if it's for a unit
142 * that is on a cpu socket other than the one we are executing on.
143 *
144 * We poll here waiting for a successful read of that control
145 * register to make sure the write has been actually performed.
146 */
n2rng_control_settle_v2(struct n2rng * np,int unit)147 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
148 {
149 unsigned long ra = __pa(&np->scratch_control[0]);
150
151 return n2rng_generic_read_control_v2(ra, unit);
152 }
153
n2rng_write_ctl_one(struct n2rng * np,int unit,unsigned long state,unsigned long control_ra,unsigned long watchdog_timeout,unsigned long * ticks)154 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
155 unsigned long state,
156 unsigned long control_ra,
157 unsigned long watchdog_timeout,
158 unsigned long *ticks)
159 {
160 unsigned long hv_err;
161
162 if (np->hvapi_major == 1) {
163 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
164 watchdog_timeout, ticks);
165 } else {
166 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
167 watchdog_timeout, unit);
168 if (hv_err == HV_EOK)
169 hv_err = n2rng_control_settle_v2(np, unit);
170 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
171 }
172
173 return hv_err;
174 }
175
n2rng_generic_read_data(unsigned long data_ra)176 static int n2rng_generic_read_data(unsigned long data_ra)
177 {
178 unsigned long ticks, hv_err;
179 int block = 0, hcheck = 0;
180
181 while (1) {
182 hv_err = sun4v_rng_data_read(data_ra, &ticks);
183 if (hv_err == HV_EOK)
184 return 0;
185
186 if (hv_err == HV_EWOULDBLOCK) {
187 if (++block >= N2RNG_BLOCK_LIMIT)
188 return -EWOULDBLOCK;
189 __delay(ticks);
190 } else if (hv_err == HV_ENOACCESS) {
191 return -EPERM;
192 } else if (hv_err == HV_EIO) {
193 if (++hcheck >= N2RNG_HCHECK_LIMIT)
194 return -EIO;
195 udelay(10000);
196 } else
197 return -ENODEV;
198 }
199 }
200
n2rng_read_diag_data_one(struct n2rng * np,unsigned long unit,unsigned long data_ra,unsigned long data_len,unsigned long * ticks)201 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
202 unsigned long unit,
203 unsigned long data_ra,
204 unsigned long data_len,
205 unsigned long *ticks)
206 {
207 unsigned long hv_err;
208
209 if (np->hvapi_major == 1) {
210 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
211 } else {
212 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
213 unit, ticks);
214 if (!*ticks)
215 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
216 }
217 return hv_err;
218 }
219
n2rng_generic_read_diag_data(struct n2rng * np,unsigned long unit,unsigned long data_ra,unsigned long data_len)220 static int n2rng_generic_read_diag_data(struct n2rng *np,
221 unsigned long unit,
222 unsigned long data_ra,
223 unsigned long data_len)
224 {
225 unsigned long ticks, hv_err;
226 int block = 0;
227
228 while (1) {
229 hv_err = n2rng_read_diag_data_one(np, unit,
230 data_ra, data_len,
231 &ticks);
232 if (hv_err == HV_EOK)
233 return 0;
234
235 if (hv_err == HV_EWOULDBLOCK) {
236 if (++block >= N2RNG_BLOCK_LIMIT)
237 return -EWOULDBLOCK;
238 __delay(ticks);
239 } else if (hv_err == HV_ENOACCESS) {
240 return -EPERM;
241 } else if (hv_err == HV_EIO) {
242 return -EIO;
243 } else
244 return -ENODEV;
245 }
246 }
247
248
n2rng_generic_write_control(struct n2rng * np,unsigned long control_ra,unsigned long unit,unsigned long state)249 static int n2rng_generic_write_control(struct n2rng *np,
250 unsigned long control_ra,
251 unsigned long unit,
252 unsigned long state)
253 {
254 unsigned long hv_err, ticks;
255 int block = 0, busy = 0;
256
257 while (1) {
258 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
259 np->wd_timeo, &ticks);
260 if (hv_err == HV_EOK)
261 return 0;
262
263 if (hv_err == HV_EWOULDBLOCK) {
264 if (++block >= N2RNG_BLOCK_LIMIT)
265 return -EWOULDBLOCK;
266 __delay(ticks);
267 } else if (hv_err == HV_EBUSY) {
268 if (++busy >= N2RNG_BUSY_LIMIT)
269 return -EBUSY;
270 udelay(1);
271 } else
272 return -ENODEV;
273 }
274 }
275
276 /* Just try to see if we can successfully access the control register
277 * of the RNG on the domain on which we are currently executing.
278 */
n2rng_try_read_ctl(struct n2rng * np)279 static int n2rng_try_read_ctl(struct n2rng *np)
280 {
281 unsigned long hv_err;
282 unsigned long x;
283
284 if (np->hvapi_major == 1) {
285 hv_err = sun4v_rng_get_diag_ctl();
286 } else {
287 /* We purposefully give invalid arguments, HV_NOACCESS
288 * is higher priority than the errors we'd get from
289 * these other cases, and that's the error we are
290 * truly interested in.
291 */
292 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
293 switch (hv_err) {
294 case HV_EWOULDBLOCK:
295 case HV_ENOACCESS:
296 break;
297 default:
298 hv_err = HV_EOK;
299 break;
300 }
301 }
302
303 return n2rng_hv_err_trans(hv_err);
304 }
305
n2rng_control_default(struct n2rng * np,int ctl)306 static u64 n2rng_control_default(struct n2rng *np, int ctl)
307 {
308 u64 val = 0;
309
310 if (np->data->chip_version == 1) {
311 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
312 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
313 RNG_CTL_LFSR);
314
315 switch (ctl) {
316 case 0:
317 val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
318 break;
319 case 1:
320 val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
321 break;
322 case 2:
323 val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
324 break;
325 case 3:
326 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
327 break;
328 default:
329 break;
330 }
331
332 } else {
333 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
334 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
335 RNG_CTL_LFSR);
336
337 switch (ctl) {
338 case 0:
339 val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
340 break;
341 case 1:
342 val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
343 break;
344 case 2:
345 val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
346 break;
347 case 3:
348 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
349 break;
350 default:
351 break;
352 }
353 }
354
355 return val;
356 }
357
n2rng_control_swstate_init(struct n2rng * np)358 static void n2rng_control_swstate_init(struct n2rng *np)
359 {
360 int i;
361
362 np->flags |= N2RNG_FLAG_CONTROL;
363
364 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
365 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
366 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
367
368 for (i = 0; i < np->num_units; i++) {
369 struct n2rng_unit *up = &np->units[i];
370
371 up->control[0] = n2rng_control_default(np, 0);
372 up->control[1] = n2rng_control_default(np, 1);
373 up->control[2] = n2rng_control_default(np, 2);
374 up->control[3] = n2rng_control_default(np, 3);
375 }
376
377 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
378 }
379
n2rng_grab_diag_control(struct n2rng * np)380 static int n2rng_grab_diag_control(struct n2rng *np)
381 {
382 int i, busy_count, err = -ENODEV;
383
384 busy_count = 0;
385 for (i = 0; i < 100; i++) {
386 err = n2rng_try_read_ctl(np);
387 if (err != -EAGAIN)
388 break;
389
390 if (++busy_count > 100) {
391 dev_err(&np->op->dev,
392 "Grab diag control timeout.\n");
393 return -ENODEV;
394 }
395
396 udelay(1);
397 }
398
399 return err;
400 }
401
n2rng_init_control(struct n2rng * np)402 static int n2rng_init_control(struct n2rng *np)
403 {
404 int err = n2rng_grab_diag_control(np);
405
406 /* Not in the control domain, that's OK we are only a consumer
407 * of the RNG data, we don't setup and program it.
408 */
409 if (err == -EPERM)
410 return 0;
411 if (err)
412 return err;
413
414 n2rng_control_swstate_init(np);
415
416 return 0;
417 }
418
n2rng_data_read(struct hwrng * rng,u32 * data)419 static int n2rng_data_read(struct hwrng *rng, u32 *data)
420 {
421 struct n2rng *np = (struct n2rng *) rng->priv;
422 unsigned long ra = __pa(&np->test_data);
423 int len;
424
425 if (!(np->flags & N2RNG_FLAG_READY)) {
426 len = 0;
427 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
428 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
429 *data = np->buffer;
430 len = 4;
431 } else {
432 int err = n2rng_generic_read_data(ra);
433 if (!err) {
434 np->flags |= N2RNG_FLAG_BUFFER_VALID;
435 np->buffer = np->test_data >> 32;
436 *data = np->test_data & 0xffffffff;
437 len = 4;
438 } else {
439 dev_err(&np->op->dev, "RNG error, retesting\n");
440 np->flags &= ~N2RNG_FLAG_READY;
441 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
442 schedule_delayed_work(&np->work, 0);
443 len = 0;
444 }
445 }
446
447 return len;
448 }
449
450 /* On a guest node, just make sure we can read random data properly.
451 * If a control node reboots or reloads it's n2rng driver, this won't
452 * work during that time. So we have to keep probing until the device
453 * becomes usable.
454 */
n2rng_guest_check(struct n2rng * np)455 static int n2rng_guest_check(struct n2rng *np)
456 {
457 unsigned long ra = __pa(&np->test_data);
458
459 return n2rng_generic_read_data(ra);
460 }
461
n2rng_entropy_diag_read(struct n2rng * np,unsigned long unit,u64 * pre_control,u64 pre_state,u64 * buffer,unsigned long buf_len,u64 * post_control,u64 post_state)462 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
463 u64 *pre_control, u64 pre_state,
464 u64 *buffer, unsigned long buf_len,
465 u64 *post_control, u64 post_state)
466 {
467 unsigned long post_ctl_ra = __pa(post_control);
468 unsigned long pre_ctl_ra = __pa(pre_control);
469 unsigned long buffer_ra = __pa(buffer);
470 int err;
471
472 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
473 if (err)
474 return err;
475
476 err = n2rng_generic_read_diag_data(np, unit,
477 buffer_ra, buf_len);
478
479 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
480 post_state);
481
482 return err;
483 }
484
advance_polynomial(u64 poly,u64 val,int count)485 static u64 advance_polynomial(u64 poly, u64 val, int count)
486 {
487 int i;
488
489 for (i = 0; i < count; i++) {
490 int highbit_set = ((s64)val < 0);
491
492 val <<= 1;
493 if (highbit_set)
494 val ^= poly;
495 }
496
497 return val;
498 }
499
n2rng_test_buffer_find(struct n2rng * np,u64 val)500 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
501 {
502 int i, count = 0;
503
504 /* Purposefully skip over the first word. */
505 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
506 if (np->test_buffer[i] == val)
507 count++;
508 }
509 return count;
510 }
511
n2rng_dump_test_buffer(struct n2rng * np)512 static void n2rng_dump_test_buffer(struct n2rng *np)
513 {
514 int i;
515
516 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
517 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
518 i, np->test_buffer[i]);
519 }
520
n2rng_check_selftest_buffer(struct n2rng * np,unsigned long unit)521 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
522 {
523 u64 val;
524 int err, matches, limit;
525
526 switch (np->data->id) {
527 case N2_n2_rng:
528 case N2_vf_rng:
529 case N2_kt_rng:
530 case N2_m4_rng: /* yes, m4 uses the old value */
531 val = RNG_v1_SELFTEST_VAL;
532 break;
533 default:
534 val = RNG_v2_SELFTEST_VAL;
535 break;
536 }
537
538 matches = 0;
539 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
540 matches += n2rng_test_buffer_find(np, val);
541 if (matches >= SELFTEST_MATCH_GOAL)
542 break;
543 val = advance_polynomial(SELFTEST_POLY, val, 1);
544 }
545
546 err = 0;
547 if (limit >= SELFTEST_LOOPS_MAX) {
548 err = -ENODEV;
549 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
550 n2rng_dump_test_buffer(np);
551 } else
552 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
553
554 return err;
555 }
556
n2rng_control_selftest(struct n2rng * np,unsigned long unit)557 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
558 {
559 int err;
560 u64 base, base3;
561
562 switch (np->data->id) {
563 case N2_n2_rng:
564 case N2_vf_rng:
565 case N2_kt_rng:
566 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
567 base3 = base | RNG_CTL_LFSR |
568 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
569 break;
570 case N2_m4_rng:
571 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
572 base3 = base | RNG_CTL_LFSR |
573 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
574 break;
575 default:
576 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
577 base3 = base | RNG_CTL_LFSR |
578 (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
579 break;
580 }
581
582 np->test_control[0] = base;
583 np->test_control[1] = base;
584 np->test_control[2] = base;
585 np->test_control[3] = base3;
586
587 err = n2rng_entropy_diag_read(np, unit, np->test_control,
588 HV_RNG_STATE_HEALTHCHECK,
589 np->test_buffer,
590 sizeof(np->test_buffer),
591 &np->units[unit].control[0],
592 np->hv_state);
593 if (err)
594 return err;
595
596 return n2rng_check_selftest_buffer(np, unit);
597 }
598
n2rng_control_check(struct n2rng * np)599 static int n2rng_control_check(struct n2rng *np)
600 {
601 int i;
602
603 for (i = 0; i < np->num_units; i++) {
604 int err = n2rng_control_selftest(np, i);
605 if (err)
606 return err;
607 }
608 return 0;
609 }
610
611 /* The sanity checks passed, install the final configuration into the
612 * chip, it's ready to use.
613 */
n2rng_control_configure_units(struct n2rng * np)614 static int n2rng_control_configure_units(struct n2rng *np)
615 {
616 int unit, err;
617
618 err = 0;
619 for (unit = 0; unit < np->num_units; unit++) {
620 struct n2rng_unit *up = &np->units[unit];
621 unsigned long ctl_ra = __pa(&up->control[0]);
622 int esrc;
623 u64 base, shift;
624
625 if (np->data->chip_version == 1) {
626 base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
627 (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
628 RNG_CTL_LFSR);
629 shift = RNG_v1_CTL_VCO_SHIFT;
630 } else {
631 base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
632 (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
633 RNG_CTL_LFSR);
634 shift = RNG_v2_CTL_VCO_SHIFT;
635 }
636
637 /* XXX This isn't the best. We should fetch a bunch
638 * XXX of words using each entropy source combined XXX
639 * with each VCO setting, and see which combinations
640 * XXX give the best random data.
641 */
642 for (esrc = 0; esrc < 3; esrc++)
643 up->control[esrc] = base |
644 (esrc << shift) |
645 (RNG_CTL_ES1 << esrc);
646
647 up->control[3] = base |
648 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
649
650 err = n2rng_generic_write_control(np, ctl_ra, unit,
651 HV_RNG_STATE_CONFIGURED);
652 if (err)
653 break;
654 }
655
656 return err;
657 }
658
n2rng_work(struct work_struct * work)659 static void n2rng_work(struct work_struct *work)
660 {
661 struct n2rng *np = container_of(work, struct n2rng, work.work);
662 int err = 0;
663 static int retries = 4;
664
665 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
666 err = n2rng_guest_check(np);
667 } else {
668 preempt_disable();
669 err = n2rng_control_check(np);
670 preempt_enable();
671
672 if (!err)
673 err = n2rng_control_configure_units(np);
674 }
675
676 if (!err) {
677 np->flags |= N2RNG_FLAG_READY;
678 dev_info(&np->op->dev, "RNG ready\n");
679 }
680
681 if (--retries == 0)
682 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
683 else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
684 schedule_delayed_work(&np->work, HZ * 2);
685 }
686
n2rng_driver_version(void)687 static void n2rng_driver_version(void)
688 {
689 static int n2rng_version_printed;
690
691 if (n2rng_version_printed++ == 0)
692 pr_info("%s", version);
693 }
694
695 static const struct of_device_id n2rng_match[];
n2rng_probe(struct platform_device * op)696 static int n2rng_probe(struct platform_device *op)
697 {
698 const struct of_device_id *match;
699 int err = -ENOMEM;
700 struct n2rng *np;
701
702 match = of_match_device(n2rng_match, &op->dev);
703 if (!match)
704 return -EINVAL;
705
706 n2rng_driver_version();
707 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
708 if (!np)
709 goto out;
710 np->op = op;
711 np->data = (struct n2rng_template *)match->data;
712
713 INIT_DELAYED_WORK(&np->work, n2rng_work);
714
715 if (np->data->multi_capable)
716 np->flags |= N2RNG_FLAG_MULTI;
717
718 err = -ENODEV;
719 np->hvapi_major = 2;
720 if (sun4v_hvapi_register(HV_GRP_RNG,
721 np->hvapi_major,
722 &np->hvapi_minor)) {
723 np->hvapi_major = 1;
724 if (sun4v_hvapi_register(HV_GRP_RNG,
725 np->hvapi_major,
726 &np->hvapi_minor)) {
727 dev_err(&op->dev, "Cannot register suitable "
728 "HVAPI version.\n");
729 goto out;
730 }
731 }
732
733 if (np->flags & N2RNG_FLAG_MULTI) {
734 if (np->hvapi_major < 2) {
735 dev_err(&op->dev, "multi-unit-capable RNG requires "
736 "HVAPI major version 2 or later, got %lu\n",
737 np->hvapi_major);
738 goto out_hvapi_unregister;
739 }
740 np->num_units = of_getintprop_default(op->dev.of_node,
741 "rng-#units", 0);
742 if (!np->num_units) {
743 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
744 goto out_hvapi_unregister;
745 }
746 } else {
747 np->num_units = 1;
748 }
749
750 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
751 np->hvapi_major, np->hvapi_minor);
752 np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
753 GFP_KERNEL);
754 err = -ENOMEM;
755 if (!np->units)
756 goto out_hvapi_unregister;
757
758 err = n2rng_init_control(np);
759 if (err)
760 goto out_hvapi_unregister;
761
762 dev_info(&op->dev, "Found %s RNG, units: %d\n",
763 ((np->flags & N2RNG_FLAG_MULTI) ?
764 "multi-unit-capable" : "single-unit"),
765 np->num_units);
766
767 np->hwrng.name = DRV_MODULE_NAME;
768 np->hwrng.data_read = n2rng_data_read;
769 np->hwrng.priv = (unsigned long) np;
770
771 err = devm_hwrng_register(&op->dev, &np->hwrng);
772 if (err)
773 goto out_hvapi_unregister;
774
775 platform_set_drvdata(op, np);
776
777 schedule_delayed_work(&np->work, 0);
778
779 return 0;
780
781 out_hvapi_unregister:
782 sun4v_hvapi_unregister(HV_GRP_RNG);
783
784 out:
785 return err;
786 }
787
n2rng_remove(struct platform_device * op)788 static int n2rng_remove(struct platform_device *op)
789 {
790 struct n2rng *np = platform_get_drvdata(op);
791
792 np->flags |= N2RNG_FLAG_SHUTDOWN;
793
794 cancel_delayed_work_sync(&np->work);
795
796 sun4v_hvapi_unregister(HV_GRP_RNG);
797
798 return 0;
799 }
800
801 static struct n2rng_template n2_template = {
802 .id = N2_n2_rng,
803 .multi_capable = 0,
804 .chip_version = 1,
805 };
806
807 static struct n2rng_template vf_template = {
808 .id = N2_vf_rng,
809 .multi_capable = 1,
810 .chip_version = 1,
811 };
812
813 static struct n2rng_template kt_template = {
814 .id = N2_kt_rng,
815 .multi_capable = 1,
816 .chip_version = 1,
817 };
818
819 static struct n2rng_template m4_template = {
820 .id = N2_m4_rng,
821 .multi_capable = 1,
822 .chip_version = 2,
823 };
824
825 static struct n2rng_template m7_template = {
826 .id = N2_m7_rng,
827 .multi_capable = 1,
828 .chip_version = 2,
829 };
830
831 static const struct of_device_id n2rng_match[] = {
832 {
833 .name = "random-number-generator",
834 .compatible = "SUNW,n2-rng",
835 .data = &n2_template,
836 },
837 {
838 .name = "random-number-generator",
839 .compatible = "SUNW,vf-rng",
840 .data = &vf_template,
841 },
842 {
843 .name = "random-number-generator",
844 .compatible = "SUNW,kt-rng",
845 .data = &kt_template,
846 },
847 {
848 .name = "random-number-generator",
849 .compatible = "ORCL,m4-rng",
850 .data = &m4_template,
851 },
852 {
853 .name = "random-number-generator",
854 .compatible = "ORCL,m7-rng",
855 .data = &m7_template,
856 },
857 {},
858 };
859 MODULE_DEVICE_TABLE(of, n2rng_match);
860
861 static struct platform_driver n2rng_driver = {
862 .driver = {
863 .name = "n2rng",
864 .of_match_table = n2rng_match,
865 },
866 .probe = n2rng_probe,
867 .remove = n2rng_remove,
868 };
869
870 module_platform_driver(n2rng_driver);
871