xref: /openbmc/linux/drivers/char/hpet.c (revision d87c25e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/poll.h>
20 #include <linux/mm.h>
21 #include <linux/proc_fs.h>
22 #include <linux/spinlock.h>
23 #include <linux/sysctl.h>
24 #include <linux/wait.h>
25 #include <linux/sched/signal.h>
26 #include <linux/bcd.h>
27 #include <linux/seq_file.h>
28 #include <linux/bitops.h>
29 #include <linux/compat.h>
30 #include <linux/clocksource.h>
31 #include <linux/uaccess.h>
32 #include <linux/slab.h>
33 #include <linux/io.h>
34 #include <linux/acpi.h>
35 #include <linux/hpet.h>
36 #include <asm/current.h>
37 #include <asm/irq.h>
38 #include <asm/div64.h>
39 
40 /*
41  * The High Precision Event Timer driver.
42  * This driver is closely modelled after the rtc.c driver.
43  * See HPET spec revision 1.
44  */
45 #define	HPET_USER_FREQ	(64)
46 #define	HPET_DRIFT	(500)
47 
48 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
49 
50 
51 /* WARNING -- don't get confused.  These macros are never used
52  * to write the (single) counter, and rarely to read it.
53  * They're badly named; to fix, someday.
54  */
55 #if BITS_PER_LONG == 64
56 #define	write_counter(V, MC)	writeq(V, MC)
57 #define	read_counter(MC)	readq(MC)
58 #else
59 #define	write_counter(V, MC)	writel(V, MC)
60 #define	read_counter(MC)	readl(MC)
61 #endif
62 
63 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
64 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
65 
66 /* This clocksource driver currently only works on ia64 */
67 #ifdef CONFIG_IA64
68 static void __iomem *hpet_mctr;
69 
70 static u64 read_hpet(struct clocksource *cs)
71 {
72 	return (u64)read_counter((void __iomem *)hpet_mctr);
73 }
74 
75 static struct clocksource clocksource_hpet = {
76 	.name		= "hpet",
77 	.rating		= 250,
78 	.read		= read_hpet,
79 	.mask		= CLOCKSOURCE_MASK(64),
80 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
81 };
82 static struct clocksource *hpet_clocksource;
83 #endif
84 
85 /* A lock for concurrent access by app and isr hpet activity. */
86 static DEFINE_SPINLOCK(hpet_lock);
87 
88 #define	HPET_DEV_NAME	(7)
89 
90 struct hpet_dev {
91 	struct hpets *hd_hpets;
92 	struct hpet __iomem *hd_hpet;
93 	struct hpet_timer __iomem *hd_timer;
94 	unsigned long hd_ireqfreq;
95 	unsigned long hd_irqdata;
96 	wait_queue_head_t hd_waitqueue;
97 	struct fasync_struct *hd_async_queue;
98 	unsigned int hd_flags;
99 	unsigned int hd_irq;
100 	unsigned int hd_hdwirq;
101 	char hd_name[HPET_DEV_NAME];
102 };
103 
104 struct hpets {
105 	struct hpets *hp_next;
106 	struct hpet __iomem *hp_hpet;
107 	unsigned long hp_hpet_phys;
108 	struct clocksource *hp_clocksource;
109 	unsigned long long hp_tick_freq;
110 	unsigned long hp_delta;
111 	unsigned int hp_ntimer;
112 	unsigned int hp_which;
113 	struct hpet_dev hp_dev[];
114 };
115 
116 static struct hpets *hpets;
117 
118 #define	HPET_OPEN		0x0001
119 #define	HPET_IE			0x0002	/* interrupt enabled */
120 #define	HPET_PERIODIC		0x0004
121 #define	HPET_SHARED_IRQ		0x0008
122 
123 
124 #ifndef readq
125 static inline unsigned long long readq(void __iomem *addr)
126 {
127 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
128 }
129 #endif
130 
131 #ifndef writeq
132 static inline void writeq(unsigned long long v, void __iomem *addr)
133 {
134 	writel(v & 0xffffffff, addr);
135 	writel(v >> 32, addr + 4);
136 }
137 #endif
138 
139 static irqreturn_t hpet_interrupt(int irq, void *data)
140 {
141 	struct hpet_dev *devp;
142 	unsigned long isr;
143 
144 	devp = data;
145 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
146 
147 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
148 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
149 		return IRQ_NONE;
150 
151 	spin_lock(&hpet_lock);
152 	devp->hd_irqdata++;
153 
154 	/*
155 	 * For non-periodic timers, increment the accumulator.
156 	 * This has the effect of treating non-periodic like periodic.
157 	 */
158 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
159 		unsigned long t, mc, base, k;
160 		struct hpet __iomem *hpet = devp->hd_hpet;
161 		struct hpets *hpetp = devp->hd_hpets;
162 
163 		t = devp->hd_ireqfreq;
164 		read_counter(&devp->hd_timer->hpet_compare);
165 		mc = read_counter(&hpet->hpet_mc);
166 		/* The time for the next interrupt would logically be t + m,
167 		 * however, if we are very unlucky and the interrupt is delayed
168 		 * for longer than t then we will completely miss the next
169 		 * interrupt if we set t + m and an application will hang.
170 		 * Therefore we need to make a more complex computation assuming
171 		 * that there exists a k for which the following is true:
172 		 * k * t + base < mc + delta
173 		 * (k + 1) * t + base > mc + delta
174 		 * where t is the interval in hpet ticks for the given freq,
175 		 * base is the theoretical start value 0 < base < t,
176 		 * mc is the main counter value at the time of the interrupt,
177 		 * delta is the time it takes to write the a value to the
178 		 * comparator.
179 		 * k may then be computed as (mc - base + delta) / t .
180 		 */
181 		base = mc % t;
182 		k = (mc - base + hpetp->hp_delta) / t;
183 		write_counter(t * (k + 1) + base,
184 			      &devp->hd_timer->hpet_compare);
185 	}
186 
187 	if (devp->hd_flags & HPET_SHARED_IRQ)
188 		writel(isr, &devp->hd_hpet->hpet_isr);
189 	spin_unlock(&hpet_lock);
190 
191 	wake_up_interruptible(&devp->hd_waitqueue);
192 
193 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
194 
195 	return IRQ_HANDLED;
196 }
197 
198 static void hpet_timer_set_irq(struct hpet_dev *devp)
199 {
200 	unsigned long v;
201 	int irq, gsi;
202 	struct hpet_timer __iomem *timer;
203 
204 	spin_lock_irq(&hpet_lock);
205 	if (devp->hd_hdwirq) {
206 		spin_unlock_irq(&hpet_lock);
207 		return;
208 	}
209 
210 	timer = devp->hd_timer;
211 
212 	/* we prefer level triggered mode */
213 	v = readl(&timer->hpet_config);
214 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
215 		v |= Tn_INT_TYPE_CNF_MASK;
216 		writel(v, &timer->hpet_config);
217 	}
218 	spin_unlock_irq(&hpet_lock);
219 
220 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
221 				 Tn_INT_ROUTE_CAP_SHIFT;
222 
223 	/*
224 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
225 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
226 	 */
227 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
228 		v &= ~0xf3df;
229 	else
230 		v &= ~0xffff;
231 
232 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
233 		if (irq >= nr_irqs) {
234 			irq = HPET_MAX_IRQ;
235 			break;
236 		}
237 
238 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
239 					ACPI_ACTIVE_LOW);
240 		if (gsi > 0)
241 			break;
242 
243 		/* FIXME: Setup interrupt source table */
244 	}
245 
246 	if (irq < HPET_MAX_IRQ) {
247 		spin_lock_irq(&hpet_lock);
248 		v = readl(&timer->hpet_config);
249 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
250 		writel(v, &timer->hpet_config);
251 		devp->hd_hdwirq = gsi;
252 		spin_unlock_irq(&hpet_lock);
253 	}
254 	return;
255 }
256 
257 static int hpet_open(struct inode *inode, struct file *file)
258 {
259 	struct hpet_dev *devp;
260 	struct hpets *hpetp;
261 	int i;
262 
263 	if (file->f_mode & FMODE_WRITE)
264 		return -EINVAL;
265 
266 	mutex_lock(&hpet_mutex);
267 	spin_lock_irq(&hpet_lock);
268 
269 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
270 		for (i = 0; i < hpetp->hp_ntimer; i++)
271 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
272 				continue;
273 			else {
274 				devp = &hpetp->hp_dev[i];
275 				break;
276 			}
277 
278 	if (!devp) {
279 		spin_unlock_irq(&hpet_lock);
280 		mutex_unlock(&hpet_mutex);
281 		return -EBUSY;
282 	}
283 
284 	file->private_data = devp;
285 	devp->hd_irqdata = 0;
286 	devp->hd_flags |= HPET_OPEN;
287 	spin_unlock_irq(&hpet_lock);
288 	mutex_unlock(&hpet_mutex);
289 
290 	hpet_timer_set_irq(devp);
291 
292 	return 0;
293 }
294 
295 static ssize_t
296 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
297 {
298 	DECLARE_WAITQUEUE(wait, current);
299 	unsigned long data;
300 	ssize_t retval;
301 	struct hpet_dev *devp;
302 
303 	devp = file->private_data;
304 	if (!devp->hd_ireqfreq)
305 		return -EIO;
306 
307 	if (count < sizeof(unsigned long))
308 		return -EINVAL;
309 
310 	add_wait_queue(&devp->hd_waitqueue, &wait);
311 
312 	for ( ; ; ) {
313 		set_current_state(TASK_INTERRUPTIBLE);
314 
315 		spin_lock_irq(&hpet_lock);
316 		data = devp->hd_irqdata;
317 		devp->hd_irqdata = 0;
318 		spin_unlock_irq(&hpet_lock);
319 
320 		if (data)
321 			break;
322 		else if (file->f_flags & O_NONBLOCK) {
323 			retval = -EAGAIN;
324 			goto out;
325 		} else if (signal_pending(current)) {
326 			retval = -ERESTARTSYS;
327 			goto out;
328 		}
329 		schedule();
330 	}
331 
332 	retval = put_user(data, (unsigned long __user *)buf);
333 	if (!retval)
334 		retval = sizeof(unsigned long);
335 out:
336 	__set_current_state(TASK_RUNNING);
337 	remove_wait_queue(&devp->hd_waitqueue, &wait);
338 
339 	return retval;
340 }
341 
342 static __poll_t hpet_poll(struct file *file, poll_table * wait)
343 {
344 	unsigned long v;
345 	struct hpet_dev *devp;
346 
347 	devp = file->private_data;
348 
349 	if (!devp->hd_ireqfreq)
350 		return 0;
351 
352 	poll_wait(file, &devp->hd_waitqueue, wait);
353 
354 	spin_lock_irq(&hpet_lock);
355 	v = devp->hd_irqdata;
356 	spin_unlock_irq(&hpet_lock);
357 
358 	if (v != 0)
359 		return EPOLLIN | EPOLLRDNORM;
360 
361 	return 0;
362 }
363 
364 #ifdef CONFIG_HPET_MMAP
365 #ifdef CONFIG_HPET_MMAP_DEFAULT
366 static int hpet_mmap_enabled = 1;
367 #else
368 static int hpet_mmap_enabled = 0;
369 #endif
370 
371 static __init int hpet_mmap_enable(char *str)
372 {
373 	get_option(&str, &hpet_mmap_enabled);
374 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
375 	return 1;
376 }
377 __setup("hpet_mmap=", hpet_mmap_enable);
378 
379 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381 	struct hpet_dev *devp;
382 	unsigned long addr;
383 
384 	if (!hpet_mmap_enabled)
385 		return -EACCES;
386 
387 	devp = file->private_data;
388 	addr = devp->hd_hpets->hp_hpet_phys;
389 
390 	if (addr & (PAGE_SIZE - 1))
391 		return -ENOSYS;
392 
393 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
394 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
395 }
396 #else
397 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
398 {
399 	return -ENOSYS;
400 }
401 #endif
402 
403 static int hpet_fasync(int fd, struct file *file, int on)
404 {
405 	struct hpet_dev *devp;
406 
407 	devp = file->private_data;
408 
409 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
410 		return 0;
411 	else
412 		return -EIO;
413 }
414 
415 static int hpet_release(struct inode *inode, struct file *file)
416 {
417 	struct hpet_dev *devp;
418 	struct hpet_timer __iomem *timer;
419 	int irq = 0;
420 
421 	devp = file->private_data;
422 	timer = devp->hd_timer;
423 
424 	spin_lock_irq(&hpet_lock);
425 
426 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
427 	       &timer->hpet_config);
428 
429 	irq = devp->hd_irq;
430 	devp->hd_irq = 0;
431 
432 	devp->hd_ireqfreq = 0;
433 
434 	if (devp->hd_flags & HPET_PERIODIC
435 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
436 		unsigned long v;
437 
438 		v = readq(&timer->hpet_config);
439 		v ^= Tn_TYPE_CNF_MASK;
440 		writeq(v, &timer->hpet_config);
441 	}
442 
443 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
444 	spin_unlock_irq(&hpet_lock);
445 
446 	if (irq)
447 		free_irq(irq, devp);
448 
449 	file->private_data = NULL;
450 	return 0;
451 }
452 
453 static int hpet_ioctl_ieon(struct hpet_dev *devp)
454 {
455 	struct hpet_timer __iomem *timer;
456 	struct hpet __iomem *hpet;
457 	struct hpets *hpetp;
458 	int irq;
459 	unsigned long g, v, t, m;
460 	unsigned long flags, isr;
461 
462 	timer = devp->hd_timer;
463 	hpet = devp->hd_hpet;
464 	hpetp = devp->hd_hpets;
465 
466 	if (!devp->hd_ireqfreq)
467 		return -EIO;
468 
469 	spin_lock_irq(&hpet_lock);
470 
471 	if (devp->hd_flags & HPET_IE) {
472 		spin_unlock_irq(&hpet_lock);
473 		return -EBUSY;
474 	}
475 
476 	devp->hd_flags |= HPET_IE;
477 
478 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
479 		devp->hd_flags |= HPET_SHARED_IRQ;
480 	spin_unlock_irq(&hpet_lock);
481 
482 	irq = devp->hd_hdwirq;
483 
484 	if (irq) {
485 		unsigned long irq_flags;
486 
487 		if (devp->hd_flags & HPET_SHARED_IRQ) {
488 			/*
489 			 * To prevent the interrupt handler from seeing an
490 			 * unwanted interrupt status bit, program the timer
491 			 * so that it will not fire in the near future ...
492 			 */
493 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
494 			       &timer->hpet_config);
495 			write_counter(read_counter(&hpet->hpet_mc),
496 				      &timer->hpet_compare);
497 			/* ... and clear any left-over status. */
498 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
499 			writel(isr, &hpet->hpet_isr);
500 		}
501 
502 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
503 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
504 		if (request_irq(irq, hpet_interrupt, irq_flags,
505 				devp->hd_name, (void *)devp)) {
506 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
507 			irq = 0;
508 		}
509 	}
510 
511 	if (irq == 0) {
512 		spin_lock_irq(&hpet_lock);
513 		devp->hd_flags ^= HPET_IE;
514 		spin_unlock_irq(&hpet_lock);
515 		return -EIO;
516 	}
517 
518 	devp->hd_irq = irq;
519 	t = devp->hd_ireqfreq;
520 	v = readq(&timer->hpet_config);
521 
522 	/* 64-bit comparators are not yet supported through the ioctls,
523 	 * so force this into 32-bit mode if it supports both modes
524 	 */
525 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526 
527 	if (devp->hd_flags & HPET_PERIODIC) {
528 		g |= Tn_TYPE_CNF_MASK;
529 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
530 		writeq(v, &timer->hpet_config);
531 		local_irq_save(flags);
532 
533 		/*
534 		 * NOTE: First we modify the hidden accumulator
535 		 * register supported by periodic-capable comparators.
536 		 * We never want to modify the (single) counter; that
537 		 * would affect all the comparators. The value written
538 		 * is the counter value when the first interrupt is due.
539 		 */
540 		m = read_counter(&hpet->hpet_mc);
541 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542 		/*
543 		 * Then we modify the comparator, indicating the period
544 		 * for subsequent interrupt.
545 		 */
546 		write_counter(t, &timer->hpet_compare);
547 	} else {
548 		local_irq_save(flags);
549 		m = read_counter(&hpet->hpet_mc);
550 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
551 	}
552 
553 	if (devp->hd_flags & HPET_SHARED_IRQ) {
554 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
555 		writel(isr, &hpet->hpet_isr);
556 	}
557 	writeq(g, &timer->hpet_config);
558 	local_irq_restore(flags);
559 
560 	return 0;
561 }
562 
563 /* converts Hz to number of timer ticks */
564 static inline unsigned long hpet_time_div(struct hpets *hpets,
565 					  unsigned long dis)
566 {
567 	unsigned long long m;
568 
569 	m = hpets->hp_tick_freq + (dis >> 1);
570 	return div64_ul(m, dis);
571 }
572 
573 static int
574 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
575 		  struct hpet_info *info)
576 {
577 	struct hpet_timer __iomem *timer;
578 	struct hpets *hpetp;
579 	int err;
580 	unsigned long v;
581 
582 	switch (cmd) {
583 	case HPET_IE_OFF:
584 	case HPET_INFO:
585 	case HPET_EPI:
586 	case HPET_DPI:
587 	case HPET_IRQFREQ:
588 		timer = devp->hd_timer;
589 		hpetp = devp->hd_hpets;
590 		break;
591 	case HPET_IE_ON:
592 		return hpet_ioctl_ieon(devp);
593 	default:
594 		return -EINVAL;
595 	}
596 
597 	err = 0;
598 
599 	switch (cmd) {
600 	case HPET_IE_OFF:
601 		if ((devp->hd_flags & HPET_IE) == 0)
602 			break;
603 		v = readq(&timer->hpet_config);
604 		v &= ~Tn_INT_ENB_CNF_MASK;
605 		writeq(v, &timer->hpet_config);
606 		if (devp->hd_irq) {
607 			free_irq(devp->hd_irq, devp);
608 			devp->hd_irq = 0;
609 		}
610 		devp->hd_flags ^= HPET_IE;
611 		break;
612 	case HPET_INFO:
613 		{
614 			memset(info, 0, sizeof(*info));
615 			if (devp->hd_ireqfreq)
616 				info->hi_ireqfreq =
617 					hpet_time_div(hpetp, devp->hd_ireqfreq);
618 			info->hi_flags =
619 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
620 			info->hi_hpet = hpetp->hp_which;
621 			info->hi_timer = devp - hpetp->hp_dev;
622 			break;
623 		}
624 	case HPET_EPI:
625 		v = readq(&timer->hpet_config);
626 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
627 			err = -ENXIO;
628 			break;
629 		}
630 		devp->hd_flags |= HPET_PERIODIC;
631 		break;
632 	case HPET_DPI:
633 		v = readq(&timer->hpet_config);
634 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
635 			err = -ENXIO;
636 			break;
637 		}
638 		if (devp->hd_flags & HPET_PERIODIC &&
639 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
640 			v = readq(&timer->hpet_config);
641 			v ^= Tn_TYPE_CNF_MASK;
642 			writeq(v, &timer->hpet_config);
643 		}
644 		devp->hd_flags &= ~HPET_PERIODIC;
645 		break;
646 	case HPET_IRQFREQ:
647 		if ((arg > hpet_max_freq) &&
648 		    !capable(CAP_SYS_RESOURCE)) {
649 			err = -EACCES;
650 			break;
651 		}
652 
653 		if (!arg) {
654 			err = -EINVAL;
655 			break;
656 		}
657 
658 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
659 	}
660 
661 	return err;
662 }
663 
664 static long
665 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
666 {
667 	struct hpet_info info;
668 	int err;
669 
670 	mutex_lock(&hpet_mutex);
671 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
672 	mutex_unlock(&hpet_mutex);
673 
674 	if ((cmd == HPET_INFO) && !err &&
675 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
676 		err = -EFAULT;
677 
678 	return err;
679 }
680 
681 #ifdef CONFIG_COMPAT
682 struct compat_hpet_info {
683 	compat_ulong_t hi_ireqfreq;	/* Hz */
684 	compat_ulong_t hi_flags;	/* information */
685 	unsigned short hi_hpet;
686 	unsigned short hi_timer;
687 };
688 
689 static long
690 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691 {
692 	struct hpet_info info;
693 	int err;
694 
695 	mutex_lock(&hpet_mutex);
696 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
697 	mutex_unlock(&hpet_mutex);
698 
699 	if ((cmd == HPET_INFO) && !err) {
700 		struct compat_hpet_info __user *u = compat_ptr(arg);
701 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
702 		    put_user(info.hi_flags, &u->hi_flags) ||
703 		    put_user(info.hi_hpet, &u->hi_hpet) ||
704 		    put_user(info.hi_timer, &u->hi_timer))
705 			err = -EFAULT;
706 	}
707 
708 	return err;
709 }
710 #endif
711 
712 static const struct file_operations hpet_fops = {
713 	.owner = THIS_MODULE,
714 	.llseek = no_llseek,
715 	.read = hpet_read,
716 	.poll = hpet_poll,
717 	.unlocked_ioctl = hpet_ioctl,
718 #ifdef CONFIG_COMPAT
719 	.compat_ioctl = hpet_compat_ioctl,
720 #endif
721 	.open = hpet_open,
722 	.release = hpet_release,
723 	.fasync = hpet_fasync,
724 	.mmap = hpet_mmap,
725 };
726 
727 static int hpet_is_known(struct hpet_data *hdp)
728 {
729 	struct hpets *hpetp;
730 
731 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
732 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
733 			return 1;
734 
735 	return 0;
736 }
737 
738 static struct ctl_table hpet_table[] = {
739 	{
740 	 .procname = "max-user-freq",
741 	 .data = &hpet_max_freq,
742 	 .maxlen = sizeof(int),
743 	 .mode = 0644,
744 	 .proc_handler = proc_dointvec,
745 	 },
746 	{}
747 };
748 
749 static struct ctl_table_header *sysctl_header;
750 
751 /*
752  * Adjustment for when arming the timer with
753  * initial conditions.  That is, main counter
754  * ticks expired before interrupts are enabled.
755  */
756 #define	TICK_CALIBRATE	(1000UL)
757 
758 static unsigned long __hpet_calibrate(struct hpets *hpetp)
759 {
760 	struct hpet_timer __iomem *timer = NULL;
761 	unsigned long t, m, count, i, flags, start;
762 	struct hpet_dev *devp;
763 	int j;
764 	struct hpet __iomem *hpet;
765 
766 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
767 		if ((devp->hd_flags & HPET_OPEN) == 0) {
768 			timer = devp->hd_timer;
769 			break;
770 		}
771 
772 	if (!timer)
773 		return 0;
774 
775 	hpet = hpetp->hp_hpet;
776 	t = read_counter(&timer->hpet_compare);
777 
778 	i = 0;
779 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
780 
781 	local_irq_save(flags);
782 
783 	start = read_counter(&hpet->hpet_mc);
784 
785 	do {
786 		m = read_counter(&hpet->hpet_mc);
787 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
788 	} while (i++, (m - start) < count);
789 
790 	local_irq_restore(flags);
791 
792 	return (m - start) / i;
793 }
794 
795 static unsigned long hpet_calibrate(struct hpets *hpetp)
796 {
797 	unsigned long ret = ~0UL;
798 	unsigned long tmp;
799 
800 	/*
801 	 * Try to calibrate until return value becomes stable small value.
802 	 * If SMI interruption occurs in calibration loop, the return value
803 	 * will be big. This avoids its impact.
804 	 */
805 	for ( ; ; ) {
806 		tmp = __hpet_calibrate(hpetp);
807 		if (ret <= tmp)
808 			break;
809 		ret = tmp;
810 	}
811 
812 	return ret;
813 }
814 
815 int hpet_alloc(struct hpet_data *hdp)
816 {
817 	u64 cap, mcfg;
818 	struct hpet_dev *devp;
819 	u32 i, ntimer;
820 	struct hpets *hpetp;
821 	struct hpet __iomem *hpet;
822 	static struct hpets *last;
823 	unsigned long period;
824 	unsigned long long temp;
825 	u32 remainder;
826 
827 	/*
828 	 * hpet_alloc can be called by platform dependent code.
829 	 * If platform dependent code has allocated the hpet that
830 	 * ACPI has also reported, then we catch it here.
831 	 */
832 	if (hpet_is_known(hdp)) {
833 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
834 			__func__);
835 		return 0;
836 	}
837 
838 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
839 			GFP_KERNEL);
840 
841 	if (!hpetp)
842 		return -ENOMEM;
843 
844 	hpetp->hp_which = hpet_nhpet++;
845 	hpetp->hp_hpet = hdp->hd_address;
846 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
847 
848 	hpetp->hp_ntimer = hdp->hd_nirqs;
849 
850 	for (i = 0; i < hdp->hd_nirqs; i++)
851 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
852 
853 	hpet = hpetp->hp_hpet;
854 
855 	cap = readq(&hpet->hpet_cap);
856 
857 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
858 
859 	if (hpetp->hp_ntimer != ntimer) {
860 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
861 		       " with number of timers\n");
862 		kfree(hpetp);
863 		return -ENODEV;
864 	}
865 
866 	if (last)
867 		last->hp_next = hpetp;
868 	else
869 		hpets = hpetp;
870 
871 	last = hpetp;
872 
873 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
874 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
875 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
876 	temp += period >> 1; /* round */
877 	do_div(temp, period);
878 	hpetp->hp_tick_freq = temp; /* ticks per second */
879 
880 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
881 		hpetp->hp_which, hdp->hd_phys_address,
882 		hpetp->hp_ntimer > 1 ? "s" : "");
883 	for (i = 0; i < hpetp->hp_ntimer; i++)
884 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
885 	printk(KERN_CONT "\n");
886 
887 	temp = hpetp->hp_tick_freq;
888 	remainder = do_div(temp, 1000000);
889 	printk(KERN_INFO
890 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
891 		hpetp->hp_which, hpetp->hp_ntimer,
892 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
893 		(unsigned) temp, remainder);
894 
895 	mcfg = readq(&hpet->hpet_config);
896 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
897 		write_counter(0L, &hpet->hpet_mc);
898 		mcfg |= HPET_ENABLE_CNF_MASK;
899 		writeq(mcfg, &hpet->hpet_config);
900 	}
901 
902 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
903 		struct hpet_timer __iomem *timer;
904 
905 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
906 
907 		devp->hd_hpets = hpetp;
908 		devp->hd_hpet = hpet;
909 		devp->hd_timer = timer;
910 
911 		/*
912 		 * If the timer was reserved by platform code,
913 		 * then make timer unavailable for opens.
914 		 */
915 		if (hdp->hd_state & (1 << i)) {
916 			devp->hd_flags = HPET_OPEN;
917 			continue;
918 		}
919 
920 		init_waitqueue_head(&devp->hd_waitqueue);
921 	}
922 
923 	hpetp->hp_delta = hpet_calibrate(hpetp);
924 
925 /* This clocksource driver currently only works on ia64 */
926 #ifdef CONFIG_IA64
927 	if (!hpet_clocksource) {
928 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
929 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
930 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
931 		hpetp->hp_clocksource = &clocksource_hpet;
932 		hpet_clocksource = &clocksource_hpet;
933 	}
934 #endif
935 
936 	return 0;
937 }
938 
939 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
940 {
941 	struct hpet_data *hdp;
942 	acpi_status status;
943 	struct acpi_resource_address64 addr;
944 
945 	hdp = data;
946 
947 	status = acpi_resource_to_address64(res, &addr);
948 
949 	if (ACPI_SUCCESS(status)) {
950 		hdp->hd_phys_address = addr.address.minimum;
951 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
952 		if (!hdp->hd_address)
953 			return AE_ERROR;
954 
955 		if (hpet_is_known(hdp)) {
956 			iounmap(hdp->hd_address);
957 			return AE_ALREADY_EXISTS;
958 		}
959 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
960 		struct acpi_resource_fixed_memory32 *fixmem32;
961 
962 		fixmem32 = &res->data.fixed_memory32;
963 
964 		hdp->hd_phys_address = fixmem32->address;
965 		hdp->hd_address = ioremap(fixmem32->address,
966 						HPET_RANGE_SIZE);
967 		if (!hdp->hd_address)
968 			return AE_ERROR;
969 
970 		if (hpet_is_known(hdp)) {
971 			iounmap(hdp->hd_address);
972 			return AE_ALREADY_EXISTS;
973 		}
974 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
975 		struct acpi_resource_extended_irq *irqp;
976 		int i, irq;
977 
978 		irqp = &res->data.extended_irq;
979 
980 		for (i = 0; i < irqp->interrupt_count; i++) {
981 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
982 				break;
983 
984 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
985 				      irqp->triggering, irqp->polarity);
986 			if (irq < 0)
987 				return AE_ERROR;
988 
989 			hdp->hd_irq[hdp->hd_nirqs] = irq;
990 			hdp->hd_nirqs++;
991 		}
992 	}
993 
994 	return AE_OK;
995 }
996 
997 static int hpet_acpi_add(struct acpi_device *device)
998 {
999 	acpi_status result;
1000 	struct hpet_data data;
1001 
1002 	memset(&data, 0, sizeof(data));
1003 
1004 	result =
1005 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1006 				hpet_resources, &data);
1007 
1008 	if (ACPI_FAILURE(result))
1009 		return -ENODEV;
1010 
1011 	if (!data.hd_address || !data.hd_nirqs) {
1012 		if (data.hd_address)
1013 			iounmap(data.hd_address);
1014 		printk("%s: no address or irqs in _CRS\n", __func__);
1015 		return -ENODEV;
1016 	}
1017 
1018 	return hpet_alloc(&data);
1019 }
1020 
1021 static const struct acpi_device_id hpet_device_ids[] = {
1022 	{"PNP0103", 0},
1023 	{"", 0},
1024 };
1025 
1026 static struct acpi_driver hpet_acpi_driver = {
1027 	.name = "hpet",
1028 	.ids = hpet_device_ids,
1029 	.ops = {
1030 		.add = hpet_acpi_add,
1031 		},
1032 };
1033 
1034 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1035 
1036 static int __init hpet_init(void)
1037 {
1038 	int result;
1039 
1040 	result = misc_register(&hpet_misc);
1041 	if (result < 0)
1042 		return -ENODEV;
1043 
1044 	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1045 
1046 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1047 	if (result < 0) {
1048 		if (sysctl_header)
1049 			unregister_sysctl_table(sysctl_header);
1050 		misc_deregister(&hpet_misc);
1051 		return result;
1052 	}
1053 
1054 	return 0;
1055 }
1056 device_initcall(hpet_init);
1057 
1058 /*
1059 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1060 MODULE_LICENSE("GPL");
1061 */
1062