xref: /openbmc/linux/drivers/char/hpet.c (revision bfe655d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/poll.h>
20 #include <linux/mm.h>
21 #include <linux/proc_fs.h>
22 #include <linux/spinlock.h>
23 #include <linux/sysctl.h>
24 #include <linux/wait.h>
25 #include <linux/sched/signal.h>
26 #include <linux/bcd.h>
27 #include <linux/seq_file.h>
28 #include <linux/bitops.h>
29 #include <linux/compat.h>
30 #include <linux/clocksource.h>
31 #include <linux/uaccess.h>
32 #include <linux/slab.h>
33 #include <linux/io.h>
34 #include <linux/acpi.h>
35 #include <linux/hpet.h>
36 #include <asm/current.h>
37 #include <asm/irq.h>
38 #include <asm/div64.h>
39 
40 /*
41  * The High Precision Event Timer driver.
42  * This driver is closely modelled after the rtc.c driver.
43  * See HPET spec revision 1.
44  */
45 #define	HPET_USER_FREQ	(64)
46 #define	HPET_DRIFT	(500)
47 
48 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
49 
50 
51 /* WARNING -- don't get confused.  These macros are never used
52  * to write the (single) counter, and rarely to read it.
53  * They're badly named; to fix, someday.
54  */
55 #if BITS_PER_LONG == 64
56 #define	write_counter(V, MC)	writeq(V, MC)
57 #define	read_counter(MC)	readq(MC)
58 #else
59 #define	write_counter(V, MC)	writel(V, MC)
60 #define	read_counter(MC)	readl(MC)
61 #endif
62 
63 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
64 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
65 
66 /* This clocksource driver currently only works on ia64 */
67 #ifdef CONFIG_IA64
68 static void __iomem *hpet_mctr;
69 
70 static u64 read_hpet(struct clocksource *cs)
71 {
72 	return (u64)read_counter((void __iomem *)hpet_mctr);
73 }
74 
75 static struct clocksource clocksource_hpet = {
76 	.name		= "hpet",
77 	.rating		= 250,
78 	.read		= read_hpet,
79 	.mask		= CLOCKSOURCE_MASK(64),
80 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
81 };
82 static struct clocksource *hpet_clocksource;
83 #endif
84 
85 /* A lock for concurrent access by app and isr hpet activity. */
86 static DEFINE_SPINLOCK(hpet_lock);
87 
88 #define	HPET_DEV_NAME	(7)
89 
90 struct hpet_dev {
91 	struct hpets *hd_hpets;
92 	struct hpet __iomem *hd_hpet;
93 	struct hpet_timer __iomem *hd_timer;
94 	unsigned long hd_ireqfreq;
95 	unsigned long hd_irqdata;
96 	wait_queue_head_t hd_waitqueue;
97 	struct fasync_struct *hd_async_queue;
98 	unsigned int hd_flags;
99 	unsigned int hd_irq;
100 	unsigned int hd_hdwirq;
101 	char hd_name[HPET_DEV_NAME];
102 };
103 
104 struct hpets {
105 	struct hpets *hp_next;
106 	struct hpet __iomem *hp_hpet;
107 	unsigned long hp_hpet_phys;
108 	struct clocksource *hp_clocksource;
109 	unsigned long long hp_tick_freq;
110 	unsigned long hp_delta;
111 	unsigned int hp_ntimer;
112 	unsigned int hp_which;
113 	struct hpet_dev hp_dev[1];
114 };
115 
116 static struct hpets *hpets;
117 
118 #define	HPET_OPEN		0x0001
119 #define	HPET_IE			0x0002	/* interrupt enabled */
120 #define	HPET_PERIODIC		0x0004
121 #define	HPET_SHARED_IRQ		0x0008
122 
123 
124 #ifndef readq
125 static inline unsigned long long readq(void __iomem *addr)
126 {
127 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
128 }
129 #endif
130 
131 #ifndef writeq
132 static inline void writeq(unsigned long long v, void __iomem *addr)
133 {
134 	writel(v & 0xffffffff, addr);
135 	writel(v >> 32, addr + 4);
136 }
137 #endif
138 
139 static irqreturn_t hpet_interrupt(int irq, void *data)
140 {
141 	struct hpet_dev *devp;
142 	unsigned long isr;
143 
144 	devp = data;
145 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
146 
147 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
148 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
149 		return IRQ_NONE;
150 
151 	spin_lock(&hpet_lock);
152 	devp->hd_irqdata++;
153 
154 	/*
155 	 * For non-periodic timers, increment the accumulator.
156 	 * This has the effect of treating non-periodic like periodic.
157 	 */
158 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
159 		unsigned long m, t, mc, base, k;
160 		struct hpet __iomem *hpet = devp->hd_hpet;
161 		struct hpets *hpetp = devp->hd_hpets;
162 
163 		t = devp->hd_ireqfreq;
164 		m = read_counter(&devp->hd_timer->hpet_compare);
165 		mc = read_counter(&hpet->hpet_mc);
166 		/* The time for the next interrupt would logically be t + m,
167 		 * however, if we are very unlucky and the interrupt is delayed
168 		 * for longer than t then we will completely miss the next
169 		 * interrupt if we set t + m and an application will hang.
170 		 * Therefore we need to make a more complex computation assuming
171 		 * that there exists a k for which the following is true:
172 		 * k * t + base < mc + delta
173 		 * (k + 1) * t + base > mc + delta
174 		 * where t is the interval in hpet ticks for the given freq,
175 		 * base is the theoretical start value 0 < base < t,
176 		 * mc is the main counter value at the time of the interrupt,
177 		 * delta is the time it takes to write the a value to the
178 		 * comparator.
179 		 * k may then be computed as (mc - base + delta) / t .
180 		 */
181 		base = mc % t;
182 		k = (mc - base + hpetp->hp_delta) / t;
183 		write_counter(t * (k + 1) + base,
184 			      &devp->hd_timer->hpet_compare);
185 	}
186 
187 	if (devp->hd_flags & HPET_SHARED_IRQ)
188 		writel(isr, &devp->hd_hpet->hpet_isr);
189 	spin_unlock(&hpet_lock);
190 
191 	wake_up_interruptible(&devp->hd_waitqueue);
192 
193 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
194 
195 	return IRQ_HANDLED;
196 }
197 
198 static void hpet_timer_set_irq(struct hpet_dev *devp)
199 {
200 	unsigned long v;
201 	int irq, gsi;
202 	struct hpet_timer __iomem *timer;
203 
204 	spin_lock_irq(&hpet_lock);
205 	if (devp->hd_hdwirq) {
206 		spin_unlock_irq(&hpet_lock);
207 		return;
208 	}
209 
210 	timer = devp->hd_timer;
211 
212 	/* we prefer level triggered mode */
213 	v = readl(&timer->hpet_config);
214 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
215 		v |= Tn_INT_TYPE_CNF_MASK;
216 		writel(v, &timer->hpet_config);
217 	}
218 	spin_unlock_irq(&hpet_lock);
219 
220 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
221 				 Tn_INT_ROUTE_CAP_SHIFT;
222 
223 	/*
224 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
225 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
226 	 */
227 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
228 		v &= ~0xf3df;
229 	else
230 		v &= ~0xffff;
231 
232 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
233 		if (irq >= nr_irqs) {
234 			irq = HPET_MAX_IRQ;
235 			break;
236 		}
237 
238 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
239 					ACPI_ACTIVE_LOW);
240 		if (gsi > 0)
241 			break;
242 
243 		/* FIXME: Setup interrupt source table */
244 	}
245 
246 	if (irq < HPET_MAX_IRQ) {
247 		spin_lock_irq(&hpet_lock);
248 		v = readl(&timer->hpet_config);
249 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
250 		writel(v, &timer->hpet_config);
251 		devp->hd_hdwirq = gsi;
252 		spin_unlock_irq(&hpet_lock);
253 	}
254 	return;
255 }
256 
257 static int hpet_open(struct inode *inode, struct file *file)
258 {
259 	struct hpet_dev *devp;
260 	struct hpets *hpetp;
261 	int i;
262 
263 	if (file->f_mode & FMODE_WRITE)
264 		return -EINVAL;
265 
266 	mutex_lock(&hpet_mutex);
267 	spin_lock_irq(&hpet_lock);
268 
269 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
270 		for (i = 0; i < hpetp->hp_ntimer; i++)
271 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
272 				continue;
273 			else {
274 				devp = &hpetp->hp_dev[i];
275 				break;
276 			}
277 
278 	if (!devp) {
279 		spin_unlock_irq(&hpet_lock);
280 		mutex_unlock(&hpet_mutex);
281 		return -EBUSY;
282 	}
283 
284 	file->private_data = devp;
285 	devp->hd_irqdata = 0;
286 	devp->hd_flags |= HPET_OPEN;
287 	spin_unlock_irq(&hpet_lock);
288 	mutex_unlock(&hpet_mutex);
289 
290 	hpet_timer_set_irq(devp);
291 
292 	return 0;
293 }
294 
295 static ssize_t
296 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
297 {
298 	DECLARE_WAITQUEUE(wait, current);
299 	unsigned long data;
300 	ssize_t retval;
301 	struct hpet_dev *devp;
302 
303 	devp = file->private_data;
304 	if (!devp->hd_ireqfreq)
305 		return -EIO;
306 
307 	if (count < sizeof(unsigned long))
308 		return -EINVAL;
309 
310 	add_wait_queue(&devp->hd_waitqueue, &wait);
311 
312 	for ( ; ; ) {
313 		set_current_state(TASK_INTERRUPTIBLE);
314 
315 		spin_lock_irq(&hpet_lock);
316 		data = devp->hd_irqdata;
317 		devp->hd_irqdata = 0;
318 		spin_unlock_irq(&hpet_lock);
319 
320 		if (data)
321 			break;
322 		else if (file->f_flags & O_NONBLOCK) {
323 			retval = -EAGAIN;
324 			goto out;
325 		} else if (signal_pending(current)) {
326 			retval = -ERESTARTSYS;
327 			goto out;
328 		}
329 		schedule();
330 	}
331 
332 	retval = put_user(data, (unsigned long __user *)buf);
333 	if (!retval)
334 		retval = sizeof(unsigned long);
335 out:
336 	__set_current_state(TASK_RUNNING);
337 	remove_wait_queue(&devp->hd_waitqueue, &wait);
338 
339 	return retval;
340 }
341 
342 static __poll_t hpet_poll(struct file *file, poll_table * wait)
343 {
344 	unsigned long v;
345 	struct hpet_dev *devp;
346 
347 	devp = file->private_data;
348 
349 	if (!devp->hd_ireqfreq)
350 		return 0;
351 
352 	poll_wait(file, &devp->hd_waitqueue, wait);
353 
354 	spin_lock_irq(&hpet_lock);
355 	v = devp->hd_irqdata;
356 	spin_unlock_irq(&hpet_lock);
357 
358 	if (v != 0)
359 		return EPOLLIN | EPOLLRDNORM;
360 
361 	return 0;
362 }
363 
364 #ifdef CONFIG_HPET_MMAP
365 #ifdef CONFIG_HPET_MMAP_DEFAULT
366 static int hpet_mmap_enabled = 1;
367 #else
368 static int hpet_mmap_enabled = 0;
369 #endif
370 
371 static __init int hpet_mmap_enable(char *str)
372 {
373 	get_option(&str, &hpet_mmap_enabled);
374 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
375 	return 1;
376 }
377 __setup("hpet_mmap=", hpet_mmap_enable);
378 
379 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381 	struct hpet_dev *devp;
382 	unsigned long addr;
383 
384 	if (!hpet_mmap_enabled)
385 		return -EACCES;
386 
387 	devp = file->private_data;
388 	addr = devp->hd_hpets->hp_hpet_phys;
389 
390 	if (addr & (PAGE_SIZE - 1))
391 		return -ENOSYS;
392 
393 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
394 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
395 }
396 #else
397 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
398 {
399 	return -ENOSYS;
400 }
401 #endif
402 
403 static int hpet_fasync(int fd, struct file *file, int on)
404 {
405 	struct hpet_dev *devp;
406 
407 	devp = file->private_data;
408 
409 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
410 		return 0;
411 	else
412 		return -EIO;
413 }
414 
415 static int hpet_release(struct inode *inode, struct file *file)
416 {
417 	struct hpet_dev *devp;
418 	struct hpet_timer __iomem *timer;
419 	int irq = 0;
420 
421 	devp = file->private_data;
422 	timer = devp->hd_timer;
423 
424 	spin_lock_irq(&hpet_lock);
425 
426 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
427 	       &timer->hpet_config);
428 
429 	irq = devp->hd_irq;
430 	devp->hd_irq = 0;
431 
432 	devp->hd_ireqfreq = 0;
433 
434 	if (devp->hd_flags & HPET_PERIODIC
435 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
436 		unsigned long v;
437 
438 		v = readq(&timer->hpet_config);
439 		v ^= Tn_TYPE_CNF_MASK;
440 		writeq(v, &timer->hpet_config);
441 	}
442 
443 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
444 	spin_unlock_irq(&hpet_lock);
445 
446 	if (irq)
447 		free_irq(irq, devp);
448 
449 	file->private_data = NULL;
450 	return 0;
451 }
452 
453 static int hpet_ioctl_ieon(struct hpet_dev *devp)
454 {
455 	struct hpet_timer __iomem *timer;
456 	struct hpet __iomem *hpet;
457 	struct hpets *hpetp;
458 	int irq;
459 	unsigned long g, v, t, m;
460 	unsigned long flags, isr;
461 
462 	timer = devp->hd_timer;
463 	hpet = devp->hd_hpet;
464 	hpetp = devp->hd_hpets;
465 
466 	if (!devp->hd_ireqfreq)
467 		return -EIO;
468 
469 	spin_lock_irq(&hpet_lock);
470 
471 	if (devp->hd_flags & HPET_IE) {
472 		spin_unlock_irq(&hpet_lock);
473 		return -EBUSY;
474 	}
475 
476 	devp->hd_flags |= HPET_IE;
477 
478 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
479 		devp->hd_flags |= HPET_SHARED_IRQ;
480 	spin_unlock_irq(&hpet_lock);
481 
482 	irq = devp->hd_hdwirq;
483 
484 	if (irq) {
485 		unsigned long irq_flags;
486 
487 		if (devp->hd_flags & HPET_SHARED_IRQ) {
488 			/*
489 			 * To prevent the interrupt handler from seeing an
490 			 * unwanted interrupt status bit, program the timer
491 			 * so that it will not fire in the near future ...
492 			 */
493 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
494 			       &timer->hpet_config);
495 			write_counter(read_counter(&hpet->hpet_mc),
496 				      &timer->hpet_compare);
497 			/* ... and clear any left-over status. */
498 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
499 			writel(isr, &hpet->hpet_isr);
500 		}
501 
502 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
503 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
504 		if (request_irq(irq, hpet_interrupt, irq_flags,
505 				devp->hd_name, (void *)devp)) {
506 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
507 			irq = 0;
508 		}
509 	}
510 
511 	if (irq == 0) {
512 		spin_lock_irq(&hpet_lock);
513 		devp->hd_flags ^= HPET_IE;
514 		spin_unlock_irq(&hpet_lock);
515 		return -EIO;
516 	}
517 
518 	devp->hd_irq = irq;
519 	t = devp->hd_ireqfreq;
520 	v = readq(&timer->hpet_config);
521 
522 	/* 64-bit comparators are not yet supported through the ioctls,
523 	 * so force this into 32-bit mode if it supports both modes
524 	 */
525 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526 
527 	if (devp->hd_flags & HPET_PERIODIC) {
528 		g |= Tn_TYPE_CNF_MASK;
529 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
530 		writeq(v, &timer->hpet_config);
531 		local_irq_save(flags);
532 
533 		/*
534 		 * NOTE: First we modify the hidden accumulator
535 		 * register supported by periodic-capable comparators.
536 		 * We never want to modify the (single) counter; that
537 		 * would affect all the comparators. The value written
538 		 * is the counter value when the first interrupt is due.
539 		 */
540 		m = read_counter(&hpet->hpet_mc);
541 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542 		/*
543 		 * Then we modify the comparator, indicating the period
544 		 * for subsequent interrupt.
545 		 */
546 		write_counter(t, &timer->hpet_compare);
547 	} else {
548 		local_irq_save(flags);
549 		m = read_counter(&hpet->hpet_mc);
550 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
551 	}
552 
553 	if (devp->hd_flags & HPET_SHARED_IRQ) {
554 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
555 		writel(isr, &hpet->hpet_isr);
556 	}
557 	writeq(g, &timer->hpet_config);
558 	local_irq_restore(flags);
559 
560 	return 0;
561 }
562 
563 /* converts Hz to number of timer ticks */
564 static inline unsigned long hpet_time_div(struct hpets *hpets,
565 					  unsigned long dis)
566 {
567 	unsigned long long m;
568 
569 	m = hpets->hp_tick_freq + (dis >> 1);
570 	do_div(m, dis);
571 	return (unsigned long)m;
572 }
573 
574 static int
575 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
576 		  struct hpet_info *info)
577 {
578 	struct hpet_timer __iomem *timer;
579 	struct hpets *hpetp;
580 	int err;
581 	unsigned long v;
582 
583 	switch (cmd) {
584 	case HPET_IE_OFF:
585 	case HPET_INFO:
586 	case HPET_EPI:
587 	case HPET_DPI:
588 	case HPET_IRQFREQ:
589 		timer = devp->hd_timer;
590 		hpetp = devp->hd_hpets;
591 		break;
592 	case HPET_IE_ON:
593 		return hpet_ioctl_ieon(devp);
594 	default:
595 		return -EINVAL;
596 	}
597 
598 	err = 0;
599 
600 	switch (cmd) {
601 	case HPET_IE_OFF:
602 		if ((devp->hd_flags & HPET_IE) == 0)
603 			break;
604 		v = readq(&timer->hpet_config);
605 		v &= ~Tn_INT_ENB_CNF_MASK;
606 		writeq(v, &timer->hpet_config);
607 		if (devp->hd_irq) {
608 			free_irq(devp->hd_irq, devp);
609 			devp->hd_irq = 0;
610 		}
611 		devp->hd_flags ^= HPET_IE;
612 		break;
613 	case HPET_INFO:
614 		{
615 			memset(info, 0, sizeof(*info));
616 			if (devp->hd_ireqfreq)
617 				info->hi_ireqfreq =
618 					hpet_time_div(hpetp, devp->hd_ireqfreq);
619 			info->hi_flags =
620 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
621 			info->hi_hpet = hpetp->hp_which;
622 			info->hi_timer = devp - hpetp->hp_dev;
623 			break;
624 		}
625 	case HPET_EPI:
626 		v = readq(&timer->hpet_config);
627 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
628 			err = -ENXIO;
629 			break;
630 		}
631 		devp->hd_flags |= HPET_PERIODIC;
632 		break;
633 	case HPET_DPI:
634 		v = readq(&timer->hpet_config);
635 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
636 			err = -ENXIO;
637 			break;
638 		}
639 		if (devp->hd_flags & HPET_PERIODIC &&
640 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
641 			v = readq(&timer->hpet_config);
642 			v ^= Tn_TYPE_CNF_MASK;
643 			writeq(v, &timer->hpet_config);
644 		}
645 		devp->hd_flags &= ~HPET_PERIODIC;
646 		break;
647 	case HPET_IRQFREQ:
648 		if ((arg > hpet_max_freq) &&
649 		    !capable(CAP_SYS_RESOURCE)) {
650 			err = -EACCES;
651 			break;
652 		}
653 
654 		if (!arg) {
655 			err = -EINVAL;
656 			break;
657 		}
658 
659 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
660 	}
661 
662 	return err;
663 }
664 
665 static long
666 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
667 {
668 	struct hpet_info info;
669 	int err;
670 
671 	mutex_lock(&hpet_mutex);
672 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
673 	mutex_unlock(&hpet_mutex);
674 
675 	if ((cmd == HPET_INFO) && !err &&
676 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
677 		err = -EFAULT;
678 
679 	return err;
680 }
681 
682 #ifdef CONFIG_COMPAT
683 struct compat_hpet_info {
684 	compat_ulong_t hi_ireqfreq;	/* Hz */
685 	compat_ulong_t hi_flags;	/* information */
686 	unsigned short hi_hpet;
687 	unsigned short hi_timer;
688 };
689 
690 static long
691 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
692 {
693 	struct hpet_info info;
694 	int err;
695 
696 	mutex_lock(&hpet_mutex);
697 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
698 	mutex_unlock(&hpet_mutex);
699 
700 	if ((cmd == HPET_INFO) && !err) {
701 		struct compat_hpet_info __user *u = compat_ptr(arg);
702 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
703 		    put_user(info.hi_flags, &u->hi_flags) ||
704 		    put_user(info.hi_hpet, &u->hi_hpet) ||
705 		    put_user(info.hi_timer, &u->hi_timer))
706 			err = -EFAULT;
707 	}
708 
709 	return err;
710 }
711 #endif
712 
713 static const struct file_operations hpet_fops = {
714 	.owner = THIS_MODULE,
715 	.llseek = no_llseek,
716 	.read = hpet_read,
717 	.poll = hpet_poll,
718 	.unlocked_ioctl = hpet_ioctl,
719 #ifdef CONFIG_COMPAT
720 	.compat_ioctl = hpet_compat_ioctl,
721 #endif
722 	.open = hpet_open,
723 	.release = hpet_release,
724 	.fasync = hpet_fasync,
725 	.mmap = hpet_mmap,
726 };
727 
728 static int hpet_is_known(struct hpet_data *hdp)
729 {
730 	struct hpets *hpetp;
731 
732 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
733 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
734 			return 1;
735 
736 	return 0;
737 }
738 
739 static struct ctl_table hpet_table[] = {
740 	{
741 	 .procname = "max-user-freq",
742 	 .data = &hpet_max_freq,
743 	 .maxlen = sizeof(int),
744 	 .mode = 0644,
745 	 .proc_handler = proc_dointvec,
746 	 },
747 	{}
748 };
749 
750 static struct ctl_table hpet_root[] = {
751 	{
752 	 .procname = "hpet",
753 	 .maxlen = 0,
754 	 .mode = 0555,
755 	 .child = hpet_table,
756 	 },
757 	{}
758 };
759 
760 static struct ctl_table dev_root[] = {
761 	{
762 	 .procname = "dev",
763 	 .maxlen = 0,
764 	 .mode = 0555,
765 	 .child = hpet_root,
766 	 },
767 	{}
768 };
769 
770 static struct ctl_table_header *sysctl_header;
771 
772 /*
773  * Adjustment for when arming the timer with
774  * initial conditions.  That is, main counter
775  * ticks expired before interrupts are enabled.
776  */
777 #define	TICK_CALIBRATE	(1000UL)
778 
779 static unsigned long __hpet_calibrate(struct hpets *hpetp)
780 {
781 	struct hpet_timer __iomem *timer = NULL;
782 	unsigned long t, m, count, i, flags, start;
783 	struct hpet_dev *devp;
784 	int j;
785 	struct hpet __iomem *hpet;
786 
787 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
788 		if ((devp->hd_flags & HPET_OPEN) == 0) {
789 			timer = devp->hd_timer;
790 			break;
791 		}
792 
793 	if (!timer)
794 		return 0;
795 
796 	hpet = hpetp->hp_hpet;
797 	t = read_counter(&timer->hpet_compare);
798 
799 	i = 0;
800 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
801 
802 	local_irq_save(flags);
803 
804 	start = read_counter(&hpet->hpet_mc);
805 
806 	do {
807 		m = read_counter(&hpet->hpet_mc);
808 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
809 	} while (i++, (m - start) < count);
810 
811 	local_irq_restore(flags);
812 
813 	return (m - start) / i;
814 }
815 
816 static unsigned long hpet_calibrate(struct hpets *hpetp)
817 {
818 	unsigned long ret = ~0UL;
819 	unsigned long tmp;
820 
821 	/*
822 	 * Try to calibrate until return value becomes stable small value.
823 	 * If SMI interruption occurs in calibration loop, the return value
824 	 * will be big. This avoids its impact.
825 	 */
826 	for ( ; ; ) {
827 		tmp = __hpet_calibrate(hpetp);
828 		if (ret <= tmp)
829 			break;
830 		ret = tmp;
831 	}
832 
833 	return ret;
834 }
835 
836 int hpet_alloc(struct hpet_data *hdp)
837 {
838 	u64 cap, mcfg;
839 	struct hpet_dev *devp;
840 	u32 i, ntimer;
841 	struct hpets *hpetp;
842 	struct hpet __iomem *hpet;
843 	static struct hpets *last;
844 	unsigned long period;
845 	unsigned long long temp;
846 	u32 remainder;
847 
848 	/*
849 	 * hpet_alloc can be called by platform dependent code.
850 	 * If platform dependent code has allocated the hpet that
851 	 * ACPI has also reported, then we catch it here.
852 	 */
853 	if (hpet_is_known(hdp)) {
854 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
855 			__func__);
856 		return 0;
857 	}
858 
859 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs - 1),
860 			GFP_KERNEL);
861 
862 	if (!hpetp)
863 		return -ENOMEM;
864 
865 	hpetp->hp_which = hpet_nhpet++;
866 	hpetp->hp_hpet = hdp->hd_address;
867 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
868 
869 	hpetp->hp_ntimer = hdp->hd_nirqs;
870 
871 	for (i = 0; i < hdp->hd_nirqs; i++)
872 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
873 
874 	hpet = hpetp->hp_hpet;
875 
876 	cap = readq(&hpet->hpet_cap);
877 
878 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
879 
880 	if (hpetp->hp_ntimer != ntimer) {
881 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
882 		       " with number of timers\n");
883 		kfree(hpetp);
884 		return -ENODEV;
885 	}
886 
887 	if (last)
888 		last->hp_next = hpetp;
889 	else
890 		hpets = hpetp;
891 
892 	last = hpetp;
893 
894 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
895 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
896 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
897 	temp += period >> 1; /* round */
898 	do_div(temp, period);
899 	hpetp->hp_tick_freq = temp; /* ticks per second */
900 
901 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
902 		hpetp->hp_which, hdp->hd_phys_address,
903 		hpetp->hp_ntimer > 1 ? "s" : "");
904 	for (i = 0; i < hpetp->hp_ntimer; i++)
905 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
906 	printk(KERN_CONT "\n");
907 
908 	temp = hpetp->hp_tick_freq;
909 	remainder = do_div(temp, 1000000);
910 	printk(KERN_INFO
911 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
912 		hpetp->hp_which, hpetp->hp_ntimer,
913 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
914 		(unsigned) temp, remainder);
915 
916 	mcfg = readq(&hpet->hpet_config);
917 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
918 		write_counter(0L, &hpet->hpet_mc);
919 		mcfg |= HPET_ENABLE_CNF_MASK;
920 		writeq(mcfg, &hpet->hpet_config);
921 	}
922 
923 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
924 		struct hpet_timer __iomem *timer;
925 
926 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
927 
928 		devp->hd_hpets = hpetp;
929 		devp->hd_hpet = hpet;
930 		devp->hd_timer = timer;
931 
932 		/*
933 		 * If the timer was reserved by platform code,
934 		 * then make timer unavailable for opens.
935 		 */
936 		if (hdp->hd_state & (1 << i)) {
937 			devp->hd_flags = HPET_OPEN;
938 			continue;
939 		}
940 
941 		init_waitqueue_head(&devp->hd_waitqueue);
942 	}
943 
944 	hpetp->hp_delta = hpet_calibrate(hpetp);
945 
946 /* This clocksource driver currently only works on ia64 */
947 #ifdef CONFIG_IA64
948 	if (!hpet_clocksource) {
949 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
950 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
951 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
952 		hpetp->hp_clocksource = &clocksource_hpet;
953 		hpet_clocksource = &clocksource_hpet;
954 	}
955 #endif
956 
957 	return 0;
958 }
959 
960 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
961 {
962 	struct hpet_data *hdp;
963 	acpi_status status;
964 	struct acpi_resource_address64 addr;
965 
966 	hdp = data;
967 
968 	status = acpi_resource_to_address64(res, &addr);
969 
970 	if (ACPI_SUCCESS(status)) {
971 		hdp->hd_phys_address = addr.address.minimum;
972 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
973 		if (!hdp->hd_address)
974 			return AE_ERROR;
975 
976 		if (hpet_is_known(hdp)) {
977 			iounmap(hdp->hd_address);
978 			return AE_ALREADY_EXISTS;
979 		}
980 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
981 		struct acpi_resource_fixed_memory32 *fixmem32;
982 
983 		fixmem32 = &res->data.fixed_memory32;
984 
985 		hdp->hd_phys_address = fixmem32->address;
986 		hdp->hd_address = ioremap(fixmem32->address,
987 						HPET_RANGE_SIZE);
988 
989 		if (hpet_is_known(hdp)) {
990 			iounmap(hdp->hd_address);
991 			return AE_ALREADY_EXISTS;
992 		}
993 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
994 		struct acpi_resource_extended_irq *irqp;
995 		int i, irq;
996 
997 		irqp = &res->data.extended_irq;
998 
999 		for (i = 0; i < irqp->interrupt_count; i++) {
1000 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1001 				break;
1002 
1003 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1004 				      irqp->triggering, irqp->polarity);
1005 			if (irq < 0)
1006 				return AE_ERROR;
1007 
1008 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1009 			hdp->hd_nirqs++;
1010 		}
1011 	}
1012 
1013 	return AE_OK;
1014 }
1015 
1016 static int hpet_acpi_add(struct acpi_device *device)
1017 {
1018 	acpi_status result;
1019 	struct hpet_data data;
1020 
1021 	memset(&data, 0, sizeof(data));
1022 
1023 	result =
1024 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1025 				hpet_resources, &data);
1026 
1027 	if (ACPI_FAILURE(result))
1028 		return -ENODEV;
1029 
1030 	if (!data.hd_address || !data.hd_nirqs) {
1031 		if (data.hd_address)
1032 			iounmap(data.hd_address);
1033 		printk("%s: no address or irqs in _CRS\n", __func__);
1034 		return -ENODEV;
1035 	}
1036 
1037 	return hpet_alloc(&data);
1038 }
1039 
1040 static const struct acpi_device_id hpet_device_ids[] = {
1041 	{"PNP0103", 0},
1042 	{"", 0},
1043 };
1044 
1045 static struct acpi_driver hpet_acpi_driver = {
1046 	.name = "hpet",
1047 	.ids = hpet_device_ids,
1048 	.ops = {
1049 		.add = hpet_acpi_add,
1050 		},
1051 };
1052 
1053 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1054 
1055 static int __init hpet_init(void)
1056 {
1057 	int result;
1058 
1059 	result = misc_register(&hpet_misc);
1060 	if (result < 0)
1061 		return -ENODEV;
1062 
1063 	sysctl_header = register_sysctl_table(dev_root);
1064 
1065 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1066 	if (result < 0) {
1067 		if (sysctl_header)
1068 			unregister_sysctl_table(sysctl_header);
1069 		misc_deregister(&hpet_misc);
1070 		return result;
1071 	}
1072 
1073 	return 0;
1074 }
1075 device_initcall(hpet_init);
1076 
1077 /*
1078 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1079 MODULE_LICENSE("GPL");
1080 */
1081