xref: /openbmc/linux/drivers/char/hpet.c (revision bbb774d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *	Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *	Bob Picco <robert.picco@hp.com>
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40 
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define	HPET_USER_FREQ	(64)
47 #define	HPET_DRIFT	(500)
48 
49 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
50 
51 
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define	write_counter(V, MC)	writeq(V, MC)
58 #define	read_counter(MC)	readq(MC)
59 #else
60 #define	write_counter(V, MC)	writel(V, MC)
61 #define	read_counter(MC)	readl(MC)
62 #endif
63 
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66 
67 /* This clocksource driver currently only works on ia64 */
68 #ifdef CONFIG_IA64
69 static void __iomem *hpet_mctr;
70 
71 static u64 read_hpet(struct clocksource *cs)
72 {
73 	return (u64)read_counter((void __iomem *)hpet_mctr);
74 }
75 
76 static struct clocksource clocksource_hpet = {
77 	.name		= "hpet",
78 	.rating		= 250,
79 	.read		= read_hpet,
80 	.mask		= CLOCKSOURCE_MASK(64),
81 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83 static struct clocksource *hpet_clocksource;
84 #endif
85 
86 /* A lock for concurrent access by app and isr hpet activity. */
87 static DEFINE_SPINLOCK(hpet_lock);
88 
89 #define	HPET_DEV_NAME	(7)
90 
91 struct hpet_dev {
92 	struct hpets *hd_hpets;
93 	struct hpet __iomem *hd_hpet;
94 	struct hpet_timer __iomem *hd_timer;
95 	unsigned long hd_ireqfreq;
96 	unsigned long hd_irqdata;
97 	wait_queue_head_t hd_waitqueue;
98 	struct fasync_struct *hd_async_queue;
99 	unsigned int hd_flags;
100 	unsigned int hd_irq;
101 	unsigned int hd_hdwirq;
102 	char hd_name[HPET_DEV_NAME];
103 };
104 
105 struct hpets {
106 	struct hpets *hp_next;
107 	struct hpet __iomem *hp_hpet;
108 	unsigned long hp_hpet_phys;
109 	struct clocksource *hp_clocksource;
110 	unsigned long long hp_tick_freq;
111 	unsigned long hp_delta;
112 	unsigned int hp_ntimer;
113 	unsigned int hp_which;
114 	struct hpet_dev hp_dev[];
115 };
116 
117 static struct hpets *hpets;
118 
119 #define	HPET_OPEN		0x0001
120 #define	HPET_IE			0x0002	/* interrupt enabled */
121 #define	HPET_PERIODIC		0x0004
122 #define	HPET_SHARED_IRQ		0x0008
123 
124 static irqreturn_t hpet_interrupt(int irq, void *data)
125 {
126 	struct hpet_dev *devp;
127 	unsigned long isr;
128 
129 	devp = data;
130 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
131 
132 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
133 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
134 		return IRQ_NONE;
135 
136 	spin_lock(&hpet_lock);
137 	devp->hd_irqdata++;
138 
139 	/*
140 	 * For non-periodic timers, increment the accumulator.
141 	 * This has the effect of treating non-periodic like periodic.
142 	 */
143 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
144 		unsigned long t, mc, base, k;
145 		struct hpet __iomem *hpet = devp->hd_hpet;
146 		struct hpets *hpetp = devp->hd_hpets;
147 
148 		t = devp->hd_ireqfreq;
149 		read_counter(&devp->hd_timer->hpet_compare);
150 		mc = read_counter(&hpet->hpet_mc);
151 		/* The time for the next interrupt would logically be t + m,
152 		 * however, if we are very unlucky and the interrupt is delayed
153 		 * for longer than t then we will completely miss the next
154 		 * interrupt if we set t + m and an application will hang.
155 		 * Therefore we need to make a more complex computation assuming
156 		 * that there exists a k for which the following is true:
157 		 * k * t + base < mc + delta
158 		 * (k + 1) * t + base > mc + delta
159 		 * where t is the interval in hpet ticks for the given freq,
160 		 * base is the theoretical start value 0 < base < t,
161 		 * mc is the main counter value at the time of the interrupt,
162 		 * delta is the time it takes to write the a value to the
163 		 * comparator.
164 		 * k may then be computed as (mc - base + delta) / t .
165 		 */
166 		base = mc % t;
167 		k = (mc - base + hpetp->hp_delta) / t;
168 		write_counter(t * (k + 1) + base,
169 			      &devp->hd_timer->hpet_compare);
170 	}
171 
172 	if (devp->hd_flags & HPET_SHARED_IRQ)
173 		writel(isr, &devp->hd_hpet->hpet_isr);
174 	spin_unlock(&hpet_lock);
175 
176 	wake_up_interruptible(&devp->hd_waitqueue);
177 
178 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
179 
180 	return IRQ_HANDLED;
181 }
182 
183 static void hpet_timer_set_irq(struct hpet_dev *devp)
184 {
185 	unsigned long v;
186 	int irq, gsi;
187 	struct hpet_timer __iomem *timer;
188 
189 	spin_lock_irq(&hpet_lock);
190 	if (devp->hd_hdwirq) {
191 		spin_unlock_irq(&hpet_lock);
192 		return;
193 	}
194 
195 	timer = devp->hd_timer;
196 
197 	/* we prefer level triggered mode */
198 	v = readl(&timer->hpet_config);
199 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
200 		v |= Tn_INT_TYPE_CNF_MASK;
201 		writel(v, &timer->hpet_config);
202 	}
203 	spin_unlock_irq(&hpet_lock);
204 
205 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
206 				 Tn_INT_ROUTE_CAP_SHIFT;
207 
208 	/*
209 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
210 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
211 	 */
212 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
213 		v &= ~0xf3df;
214 	else
215 		v &= ~0xffff;
216 
217 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
218 		if (irq >= nr_irqs) {
219 			irq = HPET_MAX_IRQ;
220 			break;
221 		}
222 
223 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
224 					ACPI_ACTIVE_LOW);
225 		if (gsi > 0)
226 			break;
227 
228 		/* FIXME: Setup interrupt source table */
229 	}
230 
231 	if (irq < HPET_MAX_IRQ) {
232 		spin_lock_irq(&hpet_lock);
233 		v = readl(&timer->hpet_config);
234 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
235 		writel(v, &timer->hpet_config);
236 		devp->hd_hdwirq = gsi;
237 		spin_unlock_irq(&hpet_lock);
238 	}
239 	return;
240 }
241 
242 static int hpet_open(struct inode *inode, struct file *file)
243 {
244 	struct hpet_dev *devp;
245 	struct hpets *hpetp;
246 	int i;
247 
248 	if (file->f_mode & FMODE_WRITE)
249 		return -EINVAL;
250 
251 	mutex_lock(&hpet_mutex);
252 	spin_lock_irq(&hpet_lock);
253 
254 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
255 		for (i = 0; i < hpetp->hp_ntimer; i++)
256 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
257 				continue;
258 			} else {
259 				devp = &hpetp->hp_dev[i];
260 				break;
261 			}
262 
263 	if (!devp) {
264 		spin_unlock_irq(&hpet_lock);
265 		mutex_unlock(&hpet_mutex);
266 		return -EBUSY;
267 	}
268 
269 	file->private_data = devp;
270 	devp->hd_irqdata = 0;
271 	devp->hd_flags |= HPET_OPEN;
272 	spin_unlock_irq(&hpet_lock);
273 	mutex_unlock(&hpet_mutex);
274 
275 	hpet_timer_set_irq(devp);
276 
277 	return 0;
278 }
279 
280 static ssize_t
281 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
282 {
283 	DECLARE_WAITQUEUE(wait, current);
284 	unsigned long data;
285 	ssize_t retval;
286 	struct hpet_dev *devp;
287 
288 	devp = file->private_data;
289 	if (!devp->hd_ireqfreq)
290 		return -EIO;
291 
292 	if (count < sizeof(unsigned long))
293 		return -EINVAL;
294 
295 	add_wait_queue(&devp->hd_waitqueue, &wait);
296 
297 	for ( ; ; ) {
298 		set_current_state(TASK_INTERRUPTIBLE);
299 
300 		spin_lock_irq(&hpet_lock);
301 		data = devp->hd_irqdata;
302 		devp->hd_irqdata = 0;
303 		spin_unlock_irq(&hpet_lock);
304 
305 		if (data) {
306 			break;
307 		} else if (file->f_flags & O_NONBLOCK) {
308 			retval = -EAGAIN;
309 			goto out;
310 		} else if (signal_pending(current)) {
311 			retval = -ERESTARTSYS;
312 			goto out;
313 		}
314 		schedule();
315 	}
316 
317 	retval = put_user(data, (unsigned long __user *)buf);
318 	if (!retval)
319 		retval = sizeof(unsigned long);
320 out:
321 	__set_current_state(TASK_RUNNING);
322 	remove_wait_queue(&devp->hd_waitqueue, &wait);
323 
324 	return retval;
325 }
326 
327 static __poll_t hpet_poll(struct file *file, poll_table * wait)
328 {
329 	unsigned long v;
330 	struct hpet_dev *devp;
331 
332 	devp = file->private_data;
333 
334 	if (!devp->hd_ireqfreq)
335 		return 0;
336 
337 	poll_wait(file, &devp->hd_waitqueue, wait);
338 
339 	spin_lock_irq(&hpet_lock);
340 	v = devp->hd_irqdata;
341 	spin_unlock_irq(&hpet_lock);
342 
343 	if (v != 0)
344 		return EPOLLIN | EPOLLRDNORM;
345 
346 	return 0;
347 }
348 
349 #ifdef CONFIG_HPET_MMAP
350 #ifdef CONFIG_HPET_MMAP_DEFAULT
351 static int hpet_mmap_enabled = 1;
352 #else
353 static int hpet_mmap_enabled = 0;
354 #endif
355 
356 static __init int hpet_mmap_enable(char *str)
357 {
358 	get_option(&str, &hpet_mmap_enabled);
359 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
360 	return 1;
361 }
362 __setup("hpet_mmap=", hpet_mmap_enable);
363 
364 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 	struct hpet_dev *devp;
367 	unsigned long addr;
368 
369 	if (!hpet_mmap_enabled)
370 		return -EACCES;
371 
372 	devp = file->private_data;
373 	addr = devp->hd_hpets->hp_hpet_phys;
374 
375 	if (addr & (PAGE_SIZE - 1))
376 		return -ENOSYS;
377 
378 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
379 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
380 }
381 #else
382 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384 	return -ENOSYS;
385 }
386 #endif
387 
388 static int hpet_fasync(int fd, struct file *file, int on)
389 {
390 	struct hpet_dev *devp;
391 
392 	devp = file->private_data;
393 
394 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
395 		return 0;
396 	else
397 		return -EIO;
398 }
399 
400 static int hpet_release(struct inode *inode, struct file *file)
401 {
402 	struct hpet_dev *devp;
403 	struct hpet_timer __iomem *timer;
404 	int irq = 0;
405 
406 	devp = file->private_data;
407 	timer = devp->hd_timer;
408 
409 	spin_lock_irq(&hpet_lock);
410 
411 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
412 	       &timer->hpet_config);
413 
414 	irq = devp->hd_irq;
415 	devp->hd_irq = 0;
416 
417 	devp->hd_ireqfreq = 0;
418 
419 	if (devp->hd_flags & HPET_PERIODIC
420 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
421 		unsigned long v;
422 
423 		v = readq(&timer->hpet_config);
424 		v ^= Tn_TYPE_CNF_MASK;
425 		writeq(v, &timer->hpet_config);
426 	}
427 
428 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
429 	spin_unlock_irq(&hpet_lock);
430 
431 	if (irq)
432 		free_irq(irq, devp);
433 
434 	file->private_data = NULL;
435 	return 0;
436 }
437 
438 static int hpet_ioctl_ieon(struct hpet_dev *devp)
439 {
440 	struct hpet_timer __iomem *timer;
441 	struct hpet __iomem *hpet;
442 	struct hpets *hpetp;
443 	int irq;
444 	unsigned long g, v, t, m;
445 	unsigned long flags, isr;
446 
447 	timer = devp->hd_timer;
448 	hpet = devp->hd_hpet;
449 	hpetp = devp->hd_hpets;
450 
451 	if (!devp->hd_ireqfreq)
452 		return -EIO;
453 
454 	spin_lock_irq(&hpet_lock);
455 
456 	if (devp->hd_flags & HPET_IE) {
457 		spin_unlock_irq(&hpet_lock);
458 		return -EBUSY;
459 	}
460 
461 	devp->hd_flags |= HPET_IE;
462 
463 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
464 		devp->hd_flags |= HPET_SHARED_IRQ;
465 	spin_unlock_irq(&hpet_lock);
466 
467 	irq = devp->hd_hdwirq;
468 
469 	if (irq) {
470 		unsigned long irq_flags;
471 
472 		if (devp->hd_flags & HPET_SHARED_IRQ) {
473 			/*
474 			 * To prevent the interrupt handler from seeing an
475 			 * unwanted interrupt status bit, program the timer
476 			 * so that it will not fire in the near future ...
477 			 */
478 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
479 			       &timer->hpet_config);
480 			write_counter(read_counter(&hpet->hpet_mc),
481 				      &timer->hpet_compare);
482 			/* ... and clear any left-over status. */
483 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
484 			writel(isr, &hpet->hpet_isr);
485 		}
486 
487 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
488 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
489 		if (request_irq(irq, hpet_interrupt, irq_flags,
490 				devp->hd_name, (void *)devp)) {
491 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
492 			irq = 0;
493 		}
494 	}
495 
496 	if (irq == 0) {
497 		spin_lock_irq(&hpet_lock);
498 		devp->hd_flags ^= HPET_IE;
499 		spin_unlock_irq(&hpet_lock);
500 		return -EIO;
501 	}
502 
503 	devp->hd_irq = irq;
504 	t = devp->hd_ireqfreq;
505 	v = readq(&timer->hpet_config);
506 
507 	/* 64-bit comparators are not yet supported through the ioctls,
508 	 * so force this into 32-bit mode if it supports both modes
509 	 */
510 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
511 
512 	if (devp->hd_flags & HPET_PERIODIC) {
513 		g |= Tn_TYPE_CNF_MASK;
514 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
515 		writeq(v, &timer->hpet_config);
516 		local_irq_save(flags);
517 
518 		/*
519 		 * NOTE: First we modify the hidden accumulator
520 		 * register supported by periodic-capable comparators.
521 		 * We never want to modify the (single) counter; that
522 		 * would affect all the comparators. The value written
523 		 * is the counter value when the first interrupt is due.
524 		 */
525 		m = read_counter(&hpet->hpet_mc);
526 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
527 		/*
528 		 * Then we modify the comparator, indicating the period
529 		 * for subsequent interrupt.
530 		 */
531 		write_counter(t, &timer->hpet_compare);
532 	} else {
533 		local_irq_save(flags);
534 		m = read_counter(&hpet->hpet_mc);
535 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
536 	}
537 
538 	if (devp->hd_flags & HPET_SHARED_IRQ) {
539 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
540 		writel(isr, &hpet->hpet_isr);
541 	}
542 	writeq(g, &timer->hpet_config);
543 	local_irq_restore(flags);
544 
545 	return 0;
546 }
547 
548 /* converts Hz to number of timer ticks */
549 static inline unsigned long hpet_time_div(struct hpets *hpets,
550 					  unsigned long dis)
551 {
552 	unsigned long long m;
553 
554 	m = hpets->hp_tick_freq + (dis >> 1);
555 	return div64_ul(m, dis);
556 }
557 
558 static int
559 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
560 		  struct hpet_info *info)
561 {
562 	struct hpet_timer __iomem *timer;
563 	struct hpets *hpetp;
564 	int err;
565 	unsigned long v;
566 
567 	switch (cmd) {
568 	case HPET_IE_OFF:
569 	case HPET_INFO:
570 	case HPET_EPI:
571 	case HPET_DPI:
572 	case HPET_IRQFREQ:
573 		timer = devp->hd_timer;
574 		hpetp = devp->hd_hpets;
575 		break;
576 	case HPET_IE_ON:
577 		return hpet_ioctl_ieon(devp);
578 	default:
579 		return -EINVAL;
580 	}
581 
582 	err = 0;
583 
584 	switch (cmd) {
585 	case HPET_IE_OFF:
586 		if ((devp->hd_flags & HPET_IE) == 0)
587 			break;
588 		v = readq(&timer->hpet_config);
589 		v &= ~Tn_INT_ENB_CNF_MASK;
590 		writeq(v, &timer->hpet_config);
591 		if (devp->hd_irq) {
592 			free_irq(devp->hd_irq, devp);
593 			devp->hd_irq = 0;
594 		}
595 		devp->hd_flags ^= HPET_IE;
596 		break;
597 	case HPET_INFO:
598 		{
599 			memset(info, 0, sizeof(*info));
600 			if (devp->hd_ireqfreq)
601 				info->hi_ireqfreq =
602 					hpet_time_div(hpetp, devp->hd_ireqfreq);
603 			info->hi_flags =
604 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
605 			info->hi_hpet = hpetp->hp_which;
606 			info->hi_timer = devp - hpetp->hp_dev;
607 			break;
608 		}
609 	case HPET_EPI:
610 		v = readq(&timer->hpet_config);
611 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
612 			err = -ENXIO;
613 			break;
614 		}
615 		devp->hd_flags |= HPET_PERIODIC;
616 		break;
617 	case HPET_DPI:
618 		v = readq(&timer->hpet_config);
619 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
620 			err = -ENXIO;
621 			break;
622 		}
623 		if (devp->hd_flags & HPET_PERIODIC &&
624 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
625 			v = readq(&timer->hpet_config);
626 			v ^= Tn_TYPE_CNF_MASK;
627 			writeq(v, &timer->hpet_config);
628 		}
629 		devp->hd_flags &= ~HPET_PERIODIC;
630 		break;
631 	case HPET_IRQFREQ:
632 		if ((arg > hpet_max_freq) &&
633 		    !capable(CAP_SYS_RESOURCE)) {
634 			err = -EACCES;
635 			break;
636 		}
637 
638 		if (!arg) {
639 			err = -EINVAL;
640 			break;
641 		}
642 
643 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
644 	}
645 
646 	return err;
647 }
648 
649 static long
650 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
651 {
652 	struct hpet_info info;
653 	int err;
654 
655 	mutex_lock(&hpet_mutex);
656 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
657 	mutex_unlock(&hpet_mutex);
658 
659 	if ((cmd == HPET_INFO) && !err &&
660 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
661 		err = -EFAULT;
662 
663 	return err;
664 }
665 
666 #ifdef CONFIG_COMPAT
667 struct compat_hpet_info {
668 	compat_ulong_t hi_ireqfreq;	/* Hz */
669 	compat_ulong_t hi_flags;	/* information */
670 	unsigned short hi_hpet;
671 	unsigned short hi_timer;
672 };
673 
674 static long
675 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
676 {
677 	struct hpet_info info;
678 	int err;
679 
680 	mutex_lock(&hpet_mutex);
681 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
682 	mutex_unlock(&hpet_mutex);
683 
684 	if ((cmd == HPET_INFO) && !err) {
685 		struct compat_hpet_info __user *u = compat_ptr(arg);
686 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
687 		    put_user(info.hi_flags, &u->hi_flags) ||
688 		    put_user(info.hi_hpet, &u->hi_hpet) ||
689 		    put_user(info.hi_timer, &u->hi_timer))
690 			err = -EFAULT;
691 	}
692 
693 	return err;
694 }
695 #endif
696 
697 static const struct file_operations hpet_fops = {
698 	.owner = THIS_MODULE,
699 	.llseek = no_llseek,
700 	.read = hpet_read,
701 	.poll = hpet_poll,
702 	.unlocked_ioctl = hpet_ioctl,
703 #ifdef CONFIG_COMPAT
704 	.compat_ioctl = hpet_compat_ioctl,
705 #endif
706 	.open = hpet_open,
707 	.release = hpet_release,
708 	.fasync = hpet_fasync,
709 	.mmap = hpet_mmap,
710 };
711 
712 static int hpet_is_known(struct hpet_data *hdp)
713 {
714 	struct hpets *hpetp;
715 
716 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
717 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
718 			return 1;
719 
720 	return 0;
721 }
722 
723 static struct ctl_table hpet_table[] = {
724 	{
725 	 .procname = "max-user-freq",
726 	 .data = &hpet_max_freq,
727 	 .maxlen = sizeof(int),
728 	 .mode = 0644,
729 	 .proc_handler = proc_dointvec,
730 	 },
731 	{}
732 };
733 
734 static struct ctl_table_header *sysctl_header;
735 
736 /*
737  * Adjustment for when arming the timer with
738  * initial conditions.  That is, main counter
739  * ticks expired before interrupts are enabled.
740  */
741 #define	TICK_CALIBRATE	(1000UL)
742 
743 static unsigned long __hpet_calibrate(struct hpets *hpetp)
744 {
745 	struct hpet_timer __iomem *timer = NULL;
746 	unsigned long t, m, count, i, flags, start;
747 	struct hpet_dev *devp;
748 	int j;
749 	struct hpet __iomem *hpet;
750 
751 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
752 		if ((devp->hd_flags & HPET_OPEN) == 0) {
753 			timer = devp->hd_timer;
754 			break;
755 		}
756 
757 	if (!timer)
758 		return 0;
759 
760 	hpet = hpetp->hp_hpet;
761 	t = read_counter(&timer->hpet_compare);
762 
763 	i = 0;
764 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
765 
766 	local_irq_save(flags);
767 
768 	start = read_counter(&hpet->hpet_mc);
769 
770 	do {
771 		m = read_counter(&hpet->hpet_mc);
772 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
773 	} while (i++, (m - start) < count);
774 
775 	local_irq_restore(flags);
776 
777 	return (m - start) / i;
778 }
779 
780 static unsigned long hpet_calibrate(struct hpets *hpetp)
781 {
782 	unsigned long ret = ~0UL;
783 	unsigned long tmp;
784 
785 	/*
786 	 * Try to calibrate until return value becomes stable small value.
787 	 * If SMI interruption occurs in calibration loop, the return value
788 	 * will be big. This avoids its impact.
789 	 */
790 	for ( ; ; ) {
791 		tmp = __hpet_calibrate(hpetp);
792 		if (ret <= tmp)
793 			break;
794 		ret = tmp;
795 	}
796 
797 	return ret;
798 }
799 
800 int hpet_alloc(struct hpet_data *hdp)
801 {
802 	u64 cap, mcfg;
803 	struct hpet_dev *devp;
804 	u32 i, ntimer;
805 	struct hpets *hpetp;
806 	struct hpet __iomem *hpet;
807 	static struct hpets *last;
808 	unsigned long period;
809 	unsigned long long temp;
810 	u32 remainder;
811 
812 	/*
813 	 * hpet_alloc can be called by platform dependent code.
814 	 * If platform dependent code has allocated the hpet that
815 	 * ACPI has also reported, then we catch it here.
816 	 */
817 	if (hpet_is_known(hdp)) {
818 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
819 			__func__);
820 		return 0;
821 	}
822 
823 	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
824 			GFP_KERNEL);
825 
826 	if (!hpetp)
827 		return -ENOMEM;
828 
829 	hpetp->hp_which = hpet_nhpet++;
830 	hpetp->hp_hpet = hdp->hd_address;
831 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
832 
833 	hpetp->hp_ntimer = hdp->hd_nirqs;
834 
835 	for (i = 0; i < hdp->hd_nirqs; i++)
836 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
837 
838 	hpet = hpetp->hp_hpet;
839 
840 	cap = readq(&hpet->hpet_cap);
841 
842 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
843 
844 	if (hpetp->hp_ntimer != ntimer) {
845 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
846 		       " with number of timers\n");
847 		kfree(hpetp);
848 		return -ENODEV;
849 	}
850 
851 	if (last)
852 		last->hp_next = hpetp;
853 	else
854 		hpets = hpetp;
855 
856 	last = hpetp;
857 
858 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
859 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
860 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
861 	temp += period >> 1; /* round */
862 	do_div(temp, period);
863 	hpetp->hp_tick_freq = temp; /* ticks per second */
864 
865 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
866 		hpetp->hp_which, hdp->hd_phys_address,
867 		hpetp->hp_ntimer > 1 ? "s" : "");
868 	for (i = 0; i < hpetp->hp_ntimer; i++)
869 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
870 	printk(KERN_CONT "\n");
871 
872 	temp = hpetp->hp_tick_freq;
873 	remainder = do_div(temp, 1000000);
874 	printk(KERN_INFO
875 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
876 		hpetp->hp_which, hpetp->hp_ntimer,
877 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
878 		(unsigned) temp, remainder);
879 
880 	mcfg = readq(&hpet->hpet_config);
881 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
882 		write_counter(0L, &hpet->hpet_mc);
883 		mcfg |= HPET_ENABLE_CNF_MASK;
884 		writeq(mcfg, &hpet->hpet_config);
885 	}
886 
887 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
888 		struct hpet_timer __iomem *timer;
889 
890 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
891 
892 		devp->hd_hpets = hpetp;
893 		devp->hd_hpet = hpet;
894 		devp->hd_timer = timer;
895 
896 		/*
897 		 * If the timer was reserved by platform code,
898 		 * then make timer unavailable for opens.
899 		 */
900 		if (hdp->hd_state & (1 << i)) {
901 			devp->hd_flags = HPET_OPEN;
902 			continue;
903 		}
904 
905 		init_waitqueue_head(&devp->hd_waitqueue);
906 	}
907 
908 	hpetp->hp_delta = hpet_calibrate(hpetp);
909 
910 /* This clocksource driver currently only works on ia64 */
911 #ifdef CONFIG_IA64
912 	if (!hpet_clocksource) {
913 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
914 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
915 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
916 		hpetp->hp_clocksource = &clocksource_hpet;
917 		hpet_clocksource = &clocksource_hpet;
918 	}
919 #endif
920 
921 	return 0;
922 }
923 
924 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
925 {
926 	struct hpet_data *hdp;
927 	acpi_status status;
928 	struct acpi_resource_address64 addr;
929 
930 	hdp = data;
931 
932 	status = acpi_resource_to_address64(res, &addr);
933 
934 	if (ACPI_SUCCESS(status)) {
935 		hdp->hd_phys_address = addr.address.minimum;
936 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
937 		if (!hdp->hd_address)
938 			return AE_ERROR;
939 
940 		if (hpet_is_known(hdp)) {
941 			iounmap(hdp->hd_address);
942 			return AE_ALREADY_EXISTS;
943 		}
944 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
945 		struct acpi_resource_fixed_memory32 *fixmem32;
946 
947 		fixmem32 = &res->data.fixed_memory32;
948 
949 		hdp->hd_phys_address = fixmem32->address;
950 		hdp->hd_address = ioremap(fixmem32->address,
951 						HPET_RANGE_SIZE);
952 		if (!hdp->hd_address)
953 			return AE_ERROR;
954 
955 		if (hpet_is_known(hdp)) {
956 			iounmap(hdp->hd_address);
957 			return AE_ALREADY_EXISTS;
958 		}
959 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
960 		struct acpi_resource_extended_irq *irqp;
961 		int i, irq;
962 
963 		irqp = &res->data.extended_irq;
964 
965 		for (i = 0; i < irqp->interrupt_count; i++) {
966 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
967 				break;
968 
969 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
970 						irqp->triggering,
971 						irqp->polarity);
972 			if (irq < 0)
973 				return AE_ERROR;
974 
975 			hdp->hd_irq[hdp->hd_nirqs] = irq;
976 			hdp->hd_nirqs++;
977 		}
978 	}
979 
980 	return AE_OK;
981 }
982 
983 static int hpet_acpi_add(struct acpi_device *device)
984 {
985 	acpi_status result;
986 	struct hpet_data data;
987 
988 	memset(&data, 0, sizeof(data));
989 
990 	result =
991 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
992 				hpet_resources, &data);
993 
994 	if (ACPI_FAILURE(result))
995 		return -ENODEV;
996 
997 	if (!data.hd_address || !data.hd_nirqs) {
998 		if (data.hd_address)
999 			iounmap(data.hd_address);
1000 		printk("%s: no address or irqs in _CRS\n", __func__);
1001 		return -ENODEV;
1002 	}
1003 
1004 	return hpet_alloc(&data);
1005 }
1006 
1007 static const struct acpi_device_id hpet_device_ids[] = {
1008 	{"PNP0103", 0},
1009 	{"", 0},
1010 };
1011 
1012 static struct acpi_driver hpet_acpi_driver = {
1013 	.name = "hpet",
1014 	.ids = hpet_device_ids,
1015 	.ops = {
1016 		.add = hpet_acpi_add,
1017 		},
1018 };
1019 
1020 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1021 
1022 static int __init hpet_init(void)
1023 {
1024 	int result;
1025 
1026 	result = misc_register(&hpet_misc);
1027 	if (result < 0)
1028 		return -ENODEV;
1029 
1030 	sysctl_header = register_sysctl("dev/hpet", hpet_table);
1031 
1032 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1033 	if (result < 0) {
1034 		if (sysctl_header)
1035 			unregister_sysctl_table(sysctl_header);
1036 		misc_deregister(&hpet_misc);
1037 		return result;
1038 	}
1039 
1040 	return 0;
1041 }
1042 device_initcall(hpet_init);
1043 
1044 /*
1045 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1046 MODULE_LICENSE("GPL");
1047 */
1048