1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel & MS High Precision Event Timer Implementation. 4 * 5 * Copyright (C) 2003 Intel Corporation 6 * Venki Pallipadi 7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P. 8 * Bob Picco <robert.picco@hp.com> 9 */ 10 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/types.h> 14 #include <linux/miscdevice.h> 15 #include <linux/major.h> 16 #include <linux/ioport.h> 17 #include <linux/fcntl.h> 18 #include <linux/init.h> 19 #include <linux/io-64-nonatomic-lo-hi.h> 20 #include <linux/poll.h> 21 #include <linux/mm.h> 22 #include <linux/proc_fs.h> 23 #include <linux/spinlock.h> 24 #include <linux/sysctl.h> 25 #include <linux/wait.h> 26 #include <linux/sched/signal.h> 27 #include <linux/bcd.h> 28 #include <linux/seq_file.h> 29 #include <linux/bitops.h> 30 #include <linux/compat.h> 31 #include <linux/clocksource.h> 32 #include <linux/uaccess.h> 33 #include <linux/slab.h> 34 #include <linux/io.h> 35 #include <linux/acpi.h> 36 #include <linux/hpet.h> 37 #include <asm/current.h> 38 #include <asm/irq.h> 39 #include <asm/div64.h> 40 41 /* 42 * The High Precision Event Timer driver. 43 * This driver is closely modelled after the rtc.c driver. 44 * See HPET spec revision 1. 45 */ 46 #define HPET_USER_FREQ (64) 47 #define HPET_DRIFT (500) 48 49 #define HPET_RANGE_SIZE 1024 /* from HPET spec */ 50 51 52 /* WARNING -- don't get confused. These macros are never used 53 * to write the (single) counter, and rarely to read it. 54 * They're badly named; to fix, someday. 55 */ 56 #if BITS_PER_LONG == 64 57 #define write_counter(V, MC) writeq(V, MC) 58 #define read_counter(MC) readq(MC) 59 #else 60 #define write_counter(V, MC) writel(V, MC) 61 #define read_counter(MC) readl(MC) 62 #endif 63 64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */ 65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ; 66 67 /* This clocksource driver currently only works on ia64 */ 68 #ifdef CONFIG_IA64 69 static void __iomem *hpet_mctr; 70 71 static u64 read_hpet(struct clocksource *cs) 72 { 73 return (u64)read_counter((void __iomem *)hpet_mctr); 74 } 75 76 static struct clocksource clocksource_hpet = { 77 .name = "hpet", 78 .rating = 250, 79 .read = read_hpet, 80 .mask = CLOCKSOURCE_MASK(64), 81 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 82 }; 83 static struct clocksource *hpet_clocksource; 84 #endif 85 86 /* A lock for concurrent access by app and isr hpet activity. */ 87 static DEFINE_SPINLOCK(hpet_lock); 88 89 #define HPET_DEV_NAME (7) 90 91 struct hpet_dev { 92 struct hpets *hd_hpets; 93 struct hpet __iomem *hd_hpet; 94 struct hpet_timer __iomem *hd_timer; 95 unsigned long hd_ireqfreq; 96 unsigned long hd_irqdata; 97 wait_queue_head_t hd_waitqueue; 98 struct fasync_struct *hd_async_queue; 99 unsigned int hd_flags; 100 unsigned int hd_irq; 101 unsigned int hd_hdwirq; 102 char hd_name[HPET_DEV_NAME]; 103 }; 104 105 struct hpets { 106 struct hpets *hp_next; 107 struct hpet __iomem *hp_hpet; 108 unsigned long hp_hpet_phys; 109 struct clocksource *hp_clocksource; 110 unsigned long long hp_tick_freq; 111 unsigned long hp_delta; 112 unsigned int hp_ntimer; 113 unsigned int hp_which; 114 struct hpet_dev hp_dev[]; 115 }; 116 117 static struct hpets *hpets; 118 119 #define HPET_OPEN 0x0001 120 #define HPET_IE 0x0002 /* interrupt enabled */ 121 #define HPET_PERIODIC 0x0004 122 #define HPET_SHARED_IRQ 0x0008 123 124 static irqreturn_t hpet_interrupt(int irq, void *data) 125 { 126 struct hpet_dev *devp; 127 unsigned long isr; 128 129 devp = data; 130 isr = 1 << (devp - devp->hd_hpets->hp_dev); 131 132 if ((devp->hd_flags & HPET_SHARED_IRQ) && 133 !(isr & readl(&devp->hd_hpet->hpet_isr))) 134 return IRQ_NONE; 135 136 spin_lock(&hpet_lock); 137 devp->hd_irqdata++; 138 139 /* 140 * For non-periodic timers, increment the accumulator. 141 * This has the effect of treating non-periodic like periodic. 142 */ 143 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) { 144 unsigned long t, mc, base, k; 145 struct hpet __iomem *hpet = devp->hd_hpet; 146 struct hpets *hpetp = devp->hd_hpets; 147 148 t = devp->hd_ireqfreq; 149 read_counter(&devp->hd_timer->hpet_compare); 150 mc = read_counter(&hpet->hpet_mc); 151 /* The time for the next interrupt would logically be t + m, 152 * however, if we are very unlucky and the interrupt is delayed 153 * for longer than t then we will completely miss the next 154 * interrupt if we set t + m and an application will hang. 155 * Therefore we need to make a more complex computation assuming 156 * that there exists a k for which the following is true: 157 * k * t + base < mc + delta 158 * (k + 1) * t + base > mc + delta 159 * where t is the interval in hpet ticks for the given freq, 160 * base is the theoretical start value 0 < base < t, 161 * mc is the main counter value at the time of the interrupt, 162 * delta is the time it takes to write the a value to the 163 * comparator. 164 * k may then be computed as (mc - base + delta) / t . 165 */ 166 base = mc % t; 167 k = (mc - base + hpetp->hp_delta) / t; 168 write_counter(t * (k + 1) + base, 169 &devp->hd_timer->hpet_compare); 170 } 171 172 if (devp->hd_flags & HPET_SHARED_IRQ) 173 writel(isr, &devp->hd_hpet->hpet_isr); 174 spin_unlock(&hpet_lock); 175 176 wake_up_interruptible(&devp->hd_waitqueue); 177 178 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN); 179 180 return IRQ_HANDLED; 181 } 182 183 static void hpet_timer_set_irq(struct hpet_dev *devp) 184 { 185 unsigned long v; 186 int irq, gsi; 187 struct hpet_timer __iomem *timer; 188 189 spin_lock_irq(&hpet_lock); 190 if (devp->hd_hdwirq) { 191 spin_unlock_irq(&hpet_lock); 192 return; 193 } 194 195 timer = devp->hd_timer; 196 197 /* we prefer level triggered mode */ 198 v = readl(&timer->hpet_config); 199 if (!(v & Tn_INT_TYPE_CNF_MASK)) { 200 v |= Tn_INT_TYPE_CNF_MASK; 201 writel(v, &timer->hpet_config); 202 } 203 spin_unlock_irq(&hpet_lock); 204 205 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >> 206 Tn_INT_ROUTE_CAP_SHIFT; 207 208 /* 209 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by 210 * legacy device. In IO APIC mode, we skip all the legacy IRQS. 211 */ 212 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC) 213 v &= ~0xf3df; 214 else 215 v &= ~0xffff; 216 217 for_each_set_bit(irq, &v, HPET_MAX_IRQ) { 218 if (irq >= nr_irqs) { 219 irq = HPET_MAX_IRQ; 220 break; 221 } 222 223 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE, 224 ACPI_ACTIVE_LOW); 225 if (gsi > 0) 226 break; 227 228 /* FIXME: Setup interrupt source table */ 229 } 230 231 if (irq < HPET_MAX_IRQ) { 232 spin_lock_irq(&hpet_lock); 233 v = readl(&timer->hpet_config); 234 v |= irq << Tn_INT_ROUTE_CNF_SHIFT; 235 writel(v, &timer->hpet_config); 236 devp->hd_hdwirq = gsi; 237 spin_unlock_irq(&hpet_lock); 238 } 239 return; 240 } 241 242 static int hpet_open(struct inode *inode, struct file *file) 243 { 244 struct hpet_dev *devp; 245 struct hpets *hpetp; 246 int i; 247 248 if (file->f_mode & FMODE_WRITE) 249 return -EINVAL; 250 251 mutex_lock(&hpet_mutex); 252 spin_lock_irq(&hpet_lock); 253 254 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next) 255 for (i = 0; i < hpetp->hp_ntimer; i++) 256 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) { 257 continue; 258 } else { 259 devp = &hpetp->hp_dev[i]; 260 break; 261 } 262 263 if (!devp) { 264 spin_unlock_irq(&hpet_lock); 265 mutex_unlock(&hpet_mutex); 266 return -EBUSY; 267 } 268 269 file->private_data = devp; 270 devp->hd_irqdata = 0; 271 devp->hd_flags |= HPET_OPEN; 272 spin_unlock_irq(&hpet_lock); 273 mutex_unlock(&hpet_mutex); 274 275 hpet_timer_set_irq(devp); 276 277 return 0; 278 } 279 280 static ssize_t 281 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos) 282 { 283 DECLARE_WAITQUEUE(wait, current); 284 unsigned long data; 285 ssize_t retval; 286 struct hpet_dev *devp; 287 288 devp = file->private_data; 289 if (!devp->hd_ireqfreq) 290 return -EIO; 291 292 if (count < sizeof(unsigned long)) 293 return -EINVAL; 294 295 add_wait_queue(&devp->hd_waitqueue, &wait); 296 297 for ( ; ; ) { 298 set_current_state(TASK_INTERRUPTIBLE); 299 300 spin_lock_irq(&hpet_lock); 301 data = devp->hd_irqdata; 302 devp->hd_irqdata = 0; 303 spin_unlock_irq(&hpet_lock); 304 305 if (data) { 306 break; 307 } else if (file->f_flags & O_NONBLOCK) { 308 retval = -EAGAIN; 309 goto out; 310 } else if (signal_pending(current)) { 311 retval = -ERESTARTSYS; 312 goto out; 313 } 314 schedule(); 315 } 316 317 retval = put_user(data, (unsigned long __user *)buf); 318 if (!retval) 319 retval = sizeof(unsigned long); 320 out: 321 __set_current_state(TASK_RUNNING); 322 remove_wait_queue(&devp->hd_waitqueue, &wait); 323 324 return retval; 325 } 326 327 static __poll_t hpet_poll(struct file *file, poll_table * wait) 328 { 329 unsigned long v; 330 struct hpet_dev *devp; 331 332 devp = file->private_data; 333 334 if (!devp->hd_ireqfreq) 335 return 0; 336 337 poll_wait(file, &devp->hd_waitqueue, wait); 338 339 spin_lock_irq(&hpet_lock); 340 v = devp->hd_irqdata; 341 spin_unlock_irq(&hpet_lock); 342 343 if (v != 0) 344 return EPOLLIN | EPOLLRDNORM; 345 346 return 0; 347 } 348 349 #ifdef CONFIG_HPET_MMAP 350 #ifdef CONFIG_HPET_MMAP_DEFAULT 351 static int hpet_mmap_enabled = 1; 352 #else 353 static int hpet_mmap_enabled = 0; 354 #endif 355 356 static __init int hpet_mmap_enable(char *str) 357 { 358 get_option(&str, &hpet_mmap_enabled); 359 pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled"); 360 return 1; 361 } 362 __setup("hpet_mmap=", hpet_mmap_enable); 363 364 static int hpet_mmap(struct file *file, struct vm_area_struct *vma) 365 { 366 struct hpet_dev *devp; 367 unsigned long addr; 368 369 if (!hpet_mmap_enabled) 370 return -EACCES; 371 372 devp = file->private_data; 373 addr = devp->hd_hpets->hp_hpet_phys; 374 375 if (addr & (PAGE_SIZE - 1)) 376 return -ENOSYS; 377 378 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 379 return vm_iomap_memory(vma, addr, PAGE_SIZE); 380 } 381 #else 382 static int hpet_mmap(struct file *file, struct vm_area_struct *vma) 383 { 384 return -ENOSYS; 385 } 386 #endif 387 388 static int hpet_fasync(int fd, struct file *file, int on) 389 { 390 struct hpet_dev *devp; 391 392 devp = file->private_data; 393 394 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0) 395 return 0; 396 else 397 return -EIO; 398 } 399 400 static int hpet_release(struct inode *inode, struct file *file) 401 { 402 struct hpet_dev *devp; 403 struct hpet_timer __iomem *timer; 404 int irq = 0; 405 406 devp = file->private_data; 407 timer = devp->hd_timer; 408 409 spin_lock_irq(&hpet_lock); 410 411 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK), 412 &timer->hpet_config); 413 414 irq = devp->hd_irq; 415 devp->hd_irq = 0; 416 417 devp->hd_ireqfreq = 0; 418 419 if (devp->hd_flags & HPET_PERIODIC 420 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) { 421 unsigned long v; 422 423 v = readq(&timer->hpet_config); 424 v ^= Tn_TYPE_CNF_MASK; 425 writeq(v, &timer->hpet_config); 426 } 427 428 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC); 429 spin_unlock_irq(&hpet_lock); 430 431 if (irq) 432 free_irq(irq, devp); 433 434 file->private_data = NULL; 435 return 0; 436 } 437 438 static int hpet_ioctl_ieon(struct hpet_dev *devp) 439 { 440 struct hpet_timer __iomem *timer; 441 struct hpet __iomem *hpet; 442 struct hpets *hpetp; 443 int irq; 444 unsigned long g, v, t, m; 445 unsigned long flags, isr; 446 447 timer = devp->hd_timer; 448 hpet = devp->hd_hpet; 449 hpetp = devp->hd_hpets; 450 451 if (!devp->hd_ireqfreq) 452 return -EIO; 453 454 spin_lock_irq(&hpet_lock); 455 456 if (devp->hd_flags & HPET_IE) { 457 spin_unlock_irq(&hpet_lock); 458 return -EBUSY; 459 } 460 461 devp->hd_flags |= HPET_IE; 462 463 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK) 464 devp->hd_flags |= HPET_SHARED_IRQ; 465 spin_unlock_irq(&hpet_lock); 466 467 irq = devp->hd_hdwirq; 468 469 if (irq) { 470 unsigned long irq_flags; 471 472 if (devp->hd_flags & HPET_SHARED_IRQ) { 473 /* 474 * To prevent the interrupt handler from seeing an 475 * unwanted interrupt status bit, program the timer 476 * so that it will not fire in the near future ... 477 */ 478 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK, 479 &timer->hpet_config); 480 write_counter(read_counter(&hpet->hpet_mc), 481 &timer->hpet_compare); 482 /* ... and clear any left-over status. */ 483 isr = 1 << (devp - devp->hd_hpets->hp_dev); 484 writel(isr, &hpet->hpet_isr); 485 } 486 487 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev)); 488 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0; 489 if (request_irq(irq, hpet_interrupt, irq_flags, 490 devp->hd_name, (void *)devp)) { 491 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq); 492 irq = 0; 493 } 494 } 495 496 if (irq == 0) { 497 spin_lock_irq(&hpet_lock); 498 devp->hd_flags ^= HPET_IE; 499 spin_unlock_irq(&hpet_lock); 500 return -EIO; 501 } 502 503 devp->hd_irq = irq; 504 t = devp->hd_ireqfreq; 505 v = readq(&timer->hpet_config); 506 507 /* 64-bit comparators are not yet supported through the ioctls, 508 * so force this into 32-bit mode if it supports both modes 509 */ 510 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK; 511 512 if (devp->hd_flags & HPET_PERIODIC) { 513 g |= Tn_TYPE_CNF_MASK; 514 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK; 515 writeq(v, &timer->hpet_config); 516 local_irq_save(flags); 517 518 /* 519 * NOTE: First we modify the hidden accumulator 520 * register supported by periodic-capable comparators. 521 * We never want to modify the (single) counter; that 522 * would affect all the comparators. The value written 523 * is the counter value when the first interrupt is due. 524 */ 525 m = read_counter(&hpet->hpet_mc); 526 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); 527 /* 528 * Then we modify the comparator, indicating the period 529 * for subsequent interrupt. 530 */ 531 write_counter(t, &timer->hpet_compare); 532 } else { 533 local_irq_save(flags); 534 m = read_counter(&hpet->hpet_mc); 535 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); 536 } 537 538 if (devp->hd_flags & HPET_SHARED_IRQ) { 539 isr = 1 << (devp - devp->hd_hpets->hp_dev); 540 writel(isr, &hpet->hpet_isr); 541 } 542 writeq(g, &timer->hpet_config); 543 local_irq_restore(flags); 544 545 return 0; 546 } 547 548 /* converts Hz to number of timer ticks */ 549 static inline unsigned long hpet_time_div(struct hpets *hpets, 550 unsigned long dis) 551 { 552 unsigned long long m; 553 554 m = hpets->hp_tick_freq + (dis >> 1); 555 return div64_ul(m, dis); 556 } 557 558 static int 559 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg, 560 struct hpet_info *info) 561 { 562 struct hpet_timer __iomem *timer; 563 struct hpets *hpetp; 564 int err; 565 unsigned long v; 566 567 switch (cmd) { 568 case HPET_IE_OFF: 569 case HPET_INFO: 570 case HPET_EPI: 571 case HPET_DPI: 572 case HPET_IRQFREQ: 573 timer = devp->hd_timer; 574 hpetp = devp->hd_hpets; 575 break; 576 case HPET_IE_ON: 577 return hpet_ioctl_ieon(devp); 578 default: 579 return -EINVAL; 580 } 581 582 err = 0; 583 584 switch (cmd) { 585 case HPET_IE_OFF: 586 if ((devp->hd_flags & HPET_IE) == 0) 587 break; 588 v = readq(&timer->hpet_config); 589 v &= ~Tn_INT_ENB_CNF_MASK; 590 writeq(v, &timer->hpet_config); 591 if (devp->hd_irq) { 592 free_irq(devp->hd_irq, devp); 593 devp->hd_irq = 0; 594 } 595 devp->hd_flags ^= HPET_IE; 596 break; 597 case HPET_INFO: 598 { 599 memset(info, 0, sizeof(*info)); 600 if (devp->hd_ireqfreq) 601 info->hi_ireqfreq = 602 hpet_time_div(hpetp, devp->hd_ireqfreq); 603 info->hi_flags = 604 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK; 605 info->hi_hpet = hpetp->hp_which; 606 info->hi_timer = devp - hpetp->hp_dev; 607 break; 608 } 609 case HPET_EPI: 610 v = readq(&timer->hpet_config); 611 if ((v & Tn_PER_INT_CAP_MASK) == 0) { 612 err = -ENXIO; 613 break; 614 } 615 devp->hd_flags |= HPET_PERIODIC; 616 break; 617 case HPET_DPI: 618 v = readq(&timer->hpet_config); 619 if ((v & Tn_PER_INT_CAP_MASK) == 0) { 620 err = -ENXIO; 621 break; 622 } 623 if (devp->hd_flags & HPET_PERIODIC && 624 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) { 625 v = readq(&timer->hpet_config); 626 v ^= Tn_TYPE_CNF_MASK; 627 writeq(v, &timer->hpet_config); 628 } 629 devp->hd_flags &= ~HPET_PERIODIC; 630 break; 631 case HPET_IRQFREQ: 632 if ((arg > hpet_max_freq) && 633 !capable(CAP_SYS_RESOURCE)) { 634 err = -EACCES; 635 break; 636 } 637 638 if (!arg) { 639 err = -EINVAL; 640 break; 641 } 642 643 devp->hd_ireqfreq = hpet_time_div(hpetp, arg); 644 } 645 646 return err; 647 } 648 649 static long 650 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 651 { 652 struct hpet_info info; 653 int err; 654 655 mutex_lock(&hpet_mutex); 656 err = hpet_ioctl_common(file->private_data, cmd, arg, &info); 657 mutex_unlock(&hpet_mutex); 658 659 if ((cmd == HPET_INFO) && !err && 660 (copy_to_user((void __user *)arg, &info, sizeof(info)))) 661 err = -EFAULT; 662 663 return err; 664 } 665 666 #ifdef CONFIG_COMPAT 667 struct compat_hpet_info { 668 compat_ulong_t hi_ireqfreq; /* Hz */ 669 compat_ulong_t hi_flags; /* information */ 670 unsigned short hi_hpet; 671 unsigned short hi_timer; 672 }; 673 674 static long 675 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 676 { 677 struct hpet_info info; 678 int err; 679 680 mutex_lock(&hpet_mutex); 681 err = hpet_ioctl_common(file->private_data, cmd, arg, &info); 682 mutex_unlock(&hpet_mutex); 683 684 if ((cmd == HPET_INFO) && !err) { 685 struct compat_hpet_info __user *u = compat_ptr(arg); 686 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) || 687 put_user(info.hi_flags, &u->hi_flags) || 688 put_user(info.hi_hpet, &u->hi_hpet) || 689 put_user(info.hi_timer, &u->hi_timer)) 690 err = -EFAULT; 691 } 692 693 return err; 694 } 695 #endif 696 697 static const struct file_operations hpet_fops = { 698 .owner = THIS_MODULE, 699 .llseek = no_llseek, 700 .read = hpet_read, 701 .poll = hpet_poll, 702 .unlocked_ioctl = hpet_ioctl, 703 #ifdef CONFIG_COMPAT 704 .compat_ioctl = hpet_compat_ioctl, 705 #endif 706 .open = hpet_open, 707 .release = hpet_release, 708 .fasync = hpet_fasync, 709 .mmap = hpet_mmap, 710 }; 711 712 static int hpet_is_known(struct hpet_data *hdp) 713 { 714 struct hpets *hpetp; 715 716 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next) 717 if (hpetp->hp_hpet_phys == hdp->hd_phys_address) 718 return 1; 719 720 return 0; 721 } 722 723 static struct ctl_table hpet_table[] = { 724 { 725 .procname = "max-user-freq", 726 .data = &hpet_max_freq, 727 .maxlen = sizeof(int), 728 .mode = 0644, 729 .proc_handler = proc_dointvec, 730 }, 731 {} 732 }; 733 734 static struct ctl_table_header *sysctl_header; 735 736 /* 737 * Adjustment for when arming the timer with 738 * initial conditions. That is, main counter 739 * ticks expired before interrupts are enabled. 740 */ 741 #define TICK_CALIBRATE (1000UL) 742 743 static unsigned long __hpet_calibrate(struct hpets *hpetp) 744 { 745 struct hpet_timer __iomem *timer = NULL; 746 unsigned long t, m, count, i, flags, start; 747 struct hpet_dev *devp; 748 int j; 749 struct hpet __iomem *hpet; 750 751 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++) 752 if ((devp->hd_flags & HPET_OPEN) == 0) { 753 timer = devp->hd_timer; 754 break; 755 } 756 757 if (!timer) 758 return 0; 759 760 hpet = hpetp->hp_hpet; 761 t = read_counter(&timer->hpet_compare); 762 763 i = 0; 764 count = hpet_time_div(hpetp, TICK_CALIBRATE); 765 766 local_irq_save(flags); 767 768 start = read_counter(&hpet->hpet_mc); 769 770 do { 771 m = read_counter(&hpet->hpet_mc); 772 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare); 773 } while (i++, (m - start) < count); 774 775 local_irq_restore(flags); 776 777 return (m - start) / i; 778 } 779 780 static unsigned long hpet_calibrate(struct hpets *hpetp) 781 { 782 unsigned long ret = ~0UL; 783 unsigned long tmp; 784 785 /* 786 * Try to calibrate until return value becomes stable small value. 787 * If SMI interruption occurs in calibration loop, the return value 788 * will be big. This avoids its impact. 789 */ 790 for ( ; ; ) { 791 tmp = __hpet_calibrate(hpetp); 792 if (ret <= tmp) 793 break; 794 ret = tmp; 795 } 796 797 return ret; 798 } 799 800 int hpet_alloc(struct hpet_data *hdp) 801 { 802 u64 cap, mcfg; 803 struct hpet_dev *devp; 804 u32 i, ntimer; 805 struct hpets *hpetp; 806 struct hpet __iomem *hpet; 807 static struct hpets *last; 808 unsigned long period; 809 unsigned long long temp; 810 u32 remainder; 811 812 /* 813 * hpet_alloc can be called by platform dependent code. 814 * If platform dependent code has allocated the hpet that 815 * ACPI has also reported, then we catch it here. 816 */ 817 if (hpet_is_known(hdp)) { 818 printk(KERN_DEBUG "%s: duplicate HPET ignored\n", 819 __func__); 820 return 0; 821 } 822 823 hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs), 824 GFP_KERNEL); 825 826 if (!hpetp) 827 return -ENOMEM; 828 829 hpetp->hp_which = hpet_nhpet++; 830 hpetp->hp_hpet = hdp->hd_address; 831 hpetp->hp_hpet_phys = hdp->hd_phys_address; 832 833 hpetp->hp_ntimer = hdp->hd_nirqs; 834 835 for (i = 0; i < hdp->hd_nirqs; i++) 836 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i]; 837 838 hpet = hpetp->hp_hpet; 839 840 cap = readq(&hpet->hpet_cap); 841 842 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1; 843 844 if (hpetp->hp_ntimer != ntimer) { 845 printk(KERN_WARNING "hpet: number irqs doesn't agree" 846 " with number of timers\n"); 847 kfree(hpetp); 848 return -ENODEV; 849 } 850 851 if (last) 852 last->hp_next = hpetp; 853 else 854 hpets = hpetp; 855 856 last = hpetp; 857 858 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >> 859 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */ 860 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */ 861 temp += period >> 1; /* round */ 862 do_div(temp, period); 863 hpetp->hp_tick_freq = temp; /* ticks per second */ 864 865 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s", 866 hpetp->hp_which, hdp->hd_phys_address, 867 hpetp->hp_ntimer > 1 ? "s" : ""); 868 for (i = 0; i < hpetp->hp_ntimer; i++) 869 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]); 870 printk(KERN_CONT "\n"); 871 872 temp = hpetp->hp_tick_freq; 873 remainder = do_div(temp, 1000000); 874 printk(KERN_INFO 875 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n", 876 hpetp->hp_which, hpetp->hp_ntimer, 877 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32, 878 (unsigned) temp, remainder); 879 880 mcfg = readq(&hpet->hpet_config); 881 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) { 882 write_counter(0L, &hpet->hpet_mc); 883 mcfg |= HPET_ENABLE_CNF_MASK; 884 writeq(mcfg, &hpet->hpet_config); 885 } 886 887 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) { 888 struct hpet_timer __iomem *timer; 889 890 timer = &hpet->hpet_timers[devp - hpetp->hp_dev]; 891 892 devp->hd_hpets = hpetp; 893 devp->hd_hpet = hpet; 894 devp->hd_timer = timer; 895 896 /* 897 * If the timer was reserved by platform code, 898 * then make timer unavailable for opens. 899 */ 900 if (hdp->hd_state & (1 << i)) { 901 devp->hd_flags = HPET_OPEN; 902 continue; 903 } 904 905 init_waitqueue_head(&devp->hd_waitqueue); 906 } 907 908 hpetp->hp_delta = hpet_calibrate(hpetp); 909 910 /* This clocksource driver currently only works on ia64 */ 911 #ifdef CONFIG_IA64 912 if (!hpet_clocksource) { 913 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc; 914 clocksource_hpet.archdata.fsys_mmio = hpet_mctr; 915 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq); 916 hpetp->hp_clocksource = &clocksource_hpet; 917 hpet_clocksource = &clocksource_hpet; 918 } 919 #endif 920 921 return 0; 922 } 923 924 static acpi_status hpet_resources(struct acpi_resource *res, void *data) 925 { 926 struct hpet_data *hdp; 927 acpi_status status; 928 struct acpi_resource_address64 addr; 929 930 hdp = data; 931 932 status = acpi_resource_to_address64(res, &addr); 933 934 if (ACPI_SUCCESS(status)) { 935 hdp->hd_phys_address = addr.address.minimum; 936 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length); 937 if (!hdp->hd_address) 938 return AE_ERROR; 939 940 if (hpet_is_known(hdp)) { 941 iounmap(hdp->hd_address); 942 return AE_ALREADY_EXISTS; 943 } 944 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) { 945 struct acpi_resource_fixed_memory32 *fixmem32; 946 947 fixmem32 = &res->data.fixed_memory32; 948 949 hdp->hd_phys_address = fixmem32->address; 950 hdp->hd_address = ioremap(fixmem32->address, 951 HPET_RANGE_SIZE); 952 if (!hdp->hd_address) 953 return AE_ERROR; 954 955 if (hpet_is_known(hdp)) { 956 iounmap(hdp->hd_address); 957 return AE_ALREADY_EXISTS; 958 } 959 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) { 960 struct acpi_resource_extended_irq *irqp; 961 int i, irq; 962 963 irqp = &res->data.extended_irq; 964 965 for (i = 0; i < irqp->interrupt_count; i++) { 966 if (hdp->hd_nirqs >= HPET_MAX_TIMERS) 967 break; 968 969 irq = acpi_register_gsi(NULL, irqp->interrupts[i], 970 irqp->triggering, 971 irqp->polarity); 972 if (irq < 0) 973 return AE_ERROR; 974 975 hdp->hd_irq[hdp->hd_nirqs] = irq; 976 hdp->hd_nirqs++; 977 } 978 } 979 980 return AE_OK; 981 } 982 983 static int hpet_acpi_add(struct acpi_device *device) 984 { 985 acpi_status result; 986 struct hpet_data data; 987 988 memset(&data, 0, sizeof(data)); 989 990 result = 991 acpi_walk_resources(device->handle, METHOD_NAME__CRS, 992 hpet_resources, &data); 993 994 if (ACPI_FAILURE(result)) 995 return -ENODEV; 996 997 if (!data.hd_address || !data.hd_nirqs) { 998 if (data.hd_address) 999 iounmap(data.hd_address); 1000 printk("%s: no address or irqs in _CRS\n", __func__); 1001 return -ENODEV; 1002 } 1003 1004 return hpet_alloc(&data); 1005 } 1006 1007 static const struct acpi_device_id hpet_device_ids[] = { 1008 {"PNP0103", 0}, 1009 {"", 0}, 1010 }; 1011 1012 static struct acpi_driver hpet_acpi_driver = { 1013 .name = "hpet", 1014 .ids = hpet_device_ids, 1015 .ops = { 1016 .add = hpet_acpi_add, 1017 }, 1018 }; 1019 1020 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops }; 1021 1022 static int __init hpet_init(void) 1023 { 1024 int result; 1025 1026 result = misc_register(&hpet_misc); 1027 if (result < 0) 1028 return -ENODEV; 1029 1030 sysctl_header = register_sysctl("dev/hpet", hpet_table); 1031 1032 result = acpi_bus_register_driver(&hpet_acpi_driver); 1033 if (result < 0) { 1034 if (sysctl_header) 1035 unregister_sysctl_table(sysctl_header); 1036 misc_deregister(&hpet_misc); 1037 return result; 1038 } 1039 1040 return 0; 1041 } 1042 device_initcall(hpet_init); 1043 1044 /* 1045 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>"); 1046 MODULE_LICENSE("GPL"); 1047 */ 1048