xref: /openbmc/linux/drivers/char/hpet.c (revision 81d67439)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 
38 #include <asm/current.h>
39 #include <asm/system.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
42 
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
46 
47 /*
48  * The High Precision Event Timer driver.
49  * This driver is closely modelled after the rtc.c driver.
50  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
51  */
52 #define	HPET_USER_FREQ	(64)
53 #define	HPET_DRIFT	(500)
54 
55 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
56 
57 
58 /* WARNING -- don't get confused.  These macros are never used
59  * to write the (single) counter, and rarely to read it.
60  * They're badly named; to fix, someday.
61  */
62 #if BITS_PER_LONG == 64
63 #define	write_counter(V, MC)	writeq(V, MC)
64 #define	read_counter(MC)	readq(MC)
65 #else
66 #define	write_counter(V, MC)	writel(V, MC)
67 #define	read_counter(MC)	readl(MC)
68 #endif
69 
70 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
71 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
72 
73 /* This clocksource driver currently only works on ia64 */
74 #ifdef CONFIG_IA64
75 static void __iomem *hpet_mctr;
76 
77 static cycle_t read_hpet(struct clocksource *cs)
78 {
79 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
80 }
81 
82 static struct clocksource clocksource_hpet = {
83 	.name		= "hpet",
84 	.rating		= 250,
85 	.read		= read_hpet,
86 	.mask		= CLOCKSOURCE_MASK(64),
87 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
88 };
89 static struct clocksource *hpet_clocksource;
90 #endif
91 
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock);
94 
95 #define	HPET_DEV_NAME	(7)
96 
97 struct hpet_dev {
98 	struct hpets *hd_hpets;
99 	struct hpet __iomem *hd_hpet;
100 	struct hpet_timer __iomem *hd_timer;
101 	unsigned long hd_ireqfreq;
102 	unsigned long hd_irqdata;
103 	wait_queue_head_t hd_waitqueue;
104 	struct fasync_struct *hd_async_queue;
105 	unsigned int hd_flags;
106 	unsigned int hd_irq;
107 	unsigned int hd_hdwirq;
108 	char hd_name[HPET_DEV_NAME];
109 };
110 
111 struct hpets {
112 	struct hpets *hp_next;
113 	struct hpet __iomem *hp_hpet;
114 	unsigned long hp_hpet_phys;
115 	struct clocksource *hp_clocksource;
116 	unsigned long long hp_tick_freq;
117 	unsigned long hp_delta;
118 	unsigned int hp_ntimer;
119 	unsigned int hp_which;
120 	struct hpet_dev hp_dev[1];
121 };
122 
123 static struct hpets *hpets;
124 
125 #define	HPET_OPEN		0x0001
126 #define	HPET_IE			0x0002	/* interrupt enabled */
127 #define	HPET_PERIODIC		0x0004
128 #define	HPET_SHARED_IRQ		0x0008
129 
130 
131 #ifndef readq
132 static inline unsigned long long readq(void __iomem *addr)
133 {
134 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
135 }
136 #endif
137 
138 #ifndef writeq
139 static inline void writeq(unsigned long long v, void __iomem *addr)
140 {
141 	writel(v & 0xffffffff, addr);
142 	writel(v >> 32, addr + 4);
143 }
144 #endif
145 
146 static irqreturn_t hpet_interrupt(int irq, void *data)
147 {
148 	struct hpet_dev *devp;
149 	unsigned long isr;
150 
151 	devp = data;
152 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
153 
154 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
155 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
156 		return IRQ_NONE;
157 
158 	spin_lock(&hpet_lock);
159 	devp->hd_irqdata++;
160 
161 	/*
162 	 * For non-periodic timers, increment the accumulator.
163 	 * This has the effect of treating non-periodic like periodic.
164 	 */
165 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
166 		unsigned long m, t, mc, base, k;
167 		struct hpet __iomem *hpet = devp->hd_hpet;
168 		struct hpets *hpetp = devp->hd_hpets;
169 
170 		t = devp->hd_ireqfreq;
171 		m = read_counter(&devp->hd_timer->hpet_compare);
172 		mc = read_counter(&hpet->hpet_mc);
173 		/* The time for the next interrupt would logically be t + m,
174 		 * however, if we are very unlucky and the interrupt is delayed
175 		 * for longer than t then we will completely miss the next
176 		 * interrupt if we set t + m and an application will hang.
177 		 * Therefore we need to make a more complex computation assuming
178 		 * that there exists a k for which the following is true:
179 		 * k * t + base < mc + delta
180 		 * (k + 1) * t + base > mc + delta
181 		 * where t is the interval in hpet ticks for the given freq,
182 		 * base is the theoretical start value 0 < base < t,
183 		 * mc is the main counter value at the time of the interrupt,
184 		 * delta is the time it takes to write the a value to the
185 		 * comparator.
186 		 * k may then be computed as (mc - base + delta) / t .
187 		 */
188 		base = mc % t;
189 		k = (mc - base + hpetp->hp_delta) / t;
190 		write_counter(t * (k + 1) + base,
191 			      &devp->hd_timer->hpet_compare);
192 	}
193 
194 	if (devp->hd_flags & HPET_SHARED_IRQ)
195 		writel(isr, &devp->hd_hpet->hpet_isr);
196 	spin_unlock(&hpet_lock);
197 
198 	wake_up_interruptible(&devp->hd_waitqueue);
199 
200 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
201 
202 	return IRQ_HANDLED;
203 }
204 
205 static void hpet_timer_set_irq(struct hpet_dev *devp)
206 {
207 	unsigned long v;
208 	int irq, gsi;
209 	struct hpet_timer __iomem *timer;
210 
211 	spin_lock_irq(&hpet_lock);
212 	if (devp->hd_hdwirq) {
213 		spin_unlock_irq(&hpet_lock);
214 		return;
215 	}
216 
217 	timer = devp->hd_timer;
218 
219 	/* we prefer level triggered mode */
220 	v = readl(&timer->hpet_config);
221 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
222 		v |= Tn_INT_TYPE_CNF_MASK;
223 		writel(v, &timer->hpet_config);
224 	}
225 	spin_unlock_irq(&hpet_lock);
226 
227 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
228 				 Tn_INT_ROUTE_CAP_SHIFT;
229 
230 	/*
231 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
232 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
233 	 */
234 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
235 		v &= ~0xf3df;
236 	else
237 		v &= ~0xffff;
238 
239 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
240 		if (irq >= nr_irqs) {
241 			irq = HPET_MAX_IRQ;
242 			break;
243 		}
244 
245 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
246 					ACPI_ACTIVE_LOW);
247 		if (gsi > 0)
248 			break;
249 
250 		/* FIXME: Setup interrupt source table */
251 	}
252 
253 	if (irq < HPET_MAX_IRQ) {
254 		spin_lock_irq(&hpet_lock);
255 		v = readl(&timer->hpet_config);
256 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
257 		writel(v, &timer->hpet_config);
258 		devp->hd_hdwirq = gsi;
259 		spin_unlock_irq(&hpet_lock);
260 	}
261 	return;
262 }
263 
264 static int hpet_open(struct inode *inode, struct file *file)
265 {
266 	struct hpet_dev *devp;
267 	struct hpets *hpetp;
268 	int i;
269 
270 	if (file->f_mode & FMODE_WRITE)
271 		return -EINVAL;
272 
273 	mutex_lock(&hpet_mutex);
274 	spin_lock_irq(&hpet_lock);
275 
276 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
277 		for (i = 0; i < hpetp->hp_ntimer; i++)
278 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
279 				continue;
280 			else {
281 				devp = &hpetp->hp_dev[i];
282 				break;
283 			}
284 
285 	if (!devp) {
286 		spin_unlock_irq(&hpet_lock);
287 		mutex_unlock(&hpet_mutex);
288 		return -EBUSY;
289 	}
290 
291 	file->private_data = devp;
292 	devp->hd_irqdata = 0;
293 	devp->hd_flags |= HPET_OPEN;
294 	spin_unlock_irq(&hpet_lock);
295 	mutex_unlock(&hpet_mutex);
296 
297 	hpet_timer_set_irq(devp);
298 
299 	return 0;
300 }
301 
302 static ssize_t
303 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
304 {
305 	DECLARE_WAITQUEUE(wait, current);
306 	unsigned long data;
307 	ssize_t retval;
308 	struct hpet_dev *devp;
309 
310 	devp = file->private_data;
311 	if (!devp->hd_ireqfreq)
312 		return -EIO;
313 
314 	if (count < sizeof(unsigned long))
315 		return -EINVAL;
316 
317 	add_wait_queue(&devp->hd_waitqueue, &wait);
318 
319 	for ( ; ; ) {
320 		set_current_state(TASK_INTERRUPTIBLE);
321 
322 		spin_lock_irq(&hpet_lock);
323 		data = devp->hd_irqdata;
324 		devp->hd_irqdata = 0;
325 		spin_unlock_irq(&hpet_lock);
326 
327 		if (data)
328 			break;
329 		else if (file->f_flags & O_NONBLOCK) {
330 			retval = -EAGAIN;
331 			goto out;
332 		} else if (signal_pending(current)) {
333 			retval = -ERESTARTSYS;
334 			goto out;
335 		}
336 		schedule();
337 	}
338 
339 	retval = put_user(data, (unsigned long __user *)buf);
340 	if (!retval)
341 		retval = sizeof(unsigned long);
342 out:
343 	__set_current_state(TASK_RUNNING);
344 	remove_wait_queue(&devp->hd_waitqueue, &wait);
345 
346 	return retval;
347 }
348 
349 static unsigned int hpet_poll(struct file *file, poll_table * wait)
350 {
351 	unsigned long v;
352 	struct hpet_dev *devp;
353 
354 	devp = file->private_data;
355 
356 	if (!devp->hd_ireqfreq)
357 		return 0;
358 
359 	poll_wait(file, &devp->hd_waitqueue, wait);
360 
361 	spin_lock_irq(&hpet_lock);
362 	v = devp->hd_irqdata;
363 	spin_unlock_irq(&hpet_lock);
364 
365 	if (v != 0)
366 		return POLLIN | POLLRDNORM;
367 
368 	return 0;
369 }
370 
371 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
372 {
373 #ifdef	CONFIG_HPET_MMAP
374 	struct hpet_dev *devp;
375 	unsigned long addr;
376 
377 	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
378 		return -EINVAL;
379 
380 	devp = file->private_data;
381 	addr = devp->hd_hpets->hp_hpet_phys;
382 
383 	if (addr & (PAGE_SIZE - 1))
384 		return -ENOSYS;
385 
386 	vma->vm_flags |= VM_IO;
387 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
388 
389 	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
390 					PAGE_SIZE, vma->vm_page_prot)) {
391 		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
392 			__func__);
393 		return -EAGAIN;
394 	}
395 
396 	return 0;
397 #else
398 	return -ENOSYS;
399 #endif
400 }
401 
402 static int hpet_fasync(int fd, struct file *file, int on)
403 {
404 	struct hpet_dev *devp;
405 
406 	devp = file->private_data;
407 
408 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
409 		return 0;
410 	else
411 		return -EIO;
412 }
413 
414 static int hpet_release(struct inode *inode, struct file *file)
415 {
416 	struct hpet_dev *devp;
417 	struct hpet_timer __iomem *timer;
418 	int irq = 0;
419 
420 	devp = file->private_data;
421 	timer = devp->hd_timer;
422 
423 	spin_lock_irq(&hpet_lock);
424 
425 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
426 	       &timer->hpet_config);
427 
428 	irq = devp->hd_irq;
429 	devp->hd_irq = 0;
430 
431 	devp->hd_ireqfreq = 0;
432 
433 	if (devp->hd_flags & HPET_PERIODIC
434 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
435 		unsigned long v;
436 
437 		v = readq(&timer->hpet_config);
438 		v ^= Tn_TYPE_CNF_MASK;
439 		writeq(v, &timer->hpet_config);
440 	}
441 
442 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
443 	spin_unlock_irq(&hpet_lock);
444 
445 	if (irq)
446 		free_irq(irq, devp);
447 
448 	file->private_data = NULL;
449 	return 0;
450 }
451 
452 static int hpet_ioctl_ieon(struct hpet_dev *devp)
453 {
454 	struct hpet_timer __iomem *timer;
455 	struct hpet __iomem *hpet;
456 	struct hpets *hpetp;
457 	int irq;
458 	unsigned long g, v, t, m;
459 	unsigned long flags, isr;
460 
461 	timer = devp->hd_timer;
462 	hpet = devp->hd_hpet;
463 	hpetp = devp->hd_hpets;
464 
465 	if (!devp->hd_ireqfreq)
466 		return -EIO;
467 
468 	spin_lock_irq(&hpet_lock);
469 
470 	if (devp->hd_flags & HPET_IE) {
471 		spin_unlock_irq(&hpet_lock);
472 		return -EBUSY;
473 	}
474 
475 	devp->hd_flags |= HPET_IE;
476 
477 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
478 		devp->hd_flags |= HPET_SHARED_IRQ;
479 	spin_unlock_irq(&hpet_lock);
480 
481 	irq = devp->hd_hdwirq;
482 
483 	if (irq) {
484 		unsigned long irq_flags;
485 
486 		if (devp->hd_flags & HPET_SHARED_IRQ) {
487 			/*
488 			 * To prevent the interrupt handler from seeing an
489 			 * unwanted interrupt status bit, program the timer
490 			 * so that it will not fire in the near future ...
491 			 */
492 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
493 			       &timer->hpet_config);
494 			write_counter(read_counter(&hpet->hpet_mc),
495 				      &timer->hpet_compare);
496 			/* ... and clear any left-over status. */
497 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
498 			writel(isr, &hpet->hpet_isr);
499 		}
500 
501 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
502 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
503 						? IRQF_SHARED : IRQF_DISABLED;
504 		if (request_irq(irq, hpet_interrupt, irq_flags,
505 				devp->hd_name, (void *)devp)) {
506 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
507 			irq = 0;
508 		}
509 	}
510 
511 	if (irq == 0) {
512 		spin_lock_irq(&hpet_lock);
513 		devp->hd_flags ^= HPET_IE;
514 		spin_unlock_irq(&hpet_lock);
515 		return -EIO;
516 	}
517 
518 	devp->hd_irq = irq;
519 	t = devp->hd_ireqfreq;
520 	v = readq(&timer->hpet_config);
521 
522 	/* 64-bit comparators are not yet supported through the ioctls,
523 	 * so force this into 32-bit mode if it supports both modes
524 	 */
525 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526 
527 	if (devp->hd_flags & HPET_PERIODIC) {
528 		g |= Tn_TYPE_CNF_MASK;
529 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
530 		writeq(v, &timer->hpet_config);
531 		local_irq_save(flags);
532 
533 		/*
534 		 * NOTE: First we modify the hidden accumulator
535 		 * register supported by periodic-capable comparators.
536 		 * We never want to modify the (single) counter; that
537 		 * would affect all the comparators. The value written
538 		 * is the counter value when the first interrupt is due.
539 		 */
540 		m = read_counter(&hpet->hpet_mc);
541 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542 		/*
543 		 * Then we modify the comparator, indicating the period
544 		 * for subsequent interrupt.
545 		 */
546 		write_counter(t, &timer->hpet_compare);
547 	} else {
548 		local_irq_save(flags);
549 		m = read_counter(&hpet->hpet_mc);
550 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
551 	}
552 
553 	if (devp->hd_flags & HPET_SHARED_IRQ) {
554 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
555 		writel(isr, &hpet->hpet_isr);
556 	}
557 	writeq(g, &timer->hpet_config);
558 	local_irq_restore(flags);
559 
560 	return 0;
561 }
562 
563 /* converts Hz to number of timer ticks */
564 static inline unsigned long hpet_time_div(struct hpets *hpets,
565 					  unsigned long dis)
566 {
567 	unsigned long long m;
568 
569 	m = hpets->hp_tick_freq + (dis >> 1);
570 	do_div(m, dis);
571 	return (unsigned long)m;
572 }
573 
574 static int
575 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
576 		  struct hpet_info *info)
577 {
578 	struct hpet_timer __iomem *timer;
579 	struct hpet __iomem *hpet;
580 	struct hpets *hpetp;
581 	int err;
582 	unsigned long v;
583 
584 	switch (cmd) {
585 	case HPET_IE_OFF:
586 	case HPET_INFO:
587 	case HPET_EPI:
588 	case HPET_DPI:
589 	case HPET_IRQFREQ:
590 		timer = devp->hd_timer;
591 		hpet = devp->hd_hpet;
592 		hpetp = devp->hd_hpets;
593 		break;
594 	case HPET_IE_ON:
595 		return hpet_ioctl_ieon(devp);
596 	default:
597 		return -EINVAL;
598 	}
599 
600 	err = 0;
601 
602 	switch (cmd) {
603 	case HPET_IE_OFF:
604 		if ((devp->hd_flags & HPET_IE) == 0)
605 			break;
606 		v = readq(&timer->hpet_config);
607 		v &= ~Tn_INT_ENB_CNF_MASK;
608 		writeq(v, &timer->hpet_config);
609 		if (devp->hd_irq) {
610 			free_irq(devp->hd_irq, devp);
611 			devp->hd_irq = 0;
612 		}
613 		devp->hd_flags ^= HPET_IE;
614 		break;
615 	case HPET_INFO:
616 		{
617 			memset(info, 0, sizeof(*info));
618 			if (devp->hd_ireqfreq)
619 				info->hi_ireqfreq =
620 					hpet_time_div(hpetp, devp->hd_ireqfreq);
621 			info->hi_flags =
622 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
623 			info->hi_hpet = hpetp->hp_which;
624 			info->hi_timer = devp - hpetp->hp_dev;
625 			break;
626 		}
627 	case HPET_EPI:
628 		v = readq(&timer->hpet_config);
629 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
630 			err = -ENXIO;
631 			break;
632 		}
633 		devp->hd_flags |= HPET_PERIODIC;
634 		break;
635 	case HPET_DPI:
636 		v = readq(&timer->hpet_config);
637 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
638 			err = -ENXIO;
639 			break;
640 		}
641 		if (devp->hd_flags & HPET_PERIODIC &&
642 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
643 			v = readq(&timer->hpet_config);
644 			v ^= Tn_TYPE_CNF_MASK;
645 			writeq(v, &timer->hpet_config);
646 		}
647 		devp->hd_flags &= ~HPET_PERIODIC;
648 		break;
649 	case HPET_IRQFREQ:
650 		if ((arg > hpet_max_freq) &&
651 		    !capable(CAP_SYS_RESOURCE)) {
652 			err = -EACCES;
653 			break;
654 		}
655 
656 		if (!arg) {
657 			err = -EINVAL;
658 			break;
659 		}
660 
661 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
662 	}
663 
664 	return err;
665 }
666 
667 static long
668 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
669 {
670 	struct hpet_info info;
671 	int err;
672 
673 	mutex_lock(&hpet_mutex);
674 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
675 	mutex_unlock(&hpet_mutex);
676 
677 	if ((cmd == HPET_INFO) && !err &&
678 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
679 		err = -EFAULT;
680 
681 	return err;
682 }
683 
684 #ifdef CONFIG_COMPAT
685 struct compat_hpet_info {
686 	compat_ulong_t hi_ireqfreq;	/* Hz */
687 	compat_ulong_t hi_flags;	/* information */
688 	unsigned short hi_hpet;
689 	unsigned short hi_timer;
690 };
691 
692 static long
693 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
694 {
695 	struct hpet_info info;
696 	int err;
697 
698 	mutex_lock(&hpet_mutex);
699 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
700 	mutex_unlock(&hpet_mutex);
701 
702 	if ((cmd == HPET_INFO) && !err) {
703 		struct compat_hpet_info __user *u = compat_ptr(arg);
704 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
705 		    put_user(info.hi_flags, &u->hi_flags) ||
706 		    put_user(info.hi_hpet, &u->hi_hpet) ||
707 		    put_user(info.hi_timer, &u->hi_timer))
708 			err = -EFAULT;
709 	}
710 
711 	return err;
712 }
713 #endif
714 
715 static const struct file_operations hpet_fops = {
716 	.owner = THIS_MODULE,
717 	.llseek = no_llseek,
718 	.read = hpet_read,
719 	.poll = hpet_poll,
720 	.unlocked_ioctl = hpet_ioctl,
721 #ifdef CONFIG_COMPAT
722 	.compat_ioctl = hpet_compat_ioctl,
723 #endif
724 	.open = hpet_open,
725 	.release = hpet_release,
726 	.fasync = hpet_fasync,
727 	.mmap = hpet_mmap,
728 };
729 
730 static int hpet_is_known(struct hpet_data *hdp)
731 {
732 	struct hpets *hpetp;
733 
734 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
735 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
736 			return 1;
737 
738 	return 0;
739 }
740 
741 static ctl_table hpet_table[] = {
742 	{
743 	 .procname = "max-user-freq",
744 	 .data = &hpet_max_freq,
745 	 .maxlen = sizeof(int),
746 	 .mode = 0644,
747 	 .proc_handler = proc_dointvec,
748 	 },
749 	{}
750 };
751 
752 static ctl_table hpet_root[] = {
753 	{
754 	 .procname = "hpet",
755 	 .maxlen = 0,
756 	 .mode = 0555,
757 	 .child = hpet_table,
758 	 },
759 	{}
760 };
761 
762 static ctl_table dev_root[] = {
763 	{
764 	 .procname = "dev",
765 	 .maxlen = 0,
766 	 .mode = 0555,
767 	 .child = hpet_root,
768 	 },
769 	{}
770 };
771 
772 static struct ctl_table_header *sysctl_header;
773 
774 /*
775  * Adjustment for when arming the timer with
776  * initial conditions.  That is, main counter
777  * ticks expired before interrupts are enabled.
778  */
779 #define	TICK_CALIBRATE	(1000UL)
780 
781 static unsigned long __hpet_calibrate(struct hpets *hpetp)
782 {
783 	struct hpet_timer __iomem *timer = NULL;
784 	unsigned long t, m, count, i, flags, start;
785 	struct hpet_dev *devp;
786 	int j;
787 	struct hpet __iomem *hpet;
788 
789 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
790 		if ((devp->hd_flags & HPET_OPEN) == 0) {
791 			timer = devp->hd_timer;
792 			break;
793 		}
794 
795 	if (!timer)
796 		return 0;
797 
798 	hpet = hpetp->hp_hpet;
799 	t = read_counter(&timer->hpet_compare);
800 
801 	i = 0;
802 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
803 
804 	local_irq_save(flags);
805 
806 	start = read_counter(&hpet->hpet_mc);
807 
808 	do {
809 		m = read_counter(&hpet->hpet_mc);
810 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
811 	} while (i++, (m - start) < count);
812 
813 	local_irq_restore(flags);
814 
815 	return (m - start) / i;
816 }
817 
818 static unsigned long hpet_calibrate(struct hpets *hpetp)
819 {
820 	unsigned long ret = -1;
821 	unsigned long tmp;
822 
823 	/*
824 	 * Try to calibrate until return value becomes stable small value.
825 	 * If SMI interruption occurs in calibration loop, the return value
826 	 * will be big. This avoids its impact.
827 	 */
828 	for ( ; ; ) {
829 		tmp = __hpet_calibrate(hpetp);
830 		if (ret <= tmp)
831 			break;
832 		ret = tmp;
833 	}
834 
835 	return ret;
836 }
837 
838 int hpet_alloc(struct hpet_data *hdp)
839 {
840 	u64 cap, mcfg;
841 	struct hpet_dev *devp;
842 	u32 i, ntimer;
843 	struct hpets *hpetp;
844 	size_t siz;
845 	struct hpet __iomem *hpet;
846 	static struct hpets *last;
847 	unsigned long period;
848 	unsigned long long temp;
849 	u32 remainder;
850 
851 	/*
852 	 * hpet_alloc can be called by platform dependent code.
853 	 * If platform dependent code has allocated the hpet that
854 	 * ACPI has also reported, then we catch it here.
855 	 */
856 	if (hpet_is_known(hdp)) {
857 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
858 			__func__);
859 		return 0;
860 	}
861 
862 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
863 				      sizeof(struct hpet_dev));
864 
865 	hpetp = kzalloc(siz, GFP_KERNEL);
866 
867 	if (!hpetp)
868 		return -ENOMEM;
869 
870 	hpetp->hp_which = hpet_nhpet++;
871 	hpetp->hp_hpet = hdp->hd_address;
872 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
873 
874 	hpetp->hp_ntimer = hdp->hd_nirqs;
875 
876 	for (i = 0; i < hdp->hd_nirqs; i++)
877 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
878 
879 	hpet = hpetp->hp_hpet;
880 
881 	cap = readq(&hpet->hpet_cap);
882 
883 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
884 
885 	if (hpetp->hp_ntimer != ntimer) {
886 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
887 		       " with number of timers\n");
888 		kfree(hpetp);
889 		return -ENODEV;
890 	}
891 
892 	if (last)
893 		last->hp_next = hpetp;
894 	else
895 		hpets = hpetp;
896 
897 	last = hpetp;
898 
899 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
900 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
901 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
902 	temp += period >> 1; /* round */
903 	do_div(temp, period);
904 	hpetp->hp_tick_freq = temp; /* ticks per second */
905 
906 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
907 		hpetp->hp_which, hdp->hd_phys_address,
908 		hpetp->hp_ntimer > 1 ? "s" : "");
909 	for (i = 0; i < hpetp->hp_ntimer; i++)
910 		printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
911 	printk("\n");
912 
913 	temp = hpetp->hp_tick_freq;
914 	remainder = do_div(temp, 1000000);
915 	printk(KERN_INFO
916 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
917 		hpetp->hp_which, hpetp->hp_ntimer,
918 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
919 		(unsigned) temp, remainder);
920 
921 	mcfg = readq(&hpet->hpet_config);
922 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
923 		write_counter(0L, &hpet->hpet_mc);
924 		mcfg |= HPET_ENABLE_CNF_MASK;
925 		writeq(mcfg, &hpet->hpet_config);
926 	}
927 
928 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
929 		struct hpet_timer __iomem *timer;
930 
931 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
932 
933 		devp->hd_hpets = hpetp;
934 		devp->hd_hpet = hpet;
935 		devp->hd_timer = timer;
936 
937 		/*
938 		 * If the timer was reserved by platform code,
939 		 * then make timer unavailable for opens.
940 		 */
941 		if (hdp->hd_state & (1 << i)) {
942 			devp->hd_flags = HPET_OPEN;
943 			continue;
944 		}
945 
946 		init_waitqueue_head(&devp->hd_waitqueue);
947 	}
948 
949 	hpetp->hp_delta = hpet_calibrate(hpetp);
950 
951 /* This clocksource driver currently only works on ia64 */
952 #ifdef CONFIG_IA64
953 	if (!hpet_clocksource) {
954 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
955 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
956 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
957 		hpetp->hp_clocksource = &clocksource_hpet;
958 		hpet_clocksource = &clocksource_hpet;
959 	}
960 #endif
961 
962 	return 0;
963 }
964 
965 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
966 {
967 	struct hpet_data *hdp;
968 	acpi_status status;
969 	struct acpi_resource_address64 addr;
970 
971 	hdp = data;
972 
973 	status = acpi_resource_to_address64(res, &addr);
974 
975 	if (ACPI_SUCCESS(status)) {
976 		hdp->hd_phys_address = addr.minimum;
977 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
978 
979 		if (hpet_is_known(hdp)) {
980 			iounmap(hdp->hd_address);
981 			return AE_ALREADY_EXISTS;
982 		}
983 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
984 		struct acpi_resource_fixed_memory32 *fixmem32;
985 
986 		fixmem32 = &res->data.fixed_memory32;
987 		if (!fixmem32)
988 			return AE_NO_MEMORY;
989 
990 		hdp->hd_phys_address = fixmem32->address;
991 		hdp->hd_address = ioremap(fixmem32->address,
992 						HPET_RANGE_SIZE);
993 
994 		if (hpet_is_known(hdp)) {
995 			iounmap(hdp->hd_address);
996 			return AE_ALREADY_EXISTS;
997 		}
998 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
999 		struct acpi_resource_extended_irq *irqp;
1000 		int i, irq;
1001 
1002 		irqp = &res->data.extended_irq;
1003 
1004 		for (i = 0; i < irqp->interrupt_count; i++) {
1005 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1006 				      irqp->triggering, irqp->polarity);
1007 			if (irq < 0)
1008 				return AE_ERROR;
1009 
1010 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1011 			hdp->hd_nirqs++;
1012 		}
1013 	}
1014 
1015 	return AE_OK;
1016 }
1017 
1018 static int hpet_acpi_add(struct acpi_device *device)
1019 {
1020 	acpi_status result;
1021 	struct hpet_data data;
1022 
1023 	memset(&data, 0, sizeof(data));
1024 
1025 	result =
1026 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1027 				hpet_resources, &data);
1028 
1029 	if (ACPI_FAILURE(result))
1030 		return -ENODEV;
1031 
1032 	if (!data.hd_address || !data.hd_nirqs) {
1033 		if (data.hd_address)
1034 			iounmap(data.hd_address);
1035 		printk("%s: no address or irqs in _CRS\n", __func__);
1036 		return -ENODEV;
1037 	}
1038 
1039 	return hpet_alloc(&data);
1040 }
1041 
1042 static int hpet_acpi_remove(struct acpi_device *device, int type)
1043 {
1044 	/* XXX need to unregister clocksource, dealloc mem, etc */
1045 	return -EINVAL;
1046 }
1047 
1048 static const struct acpi_device_id hpet_device_ids[] = {
1049 	{"PNP0103", 0},
1050 	{"", 0},
1051 };
1052 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1053 
1054 static struct acpi_driver hpet_acpi_driver = {
1055 	.name = "hpet",
1056 	.ids = hpet_device_ids,
1057 	.ops = {
1058 		.add = hpet_acpi_add,
1059 		.remove = hpet_acpi_remove,
1060 		},
1061 };
1062 
1063 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1064 
1065 static int __init hpet_init(void)
1066 {
1067 	int result;
1068 
1069 	result = misc_register(&hpet_misc);
1070 	if (result < 0)
1071 		return -ENODEV;
1072 
1073 	sysctl_header = register_sysctl_table(dev_root);
1074 
1075 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1076 	if (result < 0) {
1077 		if (sysctl_header)
1078 			unregister_sysctl_table(sysctl_header);
1079 		misc_deregister(&hpet_misc);
1080 		return result;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static void __exit hpet_exit(void)
1087 {
1088 	acpi_bus_unregister_driver(&hpet_acpi_driver);
1089 
1090 	if (sysctl_header)
1091 		unregister_sysctl_table(sysctl_header);
1092 	misc_deregister(&hpet_misc);
1093 
1094 	return;
1095 }
1096 
1097 module_init(hpet_init);
1098 module_exit(hpet_exit);
1099 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1100 MODULE_LICENSE("GPL");
1101