xref: /openbmc/linux/drivers/char/hpet.c (revision 7dd65feb)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/smp_lock.h>
18 #include <linux/types.h>
19 #include <linux/miscdevice.h>
20 #include <linux/major.h>
21 #include <linux/ioport.h>
22 #include <linux/fcntl.h>
23 #include <linux/init.h>
24 #include <linux/poll.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/spinlock.h>
28 #include <linux/sysctl.h>
29 #include <linux/wait.h>
30 #include <linux/bcd.h>
31 #include <linux/seq_file.h>
32 #include <linux/bitops.h>
33 #include <linux/clocksource.h>
34 
35 #include <asm/current.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45 
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50  */
51 #define	HPET_USER_FREQ	(64)
52 #define	HPET_DRIFT	(500)
53 
54 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
55 
56 
57 /* WARNING -- don't get confused.  These macros are never used
58  * to write the (single) counter, and rarely to read it.
59  * They're badly named; to fix, someday.
60  */
61 #if BITS_PER_LONG == 64
62 #define	write_counter(V, MC)	writeq(V, MC)
63 #define	read_counter(MC)	readq(MC)
64 #else
65 #define	write_counter(V, MC)	writel(V, MC)
66 #define	read_counter(MC)	readl(MC)
67 #endif
68 
69 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
70 
71 /* This clocksource driver currently only works on ia64 */
72 #ifdef CONFIG_IA64
73 static void __iomem *hpet_mctr;
74 
75 static cycle_t read_hpet(struct clocksource *cs)
76 {
77 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
78 }
79 
80 static struct clocksource clocksource_hpet = {
81         .name           = "hpet",
82         .rating         = 250,
83         .read           = read_hpet,
84         .mask           = CLOCKSOURCE_MASK(64),
85 	.mult		= 0, /* to be calculated */
86         .shift          = 10,
87         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
88 };
89 static struct clocksource *hpet_clocksource;
90 #endif
91 
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock);
94 
95 #define	HPET_DEV_NAME	(7)
96 
97 struct hpet_dev {
98 	struct hpets *hd_hpets;
99 	struct hpet __iomem *hd_hpet;
100 	struct hpet_timer __iomem *hd_timer;
101 	unsigned long hd_ireqfreq;
102 	unsigned long hd_irqdata;
103 	wait_queue_head_t hd_waitqueue;
104 	struct fasync_struct *hd_async_queue;
105 	unsigned int hd_flags;
106 	unsigned int hd_irq;
107 	unsigned int hd_hdwirq;
108 	char hd_name[HPET_DEV_NAME];
109 };
110 
111 struct hpets {
112 	struct hpets *hp_next;
113 	struct hpet __iomem *hp_hpet;
114 	unsigned long hp_hpet_phys;
115 	struct clocksource *hp_clocksource;
116 	unsigned long long hp_tick_freq;
117 	unsigned long hp_delta;
118 	unsigned int hp_ntimer;
119 	unsigned int hp_which;
120 	struct hpet_dev hp_dev[1];
121 };
122 
123 static struct hpets *hpets;
124 
125 #define	HPET_OPEN		0x0001
126 #define	HPET_IE			0x0002	/* interrupt enabled */
127 #define	HPET_PERIODIC		0x0004
128 #define	HPET_SHARED_IRQ		0x0008
129 
130 
131 #ifndef readq
132 static inline unsigned long long readq(void __iomem *addr)
133 {
134 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
135 }
136 #endif
137 
138 #ifndef writeq
139 static inline void writeq(unsigned long long v, void __iomem *addr)
140 {
141 	writel(v & 0xffffffff, addr);
142 	writel(v >> 32, addr + 4);
143 }
144 #endif
145 
146 static irqreturn_t hpet_interrupt(int irq, void *data)
147 {
148 	struct hpet_dev *devp;
149 	unsigned long isr;
150 
151 	devp = data;
152 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
153 
154 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
155 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
156 		return IRQ_NONE;
157 
158 	spin_lock(&hpet_lock);
159 	devp->hd_irqdata++;
160 
161 	/*
162 	 * For non-periodic timers, increment the accumulator.
163 	 * This has the effect of treating non-periodic like periodic.
164 	 */
165 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
166 		unsigned long m, t;
167 
168 		t = devp->hd_ireqfreq;
169 		m = read_counter(&devp->hd_timer->hpet_compare);
170 		write_counter(t + m, &devp->hd_timer->hpet_compare);
171 	}
172 
173 	if (devp->hd_flags & HPET_SHARED_IRQ)
174 		writel(isr, &devp->hd_hpet->hpet_isr);
175 	spin_unlock(&hpet_lock);
176 
177 	wake_up_interruptible(&devp->hd_waitqueue);
178 
179 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
180 
181 	return IRQ_HANDLED;
182 }
183 
184 static void hpet_timer_set_irq(struct hpet_dev *devp)
185 {
186 	unsigned long v;
187 	int irq, gsi;
188 	struct hpet_timer __iomem *timer;
189 
190 	spin_lock_irq(&hpet_lock);
191 	if (devp->hd_hdwirq) {
192 		spin_unlock_irq(&hpet_lock);
193 		return;
194 	}
195 
196 	timer = devp->hd_timer;
197 
198 	/* we prefer level triggered mode */
199 	v = readl(&timer->hpet_config);
200 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
201 		v |= Tn_INT_TYPE_CNF_MASK;
202 		writel(v, &timer->hpet_config);
203 	}
204 	spin_unlock_irq(&hpet_lock);
205 
206 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
207 				 Tn_INT_ROUTE_CAP_SHIFT;
208 
209 	/*
210 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
211 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
212 	 */
213 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
214 		v &= ~0xf3df;
215 	else
216 		v &= ~0xffff;
217 
218 	for (irq = find_first_bit(&v, HPET_MAX_IRQ); irq < HPET_MAX_IRQ;
219 		irq = find_next_bit(&v, HPET_MAX_IRQ, 1 + irq)) {
220 
221 		if (irq >= nr_irqs) {
222 			irq = HPET_MAX_IRQ;
223 			break;
224 		}
225 
226 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
227 					ACPI_ACTIVE_LOW);
228 		if (gsi > 0)
229 			break;
230 
231 		/* FIXME: Setup interrupt source table */
232 	}
233 
234 	if (irq < HPET_MAX_IRQ) {
235 		spin_lock_irq(&hpet_lock);
236 		v = readl(&timer->hpet_config);
237 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
238 		writel(v, &timer->hpet_config);
239 		devp->hd_hdwirq = gsi;
240 		spin_unlock_irq(&hpet_lock);
241 	}
242 	return;
243 }
244 
245 static int hpet_open(struct inode *inode, struct file *file)
246 {
247 	struct hpet_dev *devp;
248 	struct hpets *hpetp;
249 	int i;
250 
251 	if (file->f_mode & FMODE_WRITE)
252 		return -EINVAL;
253 
254 	lock_kernel();
255 	spin_lock_irq(&hpet_lock);
256 
257 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
258 		for (i = 0; i < hpetp->hp_ntimer; i++)
259 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
260 				continue;
261 			else {
262 				devp = &hpetp->hp_dev[i];
263 				break;
264 			}
265 
266 	if (!devp) {
267 		spin_unlock_irq(&hpet_lock);
268 		unlock_kernel();
269 		return -EBUSY;
270 	}
271 
272 	file->private_data = devp;
273 	devp->hd_irqdata = 0;
274 	devp->hd_flags |= HPET_OPEN;
275 	spin_unlock_irq(&hpet_lock);
276 	unlock_kernel();
277 
278 	hpet_timer_set_irq(devp);
279 
280 	return 0;
281 }
282 
283 static ssize_t
284 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
285 {
286 	DECLARE_WAITQUEUE(wait, current);
287 	unsigned long data;
288 	ssize_t retval;
289 	struct hpet_dev *devp;
290 
291 	devp = file->private_data;
292 	if (!devp->hd_ireqfreq)
293 		return -EIO;
294 
295 	if (count < sizeof(unsigned long))
296 		return -EINVAL;
297 
298 	add_wait_queue(&devp->hd_waitqueue, &wait);
299 
300 	for ( ; ; ) {
301 		set_current_state(TASK_INTERRUPTIBLE);
302 
303 		spin_lock_irq(&hpet_lock);
304 		data = devp->hd_irqdata;
305 		devp->hd_irqdata = 0;
306 		spin_unlock_irq(&hpet_lock);
307 
308 		if (data)
309 			break;
310 		else if (file->f_flags & O_NONBLOCK) {
311 			retval = -EAGAIN;
312 			goto out;
313 		} else if (signal_pending(current)) {
314 			retval = -ERESTARTSYS;
315 			goto out;
316 		}
317 		schedule();
318 	}
319 
320 	retval = put_user(data, (unsigned long __user *)buf);
321 	if (!retval)
322 		retval = sizeof(unsigned long);
323 out:
324 	__set_current_state(TASK_RUNNING);
325 	remove_wait_queue(&devp->hd_waitqueue, &wait);
326 
327 	return retval;
328 }
329 
330 static unsigned int hpet_poll(struct file *file, poll_table * wait)
331 {
332 	unsigned long v;
333 	struct hpet_dev *devp;
334 
335 	devp = file->private_data;
336 
337 	if (!devp->hd_ireqfreq)
338 		return 0;
339 
340 	poll_wait(file, &devp->hd_waitqueue, wait);
341 
342 	spin_lock_irq(&hpet_lock);
343 	v = devp->hd_irqdata;
344 	spin_unlock_irq(&hpet_lock);
345 
346 	if (v != 0)
347 		return POLLIN | POLLRDNORM;
348 
349 	return 0;
350 }
351 
352 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
353 {
354 #ifdef	CONFIG_HPET_MMAP
355 	struct hpet_dev *devp;
356 	unsigned long addr;
357 
358 	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
359 		return -EINVAL;
360 
361 	devp = file->private_data;
362 	addr = devp->hd_hpets->hp_hpet_phys;
363 
364 	if (addr & (PAGE_SIZE - 1))
365 		return -ENOSYS;
366 
367 	vma->vm_flags |= VM_IO;
368 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
369 
370 	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
371 					PAGE_SIZE, vma->vm_page_prot)) {
372 		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
373 			__func__);
374 		return -EAGAIN;
375 	}
376 
377 	return 0;
378 #else
379 	return -ENOSYS;
380 #endif
381 }
382 
383 static int hpet_fasync(int fd, struct file *file, int on)
384 {
385 	struct hpet_dev *devp;
386 
387 	devp = file->private_data;
388 
389 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
390 		return 0;
391 	else
392 		return -EIO;
393 }
394 
395 static int hpet_release(struct inode *inode, struct file *file)
396 {
397 	struct hpet_dev *devp;
398 	struct hpet_timer __iomem *timer;
399 	int irq = 0;
400 
401 	devp = file->private_data;
402 	timer = devp->hd_timer;
403 
404 	spin_lock_irq(&hpet_lock);
405 
406 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
407 	       &timer->hpet_config);
408 
409 	irq = devp->hd_irq;
410 	devp->hd_irq = 0;
411 
412 	devp->hd_ireqfreq = 0;
413 
414 	if (devp->hd_flags & HPET_PERIODIC
415 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
416 		unsigned long v;
417 
418 		v = readq(&timer->hpet_config);
419 		v ^= Tn_TYPE_CNF_MASK;
420 		writeq(v, &timer->hpet_config);
421 	}
422 
423 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
424 	spin_unlock_irq(&hpet_lock);
425 
426 	if (irq)
427 		free_irq(irq, devp);
428 
429 	file->private_data = NULL;
430 	return 0;
431 }
432 
433 static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
434 
435 static int
436 hpet_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
437 	   unsigned long arg)
438 {
439 	struct hpet_dev *devp;
440 
441 	devp = file->private_data;
442 	return hpet_ioctl_common(devp, cmd, arg, 0);
443 }
444 
445 static int hpet_ioctl_ieon(struct hpet_dev *devp)
446 {
447 	struct hpet_timer __iomem *timer;
448 	struct hpet __iomem *hpet;
449 	struct hpets *hpetp;
450 	int irq;
451 	unsigned long g, v, t, m;
452 	unsigned long flags, isr;
453 
454 	timer = devp->hd_timer;
455 	hpet = devp->hd_hpet;
456 	hpetp = devp->hd_hpets;
457 
458 	if (!devp->hd_ireqfreq)
459 		return -EIO;
460 
461 	spin_lock_irq(&hpet_lock);
462 
463 	if (devp->hd_flags & HPET_IE) {
464 		spin_unlock_irq(&hpet_lock);
465 		return -EBUSY;
466 	}
467 
468 	devp->hd_flags |= HPET_IE;
469 
470 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
471 		devp->hd_flags |= HPET_SHARED_IRQ;
472 	spin_unlock_irq(&hpet_lock);
473 
474 	irq = devp->hd_hdwirq;
475 
476 	if (irq) {
477 		unsigned long irq_flags;
478 
479 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
480 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
481 						? IRQF_SHARED : IRQF_DISABLED;
482 		if (request_irq(irq, hpet_interrupt, irq_flags,
483 				devp->hd_name, (void *)devp)) {
484 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
485 			irq = 0;
486 		}
487 	}
488 
489 	if (irq == 0) {
490 		spin_lock_irq(&hpet_lock);
491 		devp->hd_flags ^= HPET_IE;
492 		spin_unlock_irq(&hpet_lock);
493 		return -EIO;
494 	}
495 
496 	devp->hd_irq = irq;
497 	t = devp->hd_ireqfreq;
498 	v = readq(&timer->hpet_config);
499 
500 	/* 64-bit comparators are not yet supported through the ioctls,
501 	 * so force this into 32-bit mode if it supports both modes
502 	 */
503 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
504 
505 	if (devp->hd_flags & HPET_PERIODIC) {
506 		g |= Tn_TYPE_CNF_MASK;
507 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
508 		writeq(v, &timer->hpet_config);
509 		local_irq_save(flags);
510 
511 		/*
512 		 * NOTE: First we modify the hidden accumulator
513 		 * register supported by periodic-capable comparators.
514 		 * We never want to modify the (single) counter; that
515 		 * would affect all the comparators. The value written
516 		 * is the counter value when the first interrupt is due.
517 		 */
518 		m = read_counter(&hpet->hpet_mc);
519 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
520 		/*
521 		 * Then we modify the comparator, indicating the period
522 		 * for subsequent interrupt.
523 		 */
524 		write_counter(t, &timer->hpet_compare);
525 	} else {
526 		local_irq_save(flags);
527 		m = read_counter(&hpet->hpet_mc);
528 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
529 	}
530 
531 	if (devp->hd_flags & HPET_SHARED_IRQ) {
532 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
533 		writel(isr, &hpet->hpet_isr);
534 	}
535 	writeq(g, &timer->hpet_config);
536 	local_irq_restore(flags);
537 
538 	return 0;
539 }
540 
541 /* converts Hz to number of timer ticks */
542 static inline unsigned long hpet_time_div(struct hpets *hpets,
543 					  unsigned long dis)
544 {
545 	unsigned long long m;
546 
547 	m = hpets->hp_tick_freq + (dis >> 1);
548 	do_div(m, dis);
549 	return (unsigned long)m;
550 }
551 
552 static int
553 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
554 {
555 	struct hpet_timer __iomem *timer;
556 	struct hpet __iomem *hpet;
557 	struct hpets *hpetp;
558 	int err;
559 	unsigned long v;
560 
561 	switch (cmd) {
562 	case HPET_IE_OFF:
563 	case HPET_INFO:
564 	case HPET_EPI:
565 	case HPET_DPI:
566 	case HPET_IRQFREQ:
567 		timer = devp->hd_timer;
568 		hpet = devp->hd_hpet;
569 		hpetp = devp->hd_hpets;
570 		break;
571 	case HPET_IE_ON:
572 		return hpet_ioctl_ieon(devp);
573 	default:
574 		return -EINVAL;
575 	}
576 
577 	err = 0;
578 
579 	switch (cmd) {
580 	case HPET_IE_OFF:
581 		if ((devp->hd_flags & HPET_IE) == 0)
582 			break;
583 		v = readq(&timer->hpet_config);
584 		v &= ~Tn_INT_ENB_CNF_MASK;
585 		writeq(v, &timer->hpet_config);
586 		if (devp->hd_irq) {
587 			free_irq(devp->hd_irq, devp);
588 			devp->hd_irq = 0;
589 		}
590 		devp->hd_flags ^= HPET_IE;
591 		break;
592 	case HPET_INFO:
593 		{
594 			struct hpet_info info;
595 
596 			if (devp->hd_ireqfreq)
597 				info.hi_ireqfreq =
598 					hpet_time_div(hpetp, devp->hd_ireqfreq);
599 			else
600 				info.hi_ireqfreq = 0;
601 			info.hi_flags =
602 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
603 			info.hi_hpet = hpetp->hp_which;
604 			info.hi_timer = devp - hpetp->hp_dev;
605 			if (kernel)
606 				memcpy((void *)arg, &info, sizeof(info));
607 			else
608 				if (copy_to_user((void __user *)arg, &info,
609 						 sizeof(info)))
610 					err = -EFAULT;
611 			break;
612 		}
613 	case HPET_EPI:
614 		v = readq(&timer->hpet_config);
615 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
616 			err = -ENXIO;
617 			break;
618 		}
619 		devp->hd_flags |= HPET_PERIODIC;
620 		break;
621 	case HPET_DPI:
622 		v = readq(&timer->hpet_config);
623 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
624 			err = -ENXIO;
625 			break;
626 		}
627 		if (devp->hd_flags & HPET_PERIODIC &&
628 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
629 			v = readq(&timer->hpet_config);
630 			v ^= Tn_TYPE_CNF_MASK;
631 			writeq(v, &timer->hpet_config);
632 		}
633 		devp->hd_flags &= ~HPET_PERIODIC;
634 		break;
635 	case HPET_IRQFREQ:
636 		if (!kernel && (arg > hpet_max_freq) &&
637 		    !capable(CAP_SYS_RESOURCE)) {
638 			err = -EACCES;
639 			break;
640 		}
641 
642 		if (!arg) {
643 			err = -EINVAL;
644 			break;
645 		}
646 
647 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
648 	}
649 
650 	return err;
651 }
652 
653 static const struct file_operations hpet_fops = {
654 	.owner = THIS_MODULE,
655 	.llseek = no_llseek,
656 	.read = hpet_read,
657 	.poll = hpet_poll,
658 	.ioctl = hpet_ioctl,
659 	.open = hpet_open,
660 	.release = hpet_release,
661 	.fasync = hpet_fasync,
662 	.mmap = hpet_mmap,
663 };
664 
665 static int hpet_is_known(struct hpet_data *hdp)
666 {
667 	struct hpets *hpetp;
668 
669 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
670 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
671 			return 1;
672 
673 	return 0;
674 }
675 
676 static ctl_table hpet_table[] = {
677 	{
678 	 .procname = "max-user-freq",
679 	 .data = &hpet_max_freq,
680 	 .maxlen = sizeof(int),
681 	 .mode = 0644,
682 	 .proc_handler = proc_dointvec,
683 	 },
684 	{}
685 };
686 
687 static ctl_table hpet_root[] = {
688 	{
689 	 .procname = "hpet",
690 	 .maxlen = 0,
691 	 .mode = 0555,
692 	 .child = hpet_table,
693 	 },
694 	{}
695 };
696 
697 static ctl_table dev_root[] = {
698 	{
699 	 .procname = "dev",
700 	 .maxlen = 0,
701 	 .mode = 0555,
702 	 .child = hpet_root,
703 	 },
704 	{}
705 };
706 
707 static struct ctl_table_header *sysctl_header;
708 
709 /*
710  * Adjustment for when arming the timer with
711  * initial conditions.  That is, main counter
712  * ticks expired before interrupts are enabled.
713  */
714 #define	TICK_CALIBRATE	(1000UL)
715 
716 static unsigned long __hpet_calibrate(struct hpets *hpetp)
717 {
718 	struct hpet_timer __iomem *timer = NULL;
719 	unsigned long t, m, count, i, flags, start;
720 	struct hpet_dev *devp;
721 	int j;
722 	struct hpet __iomem *hpet;
723 
724 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
725 		if ((devp->hd_flags & HPET_OPEN) == 0) {
726 			timer = devp->hd_timer;
727 			break;
728 		}
729 
730 	if (!timer)
731 		return 0;
732 
733 	hpet = hpetp->hp_hpet;
734 	t = read_counter(&timer->hpet_compare);
735 
736 	i = 0;
737 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
738 
739 	local_irq_save(flags);
740 
741 	start = read_counter(&hpet->hpet_mc);
742 
743 	do {
744 		m = read_counter(&hpet->hpet_mc);
745 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
746 	} while (i++, (m - start) < count);
747 
748 	local_irq_restore(flags);
749 
750 	return (m - start) / i;
751 }
752 
753 static unsigned long hpet_calibrate(struct hpets *hpetp)
754 {
755 	unsigned long ret = -1;
756 	unsigned long tmp;
757 
758 	/*
759 	 * Try to calibrate until return value becomes stable small value.
760 	 * If SMI interruption occurs in calibration loop, the return value
761 	 * will be big. This avoids its impact.
762 	 */
763 	for ( ; ; ) {
764 		tmp = __hpet_calibrate(hpetp);
765 		if (ret <= tmp)
766 			break;
767 		ret = tmp;
768 	}
769 
770 	return ret;
771 }
772 
773 int hpet_alloc(struct hpet_data *hdp)
774 {
775 	u64 cap, mcfg;
776 	struct hpet_dev *devp;
777 	u32 i, ntimer;
778 	struct hpets *hpetp;
779 	size_t siz;
780 	struct hpet __iomem *hpet;
781 	static struct hpets *last = NULL;
782 	unsigned long period;
783 	unsigned long long temp;
784 	u32 remainder;
785 
786 	/*
787 	 * hpet_alloc can be called by platform dependent code.
788 	 * If platform dependent code has allocated the hpet that
789 	 * ACPI has also reported, then we catch it here.
790 	 */
791 	if (hpet_is_known(hdp)) {
792 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
793 			__func__);
794 		return 0;
795 	}
796 
797 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
798 				      sizeof(struct hpet_dev));
799 
800 	hpetp = kzalloc(siz, GFP_KERNEL);
801 
802 	if (!hpetp)
803 		return -ENOMEM;
804 
805 	hpetp->hp_which = hpet_nhpet++;
806 	hpetp->hp_hpet = hdp->hd_address;
807 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
808 
809 	hpetp->hp_ntimer = hdp->hd_nirqs;
810 
811 	for (i = 0; i < hdp->hd_nirqs; i++)
812 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
813 
814 	hpet = hpetp->hp_hpet;
815 
816 	cap = readq(&hpet->hpet_cap);
817 
818 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
819 
820 	if (hpetp->hp_ntimer != ntimer) {
821 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
822 		       " with number of timers\n");
823 		kfree(hpetp);
824 		return -ENODEV;
825 	}
826 
827 	if (last)
828 		last->hp_next = hpetp;
829 	else
830 		hpets = hpetp;
831 
832 	last = hpetp;
833 
834 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
835 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
836 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
837 	temp += period >> 1; /* round */
838 	do_div(temp, period);
839 	hpetp->hp_tick_freq = temp; /* ticks per second */
840 
841 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
842 		hpetp->hp_which, hdp->hd_phys_address,
843 		hpetp->hp_ntimer > 1 ? "s" : "");
844 	for (i = 0; i < hpetp->hp_ntimer; i++)
845 		printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
846 	printk("\n");
847 
848 	temp = hpetp->hp_tick_freq;
849 	remainder = do_div(temp, 1000000);
850 	printk(KERN_INFO
851 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
852 		hpetp->hp_which, hpetp->hp_ntimer,
853 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
854 		(unsigned) temp, remainder);
855 
856 	mcfg = readq(&hpet->hpet_config);
857 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
858 		write_counter(0L, &hpet->hpet_mc);
859 		mcfg |= HPET_ENABLE_CNF_MASK;
860 		writeq(mcfg, &hpet->hpet_config);
861 	}
862 
863 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
864 		struct hpet_timer __iomem *timer;
865 
866 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
867 
868 		devp->hd_hpets = hpetp;
869 		devp->hd_hpet = hpet;
870 		devp->hd_timer = timer;
871 
872 		/*
873 		 * If the timer was reserved by platform code,
874 		 * then make timer unavailable for opens.
875 		 */
876 		if (hdp->hd_state & (1 << i)) {
877 			devp->hd_flags = HPET_OPEN;
878 			continue;
879 		}
880 
881 		init_waitqueue_head(&devp->hd_waitqueue);
882 	}
883 
884 	hpetp->hp_delta = hpet_calibrate(hpetp);
885 
886 /* This clocksource driver currently only works on ia64 */
887 #ifdef CONFIG_IA64
888 	if (!hpet_clocksource) {
889 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
890 		CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
891 		clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
892 						clocksource_hpet.shift);
893 		clocksource_register(&clocksource_hpet);
894 		hpetp->hp_clocksource = &clocksource_hpet;
895 		hpet_clocksource = &clocksource_hpet;
896 	}
897 #endif
898 
899 	return 0;
900 }
901 
902 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
903 {
904 	struct hpet_data *hdp;
905 	acpi_status status;
906 	struct acpi_resource_address64 addr;
907 
908 	hdp = data;
909 
910 	status = acpi_resource_to_address64(res, &addr);
911 
912 	if (ACPI_SUCCESS(status)) {
913 		hdp->hd_phys_address = addr.minimum;
914 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
915 
916 		if (hpet_is_known(hdp)) {
917 			iounmap(hdp->hd_address);
918 			return AE_ALREADY_EXISTS;
919 		}
920 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
921 		struct acpi_resource_fixed_memory32 *fixmem32;
922 
923 		fixmem32 = &res->data.fixed_memory32;
924 		if (!fixmem32)
925 			return AE_NO_MEMORY;
926 
927 		hdp->hd_phys_address = fixmem32->address;
928 		hdp->hd_address = ioremap(fixmem32->address,
929 						HPET_RANGE_SIZE);
930 
931 		if (hpet_is_known(hdp)) {
932 			iounmap(hdp->hd_address);
933 			return AE_ALREADY_EXISTS;
934 		}
935 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
936 		struct acpi_resource_extended_irq *irqp;
937 		int i, irq;
938 
939 		irqp = &res->data.extended_irq;
940 
941 		for (i = 0; i < irqp->interrupt_count; i++) {
942 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
943 				      irqp->triggering, irqp->polarity);
944 			if (irq < 0)
945 				return AE_ERROR;
946 
947 			hdp->hd_irq[hdp->hd_nirqs] = irq;
948 			hdp->hd_nirqs++;
949 		}
950 	}
951 
952 	return AE_OK;
953 }
954 
955 static int hpet_acpi_add(struct acpi_device *device)
956 {
957 	acpi_status result;
958 	struct hpet_data data;
959 
960 	memset(&data, 0, sizeof(data));
961 
962 	result =
963 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
964 				hpet_resources, &data);
965 
966 	if (ACPI_FAILURE(result))
967 		return -ENODEV;
968 
969 	if (!data.hd_address || !data.hd_nirqs) {
970 		printk("%s: no address or irqs in _CRS\n", __func__);
971 		return -ENODEV;
972 	}
973 
974 	return hpet_alloc(&data);
975 }
976 
977 static int hpet_acpi_remove(struct acpi_device *device, int type)
978 {
979 	/* XXX need to unregister clocksource, dealloc mem, etc */
980 	return -EINVAL;
981 }
982 
983 static const struct acpi_device_id hpet_device_ids[] = {
984 	{"PNP0103", 0},
985 	{"", 0},
986 };
987 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
988 
989 static struct acpi_driver hpet_acpi_driver = {
990 	.name = "hpet",
991 	.ids = hpet_device_ids,
992 	.ops = {
993 		.add = hpet_acpi_add,
994 		.remove = hpet_acpi_remove,
995 		},
996 };
997 
998 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
999 
1000 static int __init hpet_init(void)
1001 {
1002 	int result;
1003 
1004 	result = misc_register(&hpet_misc);
1005 	if (result < 0)
1006 		return -ENODEV;
1007 
1008 	sysctl_header = register_sysctl_table(dev_root);
1009 
1010 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1011 	if (result < 0) {
1012 		if (sysctl_header)
1013 			unregister_sysctl_table(sysctl_header);
1014 		misc_deregister(&hpet_misc);
1015 		return result;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static void __exit hpet_exit(void)
1022 {
1023 	acpi_bus_unregister_driver(&hpet_acpi_driver);
1024 
1025 	if (sysctl_header)
1026 		unregister_sysctl_table(sysctl_header);
1027 	misc_deregister(&hpet_misc);
1028 
1029 	return;
1030 }
1031 
1032 module_init(hpet_init);
1033 module_exit(hpet_exit);
1034 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1035 MODULE_LICENSE("GPL");
1036