xref: /openbmc/linux/drivers/char/hpet.c (revision 643d1f7f)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/clocksource.h>
33 
34 #include <asm/current.h>
35 #include <asm/uaccess.h>
36 #include <asm/system.h>
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40 
41 #include <linux/acpi.h>
42 #include <acpi/acpi_bus.h>
43 #include <linux/hpet.h>
44 
45 /*
46  * The High Precision Event Timer driver.
47  * This driver is closely modelled after the rtc.c driver.
48  * http://www.intel.com/hardwaredesign/hpetspec.htm
49  */
50 #define	HPET_USER_FREQ	(64)
51 #define	HPET_DRIFT	(500)
52 
53 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
54 
55 #if BITS_PER_LONG == 64
56 #define	write_counter(V, MC)	writeq(V, MC)
57 #define	read_counter(MC)	readq(MC)
58 #else
59 #define	write_counter(V, MC)	writel(V, MC)
60 #define	read_counter(MC)	readl(MC)
61 #endif
62 
63 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
64 
65 /* This clocksource driver currently only works on ia64 */
66 #ifdef CONFIG_IA64
67 static void __iomem *hpet_mctr;
68 
69 static cycle_t read_hpet(void)
70 {
71 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
72 }
73 
74 static struct clocksource clocksource_hpet = {
75         .name           = "hpet",
76         .rating         = 250,
77         .read           = read_hpet,
78         .mask           = CLOCKSOURCE_MASK(64),
79         .mult           = 0, /*to be caluclated*/
80         .shift          = 10,
81         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83 static struct clocksource *hpet_clocksource;
84 #endif
85 
86 /* A lock for concurrent access by app and isr hpet activity. */
87 static DEFINE_SPINLOCK(hpet_lock);
88 /* A lock for concurrent intermodule access to hpet and isr hpet activity. */
89 static DEFINE_SPINLOCK(hpet_task_lock);
90 
91 #define	HPET_DEV_NAME	(7)
92 
93 struct hpet_dev {
94 	struct hpets *hd_hpets;
95 	struct hpet __iomem *hd_hpet;
96 	struct hpet_timer __iomem *hd_timer;
97 	unsigned long hd_ireqfreq;
98 	unsigned long hd_irqdata;
99 	wait_queue_head_t hd_waitqueue;
100 	struct fasync_struct *hd_async_queue;
101 	struct hpet_task *hd_task;
102 	unsigned int hd_flags;
103 	unsigned int hd_irq;
104 	unsigned int hd_hdwirq;
105 	char hd_name[HPET_DEV_NAME];
106 };
107 
108 struct hpets {
109 	struct hpets *hp_next;
110 	struct hpet __iomem *hp_hpet;
111 	unsigned long hp_hpet_phys;
112 	struct clocksource *hp_clocksource;
113 	unsigned long long hp_tick_freq;
114 	unsigned long hp_delta;
115 	unsigned int hp_ntimer;
116 	unsigned int hp_which;
117 	struct hpet_dev hp_dev[1];
118 };
119 
120 static struct hpets *hpets;
121 
122 #define	HPET_OPEN		0x0001
123 #define	HPET_IE			0x0002	/* interrupt enabled */
124 #define	HPET_PERIODIC		0x0004
125 #define	HPET_SHARED_IRQ		0x0008
126 
127 
128 #ifndef readq
129 static inline unsigned long long readq(void __iomem *addr)
130 {
131 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
132 }
133 #endif
134 
135 #ifndef writeq
136 static inline void writeq(unsigned long long v, void __iomem *addr)
137 {
138 	writel(v & 0xffffffff, addr);
139 	writel(v >> 32, addr + 4);
140 }
141 #endif
142 
143 static irqreturn_t hpet_interrupt(int irq, void *data)
144 {
145 	struct hpet_dev *devp;
146 	unsigned long isr;
147 
148 	devp = data;
149 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
150 
151 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
152 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
153 		return IRQ_NONE;
154 
155 	spin_lock(&hpet_lock);
156 	devp->hd_irqdata++;
157 
158 	/*
159 	 * For non-periodic timers, increment the accumulator.
160 	 * This has the effect of treating non-periodic like periodic.
161 	 */
162 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
163 		unsigned long m, t;
164 
165 		t = devp->hd_ireqfreq;
166 		m = read_counter(&devp->hd_hpet->hpet_mc);
167 		write_counter(t + m + devp->hd_hpets->hp_delta,
168 			      &devp->hd_timer->hpet_compare);
169 	}
170 
171 	if (devp->hd_flags & HPET_SHARED_IRQ)
172 		writel(isr, &devp->hd_hpet->hpet_isr);
173 	spin_unlock(&hpet_lock);
174 
175 	spin_lock(&hpet_task_lock);
176 	if (devp->hd_task)
177 		devp->hd_task->ht_func(devp->hd_task->ht_data);
178 	spin_unlock(&hpet_task_lock);
179 
180 	wake_up_interruptible(&devp->hd_waitqueue);
181 
182 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
183 
184 	return IRQ_HANDLED;
185 }
186 
187 static int hpet_open(struct inode *inode, struct file *file)
188 {
189 	struct hpet_dev *devp;
190 	struct hpets *hpetp;
191 	int i;
192 
193 	if (file->f_mode & FMODE_WRITE)
194 		return -EINVAL;
195 
196 	spin_lock_irq(&hpet_lock);
197 
198 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
199 		for (i = 0; i < hpetp->hp_ntimer; i++)
200 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN
201 			    || hpetp->hp_dev[i].hd_task)
202 				continue;
203 			else {
204 				devp = &hpetp->hp_dev[i];
205 				break;
206 			}
207 
208 	if (!devp) {
209 		spin_unlock_irq(&hpet_lock);
210 		return -EBUSY;
211 	}
212 
213 	file->private_data = devp;
214 	devp->hd_irqdata = 0;
215 	devp->hd_flags |= HPET_OPEN;
216 	spin_unlock_irq(&hpet_lock);
217 
218 	return 0;
219 }
220 
221 static ssize_t
222 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
223 {
224 	DECLARE_WAITQUEUE(wait, current);
225 	unsigned long data;
226 	ssize_t retval;
227 	struct hpet_dev *devp;
228 
229 	devp = file->private_data;
230 	if (!devp->hd_ireqfreq)
231 		return -EIO;
232 
233 	if (count < sizeof(unsigned long))
234 		return -EINVAL;
235 
236 	add_wait_queue(&devp->hd_waitqueue, &wait);
237 
238 	for ( ; ; ) {
239 		set_current_state(TASK_INTERRUPTIBLE);
240 
241 		spin_lock_irq(&hpet_lock);
242 		data = devp->hd_irqdata;
243 		devp->hd_irqdata = 0;
244 		spin_unlock_irq(&hpet_lock);
245 
246 		if (data)
247 			break;
248 		else if (file->f_flags & O_NONBLOCK) {
249 			retval = -EAGAIN;
250 			goto out;
251 		} else if (signal_pending(current)) {
252 			retval = -ERESTARTSYS;
253 			goto out;
254 		}
255 		schedule();
256 	}
257 
258 	retval = put_user(data, (unsigned long __user *)buf);
259 	if (!retval)
260 		retval = sizeof(unsigned long);
261 out:
262 	__set_current_state(TASK_RUNNING);
263 	remove_wait_queue(&devp->hd_waitqueue, &wait);
264 
265 	return retval;
266 }
267 
268 static unsigned int hpet_poll(struct file *file, poll_table * wait)
269 {
270 	unsigned long v;
271 	struct hpet_dev *devp;
272 
273 	devp = file->private_data;
274 
275 	if (!devp->hd_ireqfreq)
276 		return 0;
277 
278 	poll_wait(file, &devp->hd_waitqueue, wait);
279 
280 	spin_lock_irq(&hpet_lock);
281 	v = devp->hd_irqdata;
282 	spin_unlock_irq(&hpet_lock);
283 
284 	if (v != 0)
285 		return POLLIN | POLLRDNORM;
286 
287 	return 0;
288 }
289 
290 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
291 {
292 #ifdef	CONFIG_HPET_MMAP
293 	struct hpet_dev *devp;
294 	unsigned long addr;
295 
296 	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
297 		return -EINVAL;
298 
299 	devp = file->private_data;
300 	addr = devp->hd_hpets->hp_hpet_phys;
301 
302 	if (addr & (PAGE_SIZE - 1))
303 		return -ENOSYS;
304 
305 	vma->vm_flags |= VM_IO;
306 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
307 
308 	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
309 					PAGE_SIZE, vma->vm_page_prot)) {
310 		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
311 			__FUNCTION__);
312 		return -EAGAIN;
313 	}
314 
315 	return 0;
316 #else
317 	return -ENOSYS;
318 #endif
319 }
320 
321 static int hpet_fasync(int fd, struct file *file, int on)
322 {
323 	struct hpet_dev *devp;
324 
325 	devp = file->private_data;
326 
327 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
328 		return 0;
329 	else
330 		return -EIO;
331 }
332 
333 static int hpet_release(struct inode *inode, struct file *file)
334 {
335 	struct hpet_dev *devp;
336 	struct hpet_timer __iomem *timer;
337 	int irq = 0;
338 
339 	devp = file->private_data;
340 	timer = devp->hd_timer;
341 
342 	spin_lock_irq(&hpet_lock);
343 
344 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
345 	       &timer->hpet_config);
346 
347 	irq = devp->hd_irq;
348 	devp->hd_irq = 0;
349 
350 	devp->hd_ireqfreq = 0;
351 
352 	if (devp->hd_flags & HPET_PERIODIC
353 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
354 		unsigned long v;
355 
356 		v = readq(&timer->hpet_config);
357 		v ^= Tn_TYPE_CNF_MASK;
358 		writeq(v, &timer->hpet_config);
359 	}
360 
361 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
362 	spin_unlock_irq(&hpet_lock);
363 
364 	if (irq)
365 		free_irq(irq, devp);
366 
367 	if (file->f_flags & FASYNC)
368 		hpet_fasync(-1, file, 0);
369 
370 	file->private_data = NULL;
371 	return 0;
372 }
373 
374 static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
375 
376 static int
377 hpet_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
378 	   unsigned long arg)
379 {
380 	struct hpet_dev *devp;
381 
382 	devp = file->private_data;
383 	return hpet_ioctl_common(devp, cmd, arg, 0);
384 }
385 
386 static int hpet_ioctl_ieon(struct hpet_dev *devp)
387 {
388 	struct hpet_timer __iomem *timer;
389 	struct hpet __iomem *hpet;
390 	struct hpets *hpetp;
391 	int irq;
392 	unsigned long g, v, t, m;
393 	unsigned long flags, isr;
394 
395 	timer = devp->hd_timer;
396 	hpet = devp->hd_hpet;
397 	hpetp = devp->hd_hpets;
398 
399 	if (!devp->hd_ireqfreq)
400 		return -EIO;
401 
402 	spin_lock_irq(&hpet_lock);
403 
404 	if (devp->hd_flags & HPET_IE) {
405 		spin_unlock_irq(&hpet_lock);
406 		return -EBUSY;
407 	}
408 
409 	devp->hd_flags |= HPET_IE;
410 
411 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
412 		devp->hd_flags |= HPET_SHARED_IRQ;
413 	spin_unlock_irq(&hpet_lock);
414 
415 	irq = devp->hd_hdwirq;
416 
417 	if (irq) {
418 		unsigned long irq_flags;
419 
420 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
421 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
422 						? IRQF_SHARED : IRQF_DISABLED;
423 		if (request_irq(irq, hpet_interrupt, irq_flags,
424 				devp->hd_name, (void *)devp)) {
425 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
426 			irq = 0;
427 		}
428 	}
429 
430 	if (irq == 0) {
431 		spin_lock_irq(&hpet_lock);
432 		devp->hd_flags ^= HPET_IE;
433 		spin_unlock_irq(&hpet_lock);
434 		return -EIO;
435 	}
436 
437 	devp->hd_irq = irq;
438 	t = devp->hd_ireqfreq;
439 	v = readq(&timer->hpet_config);
440 	g = v | Tn_INT_ENB_CNF_MASK;
441 
442 	if (devp->hd_flags & HPET_PERIODIC) {
443 		write_counter(t, &timer->hpet_compare);
444 		g |= Tn_TYPE_CNF_MASK;
445 		v |= Tn_TYPE_CNF_MASK;
446 		writeq(v, &timer->hpet_config);
447 		v |= Tn_VAL_SET_CNF_MASK;
448 		writeq(v, &timer->hpet_config);
449 		local_irq_save(flags);
450 		m = read_counter(&hpet->hpet_mc);
451 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
452 	} else {
453 		local_irq_save(flags);
454 		m = read_counter(&hpet->hpet_mc);
455 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
456 	}
457 
458 	if (devp->hd_flags & HPET_SHARED_IRQ) {
459 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
460 		writel(isr, &hpet->hpet_isr);
461 	}
462 	writeq(g, &timer->hpet_config);
463 	local_irq_restore(flags);
464 
465 	return 0;
466 }
467 
468 /* converts Hz to number of timer ticks */
469 static inline unsigned long hpet_time_div(struct hpets *hpets,
470 					  unsigned long dis)
471 {
472 	unsigned long long m;
473 
474 	m = hpets->hp_tick_freq + (dis >> 1);
475 	do_div(m, dis);
476 	return (unsigned long)m;
477 }
478 
479 static int
480 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
481 {
482 	struct hpet_timer __iomem *timer;
483 	struct hpet __iomem *hpet;
484 	struct hpets *hpetp;
485 	int err;
486 	unsigned long v;
487 
488 	switch (cmd) {
489 	case HPET_IE_OFF:
490 	case HPET_INFO:
491 	case HPET_EPI:
492 	case HPET_DPI:
493 	case HPET_IRQFREQ:
494 		timer = devp->hd_timer;
495 		hpet = devp->hd_hpet;
496 		hpetp = devp->hd_hpets;
497 		break;
498 	case HPET_IE_ON:
499 		return hpet_ioctl_ieon(devp);
500 	default:
501 		return -EINVAL;
502 	}
503 
504 	err = 0;
505 
506 	switch (cmd) {
507 	case HPET_IE_OFF:
508 		if ((devp->hd_flags & HPET_IE) == 0)
509 			break;
510 		v = readq(&timer->hpet_config);
511 		v &= ~Tn_INT_ENB_CNF_MASK;
512 		writeq(v, &timer->hpet_config);
513 		if (devp->hd_irq) {
514 			free_irq(devp->hd_irq, devp);
515 			devp->hd_irq = 0;
516 		}
517 		devp->hd_flags ^= HPET_IE;
518 		break;
519 	case HPET_INFO:
520 		{
521 			struct hpet_info info;
522 
523 			if (devp->hd_ireqfreq)
524 				info.hi_ireqfreq =
525 					hpet_time_div(hpetp, devp->hd_ireqfreq);
526 			else
527 				info.hi_ireqfreq = 0;
528 			info.hi_flags =
529 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
530 			info.hi_hpet = hpetp->hp_which;
531 			info.hi_timer = devp - hpetp->hp_dev;
532 			if (kernel)
533 				memcpy((void *)arg, &info, sizeof(info));
534 			else
535 				if (copy_to_user((void __user *)arg, &info,
536 						 sizeof(info)))
537 					err = -EFAULT;
538 			break;
539 		}
540 	case HPET_EPI:
541 		v = readq(&timer->hpet_config);
542 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
543 			err = -ENXIO;
544 			break;
545 		}
546 		devp->hd_flags |= HPET_PERIODIC;
547 		break;
548 	case HPET_DPI:
549 		v = readq(&timer->hpet_config);
550 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
551 			err = -ENXIO;
552 			break;
553 		}
554 		if (devp->hd_flags & HPET_PERIODIC &&
555 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
556 			v = readq(&timer->hpet_config);
557 			v ^= Tn_TYPE_CNF_MASK;
558 			writeq(v, &timer->hpet_config);
559 		}
560 		devp->hd_flags &= ~HPET_PERIODIC;
561 		break;
562 	case HPET_IRQFREQ:
563 		if (!kernel && (arg > hpet_max_freq) &&
564 		    !capable(CAP_SYS_RESOURCE)) {
565 			err = -EACCES;
566 			break;
567 		}
568 
569 		if (!arg) {
570 			err = -EINVAL;
571 			break;
572 		}
573 
574 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
575 	}
576 
577 	return err;
578 }
579 
580 static const struct file_operations hpet_fops = {
581 	.owner = THIS_MODULE,
582 	.llseek = no_llseek,
583 	.read = hpet_read,
584 	.poll = hpet_poll,
585 	.ioctl = hpet_ioctl,
586 	.open = hpet_open,
587 	.release = hpet_release,
588 	.fasync = hpet_fasync,
589 	.mmap = hpet_mmap,
590 };
591 
592 static int hpet_is_known(struct hpet_data *hdp)
593 {
594 	struct hpets *hpetp;
595 
596 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
597 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
598 			return 1;
599 
600 	return 0;
601 }
602 
603 static inline int hpet_tpcheck(struct hpet_task *tp)
604 {
605 	struct hpet_dev *devp;
606 	struct hpets *hpetp;
607 
608 	devp = tp->ht_opaque;
609 
610 	if (!devp)
611 		return -ENXIO;
612 
613 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
614 		if (devp >= hpetp->hp_dev
615 		    && devp < (hpetp->hp_dev + hpetp->hp_ntimer)
616 		    && devp->hd_hpet == hpetp->hp_hpet)
617 			return 0;
618 
619 	return -ENXIO;
620 }
621 
622 int hpet_unregister(struct hpet_task *tp)
623 {
624 	struct hpet_dev *devp;
625 	struct hpet_timer __iomem *timer;
626 	int err;
627 
628 	if ((err = hpet_tpcheck(tp)))
629 		return err;
630 
631 	spin_lock_irq(&hpet_task_lock);
632 	spin_lock(&hpet_lock);
633 
634 	devp = tp->ht_opaque;
635 	if (devp->hd_task != tp) {
636 		spin_unlock(&hpet_lock);
637 		spin_unlock_irq(&hpet_task_lock);
638 		return -ENXIO;
639 	}
640 
641 	timer = devp->hd_timer;
642 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
643 	       &timer->hpet_config);
644 	devp->hd_flags &= ~(HPET_IE | HPET_PERIODIC);
645 	devp->hd_task = NULL;
646 	spin_unlock(&hpet_lock);
647 	spin_unlock_irq(&hpet_task_lock);
648 
649 	return 0;
650 }
651 
652 static ctl_table hpet_table[] = {
653 	{
654 	 .ctl_name = CTL_UNNUMBERED,
655 	 .procname = "max-user-freq",
656 	 .data = &hpet_max_freq,
657 	 .maxlen = sizeof(int),
658 	 .mode = 0644,
659 	 .proc_handler = &proc_dointvec,
660 	 },
661 	{.ctl_name = 0}
662 };
663 
664 static ctl_table hpet_root[] = {
665 	{
666 	 .ctl_name = CTL_UNNUMBERED,
667 	 .procname = "hpet",
668 	 .maxlen = 0,
669 	 .mode = 0555,
670 	 .child = hpet_table,
671 	 },
672 	{.ctl_name = 0}
673 };
674 
675 static ctl_table dev_root[] = {
676 	{
677 	 .ctl_name = CTL_DEV,
678 	 .procname = "dev",
679 	 .maxlen = 0,
680 	 .mode = 0555,
681 	 .child = hpet_root,
682 	 },
683 	{.ctl_name = 0}
684 };
685 
686 static struct ctl_table_header *sysctl_header;
687 
688 /*
689  * Adjustment for when arming the timer with
690  * initial conditions.  That is, main counter
691  * ticks expired before interrupts are enabled.
692  */
693 #define	TICK_CALIBRATE	(1000UL)
694 
695 static unsigned long hpet_calibrate(struct hpets *hpetp)
696 {
697 	struct hpet_timer __iomem *timer = NULL;
698 	unsigned long t, m, count, i, flags, start;
699 	struct hpet_dev *devp;
700 	int j;
701 	struct hpet __iomem *hpet;
702 
703 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
704 		if ((devp->hd_flags & HPET_OPEN) == 0) {
705 			timer = devp->hd_timer;
706 			break;
707 		}
708 
709 	if (!timer)
710 		return 0;
711 
712 	hpet = hpetp->hp_hpet;
713 	t = read_counter(&timer->hpet_compare);
714 
715 	i = 0;
716 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
717 
718 	local_irq_save(flags);
719 
720 	start = read_counter(&hpet->hpet_mc);
721 
722 	do {
723 		m = read_counter(&hpet->hpet_mc);
724 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
725 	} while (i++, (m - start) < count);
726 
727 	local_irq_restore(flags);
728 
729 	return (m - start) / i;
730 }
731 
732 int hpet_alloc(struct hpet_data *hdp)
733 {
734 	u64 cap, mcfg, hpet_config;
735 	struct hpet_dev *devp;
736 	u32 i, ntimer, irq;
737 	struct hpets *hpetp;
738 	size_t siz;
739 	struct hpet __iomem *hpet;
740 	static struct hpets *last = NULL;
741 	unsigned long period, irq_bitmap;
742 	unsigned long long temp;
743 
744 	/*
745 	 * hpet_alloc can be called by platform dependent code.
746 	 * If platform dependent code has allocated the hpet that
747 	 * ACPI has also reported, then we catch it here.
748 	 */
749 	if (hpet_is_known(hdp)) {
750 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
751 			__FUNCTION__);
752 		return 0;
753 	}
754 
755 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
756 				      sizeof(struct hpet_dev));
757 
758 	hpetp = kzalloc(siz, GFP_KERNEL);
759 
760 	if (!hpetp)
761 		return -ENOMEM;
762 
763 	hpetp->hp_which = hpet_nhpet++;
764 	hpetp->hp_hpet = hdp->hd_address;
765 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
766 
767 	hpetp->hp_ntimer = hdp->hd_nirqs;
768 	hpet = hpetp->hp_hpet;
769 
770 	/* Assign IRQs statically for legacy devices */
771 	hpetp->hp_dev[0].hd_hdwirq = hdp->hd_irq[0];
772 	hpetp->hp_dev[1].hd_hdwirq = hdp->hd_irq[1];
773 
774 	/* Assign IRQs dynamically for the others */
775 	for (i = 2, devp = &hpetp->hp_dev[2]; i < hdp->hd_nirqs; i++, devp++) {
776 		struct hpet_timer __iomem *timer;
777 
778 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
779 
780 		/* Check if there's already an IRQ assigned to the timer */
781 		if (hdp->hd_irq[i]) {
782 			hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
783 			continue;
784 		}
785 
786 		hpet_config = readq(&timer->hpet_config);
787 		irq_bitmap = (hpet_config & Tn_INT_ROUTE_CAP_MASK)
788 			>> Tn_INT_ROUTE_CAP_SHIFT;
789 		if (!irq_bitmap)
790 			irq = 0;        /* No valid IRQ Assignable */
791 		else {
792 			irq = find_first_bit(&irq_bitmap, 32);
793 			do {
794 				hpet_config |= irq << Tn_INT_ROUTE_CNF_SHIFT;
795 				writeq(hpet_config, &timer->hpet_config);
796 
797 				/*
798 				 * Verify whether we have written a valid
799 				 * IRQ number by reading it back again
800 				 */
801 				hpet_config = readq(&timer->hpet_config);
802 				if (irq == (hpet_config & Tn_INT_ROUTE_CNF_MASK)
803 						>> Tn_INT_ROUTE_CNF_SHIFT)
804 					break;  /* Success */
805 			} while ((irq = (find_next_bit(&irq_bitmap, 32, irq))));
806 		}
807 		hpetp->hp_dev[i].hd_hdwirq = irq;
808 	}
809 
810 	cap = readq(&hpet->hpet_cap);
811 
812 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
813 
814 	if (hpetp->hp_ntimer != ntimer) {
815 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
816 		       " with number of timers\n");
817 		kfree(hpetp);
818 		return -ENODEV;
819 	}
820 
821 	if (last)
822 		last->hp_next = hpetp;
823 	else
824 		hpets = hpetp;
825 
826 	last = hpetp;
827 
828 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
829 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
830 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
831 	temp += period >> 1; /* round */
832 	do_div(temp, period);
833 	hpetp->hp_tick_freq = temp; /* ticks per second */
834 
835 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
836 		hpetp->hp_which, hdp->hd_phys_address,
837 		hpetp->hp_ntimer > 1 ? "s" : "");
838 	for (i = 0; i < hpetp->hp_ntimer; i++)
839 		printk("%s %d", i > 0 ? "," : "",
840 				hpetp->hp_dev[i].hd_hdwirq);
841 	printk("\n");
842 
843 	printk(KERN_INFO "hpet%u: %u %d-bit timers, %Lu Hz\n",
844 	       hpetp->hp_which, hpetp->hp_ntimer,
845 	       cap & HPET_COUNTER_SIZE_MASK ? 64 : 32, hpetp->hp_tick_freq);
846 
847 	mcfg = readq(&hpet->hpet_config);
848 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
849 		write_counter(0L, &hpet->hpet_mc);
850 		mcfg |= HPET_ENABLE_CNF_MASK;
851 		writeq(mcfg, &hpet->hpet_config);
852 	}
853 
854 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
855 		struct hpet_timer __iomem *timer;
856 
857 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
858 
859 		devp->hd_hpets = hpetp;
860 		devp->hd_hpet = hpet;
861 		devp->hd_timer = timer;
862 
863 		/*
864 		 * If the timer was reserved by platform code,
865 		 * then make timer unavailable for opens.
866 		 */
867 		if (hdp->hd_state & (1 << i)) {
868 			devp->hd_flags = HPET_OPEN;
869 			continue;
870 		}
871 
872 		init_waitqueue_head(&devp->hd_waitqueue);
873 	}
874 
875 	hpetp->hp_delta = hpet_calibrate(hpetp);
876 
877 /* This clocksource driver currently only works on ia64 */
878 #ifdef CONFIG_IA64
879 	if (!hpet_clocksource) {
880 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
881 		CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
882 		clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
883 						clocksource_hpet.shift);
884 		clocksource_register(&clocksource_hpet);
885 		hpetp->hp_clocksource = &clocksource_hpet;
886 		hpet_clocksource = &clocksource_hpet;
887 	}
888 #endif
889 
890 	return 0;
891 }
892 
893 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
894 {
895 	struct hpet_data *hdp;
896 	acpi_status status;
897 	struct acpi_resource_address64 addr;
898 
899 	hdp = data;
900 
901 	status = acpi_resource_to_address64(res, &addr);
902 
903 	if (ACPI_SUCCESS(status)) {
904 		hdp->hd_phys_address = addr.minimum;
905 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
906 
907 		if (hpet_is_known(hdp)) {
908 			printk(KERN_DEBUG "%s: 0x%lx is busy\n",
909 				__FUNCTION__, hdp->hd_phys_address);
910 			iounmap(hdp->hd_address);
911 			return AE_ALREADY_EXISTS;
912 		}
913 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
914 		struct acpi_resource_fixed_memory32 *fixmem32;
915 
916 		fixmem32 = &res->data.fixed_memory32;
917 		if (!fixmem32)
918 			return AE_NO_MEMORY;
919 
920 		hdp->hd_phys_address = fixmem32->address;
921 		hdp->hd_address = ioremap(fixmem32->address,
922 						HPET_RANGE_SIZE);
923 
924 		if (hpet_is_known(hdp)) {
925 			printk(KERN_DEBUG "%s: 0x%lx is busy\n",
926 				__FUNCTION__, hdp->hd_phys_address);
927 			iounmap(hdp->hd_address);
928 			return AE_ALREADY_EXISTS;
929 		}
930 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
931 		struct acpi_resource_extended_irq *irqp;
932 		int i, irq;
933 
934 		irqp = &res->data.extended_irq;
935 
936 		for (i = 0; i < irqp->interrupt_count; i++) {
937 			irq = acpi_register_gsi(irqp->interrupts[i],
938 				      irqp->triggering, irqp->polarity);
939 			if (irq < 0)
940 				return AE_ERROR;
941 
942 			hdp->hd_irq[hdp->hd_nirqs] = irq;
943 			hdp->hd_nirqs++;
944 		}
945 	}
946 
947 	return AE_OK;
948 }
949 
950 static int hpet_acpi_add(struct acpi_device *device)
951 {
952 	acpi_status result;
953 	struct hpet_data data;
954 
955 	memset(&data, 0, sizeof(data));
956 
957 	result =
958 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
959 				hpet_resources, &data);
960 
961 	if (ACPI_FAILURE(result))
962 		return -ENODEV;
963 
964 	if (!data.hd_address || !data.hd_nirqs) {
965 		printk("%s: no address or irqs in _CRS\n", __FUNCTION__);
966 		return -ENODEV;
967 	}
968 
969 	return hpet_alloc(&data);
970 }
971 
972 static int hpet_acpi_remove(struct acpi_device *device, int type)
973 {
974 	/* XXX need to unregister clocksource, dealloc mem, etc */
975 	return -EINVAL;
976 }
977 
978 static const struct acpi_device_id hpet_device_ids[] = {
979 	{"PNP0103", 0},
980 	{"", 0},
981 };
982 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
983 
984 static struct acpi_driver hpet_acpi_driver = {
985 	.name = "hpet",
986 	.ids = hpet_device_ids,
987 	.ops = {
988 		.add = hpet_acpi_add,
989 		.remove = hpet_acpi_remove,
990 		},
991 };
992 
993 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
994 
995 static int __init hpet_init(void)
996 {
997 	int result;
998 
999 	result = misc_register(&hpet_misc);
1000 	if (result < 0)
1001 		return -ENODEV;
1002 
1003 	sysctl_header = register_sysctl_table(dev_root);
1004 
1005 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1006 	if (result < 0) {
1007 		if (sysctl_header)
1008 			unregister_sysctl_table(sysctl_header);
1009 		misc_deregister(&hpet_misc);
1010 		return result;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static void __exit hpet_exit(void)
1017 {
1018 	acpi_bus_unregister_driver(&hpet_acpi_driver);
1019 
1020 	if (sysctl_header)
1021 		unregister_sysctl_table(sysctl_header);
1022 	misc_deregister(&hpet_misc);
1023 
1024 	return;
1025 }
1026 
1027 module_init(hpet_init);
1028 module_exit(hpet_exit);
1029 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1030 MODULE_LICENSE("GPL");
1031