xref: /openbmc/linux/drivers/char/hpet.c (revision 384740dc)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/smp_lock.h>
18 #include <linux/types.h>
19 #include <linux/miscdevice.h>
20 #include <linux/major.h>
21 #include <linux/ioport.h>
22 #include <linux/fcntl.h>
23 #include <linux/init.h>
24 #include <linux/poll.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/spinlock.h>
28 #include <linux/sysctl.h>
29 #include <linux/wait.h>
30 #include <linux/bcd.h>
31 #include <linux/seq_file.h>
32 #include <linux/bitops.h>
33 #include <linux/clocksource.h>
34 
35 #include <asm/current.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45 
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec.htm
50  */
51 #define	HPET_USER_FREQ	(64)
52 #define	HPET_DRIFT	(500)
53 
54 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
55 
56 #if BITS_PER_LONG == 64
57 #define	write_counter(V, MC)	writeq(V, MC)
58 #define	read_counter(MC)	readq(MC)
59 #else
60 #define	write_counter(V, MC)	writel(V, MC)
61 #define	read_counter(MC)	readl(MC)
62 #endif
63 
64 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
65 
66 /* This clocksource driver currently only works on ia64 */
67 #ifdef CONFIG_IA64
68 static void __iomem *hpet_mctr;
69 
70 static cycle_t read_hpet(void)
71 {
72 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
73 }
74 
75 static struct clocksource clocksource_hpet = {
76         .name           = "hpet",
77         .rating         = 250,
78         .read           = read_hpet,
79         .mask           = CLOCKSOURCE_MASK(64),
80         .mult           = 0, /*to be caluclated*/
81         .shift          = 10,
82         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
83 };
84 static struct clocksource *hpet_clocksource;
85 #endif
86 
87 /* A lock for concurrent access by app and isr hpet activity. */
88 static DEFINE_SPINLOCK(hpet_lock);
89 /* A lock for concurrent intermodule access to hpet and isr hpet activity. */
90 static DEFINE_SPINLOCK(hpet_task_lock);
91 
92 #define	HPET_DEV_NAME	(7)
93 
94 struct hpet_dev {
95 	struct hpets *hd_hpets;
96 	struct hpet __iomem *hd_hpet;
97 	struct hpet_timer __iomem *hd_timer;
98 	unsigned long hd_ireqfreq;
99 	unsigned long hd_irqdata;
100 	wait_queue_head_t hd_waitqueue;
101 	struct fasync_struct *hd_async_queue;
102 	struct hpet_task *hd_task;
103 	unsigned int hd_flags;
104 	unsigned int hd_irq;
105 	unsigned int hd_hdwirq;
106 	char hd_name[HPET_DEV_NAME];
107 };
108 
109 struct hpets {
110 	struct hpets *hp_next;
111 	struct hpet __iomem *hp_hpet;
112 	unsigned long hp_hpet_phys;
113 	struct clocksource *hp_clocksource;
114 	unsigned long long hp_tick_freq;
115 	unsigned long hp_delta;
116 	unsigned int hp_ntimer;
117 	unsigned int hp_which;
118 	struct hpet_dev hp_dev[1];
119 };
120 
121 static struct hpets *hpets;
122 
123 #define	HPET_OPEN		0x0001
124 #define	HPET_IE			0x0002	/* interrupt enabled */
125 #define	HPET_PERIODIC		0x0004
126 #define	HPET_SHARED_IRQ		0x0008
127 
128 
129 #ifndef readq
130 static inline unsigned long long readq(void __iomem *addr)
131 {
132 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
133 }
134 #endif
135 
136 #ifndef writeq
137 static inline void writeq(unsigned long long v, void __iomem *addr)
138 {
139 	writel(v & 0xffffffff, addr);
140 	writel(v >> 32, addr + 4);
141 }
142 #endif
143 
144 static irqreturn_t hpet_interrupt(int irq, void *data)
145 {
146 	struct hpet_dev *devp;
147 	unsigned long isr;
148 
149 	devp = data;
150 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
151 
152 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
153 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
154 		return IRQ_NONE;
155 
156 	spin_lock(&hpet_lock);
157 	devp->hd_irqdata++;
158 
159 	/*
160 	 * For non-periodic timers, increment the accumulator.
161 	 * This has the effect of treating non-periodic like periodic.
162 	 */
163 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
164 		unsigned long m, t;
165 
166 		t = devp->hd_ireqfreq;
167 		m = read_counter(&devp->hd_hpet->hpet_mc);
168 		write_counter(t + m + devp->hd_hpets->hp_delta,
169 			      &devp->hd_timer->hpet_compare);
170 	}
171 
172 	if (devp->hd_flags & HPET_SHARED_IRQ)
173 		writel(isr, &devp->hd_hpet->hpet_isr);
174 	spin_unlock(&hpet_lock);
175 
176 	spin_lock(&hpet_task_lock);
177 	if (devp->hd_task)
178 		devp->hd_task->ht_func(devp->hd_task->ht_data);
179 	spin_unlock(&hpet_task_lock);
180 
181 	wake_up_interruptible(&devp->hd_waitqueue);
182 
183 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
184 
185 	return IRQ_HANDLED;
186 }
187 
188 static int hpet_open(struct inode *inode, struct file *file)
189 {
190 	struct hpet_dev *devp;
191 	struct hpets *hpetp;
192 	int i;
193 
194 	if (file->f_mode & FMODE_WRITE)
195 		return -EINVAL;
196 
197 	lock_kernel();
198 	spin_lock_irq(&hpet_lock);
199 
200 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
201 		for (i = 0; i < hpetp->hp_ntimer; i++)
202 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN
203 			    || hpetp->hp_dev[i].hd_task)
204 				continue;
205 			else {
206 				devp = &hpetp->hp_dev[i];
207 				break;
208 			}
209 
210 	if (!devp) {
211 		spin_unlock_irq(&hpet_lock);
212 		unlock_kernel();
213 		return -EBUSY;
214 	}
215 
216 	file->private_data = devp;
217 	devp->hd_irqdata = 0;
218 	devp->hd_flags |= HPET_OPEN;
219 	spin_unlock_irq(&hpet_lock);
220 	unlock_kernel();
221 
222 	return 0;
223 }
224 
225 static ssize_t
226 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
227 {
228 	DECLARE_WAITQUEUE(wait, current);
229 	unsigned long data;
230 	ssize_t retval;
231 	struct hpet_dev *devp;
232 
233 	devp = file->private_data;
234 	if (!devp->hd_ireqfreq)
235 		return -EIO;
236 
237 	if (count < sizeof(unsigned long))
238 		return -EINVAL;
239 
240 	add_wait_queue(&devp->hd_waitqueue, &wait);
241 
242 	for ( ; ; ) {
243 		set_current_state(TASK_INTERRUPTIBLE);
244 
245 		spin_lock_irq(&hpet_lock);
246 		data = devp->hd_irqdata;
247 		devp->hd_irqdata = 0;
248 		spin_unlock_irq(&hpet_lock);
249 
250 		if (data)
251 			break;
252 		else if (file->f_flags & O_NONBLOCK) {
253 			retval = -EAGAIN;
254 			goto out;
255 		} else if (signal_pending(current)) {
256 			retval = -ERESTARTSYS;
257 			goto out;
258 		}
259 		schedule();
260 	}
261 
262 	retval = put_user(data, (unsigned long __user *)buf);
263 	if (!retval)
264 		retval = sizeof(unsigned long);
265 out:
266 	__set_current_state(TASK_RUNNING);
267 	remove_wait_queue(&devp->hd_waitqueue, &wait);
268 
269 	return retval;
270 }
271 
272 static unsigned int hpet_poll(struct file *file, poll_table * wait)
273 {
274 	unsigned long v;
275 	struct hpet_dev *devp;
276 
277 	devp = file->private_data;
278 
279 	if (!devp->hd_ireqfreq)
280 		return 0;
281 
282 	poll_wait(file, &devp->hd_waitqueue, wait);
283 
284 	spin_lock_irq(&hpet_lock);
285 	v = devp->hd_irqdata;
286 	spin_unlock_irq(&hpet_lock);
287 
288 	if (v != 0)
289 		return POLLIN | POLLRDNORM;
290 
291 	return 0;
292 }
293 
294 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
295 {
296 #ifdef	CONFIG_HPET_MMAP
297 	struct hpet_dev *devp;
298 	unsigned long addr;
299 
300 	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
301 		return -EINVAL;
302 
303 	devp = file->private_data;
304 	addr = devp->hd_hpets->hp_hpet_phys;
305 
306 	if (addr & (PAGE_SIZE - 1))
307 		return -ENOSYS;
308 
309 	vma->vm_flags |= VM_IO;
310 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
311 
312 	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
313 					PAGE_SIZE, vma->vm_page_prot)) {
314 		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
315 			__func__);
316 		return -EAGAIN;
317 	}
318 
319 	return 0;
320 #else
321 	return -ENOSYS;
322 #endif
323 }
324 
325 static int hpet_fasync(int fd, struct file *file, int on)
326 {
327 	struct hpet_dev *devp;
328 
329 	devp = file->private_data;
330 
331 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
332 		return 0;
333 	else
334 		return -EIO;
335 }
336 
337 static int hpet_release(struct inode *inode, struct file *file)
338 {
339 	struct hpet_dev *devp;
340 	struct hpet_timer __iomem *timer;
341 	int irq = 0;
342 
343 	devp = file->private_data;
344 	timer = devp->hd_timer;
345 
346 	spin_lock_irq(&hpet_lock);
347 
348 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
349 	       &timer->hpet_config);
350 
351 	irq = devp->hd_irq;
352 	devp->hd_irq = 0;
353 
354 	devp->hd_ireqfreq = 0;
355 
356 	if (devp->hd_flags & HPET_PERIODIC
357 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
358 		unsigned long v;
359 
360 		v = readq(&timer->hpet_config);
361 		v ^= Tn_TYPE_CNF_MASK;
362 		writeq(v, &timer->hpet_config);
363 	}
364 
365 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
366 	spin_unlock_irq(&hpet_lock);
367 
368 	if (irq)
369 		free_irq(irq, devp);
370 
371 	if (file->f_flags & FASYNC)
372 		hpet_fasync(-1, file, 0);
373 
374 	file->private_data = NULL;
375 	return 0;
376 }
377 
378 static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
379 
380 static int
381 hpet_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
382 	   unsigned long arg)
383 {
384 	struct hpet_dev *devp;
385 
386 	devp = file->private_data;
387 	return hpet_ioctl_common(devp, cmd, arg, 0);
388 }
389 
390 static int hpet_ioctl_ieon(struct hpet_dev *devp)
391 {
392 	struct hpet_timer __iomem *timer;
393 	struct hpet __iomem *hpet;
394 	struct hpets *hpetp;
395 	int irq;
396 	unsigned long g, v, t, m;
397 	unsigned long flags, isr;
398 
399 	timer = devp->hd_timer;
400 	hpet = devp->hd_hpet;
401 	hpetp = devp->hd_hpets;
402 
403 	if (!devp->hd_ireqfreq)
404 		return -EIO;
405 
406 	spin_lock_irq(&hpet_lock);
407 
408 	if (devp->hd_flags & HPET_IE) {
409 		spin_unlock_irq(&hpet_lock);
410 		return -EBUSY;
411 	}
412 
413 	devp->hd_flags |= HPET_IE;
414 
415 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
416 		devp->hd_flags |= HPET_SHARED_IRQ;
417 	spin_unlock_irq(&hpet_lock);
418 
419 	irq = devp->hd_hdwirq;
420 
421 	if (irq) {
422 		unsigned long irq_flags;
423 
424 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
425 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
426 						? IRQF_SHARED : IRQF_DISABLED;
427 		if (request_irq(irq, hpet_interrupt, irq_flags,
428 				devp->hd_name, (void *)devp)) {
429 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
430 			irq = 0;
431 		}
432 	}
433 
434 	if (irq == 0) {
435 		spin_lock_irq(&hpet_lock);
436 		devp->hd_flags ^= HPET_IE;
437 		spin_unlock_irq(&hpet_lock);
438 		return -EIO;
439 	}
440 
441 	devp->hd_irq = irq;
442 	t = devp->hd_ireqfreq;
443 	v = readq(&timer->hpet_config);
444 	g = v | Tn_INT_ENB_CNF_MASK;
445 
446 	if (devp->hd_flags & HPET_PERIODIC) {
447 		write_counter(t, &timer->hpet_compare);
448 		g |= Tn_TYPE_CNF_MASK;
449 		v |= Tn_TYPE_CNF_MASK;
450 		writeq(v, &timer->hpet_config);
451 		v |= Tn_VAL_SET_CNF_MASK;
452 		writeq(v, &timer->hpet_config);
453 		local_irq_save(flags);
454 		m = read_counter(&hpet->hpet_mc);
455 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
456 	} else {
457 		local_irq_save(flags);
458 		m = read_counter(&hpet->hpet_mc);
459 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
460 	}
461 
462 	if (devp->hd_flags & HPET_SHARED_IRQ) {
463 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
464 		writel(isr, &hpet->hpet_isr);
465 	}
466 	writeq(g, &timer->hpet_config);
467 	local_irq_restore(flags);
468 
469 	return 0;
470 }
471 
472 /* converts Hz to number of timer ticks */
473 static inline unsigned long hpet_time_div(struct hpets *hpets,
474 					  unsigned long dis)
475 {
476 	unsigned long long m;
477 
478 	m = hpets->hp_tick_freq + (dis >> 1);
479 	do_div(m, dis);
480 	return (unsigned long)m;
481 }
482 
483 static int
484 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
485 {
486 	struct hpet_timer __iomem *timer;
487 	struct hpet __iomem *hpet;
488 	struct hpets *hpetp;
489 	int err;
490 	unsigned long v;
491 
492 	switch (cmd) {
493 	case HPET_IE_OFF:
494 	case HPET_INFO:
495 	case HPET_EPI:
496 	case HPET_DPI:
497 	case HPET_IRQFREQ:
498 		timer = devp->hd_timer;
499 		hpet = devp->hd_hpet;
500 		hpetp = devp->hd_hpets;
501 		break;
502 	case HPET_IE_ON:
503 		return hpet_ioctl_ieon(devp);
504 	default:
505 		return -EINVAL;
506 	}
507 
508 	err = 0;
509 
510 	switch (cmd) {
511 	case HPET_IE_OFF:
512 		if ((devp->hd_flags & HPET_IE) == 0)
513 			break;
514 		v = readq(&timer->hpet_config);
515 		v &= ~Tn_INT_ENB_CNF_MASK;
516 		writeq(v, &timer->hpet_config);
517 		if (devp->hd_irq) {
518 			free_irq(devp->hd_irq, devp);
519 			devp->hd_irq = 0;
520 		}
521 		devp->hd_flags ^= HPET_IE;
522 		break;
523 	case HPET_INFO:
524 		{
525 			struct hpet_info info;
526 
527 			if (devp->hd_ireqfreq)
528 				info.hi_ireqfreq =
529 					hpet_time_div(hpetp, devp->hd_ireqfreq);
530 			else
531 				info.hi_ireqfreq = 0;
532 			info.hi_flags =
533 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
534 			info.hi_hpet = hpetp->hp_which;
535 			info.hi_timer = devp - hpetp->hp_dev;
536 			if (kernel)
537 				memcpy((void *)arg, &info, sizeof(info));
538 			else
539 				if (copy_to_user((void __user *)arg, &info,
540 						 sizeof(info)))
541 					err = -EFAULT;
542 			break;
543 		}
544 	case HPET_EPI:
545 		v = readq(&timer->hpet_config);
546 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
547 			err = -ENXIO;
548 			break;
549 		}
550 		devp->hd_flags |= HPET_PERIODIC;
551 		break;
552 	case HPET_DPI:
553 		v = readq(&timer->hpet_config);
554 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
555 			err = -ENXIO;
556 			break;
557 		}
558 		if (devp->hd_flags & HPET_PERIODIC &&
559 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
560 			v = readq(&timer->hpet_config);
561 			v ^= Tn_TYPE_CNF_MASK;
562 			writeq(v, &timer->hpet_config);
563 		}
564 		devp->hd_flags &= ~HPET_PERIODIC;
565 		break;
566 	case HPET_IRQFREQ:
567 		if (!kernel && (arg > hpet_max_freq) &&
568 		    !capable(CAP_SYS_RESOURCE)) {
569 			err = -EACCES;
570 			break;
571 		}
572 
573 		if (!arg) {
574 			err = -EINVAL;
575 			break;
576 		}
577 
578 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
579 	}
580 
581 	return err;
582 }
583 
584 static const struct file_operations hpet_fops = {
585 	.owner = THIS_MODULE,
586 	.llseek = no_llseek,
587 	.read = hpet_read,
588 	.poll = hpet_poll,
589 	.ioctl = hpet_ioctl,
590 	.open = hpet_open,
591 	.release = hpet_release,
592 	.fasync = hpet_fasync,
593 	.mmap = hpet_mmap,
594 };
595 
596 static int hpet_is_known(struct hpet_data *hdp)
597 {
598 	struct hpets *hpetp;
599 
600 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
601 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
602 			return 1;
603 
604 	return 0;
605 }
606 
607 static inline int hpet_tpcheck(struct hpet_task *tp)
608 {
609 	struct hpet_dev *devp;
610 	struct hpets *hpetp;
611 
612 	devp = tp->ht_opaque;
613 
614 	if (!devp)
615 		return -ENXIO;
616 
617 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
618 		if (devp >= hpetp->hp_dev
619 		    && devp < (hpetp->hp_dev + hpetp->hp_ntimer)
620 		    && devp->hd_hpet == hpetp->hp_hpet)
621 			return 0;
622 
623 	return -ENXIO;
624 }
625 
626 #if 0
627 int hpet_unregister(struct hpet_task *tp)
628 {
629 	struct hpet_dev *devp;
630 	struct hpet_timer __iomem *timer;
631 	int err;
632 
633 	if ((err = hpet_tpcheck(tp)))
634 		return err;
635 
636 	spin_lock_irq(&hpet_task_lock);
637 	spin_lock(&hpet_lock);
638 
639 	devp = tp->ht_opaque;
640 	if (devp->hd_task != tp) {
641 		spin_unlock(&hpet_lock);
642 		spin_unlock_irq(&hpet_task_lock);
643 		return -ENXIO;
644 	}
645 
646 	timer = devp->hd_timer;
647 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
648 	       &timer->hpet_config);
649 	devp->hd_flags &= ~(HPET_IE | HPET_PERIODIC);
650 	devp->hd_task = NULL;
651 	spin_unlock(&hpet_lock);
652 	spin_unlock_irq(&hpet_task_lock);
653 
654 	return 0;
655 }
656 #endif  /*  0  */
657 
658 static ctl_table hpet_table[] = {
659 	{
660 	 .ctl_name = CTL_UNNUMBERED,
661 	 .procname = "max-user-freq",
662 	 .data = &hpet_max_freq,
663 	 .maxlen = sizeof(int),
664 	 .mode = 0644,
665 	 .proc_handler = &proc_dointvec,
666 	 },
667 	{.ctl_name = 0}
668 };
669 
670 static ctl_table hpet_root[] = {
671 	{
672 	 .ctl_name = CTL_UNNUMBERED,
673 	 .procname = "hpet",
674 	 .maxlen = 0,
675 	 .mode = 0555,
676 	 .child = hpet_table,
677 	 },
678 	{.ctl_name = 0}
679 };
680 
681 static ctl_table dev_root[] = {
682 	{
683 	 .ctl_name = CTL_DEV,
684 	 .procname = "dev",
685 	 .maxlen = 0,
686 	 .mode = 0555,
687 	 .child = hpet_root,
688 	 },
689 	{.ctl_name = 0}
690 };
691 
692 static struct ctl_table_header *sysctl_header;
693 
694 /*
695  * Adjustment for when arming the timer with
696  * initial conditions.  That is, main counter
697  * ticks expired before interrupts are enabled.
698  */
699 #define	TICK_CALIBRATE	(1000UL)
700 
701 static unsigned long hpet_calibrate(struct hpets *hpetp)
702 {
703 	struct hpet_timer __iomem *timer = NULL;
704 	unsigned long t, m, count, i, flags, start;
705 	struct hpet_dev *devp;
706 	int j;
707 	struct hpet __iomem *hpet;
708 
709 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
710 		if ((devp->hd_flags & HPET_OPEN) == 0) {
711 			timer = devp->hd_timer;
712 			break;
713 		}
714 
715 	if (!timer)
716 		return 0;
717 
718 	hpet = hpetp->hp_hpet;
719 	t = read_counter(&timer->hpet_compare);
720 
721 	i = 0;
722 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
723 
724 	local_irq_save(flags);
725 
726 	start = read_counter(&hpet->hpet_mc);
727 
728 	do {
729 		m = read_counter(&hpet->hpet_mc);
730 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
731 	} while (i++, (m - start) < count);
732 
733 	local_irq_restore(flags);
734 
735 	return (m - start) / i;
736 }
737 
738 int hpet_alloc(struct hpet_data *hdp)
739 {
740 	u64 cap, mcfg;
741 	struct hpet_dev *devp;
742 	u32 i, ntimer;
743 	struct hpets *hpetp;
744 	size_t siz;
745 	struct hpet __iomem *hpet;
746 	static struct hpets *last = NULL;
747 	unsigned long period;
748 	unsigned long long temp;
749 
750 	/*
751 	 * hpet_alloc can be called by platform dependent code.
752 	 * If platform dependent code has allocated the hpet that
753 	 * ACPI has also reported, then we catch it here.
754 	 */
755 	if (hpet_is_known(hdp)) {
756 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
757 			__func__);
758 		return 0;
759 	}
760 
761 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
762 				      sizeof(struct hpet_dev));
763 
764 	hpetp = kzalloc(siz, GFP_KERNEL);
765 
766 	if (!hpetp)
767 		return -ENOMEM;
768 
769 	hpetp->hp_which = hpet_nhpet++;
770 	hpetp->hp_hpet = hdp->hd_address;
771 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
772 
773 	hpetp->hp_ntimer = hdp->hd_nirqs;
774 
775 	for (i = 0; i < hdp->hd_nirqs; i++)
776 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
777 
778 	hpet = hpetp->hp_hpet;
779 
780 	cap = readq(&hpet->hpet_cap);
781 
782 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
783 
784 	if (hpetp->hp_ntimer != ntimer) {
785 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
786 		       " with number of timers\n");
787 		kfree(hpetp);
788 		return -ENODEV;
789 	}
790 
791 	if (last)
792 		last->hp_next = hpetp;
793 	else
794 		hpets = hpetp;
795 
796 	last = hpetp;
797 
798 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
799 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
800 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
801 	temp += period >> 1; /* round */
802 	do_div(temp, period);
803 	hpetp->hp_tick_freq = temp; /* ticks per second */
804 
805 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
806 		hpetp->hp_which, hdp->hd_phys_address,
807 		hpetp->hp_ntimer > 1 ? "s" : "");
808 	for (i = 0; i < hpetp->hp_ntimer; i++)
809 		printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
810 	printk("\n");
811 
812 	printk(KERN_INFO "hpet%u: %u %d-bit timers, %Lu Hz\n",
813 	       hpetp->hp_which, hpetp->hp_ntimer,
814 	       cap & HPET_COUNTER_SIZE_MASK ? 64 : 32, hpetp->hp_tick_freq);
815 
816 	mcfg = readq(&hpet->hpet_config);
817 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
818 		write_counter(0L, &hpet->hpet_mc);
819 		mcfg |= HPET_ENABLE_CNF_MASK;
820 		writeq(mcfg, &hpet->hpet_config);
821 	}
822 
823 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
824 		struct hpet_timer __iomem *timer;
825 
826 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
827 
828 		devp->hd_hpets = hpetp;
829 		devp->hd_hpet = hpet;
830 		devp->hd_timer = timer;
831 
832 		/*
833 		 * If the timer was reserved by platform code,
834 		 * then make timer unavailable for opens.
835 		 */
836 		if (hdp->hd_state & (1 << i)) {
837 			devp->hd_flags = HPET_OPEN;
838 			continue;
839 		}
840 
841 		init_waitqueue_head(&devp->hd_waitqueue);
842 	}
843 
844 	hpetp->hp_delta = hpet_calibrate(hpetp);
845 
846 /* This clocksource driver currently only works on ia64 */
847 #ifdef CONFIG_IA64
848 	if (!hpet_clocksource) {
849 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
850 		CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
851 		clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
852 						clocksource_hpet.shift);
853 		clocksource_register(&clocksource_hpet);
854 		hpetp->hp_clocksource = &clocksource_hpet;
855 		hpet_clocksource = &clocksource_hpet;
856 	}
857 #endif
858 
859 	return 0;
860 }
861 
862 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
863 {
864 	struct hpet_data *hdp;
865 	acpi_status status;
866 	struct acpi_resource_address64 addr;
867 
868 	hdp = data;
869 
870 	status = acpi_resource_to_address64(res, &addr);
871 
872 	if (ACPI_SUCCESS(status)) {
873 		hdp->hd_phys_address = addr.minimum;
874 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
875 
876 		if (hpet_is_known(hdp)) {
877 			printk(KERN_DEBUG "%s: 0x%lx is busy\n",
878 				__func__, hdp->hd_phys_address);
879 			iounmap(hdp->hd_address);
880 			return AE_ALREADY_EXISTS;
881 		}
882 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
883 		struct acpi_resource_fixed_memory32 *fixmem32;
884 
885 		fixmem32 = &res->data.fixed_memory32;
886 		if (!fixmem32)
887 			return AE_NO_MEMORY;
888 
889 		hdp->hd_phys_address = fixmem32->address;
890 		hdp->hd_address = ioremap(fixmem32->address,
891 						HPET_RANGE_SIZE);
892 
893 		if (hpet_is_known(hdp)) {
894 			printk(KERN_DEBUG "%s: 0x%lx is busy\n",
895 				__func__, hdp->hd_phys_address);
896 			iounmap(hdp->hd_address);
897 			return AE_ALREADY_EXISTS;
898 		}
899 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
900 		struct acpi_resource_extended_irq *irqp;
901 		int i, irq;
902 
903 		irqp = &res->data.extended_irq;
904 
905 		for (i = 0; i < irqp->interrupt_count; i++) {
906 			irq = acpi_register_gsi(irqp->interrupts[i],
907 				      irqp->triggering, irqp->polarity);
908 			if (irq < 0)
909 				return AE_ERROR;
910 
911 			hdp->hd_irq[hdp->hd_nirqs] = irq;
912 			hdp->hd_nirqs++;
913 		}
914 	}
915 
916 	return AE_OK;
917 }
918 
919 static int hpet_acpi_add(struct acpi_device *device)
920 {
921 	acpi_status result;
922 	struct hpet_data data;
923 
924 	memset(&data, 0, sizeof(data));
925 
926 	result =
927 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
928 				hpet_resources, &data);
929 
930 	if (ACPI_FAILURE(result))
931 		return -ENODEV;
932 
933 	if (!data.hd_address || !data.hd_nirqs) {
934 		printk("%s: no address or irqs in _CRS\n", __func__);
935 		return -ENODEV;
936 	}
937 
938 	return hpet_alloc(&data);
939 }
940 
941 static int hpet_acpi_remove(struct acpi_device *device, int type)
942 {
943 	/* XXX need to unregister clocksource, dealloc mem, etc */
944 	return -EINVAL;
945 }
946 
947 static const struct acpi_device_id hpet_device_ids[] = {
948 	{"PNP0103", 0},
949 	{"", 0},
950 };
951 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
952 
953 static struct acpi_driver hpet_acpi_driver = {
954 	.name = "hpet",
955 	.ids = hpet_device_ids,
956 	.ops = {
957 		.add = hpet_acpi_add,
958 		.remove = hpet_acpi_remove,
959 		},
960 };
961 
962 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
963 
964 static int __init hpet_init(void)
965 {
966 	int result;
967 
968 	result = misc_register(&hpet_misc);
969 	if (result < 0)
970 		return -ENODEV;
971 
972 	sysctl_header = register_sysctl_table(dev_root);
973 
974 	result = acpi_bus_register_driver(&hpet_acpi_driver);
975 	if (result < 0) {
976 		if (sysctl_header)
977 			unregister_sysctl_table(sysctl_header);
978 		misc_deregister(&hpet_misc);
979 		return result;
980 	}
981 
982 	return 0;
983 }
984 
985 static void __exit hpet_exit(void)
986 {
987 	acpi_bus_unregister_driver(&hpet_acpi_driver);
988 
989 	if (sysctl_header)
990 		unregister_sysctl_table(sysctl_header);
991 	misc_deregister(&hpet_misc);
992 
993 	return;
994 }
995 
996 module_init(hpet_init);
997 module_exit(hpet_exit);
998 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
999 MODULE_LICENSE("GPL");
1000