xref: /openbmc/linux/drivers/char/hpet.c (revision 05bcf503)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45 
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50  */
51 #define	HPET_USER_FREQ	(64)
52 #define	HPET_DRIFT	(500)
53 
54 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
55 
56 
57 /* WARNING -- don't get confused.  These macros are never used
58  * to write the (single) counter, and rarely to read it.
59  * They're badly named; to fix, someday.
60  */
61 #if BITS_PER_LONG == 64
62 #define	write_counter(V, MC)	writeq(V, MC)
63 #define	read_counter(MC)	readq(MC)
64 #else
65 #define	write_counter(V, MC)	writel(V, MC)
66 #define	read_counter(MC)	readl(MC)
67 #endif
68 
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
71 
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
75 
76 static cycle_t read_hpet(struct clocksource *cs)
77 {
78 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
79 }
80 
81 static struct clocksource clocksource_hpet = {
82 	.name		= "hpet",
83 	.rating		= 250,
84 	.read		= read_hpet,
85 	.mask		= CLOCKSOURCE_MASK(64),
86 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
87 };
88 static struct clocksource *hpet_clocksource;
89 #endif
90 
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
93 
94 #define	HPET_DEV_NAME	(7)
95 
96 struct hpet_dev {
97 	struct hpets *hd_hpets;
98 	struct hpet __iomem *hd_hpet;
99 	struct hpet_timer __iomem *hd_timer;
100 	unsigned long hd_ireqfreq;
101 	unsigned long hd_irqdata;
102 	wait_queue_head_t hd_waitqueue;
103 	struct fasync_struct *hd_async_queue;
104 	unsigned int hd_flags;
105 	unsigned int hd_irq;
106 	unsigned int hd_hdwirq;
107 	char hd_name[HPET_DEV_NAME];
108 };
109 
110 struct hpets {
111 	struct hpets *hp_next;
112 	struct hpet __iomem *hp_hpet;
113 	unsigned long hp_hpet_phys;
114 	struct clocksource *hp_clocksource;
115 	unsigned long long hp_tick_freq;
116 	unsigned long hp_delta;
117 	unsigned int hp_ntimer;
118 	unsigned int hp_which;
119 	struct hpet_dev hp_dev[1];
120 };
121 
122 static struct hpets *hpets;
123 
124 #define	HPET_OPEN		0x0001
125 #define	HPET_IE			0x0002	/* interrupt enabled */
126 #define	HPET_PERIODIC		0x0004
127 #define	HPET_SHARED_IRQ		0x0008
128 
129 
130 #ifndef readq
131 static inline unsigned long long readq(void __iomem *addr)
132 {
133 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
134 }
135 #endif
136 
137 #ifndef writeq
138 static inline void writeq(unsigned long long v, void __iomem *addr)
139 {
140 	writel(v & 0xffffffff, addr);
141 	writel(v >> 32, addr + 4);
142 }
143 #endif
144 
145 static irqreturn_t hpet_interrupt(int irq, void *data)
146 {
147 	struct hpet_dev *devp;
148 	unsigned long isr;
149 
150 	devp = data;
151 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
152 
153 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
155 		return IRQ_NONE;
156 
157 	spin_lock(&hpet_lock);
158 	devp->hd_irqdata++;
159 
160 	/*
161 	 * For non-periodic timers, increment the accumulator.
162 	 * This has the effect of treating non-periodic like periodic.
163 	 */
164 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165 		unsigned long m, t, mc, base, k;
166 		struct hpet __iomem *hpet = devp->hd_hpet;
167 		struct hpets *hpetp = devp->hd_hpets;
168 
169 		t = devp->hd_ireqfreq;
170 		m = read_counter(&devp->hd_timer->hpet_compare);
171 		mc = read_counter(&hpet->hpet_mc);
172 		/* The time for the next interrupt would logically be t + m,
173 		 * however, if we are very unlucky and the interrupt is delayed
174 		 * for longer than t then we will completely miss the next
175 		 * interrupt if we set t + m and an application will hang.
176 		 * Therefore we need to make a more complex computation assuming
177 		 * that there exists a k for which the following is true:
178 		 * k * t + base < mc + delta
179 		 * (k + 1) * t + base > mc + delta
180 		 * where t is the interval in hpet ticks for the given freq,
181 		 * base is the theoretical start value 0 < base < t,
182 		 * mc is the main counter value at the time of the interrupt,
183 		 * delta is the time it takes to write the a value to the
184 		 * comparator.
185 		 * k may then be computed as (mc - base + delta) / t .
186 		 */
187 		base = mc % t;
188 		k = (mc - base + hpetp->hp_delta) / t;
189 		write_counter(t * (k + 1) + base,
190 			      &devp->hd_timer->hpet_compare);
191 	}
192 
193 	if (devp->hd_flags & HPET_SHARED_IRQ)
194 		writel(isr, &devp->hd_hpet->hpet_isr);
195 	spin_unlock(&hpet_lock);
196 
197 	wake_up_interruptible(&devp->hd_waitqueue);
198 
199 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
200 
201 	return IRQ_HANDLED;
202 }
203 
204 static void hpet_timer_set_irq(struct hpet_dev *devp)
205 {
206 	unsigned long v;
207 	int irq, gsi;
208 	struct hpet_timer __iomem *timer;
209 
210 	spin_lock_irq(&hpet_lock);
211 	if (devp->hd_hdwirq) {
212 		spin_unlock_irq(&hpet_lock);
213 		return;
214 	}
215 
216 	timer = devp->hd_timer;
217 
218 	/* we prefer level triggered mode */
219 	v = readl(&timer->hpet_config);
220 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221 		v |= Tn_INT_TYPE_CNF_MASK;
222 		writel(v, &timer->hpet_config);
223 	}
224 	spin_unlock_irq(&hpet_lock);
225 
226 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227 				 Tn_INT_ROUTE_CAP_SHIFT;
228 
229 	/*
230 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
232 	 */
233 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234 		v &= ~0xf3df;
235 	else
236 		v &= ~0xffff;
237 
238 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239 		if (irq >= nr_irqs) {
240 			irq = HPET_MAX_IRQ;
241 			break;
242 		}
243 
244 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
245 					ACPI_ACTIVE_LOW);
246 		if (gsi > 0)
247 			break;
248 
249 		/* FIXME: Setup interrupt source table */
250 	}
251 
252 	if (irq < HPET_MAX_IRQ) {
253 		spin_lock_irq(&hpet_lock);
254 		v = readl(&timer->hpet_config);
255 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256 		writel(v, &timer->hpet_config);
257 		devp->hd_hdwirq = gsi;
258 		spin_unlock_irq(&hpet_lock);
259 	}
260 	return;
261 }
262 
263 static int hpet_open(struct inode *inode, struct file *file)
264 {
265 	struct hpet_dev *devp;
266 	struct hpets *hpetp;
267 	int i;
268 
269 	if (file->f_mode & FMODE_WRITE)
270 		return -EINVAL;
271 
272 	mutex_lock(&hpet_mutex);
273 	spin_lock_irq(&hpet_lock);
274 
275 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276 		for (i = 0; i < hpetp->hp_ntimer; i++)
277 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278 				continue;
279 			else {
280 				devp = &hpetp->hp_dev[i];
281 				break;
282 			}
283 
284 	if (!devp) {
285 		spin_unlock_irq(&hpet_lock);
286 		mutex_unlock(&hpet_mutex);
287 		return -EBUSY;
288 	}
289 
290 	file->private_data = devp;
291 	devp->hd_irqdata = 0;
292 	devp->hd_flags |= HPET_OPEN;
293 	spin_unlock_irq(&hpet_lock);
294 	mutex_unlock(&hpet_mutex);
295 
296 	hpet_timer_set_irq(devp);
297 
298 	return 0;
299 }
300 
301 static ssize_t
302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
303 {
304 	DECLARE_WAITQUEUE(wait, current);
305 	unsigned long data;
306 	ssize_t retval;
307 	struct hpet_dev *devp;
308 
309 	devp = file->private_data;
310 	if (!devp->hd_ireqfreq)
311 		return -EIO;
312 
313 	if (count < sizeof(unsigned long))
314 		return -EINVAL;
315 
316 	add_wait_queue(&devp->hd_waitqueue, &wait);
317 
318 	for ( ; ; ) {
319 		set_current_state(TASK_INTERRUPTIBLE);
320 
321 		spin_lock_irq(&hpet_lock);
322 		data = devp->hd_irqdata;
323 		devp->hd_irqdata = 0;
324 		spin_unlock_irq(&hpet_lock);
325 
326 		if (data)
327 			break;
328 		else if (file->f_flags & O_NONBLOCK) {
329 			retval = -EAGAIN;
330 			goto out;
331 		} else if (signal_pending(current)) {
332 			retval = -ERESTARTSYS;
333 			goto out;
334 		}
335 		schedule();
336 	}
337 
338 	retval = put_user(data, (unsigned long __user *)buf);
339 	if (!retval)
340 		retval = sizeof(unsigned long);
341 out:
342 	__set_current_state(TASK_RUNNING);
343 	remove_wait_queue(&devp->hd_waitqueue, &wait);
344 
345 	return retval;
346 }
347 
348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
349 {
350 	unsigned long v;
351 	struct hpet_dev *devp;
352 
353 	devp = file->private_data;
354 
355 	if (!devp->hd_ireqfreq)
356 		return 0;
357 
358 	poll_wait(file, &devp->hd_waitqueue, wait);
359 
360 	spin_lock_irq(&hpet_lock);
361 	v = devp->hd_irqdata;
362 	spin_unlock_irq(&hpet_lock);
363 
364 	if (v != 0)
365 		return POLLIN | POLLRDNORM;
366 
367 	return 0;
368 }
369 
370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
371 {
372 #ifdef	CONFIG_HPET_MMAP
373 	struct hpet_dev *devp;
374 	unsigned long addr;
375 
376 	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
377 		return -EINVAL;
378 
379 	devp = file->private_data;
380 	addr = devp->hd_hpets->hp_hpet_phys;
381 
382 	if (addr & (PAGE_SIZE - 1))
383 		return -ENOSYS;
384 
385 	vma->vm_flags |= VM_IO;
386 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
387 
388 	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
389 					PAGE_SIZE, vma->vm_page_prot)) {
390 		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
391 			__func__);
392 		return -EAGAIN;
393 	}
394 
395 	return 0;
396 #else
397 	return -ENOSYS;
398 #endif
399 }
400 
401 static int hpet_fasync(int fd, struct file *file, int on)
402 {
403 	struct hpet_dev *devp;
404 
405 	devp = file->private_data;
406 
407 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
408 		return 0;
409 	else
410 		return -EIO;
411 }
412 
413 static int hpet_release(struct inode *inode, struct file *file)
414 {
415 	struct hpet_dev *devp;
416 	struct hpet_timer __iomem *timer;
417 	int irq = 0;
418 
419 	devp = file->private_data;
420 	timer = devp->hd_timer;
421 
422 	spin_lock_irq(&hpet_lock);
423 
424 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
425 	       &timer->hpet_config);
426 
427 	irq = devp->hd_irq;
428 	devp->hd_irq = 0;
429 
430 	devp->hd_ireqfreq = 0;
431 
432 	if (devp->hd_flags & HPET_PERIODIC
433 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
434 		unsigned long v;
435 
436 		v = readq(&timer->hpet_config);
437 		v ^= Tn_TYPE_CNF_MASK;
438 		writeq(v, &timer->hpet_config);
439 	}
440 
441 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
442 	spin_unlock_irq(&hpet_lock);
443 
444 	if (irq)
445 		free_irq(irq, devp);
446 
447 	file->private_data = NULL;
448 	return 0;
449 }
450 
451 static int hpet_ioctl_ieon(struct hpet_dev *devp)
452 {
453 	struct hpet_timer __iomem *timer;
454 	struct hpet __iomem *hpet;
455 	struct hpets *hpetp;
456 	int irq;
457 	unsigned long g, v, t, m;
458 	unsigned long flags, isr;
459 
460 	timer = devp->hd_timer;
461 	hpet = devp->hd_hpet;
462 	hpetp = devp->hd_hpets;
463 
464 	if (!devp->hd_ireqfreq)
465 		return -EIO;
466 
467 	spin_lock_irq(&hpet_lock);
468 
469 	if (devp->hd_flags & HPET_IE) {
470 		spin_unlock_irq(&hpet_lock);
471 		return -EBUSY;
472 	}
473 
474 	devp->hd_flags |= HPET_IE;
475 
476 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
477 		devp->hd_flags |= HPET_SHARED_IRQ;
478 	spin_unlock_irq(&hpet_lock);
479 
480 	irq = devp->hd_hdwirq;
481 
482 	if (irq) {
483 		unsigned long irq_flags;
484 
485 		if (devp->hd_flags & HPET_SHARED_IRQ) {
486 			/*
487 			 * To prevent the interrupt handler from seeing an
488 			 * unwanted interrupt status bit, program the timer
489 			 * so that it will not fire in the near future ...
490 			 */
491 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
492 			       &timer->hpet_config);
493 			write_counter(read_counter(&hpet->hpet_mc),
494 				      &timer->hpet_compare);
495 			/* ... and clear any left-over status. */
496 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
497 			writel(isr, &hpet->hpet_isr);
498 		}
499 
500 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
501 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
502 						? IRQF_SHARED : IRQF_DISABLED;
503 		if (request_irq(irq, hpet_interrupt, irq_flags,
504 				devp->hd_name, (void *)devp)) {
505 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
506 			irq = 0;
507 		}
508 	}
509 
510 	if (irq == 0) {
511 		spin_lock_irq(&hpet_lock);
512 		devp->hd_flags ^= HPET_IE;
513 		spin_unlock_irq(&hpet_lock);
514 		return -EIO;
515 	}
516 
517 	devp->hd_irq = irq;
518 	t = devp->hd_ireqfreq;
519 	v = readq(&timer->hpet_config);
520 
521 	/* 64-bit comparators are not yet supported through the ioctls,
522 	 * so force this into 32-bit mode if it supports both modes
523 	 */
524 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
525 
526 	if (devp->hd_flags & HPET_PERIODIC) {
527 		g |= Tn_TYPE_CNF_MASK;
528 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
529 		writeq(v, &timer->hpet_config);
530 		local_irq_save(flags);
531 
532 		/*
533 		 * NOTE: First we modify the hidden accumulator
534 		 * register supported by periodic-capable comparators.
535 		 * We never want to modify the (single) counter; that
536 		 * would affect all the comparators. The value written
537 		 * is the counter value when the first interrupt is due.
538 		 */
539 		m = read_counter(&hpet->hpet_mc);
540 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
541 		/*
542 		 * Then we modify the comparator, indicating the period
543 		 * for subsequent interrupt.
544 		 */
545 		write_counter(t, &timer->hpet_compare);
546 	} else {
547 		local_irq_save(flags);
548 		m = read_counter(&hpet->hpet_mc);
549 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
550 	}
551 
552 	if (devp->hd_flags & HPET_SHARED_IRQ) {
553 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
554 		writel(isr, &hpet->hpet_isr);
555 	}
556 	writeq(g, &timer->hpet_config);
557 	local_irq_restore(flags);
558 
559 	return 0;
560 }
561 
562 /* converts Hz to number of timer ticks */
563 static inline unsigned long hpet_time_div(struct hpets *hpets,
564 					  unsigned long dis)
565 {
566 	unsigned long long m;
567 
568 	m = hpets->hp_tick_freq + (dis >> 1);
569 	do_div(m, dis);
570 	return (unsigned long)m;
571 }
572 
573 static int
574 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
575 		  struct hpet_info *info)
576 {
577 	struct hpet_timer __iomem *timer;
578 	struct hpet __iomem *hpet;
579 	struct hpets *hpetp;
580 	int err;
581 	unsigned long v;
582 
583 	switch (cmd) {
584 	case HPET_IE_OFF:
585 	case HPET_INFO:
586 	case HPET_EPI:
587 	case HPET_DPI:
588 	case HPET_IRQFREQ:
589 		timer = devp->hd_timer;
590 		hpet = devp->hd_hpet;
591 		hpetp = devp->hd_hpets;
592 		break;
593 	case HPET_IE_ON:
594 		return hpet_ioctl_ieon(devp);
595 	default:
596 		return -EINVAL;
597 	}
598 
599 	err = 0;
600 
601 	switch (cmd) {
602 	case HPET_IE_OFF:
603 		if ((devp->hd_flags & HPET_IE) == 0)
604 			break;
605 		v = readq(&timer->hpet_config);
606 		v &= ~Tn_INT_ENB_CNF_MASK;
607 		writeq(v, &timer->hpet_config);
608 		if (devp->hd_irq) {
609 			free_irq(devp->hd_irq, devp);
610 			devp->hd_irq = 0;
611 		}
612 		devp->hd_flags ^= HPET_IE;
613 		break;
614 	case HPET_INFO:
615 		{
616 			memset(info, 0, sizeof(*info));
617 			if (devp->hd_ireqfreq)
618 				info->hi_ireqfreq =
619 					hpet_time_div(hpetp, devp->hd_ireqfreq);
620 			info->hi_flags =
621 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
622 			info->hi_hpet = hpetp->hp_which;
623 			info->hi_timer = devp - hpetp->hp_dev;
624 			break;
625 		}
626 	case HPET_EPI:
627 		v = readq(&timer->hpet_config);
628 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
629 			err = -ENXIO;
630 			break;
631 		}
632 		devp->hd_flags |= HPET_PERIODIC;
633 		break;
634 	case HPET_DPI:
635 		v = readq(&timer->hpet_config);
636 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
637 			err = -ENXIO;
638 			break;
639 		}
640 		if (devp->hd_flags & HPET_PERIODIC &&
641 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
642 			v = readq(&timer->hpet_config);
643 			v ^= Tn_TYPE_CNF_MASK;
644 			writeq(v, &timer->hpet_config);
645 		}
646 		devp->hd_flags &= ~HPET_PERIODIC;
647 		break;
648 	case HPET_IRQFREQ:
649 		if ((arg > hpet_max_freq) &&
650 		    !capable(CAP_SYS_RESOURCE)) {
651 			err = -EACCES;
652 			break;
653 		}
654 
655 		if (!arg) {
656 			err = -EINVAL;
657 			break;
658 		}
659 
660 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
661 	}
662 
663 	return err;
664 }
665 
666 static long
667 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669 	struct hpet_info info;
670 	int err;
671 
672 	mutex_lock(&hpet_mutex);
673 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
674 	mutex_unlock(&hpet_mutex);
675 
676 	if ((cmd == HPET_INFO) && !err &&
677 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
678 		err = -EFAULT;
679 
680 	return err;
681 }
682 
683 #ifdef CONFIG_COMPAT
684 struct compat_hpet_info {
685 	compat_ulong_t hi_ireqfreq;	/* Hz */
686 	compat_ulong_t hi_flags;	/* information */
687 	unsigned short hi_hpet;
688 	unsigned short hi_timer;
689 };
690 
691 static long
692 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
693 {
694 	struct hpet_info info;
695 	int err;
696 
697 	mutex_lock(&hpet_mutex);
698 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
699 	mutex_unlock(&hpet_mutex);
700 
701 	if ((cmd == HPET_INFO) && !err) {
702 		struct compat_hpet_info __user *u = compat_ptr(arg);
703 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
704 		    put_user(info.hi_flags, &u->hi_flags) ||
705 		    put_user(info.hi_hpet, &u->hi_hpet) ||
706 		    put_user(info.hi_timer, &u->hi_timer))
707 			err = -EFAULT;
708 	}
709 
710 	return err;
711 }
712 #endif
713 
714 static const struct file_operations hpet_fops = {
715 	.owner = THIS_MODULE,
716 	.llseek = no_llseek,
717 	.read = hpet_read,
718 	.poll = hpet_poll,
719 	.unlocked_ioctl = hpet_ioctl,
720 #ifdef CONFIG_COMPAT
721 	.compat_ioctl = hpet_compat_ioctl,
722 #endif
723 	.open = hpet_open,
724 	.release = hpet_release,
725 	.fasync = hpet_fasync,
726 	.mmap = hpet_mmap,
727 };
728 
729 static int hpet_is_known(struct hpet_data *hdp)
730 {
731 	struct hpets *hpetp;
732 
733 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
734 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
735 			return 1;
736 
737 	return 0;
738 }
739 
740 static ctl_table hpet_table[] = {
741 	{
742 	 .procname = "max-user-freq",
743 	 .data = &hpet_max_freq,
744 	 .maxlen = sizeof(int),
745 	 .mode = 0644,
746 	 .proc_handler = proc_dointvec,
747 	 },
748 	{}
749 };
750 
751 static ctl_table hpet_root[] = {
752 	{
753 	 .procname = "hpet",
754 	 .maxlen = 0,
755 	 .mode = 0555,
756 	 .child = hpet_table,
757 	 },
758 	{}
759 };
760 
761 static ctl_table dev_root[] = {
762 	{
763 	 .procname = "dev",
764 	 .maxlen = 0,
765 	 .mode = 0555,
766 	 .child = hpet_root,
767 	 },
768 	{}
769 };
770 
771 static struct ctl_table_header *sysctl_header;
772 
773 /*
774  * Adjustment for when arming the timer with
775  * initial conditions.  That is, main counter
776  * ticks expired before interrupts are enabled.
777  */
778 #define	TICK_CALIBRATE	(1000UL)
779 
780 static unsigned long __hpet_calibrate(struct hpets *hpetp)
781 {
782 	struct hpet_timer __iomem *timer = NULL;
783 	unsigned long t, m, count, i, flags, start;
784 	struct hpet_dev *devp;
785 	int j;
786 	struct hpet __iomem *hpet;
787 
788 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
789 		if ((devp->hd_flags & HPET_OPEN) == 0) {
790 			timer = devp->hd_timer;
791 			break;
792 		}
793 
794 	if (!timer)
795 		return 0;
796 
797 	hpet = hpetp->hp_hpet;
798 	t = read_counter(&timer->hpet_compare);
799 
800 	i = 0;
801 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
802 
803 	local_irq_save(flags);
804 
805 	start = read_counter(&hpet->hpet_mc);
806 
807 	do {
808 		m = read_counter(&hpet->hpet_mc);
809 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
810 	} while (i++, (m - start) < count);
811 
812 	local_irq_restore(flags);
813 
814 	return (m - start) / i;
815 }
816 
817 static unsigned long hpet_calibrate(struct hpets *hpetp)
818 {
819 	unsigned long ret = -1;
820 	unsigned long tmp;
821 
822 	/*
823 	 * Try to calibrate until return value becomes stable small value.
824 	 * If SMI interruption occurs in calibration loop, the return value
825 	 * will be big. This avoids its impact.
826 	 */
827 	for ( ; ; ) {
828 		tmp = __hpet_calibrate(hpetp);
829 		if (ret <= tmp)
830 			break;
831 		ret = tmp;
832 	}
833 
834 	return ret;
835 }
836 
837 int hpet_alloc(struct hpet_data *hdp)
838 {
839 	u64 cap, mcfg;
840 	struct hpet_dev *devp;
841 	u32 i, ntimer;
842 	struct hpets *hpetp;
843 	size_t siz;
844 	struct hpet __iomem *hpet;
845 	static struct hpets *last;
846 	unsigned long period;
847 	unsigned long long temp;
848 	u32 remainder;
849 
850 	/*
851 	 * hpet_alloc can be called by platform dependent code.
852 	 * If platform dependent code has allocated the hpet that
853 	 * ACPI has also reported, then we catch it here.
854 	 */
855 	if (hpet_is_known(hdp)) {
856 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
857 			__func__);
858 		return 0;
859 	}
860 
861 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
862 				      sizeof(struct hpet_dev));
863 
864 	hpetp = kzalloc(siz, GFP_KERNEL);
865 
866 	if (!hpetp)
867 		return -ENOMEM;
868 
869 	hpetp->hp_which = hpet_nhpet++;
870 	hpetp->hp_hpet = hdp->hd_address;
871 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
872 
873 	hpetp->hp_ntimer = hdp->hd_nirqs;
874 
875 	for (i = 0; i < hdp->hd_nirqs; i++)
876 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
877 
878 	hpet = hpetp->hp_hpet;
879 
880 	cap = readq(&hpet->hpet_cap);
881 
882 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
883 
884 	if (hpetp->hp_ntimer != ntimer) {
885 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
886 		       " with number of timers\n");
887 		kfree(hpetp);
888 		return -ENODEV;
889 	}
890 
891 	if (last)
892 		last->hp_next = hpetp;
893 	else
894 		hpets = hpetp;
895 
896 	last = hpetp;
897 
898 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
899 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
900 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
901 	temp += period >> 1; /* round */
902 	do_div(temp, period);
903 	hpetp->hp_tick_freq = temp; /* ticks per second */
904 
905 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
906 		hpetp->hp_which, hdp->hd_phys_address,
907 		hpetp->hp_ntimer > 1 ? "s" : "");
908 	for (i = 0; i < hpetp->hp_ntimer; i++)
909 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
910 	printk(KERN_CONT "\n");
911 
912 	temp = hpetp->hp_tick_freq;
913 	remainder = do_div(temp, 1000000);
914 	printk(KERN_INFO
915 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
916 		hpetp->hp_which, hpetp->hp_ntimer,
917 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
918 		(unsigned) temp, remainder);
919 
920 	mcfg = readq(&hpet->hpet_config);
921 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
922 		write_counter(0L, &hpet->hpet_mc);
923 		mcfg |= HPET_ENABLE_CNF_MASK;
924 		writeq(mcfg, &hpet->hpet_config);
925 	}
926 
927 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
928 		struct hpet_timer __iomem *timer;
929 
930 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
931 
932 		devp->hd_hpets = hpetp;
933 		devp->hd_hpet = hpet;
934 		devp->hd_timer = timer;
935 
936 		/*
937 		 * If the timer was reserved by platform code,
938 		 * then make timer unavailable for opens.
939 		 */
940 		if (hdp->hd_state & (1 << i)) {
941 			devp->hd_flags = HPET_OPEN;
942 			continue;
943 		}
944 
945 		init_waitqueue_head(&devp->hd_waitqueue);
946 	}
947 
948 	hpetp->hp_delta = hpet_calibrate(hpetp);
949 
950 /* This clocksource driver currently only works on ia64 */
951 #ifdef CONFIG_IA64
952 	if (!hpet_clocksource) {
953 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
954 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
955 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
956 		hpetp->hp_clocksource = &clocksource_hpet;
957 		hpet_clocksource = &clocksource_hpet;
958 	}
959 #endif
960 
961 	return 0;
962 }
963 
964 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
965 {
966 	struct hpet_data *hdp;
967 	acpi_status status;
968 	struct acpi_resource_address64 addr;
969 
970 	hdp = data;
971 
972 	status = acpi_resource_to_address64(res, &addr);
973 
974 	if (ACPI_SUCCESS(status)) {
975 		hdp->hd_phys_address = addr.minimum;
976 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
977 
978 		if (hpet_is_known(hdp)) {
979 			iounmap(hdp->hd_address);
980 			return AE_ALREADY_EXISTS;
981 		}
982 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
983 		struct acpi_resource_fixed_memory32 *fixmem32;
984 
985 		fixmem32 = &res->data.fixed_memory32;
986 		if (!fixmem32)
987 			return AE_NO_MEMORY;
988 
989 		hdp->hd_phys_address = fixmem32->address;
990 		hdp->hd_address = ioremap(fixmem32->address,
991 						HPET_RANGE_SIZE);
992 
993 		if (hpet_is_known(hdp)) {
994 			iounmap(hdp->hd_address);
995 			return AE_ALREADY_EXISTS;
996 		}
997 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
998 		struct acpi_resource_extended_irq *irqp;
999 		int i, irq;
1000 
1001 		irqp = &res->data.extended_irq;
1002 
1003 		for (i = 0; i < irqp->interrupt_count; i++) {
1004 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1005 				      irqp->triggering, irqp->polarity);
1006 			if (irq < 0)
1007 				return AE_ERROR;
1008 
1009 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1010 			hdp->hd_nirqs++;
1011 		}
1012 	}
1013 
1014 	return AE_OK;
1015 }
1016 
1017 static int hpet_acpi_add(struct acpi_device *device)
1018 {
1019 	acpi_status result;
1020 	struct hpet_data data;
1021 
1022 	memset(&data, 0, sizeof(data));
1023 
1024 	result =
1025 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1026 				hpet_resources, &data);
1027 
1028 	if (ACPI_FAILURE(result))
1029 		return -ENODEV;
1030 
1031 	if (!data.hd_address || !data.hd_nirqs) {
1032 		if (data.hd_address)
1033 			iounmap(data.hd_address);
1034 		printk("%s: no address or irqs in _CRS\n", __func__);
1035 		return -ENODEV;
1036 	}
1037 
1038 	return hpet_alloc(&data);
1039 }
1040 
1041 static int hpet_acpi_remove(struct acpi_device *device, int type)
1042 {
1043 	/* XXX need to unregister clocksource, dealloc mem, etc */
1044 	return -EINVAL;
1045 }
1046 
1047 static const struct acpi_device_id hpet_device_ids[] = {
1048 	{"PNP0103", 0},
1049 	{"", 0},
1050 };
1051 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1052 
1053 static struct acpi_driver hpet_acpi_driver = {
1054 	.name = "hpet",
1055 	.ids = hpet_device_ids,
1056 	.ops = {
1057 		.add = hpet_acpi_add,
1058 		.remove = hpet_acpi_remove,
1059 		},
1060 };
1061 
1062 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1063 
1064 static int __init hpet_init(void)
1065 {
1066 	int result;
1067 
1068 	result = misc_register(&hpet_misc);
1069 	if (result < 0)
1070 		return -ENODEV;
1071 
1072 	sysctl_header = register_sysctl_table(dev_root);
1073 
1074 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1075 	if (result < 0) {
1076 		if (sysctl_header)
1077 			unregister_sysctl_table(sysctl_header);
1078 		misc_deregister(&hpet_misc);
1079 		return result;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static void __exit hpet_exit(void)
1086 {
1087 	acpi_bus_unregister_driver(&hpet_acpi_driver);
1088 
1089 	if (sysctl_header)
1090 		unregister_sysctl_table(sysctl_header);
1091 	misc_deregister(&hpet_misc);
1092 
1093 	return;
1094 }
1095 
1096 module_init(hpet_init);
1097 module_exit(hpet_exit);
1098 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1099 MODULE_LICENSE("GPL");
1100