xref: /openbmc/linux/drivers/char/agp/isoch.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Setup routines for AGP 3.5 compliant bridges.
4  */
5 
6 #include <linux/list.h>
7 #include <linux/pci.h>
8 #include <linux/agp_backend.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 
12 #include "agp.h"
13 
14 /* Generic AGP 3.5 enabling routines */
15 
16 struct agp_3_5_dev {
17 	struct list_head list;
18 	u8 capndx;
19 	u32 maxbw;
20 	struct pci_dev *dev;
21 };
22 
23 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24 {
25 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 	struct list_head *pos;
27 
28 	list_for_each(pos, head) {
29 		cur = list_entry(pos, struct agp_3_5_dev, list);
30 		if (cur->maxbw > n->maxbw)
31 			break;
32 	}
33 	list_add_tail(new, pos);
34 }
35 
36 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37 {
38 	struct agp_3_5_dev *cur;
39 	struct pci_dev *dev;
40 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 	u32 nistat;
42 
43 	INIT_LIST_HEAD(head);
44 
45 	for (pos=start; pos!=head; ) {
46 		cur = list_entry(pos, struct agp_3_5_dev, list);
47 		dev = cur->dev;
48 
49 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 		cur->maxbw = (nistat >> 16) & 0xff;
51 
52 		tmp = pos;
53 		pos = pos->next;
54 		agp_3_5_dev_list_insert(head, tmp);
55 	}
56 }
57 
58 /*
59  * Initialize all isochronous transfer parameters for an AGP 3.0
60  * node (i.e. a host bridge in combination with the adapters
61  * lying behind it...)
62  */
63 
64 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
66 {
67 	/*
68 	 * Convenience structure to make the calculations clearer
69 	 * here.  The field names come straight from the AGP 3.0 spec.
70 	 */
71 	struct isoch_data {
72 		u32 maxbw;
73 		u32 n;
74 		u32 y;
75 		u32 l;
76 		u32 rq;
77 		struct agp_3_5_dev *dev;
78 	};
79 
80 	struct pci_dev *td = bridge->dev, *dev;
81 	struct list_head *head = &dev_list->list, *pos;
82 	struct agp_3_5_dev *cur;
83 	struct isoch_data *master, target;
84 	unsigned int cdev = 0;
85 	u32 mnistat, tnistat, tstatus, mcmd;
86 	u16 tnicmd, mnicmd;
87 	u8 mcapndx;
88 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
89 	u32 step, rem, rem_isoch, rem_async;
90 	int ret = 0;
91 
92 	/*
93 	 * We'll work with an array of isoch_data's (one for each
94 	 * device in dev_list) throughout this function.
95 	 */
96 	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
97 	if (master == NULL) {
98 		ret = -ENOMEM;
99 		goto get_out;
100 	}
101 
102 	/*
103 	 * Sort the device list by maxbw.  We need to do this because the
104 	 * spec suggests that the devices with the smallest requirements
105 	 * have their resources allocated first, with all remaining resources
106 	 * falling to the device with the largest requirement.
107 	 *
108 	 * We don't exactly do this, we divide target resources by ndevs
109 	 * and split them amongst the AGP 3.0 devices.  The remainder of such
110 	 * division operations are dropped on the last device, sort of like
111 	 * the spec mentions it should be done.
112 	 *
113 	 * We can't do this sort when we initially construct the dev_list
114 	 * because we don't know until this function whether isochronous
115 	 * transfers are enabled and consequently whether maxbw will mean
116 	 * anything.
117 	 */
118 	agp_3_5_dev_list_sort(dev_list, ndevs);
119 
120 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
121 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
122 
123 	/* Extract power-on defaults from the target */
124 	target.maxbw = (tnistat >> 16) & 0xff;
125 	target.n     = (tnistat >> 8)  & 0xff;
126 	target.y     = (tnistat >> 6)  & 0x3;
127 	target.l     = (tnistat >> 3)  & 0x7;
128 	target.rq    = (tstatus >> 24) & 0xff;
129 
130 	y_max = target.y;
131 
132 	/*
133 	 * Extract power-on defaults for each device in dev_list.  Along
134 	 * the way, calculate the total isochronous bandwidth required
135 	 * by these devices and the largest requested payload size.
136 	 */
137 	list_for_each(pos, head) {
138 		cur = list_entry(pos, struct agp_3_5_dev, list);
139 		dev = cur->dev;
140 
141 		mcapndx = cur->capndx;
142 
143 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
144 
145 		master[cdev].maxbw = (mnistat >> 16) & 0xff;
146 		master[cdev].n     = (mnistat >> 8)  & 0xff;
147 		master[cdev].y     = (mnistat >> 6)  & 0x3;
148 		master[cdev].dev   = cur;
149 
150 		tot_bw += master[cdev].maxbw;
151 		y_max = max(y_max, master[cdev].y);
152 
153 		cdev++;
154 	}
155 
156 	/* Check if this configuration has any chance of working */
157 	if (tot_bw > target.maxbw) {
158 		dev_err(&td->dev, "isochronous bandwidth required "
159 			"by AGP 3.0 devices exceeds that which is supported by "
160 			"the AGP 3.0 bridge!\n");
161 		ret = -ENODEV;
162 		goto free_and_exit;
163 	}
164 
165 	target.y = y_max;
166 
167 	/*
168 	 * Write the calculated payload size into the target's NICMD
169 	 * register.  Doing this directly effects the ISOCH_N value
170 	 * in the target's NISTAT register, so we need to do this now
171 	 * to get an accurate value for ISOCH_N later.
172 	 */
173 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
174 	tnicmd &= ~(0x3 << 6);
175 	tnicmd |= target.y << 6;
176 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
177 
178 	/* Reread the target's ISOCH_N */
179 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
180 	target.n = (tnistat >> 8) & 0xff;
181 
182 	/* Calculate the minimum ISOCH_N needed by each master */
183 	for (cdev=0; cdev<ndevs; cdev++) {
184 		master[cdev].y = target.y;
185 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
186 
187 		tot_n += master[cdev].n;
188 	}
189 
190 	/* Exit if the minimal ISOCH_N allocation among the masters is more
191 	 * than the target can handle. */
192 	if (tot_n > target.n) {
193 		dev_err(&td->dev, "number of isochronous "
194 			"transactions per period required by AGP 3.0 devices "
195 			"exceeds that which is supported by the AGP 3.0 "
196 			"bridge!\n");
197 		ret = -ENODEV;
198 		goto free_and_exit;
199 	}
200 
201 	/* Calculate left over ISOCH_N capability in the target.  We'll give
202 	 * this to the hungriest device (as per the spec) */
203 	rem  = target.n - tot_n;
204 
205 	/*
206 	 * Calculate the minimum isochronous RQ depth needed by each master.
207 	 * Along the way, distribute the extra ISOCH_N capability calculated
208 	 * above.
209 	 */
210 	for (cdev=0; cdev<ndevs; cdev++) {
211 		/*
212 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
213 		 * byte isochronous writes will be broken into 64B pieces.
214 		 * This means we need to budget more RQ depth to account for
215 		 * these kind of writes (each isochronous write is actually
216 		 * many writes on the AGP bus).
217 		 */
218 		master[cdev].rq = master[cdev].n;
219 		if (master[cdev].y > 0x1)
220 			master[cdev].rq *= (1 << (master[cdev].y - 1));
221 
222 		tot_rq += master[cdev].rq;
223 	}
224 	master[ndevs-1].n += rem;
225 
226 	/* Figure the number of isochronous and asynchronous RQ slots the
227 	 * target is providing. */
228 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
229 	rq_async = target.rq - rq_isoch;
230 
231 	/* Exit if the minimal RQ needs of the masters exceeds what the target
232 	 * can provide. */
233 	if (tot_rq > rq_isoch) {
234 		dev_err(&td->dev, "number of request queue slots "
235 			"required by the isochronous bandwidth requested by "
236 			"AGP 3.0 devices exceeds the number provided by the "
237 			"AGP 3.0 bridge!\n");
238 		ret = -ENODEV;
239 		goto free_and_exit;
240 	}
241 
242 	/* Calculate asynchronous RQ capability in the target (per master) as
243 	 * well as the total number of leftover isochronous RQ slots. */
244 	step      = rq_async / ndevs;
245 	rem_async = step + (rq_async % ndevs);
246 	rem_isoch = rq_isoch - tot_rq;
247 
248 	/* Distribute the extra RQ slots calculated above and write our
249 	 * isochronous settings out to the actual devices. */
250 	for (cdev=0; cdev<ndevs; cdev++) {
251 		cur = master[cdev].dev;
252 		dev = cur->dev;
253 
254 		mcapndx = cur->capndx;
255 
256 		master[cdev].rq += (cdev == ndevs - 1)
257 		              ? (rem_async + rem_isoch) : step;
258 
259 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
260 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
261 
262 		mnicmd &= ~(0xff << 8);
263 		mnicmd &= ~(0x3  << 6);
264 		mcmd   &= ~(0xff << 24);
265 
266 		mnicmd |= master[cdev].n  << 8;
267 		mnicmd |= master[cdev].y  << 6;
268 		mcmd   |= master[cdev].rq << 24;
269 
270 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
271 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
272 	}
273 
274 free_and_exit:
275 	kfree(master);
276 
277 get_out:
278 	return ret;
279 }
280 
281 /*
282  * This function basically allocates request queue slots among the
283  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
284  * pretty stupid, divide the total number of RQ slots provided by the
285  * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
286  * giving any left over slots to the last device in dev_list.
287  */
288 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
289 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
290 {
291 	struct agp_3_5_dev *cur;
292 	struct list_head *head = &dev_list->list, *pos;
293 	u32 tstatus, mcmd;
294 	u32 trq, mrq, rem;
295 	unsigned int cdev = 0;
296 
297 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
298 
299 	trq = (tstatus >> 24) & 0xff;
300 	mrq = trq / ndevs;
301 
302 	rem = mrq + (trq % ndevs);
303 
304 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
305 		cur = list_entry(pos, struct agp_3_5_dev, list);
306 
307 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
308 		mcmd &= ~(0xff << 24);
309 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
310 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
311 	}
312 }
313 
314 /*
315  * Fully configure and enable an AGP 3.0 host bridge and all the devices
316  * lying behind it.
317  */
318 int agp_3_5_enable(struct agp_bridge_data *bridge)
319 {
320 	struct pci_dev *td = bridge->dev, *dev = NULL;
321 	u8 mcapndx;
322 	u32 isoch, arqsz;
323 	u32 tstatus, mstatus, ncapid;
324 	u32 mmajor;
325 	u16 mpstat;
326 	struct agp_3_5_dev *dev_list, *cur;
327 	struct list_head *head, *pos;
328 	unsigned int ndevs = 0;
329 	int ret = 0;
330 
331 	/* Extract some power-on defaults from the target */
332 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
333 	isoch     = (tstatus >> 17) & 0x1;
334 	if (isoch == 0)	/* isoch xfers not available, bail out. */
335 		return -ENODEV;
336 
337 	arqsz     = (tstatus >> 13) & 0x7;
338 
339 	/*
340 	 * Allocate a head for our AGP 3.5 device list
341 	 * (multiple AGP v3 devices are allowed behind a single bridge).
342 	 */
343 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
344 		ret = -ENOMEM;
345 		goto get_out;
346 	}
347 	head = &dev_list->list;
348 	INIT_LIST_HEAD(head);
349 
350 	/* Find all AGP devices, and add them to dev_list. */
351 	for_each_pci_dev(dev) {
352 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
353 		if (mcapndx == 0)
354 			continue;
355 
356 		switch ((dev->class >>8) & 0xff00) {
357 			case 0x0600:    /* Bridge */
358 				/* Skip bridges. We should call this function for each one. */
359 				continue;
360 
361 			case 0x0001:    /* Unclassified device */
362 				/* Don't know what this is, but log it for investigation. */
363 				if (mcapndx != 0) {
364 					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
365 						 pci_name(dev),
366 						 dev->vendor, dev->device);
367 				}
368 				continue;
369 
370 			case 0x0300:    /* Display controller */
371 			case 0x0400:    /* Multimedia controller */
372 				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
373 					ret = -ENOMEM;
374 					goto free_and_exit;
375 				}
376 				cur->dev = dev;
377 
378 				pos = &cur->list;
379 				list_add(pos, head);
380 				ndevs++;
381 				continue;
382 
383 			default:
384 				continue;
385 		}
386 	}
387 
388 	/*
389 	 * Take an initial pass through the devices lying behind our host
390 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
391 	 * exit with an error message.  Along the way store the AGP 3.0
392 	 * cap_ptr for each device
393 	 */
394 	list_for_each(pos, head) {
395 		cur = list_entry(pos, struct agp_3_5_dev, list);
396 		dev = cur->dev;
397 
398 		pci_read_config_word(dev, PCI_STATUS, &mpstat);
399 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
400 			continue;
401 
402 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
403 		if (mcapndx != 0) {
404 			do {
405 				pci_read_config_dword(dev, mcapndx, &ncapid);
406 				if ((ncapid & 0xff) != 2)
407 					mcapndx = (ncapid >> 8) & 0xff;
408 			}
409 			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
410 		}
411 
412 		if (mcapndx == 0) {
413 			dev_err(&td->dev, "woah!  Non-AGP device %s on "
414 				"secondary bus of AGP 3.5 bridge!\n",
415 				pci_name(dev));
416 			ret = -ENODEV;
417 			goto free_and_exit;
418 		}
419 
420 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
421 		if (mmajor < 3) {
422 			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
423 				"secondary bus of AGP 3.5 bridge operating "
424 				"with AGP 3.0 electricals!\n", pci_name(dev));
425 			ret = -ENODEV;
426 			goto free_and_exit;
427 		}
428 
429 		cur->capndx = mcapndx;
430 
431 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
432 
433 		if (((mstatus >> 3) & 0x1) == 0) {
434 			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
435 				"operating in AGP 3.x mode on secondary bus "
436 				"of AGP 3.5 bridge operating with AGP 3.0 "
437 				"electricals!\n", pci_name(dev));
438 			ret = -ENODEV;
439 			goto free_and_exit;
440 		}
441 	}
442 
443 	/*
444 	 * Call functions to divide target resources amongst the AGP 3.0
445 	 * masters.  This process is dramatically different depending on
446 	 * whether isochronous transfers are supported.
447 	 */
448 	if (isoch) {
449 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
450 		if (ret) {
451 			dev_info(&td->dev, "something bad happened setting "
452 				 "up isochronous xfers; falling back to "
453 				 "non-isochronous xfer mode\n");
454 		} else {
455 			goto free_and_exit;
456 		}
457 	}
458 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
459 
460 free_and_exit:
461 	/* Be sure to free the dev_list */
462 	for (pos=head->next; pos!=head; ) {
463 		cur = list_entry(pos, struct agp_3_5_dev, list);
464 
465 		pos = pos->next;
466 		kfree(cur);
467 	}
468 	kfree(dev_list);
469 
470 get_out:
471 	return ret;
472 }
473