1 /* 2 * Setup routines for AGP 3.5 compliant bridges. 3 */ 4 5 #include <linux/list.h> 6 #include <linux/pci.h> 7 #include <linux/agp_backend.h> 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 11 #include "agp.h" 12 13 /* Generic AGP 3.5 enabling routines */ 14 15 struct agp_3_5_dev { 16 struct list_head list; 17 u8 capndx; 18 u32 maxbw; 19 struct pci_dev *dev; 20 }; 21 22 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new) 23 { 24 struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list); 25 struct list_head *pos; 26 27 list_for_each(pos, head) { 28 cur = list_entry(pos, struct agp_3_5_dev, list); 29 if(cur->maxbw > n->maxbw) 30 break; 31 } 32 list_add_tail(new, pos); 33 } 34 35 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs) 36 { 37 struct agp_3_5_dev *cur; 38 struct pci_dev *dev; 39 struct list_head *pos, *tmp, *head = &list->list, *start = head->next; 40 u32 nistat; 41 42 INIT_LIST_HEAD(head); 43 44 for (pos=start; pos!=head; ) { 45 cur = list_entry(pos, struct agp_3_5_dev, list); 46 dev = cur->dev; 47 48 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat); 49 cur->maxbw = (nistat >> 16) & 0xff; 50 51 tmp = pos; 52 pos = pos->next; 53 agp_3_5_dev_list_insert(head, tmp); 54 } 55 } 56 57 /* 58 * Initialize all isochronous transfer parameters for an AGP 3.0 59 * node (i.e. a host bridge in combination with the adapters 60 * lying behind it...) 61 */ 62 63 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge, 64 struct agp_3_5_dev *dev_list, unsigned int ndevs) 65 { 66 /* 67 * Convenience structure to make the calculations clearer 68 * here. The field names come straight from the AGP 3.0 spec. 69 */ 70 struct isoch_data { 71 u32 maxbw; 72 u32 n; 73 u32 y; 74 u32 l; 75 u32 rq; 76 struct agp_3_5_dev *dev; 77 }; 78 79 struct pci_dev *td = bridge->dev, *dev; 80 struct list_head *head = &dev_list->list, *pos; 81 struct agp_3_5_dev *cur; 82 struct isoch_data *master, target; 83 unsigned int cdev = 0; 84 u32 mnistat, tnistat, tstatus, mcmd; 85 u16 tnicmd, mnicmd; 86 u8 mcapndx; 87 u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async; 88 u32 step, rem, rem_isoch, rem_async; 89 int ret = 0; 90 91 /* 92 * We'll work with an array of isoch_data's (one for each 93 * device in dev_list) throughout this function. 94 */ 95 if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) { 96 ret = -ENOMEM; 97 goto get_out; 98 } 99 100 /* 101 * Sort the device list by maxbw. We need to do this because the 102 * spec suggests that the devices with the smallest requirements 103 * have their resources allocated first, with all remaining resources 104 * falling to the device with the largest requirement. 105 * 106 * We don't exactly do this, we divide target resources by ndevs 107 * and split them amongst the AGP 3.0 devices. The remainder of such 108 * division operations are dropped on the last device, sort of like 109 * the spec mentions it should be done. 110 * 111 * We can't do this sort when we initially construct the dev_list 112 * because we don't know until this function whether isochronous 113 * transfers are enabled and consequently whether maxbw will mean 114 * anything. 115 */ 116 agp_3_5_dev_list_sort(dev_list, ndevs); 117 118 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); 119 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); 120 121 /* Extract power-on defaults from the target */ 122 target.maxbw = (tnistat >> 16) & 0xff; 123 target.n = (tnistat >> 8) & 0xff; 124 target.y = (tnistat >> 6) & 0x3; 125 target.l = (tnistat >> 3) & 0x7; 126 target.rq = (tstatus >> 24) & 0xff; 127 128 y_max = target.y; 129 130 /* 131 * Extract power-on defaults for each device in dev_list. Along 132 * the way, calculate the total isochronous bandwidth required 133 * by these devices and the largest requested payload size. 134 */ 135 list_for_each(pos, head) { 136 cur = list_entry(pos, struct agp_3_5_dev, list); 137 dev = cur->dev; 138 139 mcapndx = cur->capndx; 140 141 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat); 142 143 master[cdev].maxbw = (mnistat >> 16) & 0xff; 144 master[cdev].n = (mnistat >> 8) & 0xff; 145 master[cdev].y = (mnistat >> 6) & 0x3; 146 master[cdev].dev = cur; 147 148 tot_bw += master[cdev].maxbw; 149 y_max = max(y_max, master[cdev].y); 150 151 cdev++; 152 } 153 154 /* Check if this configuration has any chance of working */ 155 if (tot_bw > target.maxbw) { 156 printk(KERN_ERR PFX "isochronous bandwidth required " 157 "by AGP 3.0 devices exceeds that which is supported by " 158 "the AGP 3.0 bridge!\n"); 159 ret = -ENODEV; 160 goto free_and_exit; 161 } 162 163 target.y = y_max; 164 165 /* 166 * Write the calculated payload size into the target's NICMD 167 * register. Doing this directly effects the ISOCH_N value 168 * in the target's NISTAT register, so we need to do this now 169 * to get an accurate value for ISOCH_N later. 170 */ 171 pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd); 172 tnicmd &= ~(0x3 << 6); 173 tnicmd |= target.y << 6; 174 pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd); 175 176 /* Reread the target's ISOCH_N */ 177 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); 178 target.n = (tnistat >> 8) & 0xff; 179 180 /* Calculate the minimum ISOCH_N needed by each master */ 181 for (cdev=0; cdev<ndevs; cdev++) { 182 master[cdev].y = target.y; 183 master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1); 184 185 tot_n += master[cdev].n; 186 } 187 188 /* Exit if the minimal ISOCH_N allocation among the masters is more 189 * than the target can handle. */ 190 if (tot_n > target.n) { 191 printk(KERN_ERR PFX "number of isochronous " 192 "transactions per period required by AGP 3.0 devices " 193 "exceeds that which is supported by the AGP 3.0 " 194 "bridge!\n"); 195 ret = -ENODEV; 196 goto free_and_exit; 197 } 198 199 /* Calculate left over ISOCH_N capability in the target. We'll give 200 * this to the hungriest device (as per the spec) */ 201 rem = target.n - tot_n; 202 203 /* 204 * Calculate the minimum isochronous RQ depth needed by each master. 205 * Along the way, distribute the extra ISOCH_N capability calculated 206 * above. 207 */ 208 for (cdev=0; cdev<ndevs; cdev++) { 209 /* 210 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y 211 * byte isochronous writes will be broken into 64B pieces. 212 * This means we need to budget more RQ depth to account for 213 * these kind of writes (each isochronous write is actually 214 * many writes on the AGP bus). 215 */ 216 master[cdev].rq = master[cdev].n; 217 if(master[cdev].y > 0x1) 218 master[cdev].rq *= (1 << (master[cdev].y - 1)); 219 220 tot_rq += master[cdev].rq; 221 222 if (cdev == ndevs-1) 223 master[cdev].n += rem; 224 } 225 226 /* Figure the number of isochronous and asynchronous RQ slots the 227 * target is providing. */ 228 rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n; 229 rq_async = target.rq - rq_isoch; 230 231 /* Exit if the minimal RQ needs of the masters exceeds what the target 232 * can provide. */ 233 if (tot_rq > rq_isoch) { 234 printk(KERN_ERR PFX "number of request queue slots " 235 "required by the isochronous bandwidth requested by " 236 "AGP 3.0 devices exceeds the number provided by the " 237 "AGP 3.0 bridge!\n"); 238 ret = -ENODEV; 239 goto free_and_exit; 240 } 241 242 /* Calculate asynchronous RQ capability in the target (per master) as 243 * well as the total number of leftover isochronous RQ slots. */ 244 step = rq_async / ndevs; 245 rem_async = step + (rq_async % ndevs); 246 rem_isoch = rq_isoch - tot_rq; 247 248 /* Distribute the extra RQ slots calculated above and write our 249 * isochronous settings out to the actual devices. */ 250 for (cdev=0; cdev<ndevs; cdev++) { 251 cur = master[cdev].dev; 252 dev = cur->dev; 253 254 mcapndx = cur->capndx; 255 256 master[cdev].rq += (cdev == ndevs - 1) 257 ? (rem_async + rem_isoch) : step; 258 259 pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd); 260 pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd); 261 262 mnicmd &= ~(0xff << 8); 263 mnicmd &= ~(0x3 << 6); 264 mcmd &= ~(0xff << 24); 265 266 mnicmd |= master[cdev].n << 8; 267 mnicmd |= master[cdev].y << 6; 268 mcmd |= master[cdev].rq << 24; 269 270 pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd); 271 pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd); 272 } 273 274 free_and_exit: 275 kfree(master); 276 277 get_out: 278 return ret; 279 } 280 281 /* 282 * This function basically allocates request queue slots among the 283 * AGP 3.0 systems in nonisochronous nodes. The algorithm is 284 * pretty stupid, divide the total number of RQ slots provided by the 285 * target by ndevs. Distribute this many slots to each AGP 3.0 device, 286 * giving any left over slots to the last device in dev_list. 287 */ 288 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge, 289 struct agp_3_5_dev *dev_list, unsigned int ndevs) 290 { 291 struct agp_3_5_dev *cur; 292 struct list_head *head = &dev_list->list, *pos; 293 u32 tstatus, mcmd; 294 u32 trq, mrq, rem; 295 unsigned int cdev = 0; 296 297 pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus); 298 299 trq = (tstatus >> 24) & 0xff; 300 mrq = trq / ndevs; 301 302 rem = mrq + (trq % ndevs); 303 304 for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) { 305 cur = list_entry(pos, struct agp_3_5_dev, list); 306 307 pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd); 308 mcmd &= ~(0xff << 24); 309 mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24; 310 pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd); 311 } 312 } 313 314 /* 315 * Fully configure and enable an AGP 3.0 host bridge and all the devices 316 * lying behind it. 317 */ 318 int agp_3_5_enable(struct agp_bridge_data *bridge) 319 { 320 struct pci_dev *td = bridge->dev, *dev = NULL; 321 u8 mcapndx; 322 u32 isoch, arqsz; 323 u32 tstatus, mstatus, ncapid; 324 u32 mmajor; 325 u16 mpstat; 326 struct agp_3_5_dev *dev_list, *cur; 327 struct list_head *head, *pos; 328 unsigned int ndevs = 0; 329 int ret = 0; 330 331 /* Extract some power-on defaults from the target */ 332 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); 333 isoch = (tstatus >> 17) & 0x1; 334 if (isoch == 0) /* isoch xfers not available, bail out. */ 335 return -ENODEV; 336 337 arqsz = (tstatus >> 13) & 0x7; 338 339 /* 340 * Allocate a head for our AGP 3.5 device list 341 * (multiple AGP v3 devices are allowed behind a single bridge). 342 */ 343 if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) { 344 ret = -ENOMEM; 345 goto get_out; 346 } 347 head = &dev_list->list; 348 INIT_LIST_HEAD(head); 349 350 /* Find all AGP devices, and add them to dev_list. */ 351 for_each_pci_dev(dev) { 352 mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP); 353 if (mcapndx == 0) 354 continue; 355 356 switch ((dev->class >>8) & 0xff00) { 357 case 0x0600: /* Bridge */ 358 /* Skip bridges. We should call this function for each one. */ 359 continue; 360 361 case 0x0001: /* Unclassified device */ 362 /* Don't know what this is, but log it for investigation. */ 363 if (mcapndx != 0) { 364 printk (KERN_INFO PFX "Wacky, found unclassified AGP device. %x:%x\n", 365 dev->vendor, dev->device); 366 } 367 continue; 368 369 case 0x0300: /* Display controller */ 370 case 0x0400: /* Multimedia controller */ 371 if((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) { 372 ret = -ENOMEM; 373 goto free_and_exit; 374 } 375 cur->dev = dev; 376 377 pos = &cur->list; 378 list_add(pos, head); 379 ndevs++; 380 continue; 381 382 default: 383 continue; 384 } 385 } 386 387 /* 388 * Take an initial pass through the devices lying behind our host 389 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise 390 * exit with an error message. Along the way store the AGP 3.0 391 * cap_ptr for each device 392 */ 393 list_for_each(pos, head) { 394 cur = list_entry(pos, struct agp_3_5_dev, list); 395 dev = cur->dev; 396 397 pci_read_config_word(dev, PCI_STATUS, &mpstat); 398 if ((mpstat & PCI_STATUS_CAP_LIST) == 0) 399 continue; 400 401 pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx); 402 if (mcapndx != 0) { 403 do { 404 pci_read_config_dword(dev, mcapndx, &ncapid); 405 if ((ncapid & 0xff) != 2) 406 mcapndx = (ncapid >> 8) & 0xff; 407 } 408 while (((ncapid & 0xff) != 2) && (mcapndx != 0)); 409 } 410 411 if (mcapndx == 0) { 412 printk(KERN_ERR PFX "woah! Non-AGP device " 413 "found on the secondary bus of an AGP 3.5 bridge!\n"); 414 ret = -ENODEV; 415 goto free_and_exit; 416 } 417 418 mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf; 419 if (mmajor < 3) { 420 printk(KERN_ERR PFX "woah! AGP 2.0 device " 421 "found on the secondary bus of an AGP 3.5 " 422 "bridge operating with AGP 3.0 electricals!\n"); 423 ret = -ENODEV; 424 goto free_and_exit; 425 } 426 427 cur->capndx = mcapndx; 428 429 pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus); 430 431 if (((mstatus >> 3) & 0x1) == 0) { 432 printk(KERN_ERR PFX "woah! AGP 3.x device " 433 "not operating in AGP 3.x mode found on the " 434 "secondary bus of an AGP 3.5 bridge operating " 435 "with AGP 3.0 electricals!\n"); 436 ret = -ENODEV; 437 goto free_and_exit; 438 } 439 } 440 441 /* 442 * Call functions to divide target resources amongst the AGP 3.0 443 * masters. This process is dramatically different depending on 444 * whether isochronous transfers are supported. 445 */ 446 if (isoch) { 447 ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs); 448 if (ret) { 449 printk(KERN_INFO PFX "Something bad happened setting " 450 "up isochronous xfers. Falling back to " 451 "non-isochronous xfer mode.\n"); 452 } else { 453 goto free_and_exit; 454 } 455 } 456 agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs); 457 458 free_and_exit: 459 /* Be sure to free the dev_list */ 460 for (pos=head->next; pos!=head; ) { 461 cur = list_entry(pos, struct agp_3_5_dev, list); 462 463 pos = pos->next; 464 kfree(cur); 465 } 466 kfree(dev_list); 467 468 get_out: 469 return ret; 470 } 471 472