xref: /openbmc/linux/drivers/char/agp/isoch.c (revision 3cf3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Setup routines for AGP 3.5 compliant bridges.
4  */
5 
6 #include <linux/list.h>
7 #include <linux/pci.h>
8 #include <linux/agp_backend.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 
12 #include "agp.h"
13 
14 /* Generic AGP 3.5 enabling routines */
15 
16 struct agp_3_5_dev {
17 	struct list_head list;
18 	u8 capndx;
19 	u32 maxbw;
20 	struct pci_dev *dev;
21 };
22 
23 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24 {
25 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 	struct list_head *pos;
27 
28 	list_for_each(pos, head) {
29 		cur = list_entry(pos, struct agp_3_5_dev, list);
30 		if (cur->maxbw > n->maxbw)
31 			break;
32 	}
33 	list_add_tail(new, pos);
34 }
35 
36 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37 {
38 	struct agp_3_5_dev *cur;
39 	struct pci_dev *dev;
40 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 	u32 nistat;
42 
43 	INIT_LIST_HEAD(head);
44 
45 	for (pos=start; pos!=head; ) {
46 		cur = list_entry(pos, struct agp_3_5_dev, list);
47 		dev = cur->dev;
48 
49 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 		cur->maxbw = (nistat >> 16) & 0xff;
51 
52 		tmp = pos;
53 		pos = pos->next;
54 		agp_3_5_dev_list_insert(head, tmp);
55 	}
56 }
57 
58 /*
59  * Initialize all isochronous transfer parameters for an AGP 3.0
60  * node (i.e. a host bridge in combination with the adapters
61  * lying behind it...)
62  */
63 
64 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
66 {
67 	/*
68 	 * Convenience structure to make the calculations clearer
69 	 * here.  The field names come straight from the AGP 3.0 spec.
70 	 */
71 	struct isoch_data {
72 		u32 maxbw;
73 		u32 n;
74 		u32 y;
75 		u32 l;
76 		u32 rq;
77 		struct agp_3_5_dev *dev;
78 	};
79 
80 	struct pci_dev *td = bridge->dev, *dev;
81 	struct list_head *head = &dev_list->list, *pos;
82 	struct agp_3_5_dev *cur;
83 	struct isoch_data *master, target;
84 	unsigned int cdev = 0;
85 	u32 mnistat, tnistat, tstatus, mcmd;
86 	u16 tnicmd, mnicmd;
87 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88 	u32 step, rem, rem_isoch, rem_async;
89 	int ret = 0;
90 
91 	/*
92 	 * We'll work with an array of isoch_data's (one for each
93 	 * device in dev_list) throughout this function.
94 	 */
95 	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
96 	if (master == NULL) {
97 		ret = -ENOMEM;
98 		goto get_out;
99 	}
100 
101 	/*
102 	 * Sort the device list by maxbw.  We need to do this because the
103 	 * spec suggests that the devices with the smallest requirements
104 	 * have their resources allocated first, with all remaining resources
105 	 * falling to the device with the largest requirement.
106 	 *
107 	 * We don't exactly do this, we divide target resources by ndevs
108 	 * and split them amongst the AGP 3.0 devices.  The remainder of such
109 	 * division operations are dropped on the last device, sort of like
110 	 * the spec mentions it should be done.
111 	 *
112 	 * We can't do this sort when we initially construct the dev_list
113 	 * because we don't know until this function whether isochronous
114 	 * transfers are enabled and consequently whether maxbw will mean
115 	 * anything.
116 	 */
117 	agp_3_5_dev_list_sort(dev_list, ndevs);
118 
119 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121 
122 	/* Extract power-on defaults from the target */
123 	target.maxbw = (tnistat >> 16) & 0xff;
124 	target.n     = (tnistat >> 8)  & 0xff;
125 	target.y     = (tnistat >> 6)  & 0x3;
126 	target.l     = (tnistat >> 3)  & 0x7;
127 	target.rq    = (tstatus >> 24) & 0xff;
128 
129 	y_max = target.y;
130 
131 	/*
132 	 * Extract power-on defaults for each device in dev_list.  Along
133 	 * the way, calculate the total isochronous bandwidth required
134 	 * by these devices and the largest requested payload size.
135 	 */
136 	list_for_each(pos, head) {
137 		cur = list_entry(pos, struct agp_3_5_dev, list);
138 		dev = cur->dev;
139 
140 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141 
142 		master[cdev].maxbw = (mnistat >> 16) & 0xff;
143 		master[cdev].n     = (mnistat >> 8)  & 0xff;
144 		master[cdev].y     = (mnistat >> 6)  & 0x3;
145 		master[cdev].dev   = cur;
146 
147 		tot_bw += master[cdev].maxbw;
148 		y_max = max(y_max, master[cdev].y);
149 
150 		cdev++;
151 	}
152 
153 	/* Check if this configuration has any chance of working */
154 	if (tot_bw > target.maxbw) {
155 		dev_err(&td->dev, "isochronous bandwidth required "
156 			"by AGP 3.0 devices exceeds that which is supported by "
157 			"the AGP 3.0 bridge!\n");
158 		ret = -ENODEV;
159 		goto free_and_exit;
160 	}
161 
162 	target.y = y_max;
163 
164 	/*
165 	 * Write the calculated payload size into the target's NICMD
166 	 * register.  Doing this directly effects the ISOCH_N value
167 	 * in the target's NISTAT register, so we need to do this now
168 	 * to get an accurate value for ISOCH_N later.
169 	 */
170 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171 	tnicmd &= ~(0x3 << 6);
172 	tnicmd |= target.y << 6;
173 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174 
175 	/* Reread the target's ISOCH_N */
176 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177 	target.n = (tnistat >> 8) & 0xff;
178 
179 	/* Calculate the minimum ISOCH_N needed by each master */
180 	for (cdev=0; cdev<ndevs; cdev++) {
181 		master[cdev].y = target.y;
182 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183 
184 		tot_n += master[cdev].n;
185 	}
186 
187 	/* Exit if the minimal ISOCH_N allocation among the masters is more
188 	 * than the target can handle. */
189 	if (tot_n > target.n) {
190 		dev_err(&td->dev, "number of isochronous "
191 			"transactions per period required by AGP 3.0 devices "
192 			"exceeds that which is supported by the AGP 3.0 "
193 			"bridge!\n");
194 		ret = -ENODEV;
195 		goto free_and_exit;
196 	}
197 
198 	/* Calculate left over ISOCH_N capability in the target.  We'll give
199 	 * this to the hungriest device (as per the spec) */
200 	rem  = target.n - tot_n;
201 
202 	/*
203 	 * Calculate the minimum isochronous RQ depth needed by each master.
204 	 * Along the way, distribute the extra ISOCH_N capability calculated
205 	 * above.
206 	 */
207 	for (cdev=0; cdev<ndevs; cdev++) {
208 		/*
209 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
210 		 * byte isochronous writes will be broken into 64B pieces.
211 		 * This means we need to budget more RQ depth to account for
212 		 * these kind of writes (each isochronous write is actually
213 		 * many writes on the AGP bus).
214 		 */
215 		master[cdev].rq = master[cdev].n;
216 		if (master[cdev].y > 0x1)
217 			master[cdev].rq *= (1 << (master[cdev].y - 1));
218 
219 		tot_rq += master[cdev].rq;
220 	}
221 	master[ndevs-1].n += rem;
222 
223 	/* Figure the number of isochronous and asynchronous RQ slots the
224 	 * target is providing. */
225 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226 	rq_async = target.rq - rq_isoch;
227 
228 	/* Exit if the minimal RQ needs of the masters exceeds what the target
229 	 * can provide. */
230 	if (tot_rq > rq_isoch) {
231 		dev_err(&td->dev, "number of request queue slots "
232 			"required by the isochronous bandwidth requested by "
233 			"AGP 3.0 devices exceeds the number provided by the "
234 			"AGP 3.0 bridge!\n");
235 		ret = -ENODEV;
236 		goto free_and_exit;
237 	}
238 
239 	/* Calculate asynchronous RQ capability in the target (per master) as
240 	 * well as the total number of leftover isochronous RQ slots. */
241 	step      = rq_async / ndevs;
242 	rem_async = step + (rq_async % ndevs);
243 	rem_isoch = rq_isoch - tot_rq;
244 
245 	/* Distribute the extra RQ slots calculated above and write our
246 	 * isochronous settings out to the actual devices. */
247 	for (cdev=0; cdev<ndevs; cdev++) {
248 		cur = master[cdev].dev;
249 		dev = cur->dev;
250 
251 		master[cdev].rq += (cdev == ndevs - 1)
252 		              ? (rem_async + rem_isoch) : step;
253 
254 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256 
257 		mnicmd &= ~(0xff << 8);
258 		mnicmd &= ~(0x3  << 6);
259 		mcmd   &= ~(0xff << 24);
260 
261 		mnicmd |= master[cdev].n  << 8;
262 		mnicmd |= master[cdev].y  << 6;
263 		mcmd   |= master[cdev].rq << 24;
264 
265 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267 	}
268 
269 free_and_exit:
270 	kfree(master);
271 
272 get_out:
273 	return ret;
274 }
275 
276 /*
277  * This function basically allocates request queue slots among the
278  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
279  * pretty stupid, divide the total number of RQ slots provided by the
280  * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
281  * giving any left over slots to the last device in dev_list.
282  */
283 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
285 {
286 	struct agp_3_5_dev *cur;
287 	struct list_head *head = &dev_list->list, *pos;
288 	u32 tstatus, mcmd;
289 	u32 trq, mrq, rem;
290 	unsigned int cdev = 0;
291 
292 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293 
294 	trq = (tstatus >> 24) & 0xff;
295 	mrq = trq / ndevs;
296 
297 	rem = mrq + (trq % ndevs);
298 
299 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300 		cur = list_entry(pos, struct agp_3_5_dev, list);
301 
302 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303 		mcmd &= ~(0xff << 24);
304 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306 	}
307 }
308 
309 /*
310  * Fully configure and enable an AGP 3.0 host bridge and all the devices
311  * lying behind it.
312  */
313 int agp_3_5_enable(struct agp_bridge_data *bridge)
314 {
315 	struct pci_dev *td = bridge->dev, *dev = NULL;
316 	u8 mcapndx;
317 	u32 isoch;
318 	u32 tstatus, mstatus, ncapid;
319 	u32 mmajor;
320 	u16 mpstat;
321 	struct agp_3_5_dev *dev_list, *cur;
322 	struct list_head *head, *pos;
323 	unsigned int ndevs = 0;
324 	int ret = 0;
325 
326 	/* Extract some power-on defaults from the target */
327 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328 	isoch     = (tstatus >> 17) & 0x1;
329 	if (isoch == 0)	/* isoch xfers not available, bail out. */
330 		return -ENODEV;
331 
332 	/*
333 	 * Allocate a head for our AGP 3.5 device list
334 	 * (multiple AGP v3 devices are allowed behind a single bridge).
335 	 */
336 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337 		ret = -ENOMEM;
338 		goto get_out;
339 	}
340 	head = &dev_list->list;
341 	INIT_LIST_HEAD(head);
342 
343 	/* Find all AGP devices, and add them to dev_list. */
344 	for_each_pci_dev(dev) {
345 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346 		if (mcapndx == 0)
347 			continue;
348 
349 		switch ((dev->class >>8) & 0xff00) {
350 			case 0x0600:    /* Bridge */
351 				/* Skip bridges. We should call this function for each one. */
352 				continue;
353 
354 			case 0x0001:    /* Unclassified device */
355 				/* Don't know what this is, but log it for investigation. */
356 				if (mcapndx != 0) {
357 					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358 						 pci_name(dev),
359 						 dev->vendor, dev->device);
360 				}
361 				continue;
362 
363 			case 0x0300:    /* Display controller */
364 			case 0x0400:    /* Multimedia controller */
365 				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366 					ret = -ENOMEM;
367 					goto free_and_exit;
368 				}
369 				cur->dev = dev;
370 
371 				pos = &cur->list;
372 				list_add(pos, head);
373 				ndevs++;
374 				continue;
375 
376 			default:
377 				continue;
378 		}
379 	}
380 
381 	/*
382 	 * Take an initial pass through the devices lying behind our host
383 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
384 	 * exit with an error message.  Along the way store the AGP 3.0
385 	 * cap_ptr for each device
386 	 */
387 	list_for_each(pos, head) {
388 		cur = list_entry(pos, struct agp_3_5_dev, list);
389 		dev = cur->dev;
390 
391 		pci_read_config_word(dev, PCI_STATUS, &mpstat);
392 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393 			continue;
394 
395 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396 		if (mcapndx != 0) {
397 			do {
398 				pci_read_config_dword(dev, mcapndx, &ncapid);
399 				if ((ncapid & 0xff) != 2)
400 					mcapndx = (ncapid >> 8) & 0xff;
401 			}
402 			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403 		}
404 
405 		if (mcapndx == 0) {
406 			dev_err(&td->dev, "woah!  Non-AGP device %s on "
407 				"secondary bus of AGP 3.5 bridge!\n",
408 				pci_name(dev));
409 			ret = -ENODEV;
410 			goto free_and_exit;
411 		}
412 
413 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414 		if (mmajor < 3) {
415 			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
416 				"secondary bus of AGP 3.5 bridge operating "
417 				"with AGP 3.0 electricals!\n", pci_name(dev));
418 			ret = -ENODEV;
419 			goto free_and_exit;
420 		}
421 
422 		cur->capndx = mcapndx;
423 
424 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425 
426 		if (((mstatus >> 3) & 0x1) == 0) {
427 			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
428 				"operating in AGP 3.x mode on secondary bus "
429 				"of AGP 3.5 bridge operating with AGP 3.0 "
430 				"electricals!\n", pci_name(dev));
431 			ret = -ENODEV;
432 			goto free_and_exit;
433 		}
434 	}
435 
436 	/*
437 	 * Call functions to divide target resources amongst the AGP 3.0
438 	 * masters.  This process is dramatically different depending on
439 	 * whether isochronous transfers are supported.
440 	 */
441 	if (isoch) {
442 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443 		if (ret) {
444 			dev_info(&td->dev, "something bad happened setting "
445 				 "up isochronous xfers; falling back to "
446 				 "non-isochronous xfer mode\n");
447 		} else {
448 			goto free_and_exit;
449 		}
450 	}
451 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452 
453 free_and_exit:
454 	/* Be sure to free the dev_list */
455 	for (pos=head->next; pos!=head; ) {
456 		cur = list_entry(pos, struct agp_3_5_dev, list);
457 
458 		pos = pos->next;
459 		kfree(cur);
460 	}
461 	kfree(dev_list);
462 
463 get_out:
464 	return ret;
465 }
466