xref: /openbmc/linux/drivers/char/agp/isoch.c (revision 1da177e4)
1 /*
2  * Setup routines for AGP 3.5 compliant bridges.
3  */
4 
5 #include <linux/list.h>
6 #include <linux/pci.h>
7 #include <linux/agp_backend.h>
8 #include <linux/module.h>
9 
10 #include "agp.h"
11 
12 /* Generic AGP 3.5 enabling routines */
13 
14 struct agp_3_5_dev {
15 	struct list_head list;
16 	u8 capndx;
17 	u32 maxbw;
18 	struct pci_dev *dev;
19 };
20 
21 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
22 {
23 	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
24 	struct list_head *pos;
25 
26 	list_for_each(pos, head) {
27 		cur = list_entry(pos, struct agp_3_5_dev, list);
28 		if(cur->maxbw > n->maxbw)
29 			break;
30 	}
31 	list_add_tail(new, pos);
32 }
33 
34 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
35 {
36 	struct agp_3_5_dev *cur;
37 	struct pci_dev *dev;
38 	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
39 	u32 nistat;
40 
41 	INIT_LIST_HEAD(head);
42 
43 	for (pos=start; pos!=head; ) {
44 		cur = list_entry(pos, struct agp_3_5_dev, list);
45 		dev = cur->dev;
46 
47 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
48 		cur->maxbw = (nistat >> 16) & 0xff;
49 
50 		tmp = pos;
51 		pos = pos->next;
52 		agp_3_5_dev_list_insert(head, tmp);
53 	}
54 }
55 
56 /*
57  * Initialize all isochronous transfer parameters for an AGP 3.0
58  * node (i.e. a host bridge in combination with the adapters
59  * lying behind it...)
60  */
61 
62 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
63 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
64 {
65 	/*
66 	 * Convenience structure to make the calculations clearer
67 	 * here.  The field names come straight from the AGP 3.0 spec.
68 	 */
69 	struct isoch_data {
70 		u32 maxbw;
71 		u32 n;
72 		u32 y;
73 		u32 l;
74 		u32 rq;
75 		struct agp_3_5_dev *dev;
76 	};
77 
78 	struct pci_dev *td = bridge->dev, *dev;
79 	struct list_head *head = &dev_list->list, *pos;
80 	struct agp_3_5_dev *cur;
81 	struct isoch_data *master, target;
82 	unsigned int cdev = 0;
83 	u32 mnistat, tnistat, tstatus, mcmd;
84 	u16 tnicmd, mnicmd;
85 	u8 mcapndx;
86 	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
87 	u32 step, rem, rem_isoch, rem_async;
88 	int ret = 0;
89 
90 	/*
91 	 * We'll work with an array of isoch_data's (one for each
92 	 * device in dev_list) throughout this function.
93 	 */
94 	if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
95 		ret = -ENOMEM;
96 		goto get_out;
97 	}
98 
99 	/*
100 	 * Sort the device list by maxbw.  We need to do this because the
101 	 * spec suggests that the devices with the smallest requirements
102 	 * have their resources allocated first, with all remaining resources
103 	 * falling to the device with the largest requirement.
104 	 *
105 	 * We don't exactly do this, we divide target resources by ndevs
106 	 * and split them amongst the AGP 3.0 devices.  The remainder of such
107 	 * division operations are dropped on the last device, sort of like
108 	 * the spec mentions it should be done.
109 	 *
110 	 * We can't do this sort when we initially construct the dev_list
111 	 * because we don't know until this function whether isochronous
112 	 * transfers are enabled and consequently whether maxbw will mean
113 	 * anything.
114 	 */
115 	agp_3_5_dev_list_sort(dev_list, ndevs);
116 
117 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
118 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
119 
120 	/* Extract power-on defaults from the target */
121 	target.maxbw = (tnistat >> 16) & 0xff;
122 	target.n     = (tnistat >> 8)  & 0xff;
123 	target.y     = (tnistat >> 6)  & 0x3;
124 	target.l     = (tnistat >> 3)  & 0x7;
125 	target.rq    = (tstatus >> 24) & 0xff;
126 
127 	y_max = target.y;
128 
129 	/*
130 	 * Extract power-on defaults for each device in dev_list.  Along
131 	 * the way, calculate the total isochronous bandwidth required
132 	 * by these devices and the largest requested payload size.
133 	 */
134 	list_for_each(pos, head) {
135 		cur = list_entry(pos, struct agp_3_5_dev, list);
136 		dev = cur->dev;
137 
138 		mcapndx = cur->capndx;
139 
140 		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141 
142 		master[cdev].maxbw = (mnistat >> 16) & 0xff;
143 		master[cdev].n     = (mnistat >> 8)  & 0xff;
144 		master[cdev].y     = (mnistat >> 6)  & 0x3;
145 		master[cdev].dev   = cur;
146 
147 		tot_bw += master[cdev].maxbw;
148 		y_max = max(y_max, master[cdev].y);
149 
150 		cdev++;
151 	}
152 
153 	/* Check if this configuration has any chance of working */
154 	if (tot_bw > target.maxbw) {
155 		printk(KERN_ERR PFX "isochronous bandwidth required "
156 			"by AGP 3.0 devices exceeds that which is supported by "
157 			"the AGP 3.0 bridge!\n");
158 		ret = -ENODEV;
159 		goto free_and_exit;
160 	}
161 
162 	target.y = y_max;
163 
164 	/*
165 	 * Write the calculated payload size into the target's NICMD
166 	 * register.  Doing this directly effects the ISOCH_N value
167 	 * in the target's NISTAT register, so we need to do this now
168 	 * to get an accurate value for ISOCH_N later.
169 	 */
170 	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171 	tnicmd &= ~(0x3 << 6);
172 	tnicmd |= target.y << 6;
173 	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174 
175 	/* Reread the target's ISOCH_N */
176 	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177 	target.n = (tnistat >> 8) & 0xff;
178 
179 	/* Calculate the minimum ISOCH_N needed by each master */
180 	for (cdev=0; cdev<ndevs; cdev++) {
181 		master[cdev].y = target.y;
182 		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183 
184 		tot_n += master[cdev].n;
185 	}
186 
187 	/* Exit if the minimal ISOCH_N allocation among the masters is more
188 	 * than the target can handle. */
189 	if (tot_n > target.n) {
190 		printk(KERN_ERR PFX "number of isochronous "
191 			"transactions per period required by AGP 3.0 devices "
192 			"exceeds that which is supported by the AGP 3.0 "
193 			"bridge!\n");
194 		ret = -ENODEV;
195 		goto free_and_exit;
196 	}
197 
198 	/* Calculate left over ISOCH_N capability in the target.  We'll give
199 	 * this to the hungriest device (as per the spec) */
200 	rem  = target.n - tot_n;
201 
202 	/*
203 	 * Calculate the minimum isochronous RQ depth needed by each master.
204 	 * Along the way, distribute the extra ISOCH_N capability calculated
205 	 * above.
206 	 */
207 	for (cdev=0; cdev<ndevs; cdev++) {
208 		/*
209 		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
210 		 * byte isochronous writes will be broken into 64B pieces.
211 		 * This means we need to budget more RQ depth to account for
212 		 * these kind of writes (each isochronous write is actually
213 		 * many writes on the AGP bus).
214 		 */
215 		master[cdev].rq = master[cdev].n;
216 		if(master[cdev].y > 0x1)
217 			master[cdev].rq *= (1 << (master[cdev].y - 1));
218 
219 		tot_rq += master[cdev].rq;
220 
221 		if (cdev == ndevs-1)
222 			master[cdev].n += rem;
223 	}
224 
225 	/* Figure the number of isochronous and asynchronous RQ slots the
226 	 * target is providing. */
227 	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
228 	rq_async = target.rq - rq_isoch;
229 
230 	/* Exit if the minimal RQ needs of the masters exceeds what the target
231 	 * can provide. */
232 	if (tot_rq > rq_isoch) {
233 		printk(KERN_ERR PFX "number of request queue slots "
234 			"required by the isochronous bandwidth requested by "
235 			"AGP 3.0 devices exceeds the number provided by the "
236 			"AGP 3.0 bridge!\n");
237 		ret = -ENODEV;
238 		goto free_and_exit;
239 	}
240 
241 	/* Calculate asynchronous RQ capability in the target (per master) as
242 	 * well as the total number of leftover isochronous RQ slots. */
243 	step      = rq_async / ndevs;
244 	rem_async = step + (rq_async % ndevs);
245 	rem_isoch = rq_isoch - tot_rq;
246 
247 	/* Distribute the extra RQ slots calculated above and write our
248 	 * isochronous settings out to the actual devices. */
249 	for (cdev=0; cdev<ndevs; cdev++) {
250 		cur = master[cdev].dev;
251 		dev = cur->dev;
252 
253 		mcapndx = cur->capndx;
254 
255 		master[cdev].rq += (cdev == ndevs - 1)
256 		              ? (rem_async + rem_isoch) : step;
257 
258 		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
259 		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
260 
261 		mnicmd &= ~(0xff << 8);
262 		mnicmd &= ~(0x3  << 6);
263 		mcmd   &= ~(0xff << 24);
264 
265 		mnicmd |= master[cdev].n  << 8;
266 		mnicmd |= master[cdev].y  << 6;
267 		mcmd   |= master[cdev].rq << 24;
268 
269 		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
270 		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
271 	}
272 
273 free_and_exit:
274 	kfree(master);
275 
276 get_out:
277 	return ret;
278 }
279 
280 /*
281  * This function basically allocates request queue slots among the
282  * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
283  * pretty stupid, divide the total number of RQ slots provided by the
284  * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
285  * giving any left over slots to the last device in dev_list.
286  */
287 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
288 		struct agp_3_5_dev *dev_list, unsigned int ndevs)
289 {
290 	struct agp_3_5_dev *cur;
291 	struct list_head *head = &dev_list->list, *pos;
292 	u32 tstatus, mcmd;
293 	u32 trq, mrq, rem;
294 	unsigned int cdev = 0;
295 
296 	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
297 
298 	trq = (tstatus >> 24) & 0xff;
299 	mrq = trq / ndevs;
300 
301 	rem = mrq + (trq % ndevs);
302 
303 	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
304 		cur = list_entry(pos, struct agp_3_5_dev, list);
305 
306 		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
307 		mcmd &= ~(0xff << 24);
308 		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
309 		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
310 	}
311 }
312 
313 /*
314  * Fully configure and enable an AGP 3.0 host bridge and all the devices
315  * lying behind it.
316  */
317 int agp_3_5_enable(struct agp_bridge_data *bridge)
318 {
319 	struct pci_dev *td = bridge->dev, *dev = NULL;
320 	u8 mcapndx;
321 	u32 isoch, arqsz;
322 	u32 tstatus, mstatus, ncapid;
323 	u32 mmajor;
324 	u16 mpstat;
325 	struct agp_3_5_dev *dev_list, *cur;
326 	struct list_head *head, *pos;
327 	unsigned int ndevs = 0;
328 	int ret = 0;
329 
330 	/* Extract some power-on defaults from the target */
331 	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
332 	isoch     = (tstatus >> 17) & 0x1;
333 	if (isoch == 0)	/* isoch xfers not available, bail out. */
334 		return -ENODEV;
335 
336 	arqsz     = (tstatus >> 13) & 0x7;
337 
338 	/*
339 	 * Allocate a head for our AGP 3.5 device list
340 	 * (multiple AGP v3 devices are allowed behind a single bridge).
341 	 */
342 	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
343 		ret = -ENOMEM;
344 		goto get_out;
345 	}
346 	head = &dev_list->list;
347 	INIT_LIST_HEAD(head);
348 
349 	/* Find all AGP devices, and add them to dev_list. */
350 	for_each_pci_dev(dev) {
351 		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
352 		if (mcapndx == 0)
353 			continue;
354 
355 		switch ((dev->class >>8) & 0xff00) {
356 			case 0x0600:    /* Bridge */
357 				/* Skip bridges. We should call this function for each one. */
358 				continue;
359 
360 			case 0x0001:    /* Unclassified device */
361 				/* Don't know what this is, but log it for investigation. */
362 				if (mcapndx != 0) {
363 					printk (KERN_INFO PFX "Wacky, found unclassified AGP device. %x:%x\n",
364 						dev->vendor, dev->device);
365 				}
366 				continue;
367 
368 			case 0x0300:    /* Display controller */
369 			case 0x0400:    /* Multimedia controller */
370 				if((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
371 					ret = -ENOMEM;
372 					goto free_and_exit;
373 				}
374 				cur->dev = dev;
375 
376 				pos = &cur->list;
377 				list_add(pos, head);
378 				ndevs++;
379 				continue;
380 
381 			default:
382 				continue;
383 		}
384 	}
385 
386 	/*
387 	 * Take an initial pass through the devices lying behind our host
388 	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
389 	 * exit with an error message.  Along the way store the AGP 3.0
390 	 * cap_ptr for each device
391 	 */
392 	list_for_each(pos, head) {
393 		cur = list_entry(pos, struct agp_3_5_dev, list);
394 		dev = cur->dev;
395 
396 		pci_read_config_word(dev, PCI_STATUS, &mpstat);
397 		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
398 			continue;
399 
400 		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
401 		if (mcapndx != 0) {
402 			do {
403 				pci_read_config_dword(dev, mcapndx, &ncapid);
404 				if ((ncapid & 0xff) != 2)
405 					mcapndx = (ncapid >> 8) & 0xff;
406 			}
407 			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
408 		}
409 
410 		if (mcapndx == 0) {
411 			printk(KERN_ERR PFX "woah!  Non-AGP device "
412 				"found on the secondary bus of an AGP 3.5 bridge!\n");
413 			ret = -ENODEV;
414 			goto free_and_exit;
415 		}
416 
417 		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
418 		if (mmajor < 3) {
419 			printk(KERN_ERR PFX "woah!  AGP 2.0 device "
420 				"found on the secondary bus of an AGP 3.5 "
421 				"bridge operating with AGP 3.0 electricals!\n");
422 			ret = -ENODEV;
423 			goto free_and_exit;
424 		}
425 
426 		cur->capndx = mcapndx;
427 
428 		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
429 
430 		if (((mstatus >> 3) & 0x1) == 0) {
431 			printk(KERN_ERR PFX "woah!  AGP 3.x device "
432 				"not operating in AGP 3.x mode found on the "
433 				"secondary bus of an AGP 3.5 bridge operating "
434 				"with AGP 3.0 electricals!\n");
435 			ret = -ENODEV;
436 			goto free_and_exit;
437 		}
438 	}
439 
440 	/*
441 	 * Call functions to divide target resources amongst the AGP 3.0
442 	 * masters.  This process is dramatically different depending on
443 	 * whether isochronous transfers are supported.
444 	 */
445 	if (isoch) {
446 		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
447 		if (ret) {
448 			printk(KERN_INFO PFX "Something bad happened setting "
449 			       "up isochronous xfers.  Falling back to "
450 			       "non-isochronous xfer mode.\n");
451 		} else {
452 			goto free_and_exit;
453 		}
454 	}
455 	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
456 
457 free_and_exit:
458 	/* Be sure to free the dev_list */
459 	for (pos=head->next; pos!=head; ) {
460 		cur = list_entry(pos, struct agp_3_5_dev, list);
461 
462 		pos = pos->next;
463 		kfree(cur);
464 	}
465 	kfree(dev_list);
466 
467 get_out:
468 	return ret;
469 }
470 
471