1 /* 2 * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of 3 * the "Intel 460GTX Chipset Software Developer's Manual": 4 * http://www.intel.com/design/archives/itanium/downloads/248704.htm 5 */ 6 /* 7 * 460GX support by Chris Ahna <christopher.j.ahna@intel.com> 8 * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com> 9 */ 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/init.h> 13 #include <linux/string.h> 14 #include <linux/slab.h> 15 #include <linux/agp_backend.h> 16 #include <linux/log2.h> 17 18 #include "agp.h" 19 20 #define INTEL_I460_BAPBASE 0x98 21 #define INTEL_I460_GXBCTL 0xa0 22 #define INTEL_I460_AGPSIZ 0xa2 23 #define INTEL_I460_ATTBASE 0xfe200000 24 #define INTEL_I460_GATT_VALID (1UL << 24) 25 #define INTEL_I460_GATT_COHERENT (1UL << 25) 26 27 /* 28 * The i460 can operate with large (4MB) pages, but there is no sane way to support this 29 * within the current kernel/DRM environment, so we disable the relevant code for now. 30 * See also comments in ia64_alloc_page()... 31 */ 32 #define I460_LARGE_IO_PAGES 0 33 34 #if I460_LARGE_IO_PAGES 35 # define I460_IO_PAGE_SHIFT i460.io_page_shift 36 #else 37 # define I460_IO_PAGE_SHIFT 12 38 #endif 39 40 #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT) 41 #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT)) 42 #define I460_SRAM_IO_DISABLE (1 << 4) 43 #define I460_BAPBASE_ENABLE (1 << 3) 44 #define I460_AGPSIZ_MASK 0x7 45 #define I460_4M_PS (1 << 1) 46 47 /* Control bits for Out-Of-GART coherency and Burst Write Combining */ 48 #define I460_GXBCTL_OOG (1UL << 0) 49 #define I460_GXBCTL_BWC (1UL << 2) 50 51 /* 52 * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the 53 * gatt_table and gatt_table_real pointers a "void *"... 54 */ 55 #define RD_GATT(index) readl((u32 *) i460.gatt + (index)) 56 #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index)) 57 /* 58 * The 460 spec says we have to read the last location written to make sure that all 59 * writes have taken effect 60 */ 61 #define WR_FLUSH_GATT(index) RD_GATT(index) 62 63 static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, 64 dma_addr_t addr, int type); 65 66 static struct { 67 void *gatt; /* ioremap'd GATT area */ 68 69 /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */ 70 u8 io_page_shift; 71 72 /* BIOS configures chipset to one of 2 possible apbase values: */ 73 u8 dynamic_apbase; 74 75 /* structure for tracking partial use of 4MB GART pages: */ 76 struct lp_desc { 77 unsigned long *alloced_map; /* bitmap of kernel-pages in use */ 78 int refcount; /* number of kernel pages using the large page */ 79 u64 paddr; /* physical address of large page */ 80 struct page *page; /* page pointer */ 81 } *lp_desc; 82 } i460; 83 84 static const struct aper_size_info_8 i460_sizes[3] = 85 { 86 /* 87 * The 32GB aperture is only available with a 4M GART page size. Due to the 88 * dynamic GART page size, we can't figure out page_order or num_entries until 89 * runtime. 90 */ 91 {32768, 0, 0, 4}, 92 {1024, 0, 0, 2}, 93 {256, 0, 0, 1} 94 }; 95 96 static struct gatt_mask i460_masks[] = 97 { 98 { 99 .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT, 100 .type = 0 101 } 102 }; 103 104 static int i460_fetch_size (void) 105 { 106 int i; 107 u8 temp; 108 struct aper_size_info_8 *values; 109 110 /* Determine the GART page size */ 111 pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp); 112 i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12; 113 pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift); 114 115 if (i460.io_page_shift != I460_IO_PAGE_SHIFT) { 116 printk(KERN_ERR PFX 117 "I/O (GART) page-size %luKB doesn't match expected " 118 "size %luKB\n", 119 1UL << (i460.io_page_shift - 10), 120 1UL << (I460_IO_PAGE_SHIFT)); 121 return 0; 122 } 123 124 values = A_SIZE_8(agp_bridge->driver->aperture_sizes); 125 126 pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); 127 128 /* Exit now if the IO drivers for the GART SRAMS are turned off */ 129 if (temp & I460_SRAM_IO_DISABLE) { 130 printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n"); 131 printk(KERN_ERR PFX "AGPGART operation not possible\n"); 132 return 0; 133 } 134 135 /* Make sure we don't try to create an 2 ^ 23 entry GATT */ 136 if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) { 137 printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n"); 138 return 0; 139 } 140 141 /* Determine the proper APBASE register */ 142 if (temp & I460_BAPBASE_ENABLE) 143 i460.dynamic_apbase = INTEL_I460_BAPBASE; 144 else 145 i460.dynamic_apbase = AGP_APBASE; 146 147 for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { 148 /* 149 * Dynamically calculate the proper num_entries and page_order values for 150 * the define aperture sizes. Take care not to shift off the end of 151 * values[i].size. 152 */ 153 values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12); 154 values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT); 155 } 156 157 for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { 158 /* Neglect control bits when matching up size_value */ 159 if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) { 160 agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); 161 agp_bridge->aperture_size_idx = i; 162 return values[i].size; 163 } 164 } 165 166 return 0; 167 } 168 169 /* There isn't anything to do here since 460 has no GART TLB. */ 170 static void i460_tlb_flush (struct agp_memory *mem) 171 { 172 return; 173 } 174 175 /* 176 * This utility function is needed to prevent corruption of the control bits 177 * which are stored along with the aperture size in 460's AGPSIZ register 178 */ 179 static void i460_write_agpsiz (u8 size_value) 180 { 181 u8 temp; 182 183 pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); 184 pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, 185 ((temp & ~I460_AGPSIZ_MASK) | size_value)); 186 } 187 188 static void i460_cleanup (void) 189 { 190 struct aper_size_info_8 *previous_size; 191 192 previous_size = A_SIZE_8(agp_bridge->previous_size); 193 i460_write_agpsiz(previous_size->size_value); 194 195 if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) 196 kfree(i460.lp_desc); 197 } 198 199 static int i460_configure (void) 200 { 201 union { 202 u32 small[2]; 203 u64 large; 204 } temp; 205 size_t size; 206 u8 scratch; 207 struct aper_size_info_8 *current_size; 208 209 temp.large = 0; 210 211 current_size = A_SIZE_8(agp_bridge->current_size); 212 i460_write_agpsiz(current_size->size_value); 213 214 /* 215 * Do the necessary rigmarole to read all eight bytes of APBASE. 216 * This has to be done since the AGP aperture can be above 4GB on 217 * 460 based systems. 218 */ 219 pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0])); 220 pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1])); 221 222 /* Clear BAR control bits */ 223 agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1); 224 225 pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch); 226 pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, 227 (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC); 228 229 /* 230 * Initialize partial allocation trackers if a GART page is bigger than a kernel 231 * page. 232 */ 233 if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) { 234 size = current_size->num_entries * sizeof(i460.lp_desc[0]); 235 i460.lp_desc = kzalloc(size, GFP_KERNEL); 236 if (!i460.lp_desc) 237 return -ENOMEM; 238 } 239 return 0; 240 } 241 242 static int i460_create_gatt_table (struct agp_bridge_data *bridge) 243 { 244 int page_order, num_entries, i; 245 void *temp; 246 247 /* 248 * Load up the fixed address of the GART SRAMS which hold our GATT table. 249 */ 250 temp = agp_bridge->current_size; 251 page_order = A_SIZE_8(temp)->page_order; 252 num_entries = A_SIZE_8(temp)->num_entries; 253 254 i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order); 255 if (!i460.gatt) { 256 printk(KERN_ERR PFX "ioremap failed\n"); 257 return -ENOMEM; 258 } 259 260 /* These are no good, the should be removed from the agp_bridge strucure... */ 261 agp_bridge->gatt_table_real = NULL; 262 agp_bridge->gatt_table = NULL; 263 agp_bridge->gatt_bus_addr = 0; 264 265 for (i = 0; i < num_entries; ++i) 266 WR_GATT(i, 0); 267 WR_FLUSH_GATT(i - 1); 268 return 0; 269 } 270 271 static int i460_free_gatt_table (struct agp_bridge_data *bridge) 272 { 273 int num_entries, i; 274 void *temp; 275 276 temp = agp_bridge->current_size; 277 278 num_entries = A_SIZE_8(temp)->num_entries; 279 280 for (i = 0; i < num_entries; ++i) 281 WR_GATT(i, 0); 282 WR_FLUSH_GATT(num_entries - 1); 283 284 iounmap(i460.gatt); 285 return 0; 286 } 287 288 /* 289 * The following functions are called when the I/O (GART) page size is smaller than 290 * PAGE_SIZE. 291 */ 292 293 static int i460_insert_memory_small_io_page (struct agp_memory *mem, 294 off_t pg_start, int type) 295 { 296 unsigned long paddr, io_pg_start, io_page_size; 297 int i, j, k, num_entries; 298 void *temp; 299 300 pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n", 301 mem, pg_start, type, page_to_phys(mem->pages[0])); 302 303 if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) 304 return -EINVAL; 305 306 io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start; 307 308 temp = agp_bridge->current_size; 309 num_entries = A_SIZE_8(temp)->num_entries; 310 311 if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) { 312 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); 313 return -EINVAL; 314 } 315 316 j = io_pg_start; 317 while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) { 318 if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) { 319 pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n", 320 j, RD_GATT(j)); 321 return -EBUSY; 322 } 323 j++; 324 } 325 326 io_page_size = 1UL << I460_IO_PAGE_SHIFT; 327 for (i = 0, j = io_pg_start; i < mem->page_count; i++) { 328 paddr = page_to_phys(mem->pages[i]); 329 for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size) 330 WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type)); 331 } 332 WR_FLUSH_GATT(j - 1); 333 return 0; 334 } 335 336 static int i460_remove_memory_small_io_page(struct agp_memory *mem, 337 off_t pg_start, int type) 338 { 339 int i; 340 341 pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n", 342 mem, pg_start, type); 343 344 pg_start = I460_IOPAGES_PER_KPAGE * pg_start; 345 346 for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++) 347 WR_GATT(i, 0); 348 WR_FLUSH_GATT(i - 1); 349 return 0; 350 } 351 352 #if I460_LARGE_IO_PAGES 353 354 /* 355 * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE. 356 * 357 * This situation is interesting since AGP memory allocations that are smaller than a 358 * single GART page are possible. The i460.lp_desc array tracks partial allocation of the 359 * large GART pages to work around this issue. 360 * 361 * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page 362 * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and 363 * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated). 364 */ 365 366 static int i460_alloc_large_page (struct lp_desc *lp) 367 { 368 unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT; 369 size_t map_size; 370 371 lp->page = alloc_pages(GFP_KERNEL, order); 372 if (!lp->page) { 373 printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n"); 374 return -ENOMEM; 375 } 376 377 map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8; 378 lp->alloced_map = kzalloc(map_size, GFP_KERNEL); 379 if (!lp->alloced_map) { 380 __free_pages(lp->page, order); 381 printk(KERN_ERR PFX "Out of memory, we're in trouble...\n"); 382 return -ENOMEM; 383 } 384 385 lp->paddr = page_to_phys(lp->page); 386 lp->refcount = 0; 387 atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); 388 return 0; 389 } 390 391 static void i460_free_large_page (struct lp_desc *lp) 392 { 393 kfree(lp->alloced_map); 394 lp->alloced_map = NULL; 395 396 __free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT); 397 atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); 398 } 399 400 static int i460_insert_memory_large_io_page (struct agp_memory *mem, 401 off_t pg_start, int type) 402 { 403 int i, start_offset, end_offset, idx, pg, num_entries; 404 struct lp_desc *start, *end, *lp; 405 void *temp; 406 407 if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) 408 return -EINVAL; 409 410 temp = agp_bridge->current_size; 411 num_entries = A_SIZE_8(temp)->num_entries; 412 413 /* Figure out what pg_start means in terms of our large GART pages */ 414 start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; 415 end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; 416 start_offset = pg_start % I460_KPAGES_PER_IOPAGE; 417 end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; 418 419 if (end > i460.lp_desc + num_entries) { 420 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); 421 return -EINVAL; 422 } 423 424 /* Check if the requested region of the aperture is free */ 425 for (lp = start; lp <= end; ++lp) { 426 if (!lp->alloced_map) 427 continue; /* OK, the entire large page is available... */ 428 429 for (idx = ((lp == start) ? start_offset : 0); 430 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 431 idx++) 432 { 433 if (test_bit(idx, lp->alloced_map)) 434 return -EBUSY; 435 } 436 } 437 438 for (lp = start, i = 0; lp <= end; ++lp) { 439 if (!lp->alloced_map) { 440 /* Allocate new GART pages... */ 441 if (i460_alloc_large_page(lp) < 0) 442 return -ENOMEM; 443 pg = lp - i460.lp_desc; 444 WR_GATT(pg, i460_mask_memory(agp_bridge, 445 lp->paddr, 0)); 446 WR_FLUSH_GATT(pg); 447 } 448 449 for (idx = ((lp == start) ? start_offset : 0); 450 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 451 idx++, i++) 452 { 453 mem->pages[i] = lp->page; 454 __set_bit(idx, lp->alloced_map); 455 ++lp->refcount; 456 } 457 } 458 return 0; 459 } 460 461 static int i460_remove_memory_large_io_page (struct agp_memory *mem, 462 off_t pg_start, int type) 463 { 464 int i, pg, start_offset, end_offset, idx, num_entries; 465 struct lp_desc *start, *end, *lp; 466 void *temp; 467 468 temp = agp_bridge->current_size; 469 num_entries = A_SIZE_8(temp)->num_entries; 470 471 /* Figure out what pg_start means in terms of our large GART pages */ 472 start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; 473 end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; 474 start_offset = pg_start % I460_KPAGES_PER_IOPAGE; 475 end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; 476 477 for (i = 0, lp = start; lp <= end; ++lp) { 478 for (idx = ((lp == start) ? start_offset : 0); 479 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 480 idx++, i++) 481 { 482 mem->pages[i] = NULL; 483 __clear_bit(idx, lp->alloced_map); 484 --lp->refcount; 485 } 486 487 /* Free GART pages if they are unused */ 488 if (lp->refcount == 0) { 489 pg = lp - i460.lp_desc; 490 WR_GATT(pg, 0); 491 WR_FLUSH_GATT(pg); 492 i460_free_large_page(lp); 493 } 494 } 495 return 0; 496 } 497 498 /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */ 499 500 static int i460_insert_memory (struct agp_memory *mem, 501 off_t pg_start, int type) 502 { 503 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 504 return i460_insert_memory_small_io_page(mem, pg_start, type); 505 else 506 return i460_insert_memory_large_io_page(mem, pg_start, type); 507 } 508 509 static int i460_remove_memory (struct agp_memory *mem, 510 off_t pg_start, int type) 511 { 512 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 513 return i460_remove_memory_small_io_page(mem, pg_start, type); 514 else 515 return i460_remove_memory_large_io_page(mem, pg_start, type); 516 } 517 518 /* 519 * If the I/O (GART) page size is bigger than the kernel page size, we don't want to 520 * allocate memory until we know where it is to be bound in the aperture (a 521 * multi-kernel-page alloc might fit inside of an already allocated GART page). 522 * 523 * Let's just hope nobody counts on the allocated AGP memory being there before bind time 524 * (I don't think current drivers do)... 525 */ 526 static struct page *i460_alloc_page (struct agp_bridge_data *bridge) 527 { 528 void *page; 529 530 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { 531 page = agp_generic_alloc_page(agp_bridge); 532 } else 533 /* Returning NULL would cause problems */ 534 /* AK: really dubious code. */ 535 page = (void *)~0UL; 536 return page; 537 } 538 539 static void i460_destroy_page (struct page *page, int flags) 540 { 541 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { 542 agp_generic_destroy_page(page, flags); 543 } 544 } 545 546 #endif /* I460_LARGE_IO_PAGES */ 547 548 static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, 549 dma_addr_t addr, int type) 550 { 551 /* Make sure the returned address is a valid GATT entry */ 552 return bridge->driver->masks[0].mask 553 | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12); 554 } 555 556 const struct agp_bridge_driver intel_i460_driver = { 557 .owner = THIS_MODULE, 558 .aperture_sizes = i460_sizes, 559 .size_type = U8_APER_SIZE, 560 .num_aperture_sizes = 3, 561 .configure = i460_configure, 562 .fetch_size = i460_fetch_size, 563 .cleanup = i460_cleanup, 564 .tlb_flush = i460_tlb_flush, 565 .mask_memory = i460_mask_memory, 566 .masks = i460_masks, 567 .agp_enable = agp_generic_enable, 568 .cache_flush = global_cache_flush, 569 .create_gatt_table = i460_create_gatt_table, 570 .free_gatt_table = i460_free_gatt_table, 571 #if I460_LARGE_IO_PAGES 572 .insert_memory = i460_insert_memory, 573 .remove_memory = i460_remove_memory, 574 .agp_alloc_page = i460_alloc_page, 575 .agp_destroy_page = i460_destroy_page, 576 #else 577 .insert_memory = i460_insert_memory_small_io_page, 578 .remove_memory = i460_remove_memory_small_io_page, 579 .agp_alloc_page = agp_generic_alloc_page, 580 .agp_alloc_pages = agp_generic_alloc_pages, 581 .agp_destroy_page = agp_generic_destroy_page, 582 .agp_destroy_pages = agp_generic_destroy_pages, 583 #endif 584 .alloc_by_type = agp_generic_alloc_by_type, 585 .free_by_type = agp_generic_free_by_type, 586 .agp_type_to_mask_type = agp_generic_type_to_mask_type, 587 .cant_use_aperture = true, 588 }; 589 590 static int __devinit agp_intel_i460_probe(struct pci_dev *pdev, 591 const struct pci_device_id *ent) 592 { 593 struct agp_bridge_data *bridge; 594 u8 cap_ptr; 595 596 cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); 597 if (!cap_ptr) 598 return -ENODEV; 599 600 bridge = agp_alloc_bridge(); 601 if (!bridge) 602 return -ENOMEM; 603 604 bridge->driver = &intel_i460_driver; 605 bridge->dev = pdev; 606 bridge->capndx = cap_ptr; 607 608 printk(KERN_INFO PFX "Detected Intel 460GX chipset\n"); 609 610 pci_set_drvdata(pdev, bridge); 611 return agp_add_bridge(bridge); 612 } 613 614 static void __devexit agp_intel_i460_remove(struct pci_dev *pdev) 615 { 616 struct agp_bridge_data *bridge = pci_get_drvdata(pdev); 617 618 agp_remove_bridge(bridge); 619 agp_put_bridge(bridge); 620 } 621 622 static struct pci_device_id agp_intel_i460_pci_table[] = { 623 { 624 .class = (PCI_CLASS_BRIDGE_HOST << 8), 625 .class_mask = ~0, 626 .vendor = PCI_VENDOR_ID_INTEL, 627 .device = PCI_DEVICE_ID_INTEL_84460GX, 628 .subvendor = PCI_ANY_ID, 629 .subdevice = PCI_ANY_ID, 630 }, 631 { } 632 }; 633 634 MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table); 635 636 static struct pci_driver agp_intel_i460_pci_driver = { 637 .name = "agpgart-intel-i460", 638 .id_table = agp_intel_i460_pci_table, 639 .probe = agp_intel_i460_probe, 640 .remove = __devexit_p(agp_intel_i460_remove), 641 }; 642 643 static int __init agp_intel_i460_init(void) 644 { 645 if (agp_off) 646 return -EINVAL; 647 return pci_register_driver(&agp_intel_i460_pci_driver); 648 } 649 650 static void __exit agp_intel_i460_cleanup(void) 651 { 652 pci_unregister_driver(&agp_intel_i460_pci_driver); 653 } 654 655 module_init(agp_intel_i460_init); 656 module_exit(agp_intel_i460_cleanup); 657 658 MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>"); 659 MODULE_LICENSE("GPL and additional rights"); 660