xref: /openbmc/linux/drivers/bus/mhi/host/pm.c (revision 9470114d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 
19 /*
20  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
21  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
22  * transition to a new state only if we're allowed to.
23  *
24  * Priority increases as we go down. For instance, from any state in L0, the
25  * transition can be made to states in L1, L2 and L3. A notable exception to
26  * this rule is state DISABLE.  From DISABLE state we can only transition to
27  * POR state. Also, while in L2 state, user cannot jump back to previous
28  * L1 or L0 states.
29  *
30  * Valid transitions:
31  * L0: DISABLE <--> POR
32  *     POR <--> POR
33  *     POR -> M0 -> M2 --> M0
34  *     POR -> FW_DL_ERR
35  *     FW_DL_ERR <--> FW_DL_ERR
36  *     M0 <--> M0
37  *     M0 -> FW_DL_ERR
38  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
39  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
40  * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
41  *     SHUTDOWN_PROCESS -> DISABLE
42  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
43  *     LD_ERR_FATAL_DETECT -> DISABLE
44  */
45 static const struct mhi_pm_transitions dev_state_transitions[] = {
46 	/* L0 States */
47 	{
48 		MHI_PM_DISABLE,
49 		MHI_PM_POR
50 	},
51 	{
52 		MHI_PM_POR,
53 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
54 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
55 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
56 	},
57 	{
58 		MHI_PM_M0,
59 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
60 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
61 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
62 	},
63 	{
64 		MHI_PM_M2,
65 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
66 		MHI_PM_LD_ERR_FATAL_DETECT
67 	},
68 	{
69 		MHI_PM_M3_ENTER,
70 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
71 		MHI_PM_LD_ERR_FATAL_DETECT
72 	},
73 	{
74 		MHI_PM_M3,
75 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
76 		MHI_PM_LD_ERR_FATAL_DETECT
77 	},
78 	{
79 		MHI_PM_M3_EXIT,
80 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
81 		MHI_PM_LD_ERR_FATAL_DETECT
82 	},
83 	{
84 		MHI_PM_FW_DL_ERR,
85 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
86 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
87 	},
88 	/* L1 States */
89 	{
90 		MHI_PM_SYS_ERR_DETECT,
91 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
92 		MHI_PM_LD_ERR_FATAL_DETECT
93 	},
94 	{
95 		MHI_PM_SYS_ERR_PROCESS,
96 		MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
97 		MHI_PM_LD_ERR_FATAL_DETECT
98 	},
99 	/* L2 States */
100 	{
101 		MHI_PM_SHUTDOWN_PROCESS,
102 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
103 	},
104 	/* L3 States */
105 	{
106 		MHI_PM_LD_ERR_FATAL_DETECT,
107 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
108 	},
109 };
110 
111 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
112 						   enum mhi_pm_state state)
113 {
114 	unsigned long cur_state = mhi_cntrl->pm_state;
115 	int index = find_last_bit(&cur_state, 32);
116 
117 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
118 		return cur_state;
119 
120 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
121 		return cur_state;
122 
123 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
124 		return cur_state;
125 
126 	mhi_cntrl->pm_state = state;
127 	return mhi_cntrl->pm_state;
128 }
129 
130 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
131 {
132 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
133 	int ret;
134 
135 	if (state == MHI_STATE_RESET) {
136 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
137 					  MHICTRL_RESET_MASK, 1);
138 	} else {
139 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
140 					  MHICTRL_MHISTATE_MASK, state);
141 	}
142 
143 	if (ret)
144 		dev_err(dev, "Failed to set MHI state to: %s\n",
145 			mhi_state_str(state));
146 }
147 
148 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
149 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
150 {
151 }
152 
153 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
154 {
155 	mhi_cntrl->wake_get(mhi_cntrl, false);
156 	mhi_cntrl->wake_put(mhi_cntrl, true);
157 }
158 
159 /* Handle device ready state transition */
160 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
161 {
162 	struct mhi_event *mhi_event;
163 	enum mhi_pm_state cur_state;
164 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
165 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
166 	int ret, i;
167 
168 	/* Check if device entered error state */
169 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
170 		dev_err(dev, "Device link is not accessible\n");
171 		return -EIO;
172 	}
173 
174 	/* Wait for RESET to be cleared and READY bit to be set by the device */
175 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
176 				 MHICTRL_RESET_MASK, 0, interval_us);
177 	if (ret) {
178 		dev_err(dev, "Device failed to clear MHI Reset\n");
179 		return ret;
180 	}
181 
182 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
183 				 MHISTATUS_READY_MASK, 1, interval_us);
184 	if (ret) {
185 		dev_err(dev, "Device failed to enter MHI Ready\n");
186 		return ret;
187 	}
188 
189 	dev_dbg(dev, "Device in READY State\n");
190 	write_lock_irq(&mhi_cntrl->pm_lock);
191 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
192 	mhi_cntrl->dev_state = MHI_STATE_READY;
193 	write_unlock_irq(&mhi_cntrl->pm_lock);
194 
195 	if (cur_state != MHI_PM_POR) {
196 		dev_err(dev, "Error moving to state %s from %s\n",
197 			to_mhi_pm_state_str(MHI_PM_POR),
198 			to_mhi_pm_state_str(cur_state));
199 		return -EIO;
200 	}
201 
202 	read_lock_bh(&mhi_cntrl->pm_lock);
203 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
204 		dev_err(dev, "Device registers not accessible\n");
205 		goto error_mmio;
206 	}
207 
208 	/* Configure MMIO registers */
209 	ret = mhi_init_mmio(mhi_cntrl);
210 	if (ret) {
211 		dev_err(dev, "Error configuring MMIO registers\n");
212 		goto error_mmio;
213 	}
214 
215 	/* Add elements to all SW event rings */
216 	mhi_event = mhi_cntrl->mhi_event;
217 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
218 		struct mhi_ring *ring = &mhi_event->ring;
219 
220 		/* Skip if this is an offload or HW event */
221 		if (mhi_event->offload_ev || mhi_event->hw_ring)
222 			continue;
223 
224 		ring->wp = ring->base + ring->len - ring->el_size;
225 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
226 		/* Update all cores */
227 		smp_wmb();
228 
229 		/* Ring the event ring db */
230 		spin_lock_irq(&mhi_event->lock);
231 		mhi_ring_er_db(mhi_event);
232 		spin_unlock_irq(&mhi_event->lock);
233 	}
234 
235 	/* Set MHI to M0 state */
236 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
237 	read_unlock_bh(&mhi_cntrl->pm_lock);
238 
239 	return 0;
240 
241 error_mmio:
242 	read_unlock_bh(&mhi_cntrl->pm_lock);
243 
244 	return -EIO;
245 }
246 
247 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
248 {
249 	enum mhi_pm_state cur_state;
250 	struct mhi_chan *mhi_chan;
251 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
252 	int i;
253 
254 	write_lock_irq(&mhi_cntrl->pm_lock);
255 	mhi_cntrl->dev_state = MHI_STATE_M0;
256 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
257 	write_unlock_irq(&mhi_cntrl->pm_lock);
258 	if (unlikely(cur_state != MHI_PM_M0)) {
259 		dev_err(dev, "Unable to transition to M0 state\n");
260 		return -EIO;
261 	}
262 	mhi_cntrl->M0++;
263 
264 	/* Wake up the device */
265 	read_lock_bh(&mhi_cntrl->pm_lock);
266 	mhi_cntrl->wake_get(mhi_cntrl, true);
267 
268 	/* Ring all event rings and CMD ring only if we're in mission mode */
269 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
270 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
271 		struct mhi_cmd *mhi_cmd =
272 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
273 
274 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
275 			if (mhi_event->offload_ev)
276 				continue;
277 
278 			spin_lock_irq(&mhi_event->lock);
279 			mhi_ring_er_db(mhi_event);
280 			spin_unlock_irq(&mhi_event->lock);
281 		}
282 
283 		/* Only ring primary cmd ring if ring is not empty */
284 		spin_lock_irq(&mhi_cmd->lock);
285 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
286 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
287 		spin_unlock_irq(&mhi_cmd->lock);
288 	}
289 
290 	/* Ring channel DB registers */
291 	mhi_chan = mhi_cntrl->mhi_chan;
292 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
293 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
294 
295 		if (mhi_chan->db_cfg.reset_req) {
296 			write_lock_irq(&mhi_chan->lock);
297 			mhi_chan->db_cfg.db_mode = true;
298 			write_unlock_irq(&mhi_chan->lock);
299 		}
300 
301 		read_lock_irq(&mhi_chan->lock);
302 
303 		/* Only ring DB if ring is not empty */
304 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp &&
305 		    mhi_chan->ch_state == MHI_CH_STATE_ENABLED)
306 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
307 		read_unlock_irq(&mhi_chan->lock);
308 	}
309 
310 	mhi_cntrl->wake_put(mhi_cntrl, false);
311 	read_unlock_bh(&mhi_cntrl->pm_lock);
312 	wake_up_all(&mhi_cntrl->state_event);
313 
314 	return 0;
315 }
316 
317 /*
318  * After receiving the MHI state change event from the device indicating the
319  * transition to M1 state, the host can transition the device to M2 state
320  * for keeping it in low power state.
321  */
322 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
323 {
324 	enum mhi_pm_state state;
325 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
326 
327 	write_lock_irq(&mhi_cntrl->pm_lock);
328 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
329 	if (state == MHI_PM_M2) {
330 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
331 		mhi_cntrl->dev_state = MHI_STATE_M2;
332 
333 		write_unlock_irq(&mhi_cntrl->pm_lock);
334 
335 		mhi_cntrl->M2++;
336 		wake_up_all(&mhi_cntrl->state_event);
337 
338 		/* If there are any pending resources, exit M2 immediately */
339 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
340 			     atomic_read(&mhi_cntrl->dev_wake))) {
341 			dev_dbg(dev,
342 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
343 				atomic_read(&mhi_cntrl->pending_pkts),
344 				atomic_read(&mhi_cntrl->dev_wake));
345 			read_lock_bh(&mhi_cntrl->pm_lock);
346 			mhi_cntrl->wake_get(mhi_cntrl, true);
347 			mhi_cntrl->wake_put(mhi_cntrl, true);
348 			read_unlock_bh(&mhi_cntrl->pm_lock);
349 		} else {
350 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
351 		}
352 	} else {
353 		write_unlock_irq(&mhi_cntrl->pm_lock);
354 	}
355 }
356 
357 /* MHI M3 completion handler */
358 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
359 {
360 	enum mhi_pm_state state;
361 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
362 
363 	write_lock_irq(&mhi_cntrl->pm_lock);
364 	mhi_cntrl->dev_state = MHI_STATE_M3;
365 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
366 	write_unlock_irq(&mhi_cntrl->pm_lock);
367 	if (state != MHI_PM_M3) {
368 		dev_err(dev, "Unable to transition to M3 state\n");
369 		return -EIO;
370 	}
371 
372 	mhi_cntrl->M3++;
373 	wake_up_all(&mhi_cntrl->state_event);
374 
375 	return 0;
376 }
377 
378 /* Handle device Mission Mode transition */
379 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
380 {
381 	struct mhi_event *mhi_event;
382 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
383 	enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
384 	int i, ret;
385 
386 	dev_dbg(dev, "Processing Mission Mode transition\n");
387 
388 	write_lock_irq(&mhi_cntrl->pm_lock);
389 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
390 		ee = mhi_get_exec_env(mhi_cntrl);
391 
392 	if (!MHI_IN_MISSION_MODE(ee)) {
393 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
394 		write_unlock_irq(&mhi_cntrl->pm_lock);
395 		wake_up_all(&mhi_cntrl->state_event);
396 		return -EIO;
397 	}
398 	mhi_cntrl->ee = ee;
399 	write_unlock_irq(&mhi_cntrl->pm_lock);
400 
401 	wake_up_all(&mhi_cntrl->state_event);
402 
403 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
404 			      mhi_destroy_device);
405 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
406 
407 	/* Force MHI to be in M0 state before continuing */
408 	ret = __mhi_device_get_sync(mhi_cntrl);
409 	if (ret)
410 		return ret;
411 
412 	read_lock_bh(&mhi_cntrl->pm_lock);
413 
414 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
415 		ret = -EIO;
416 		goto error_mission_mode;
417 	}
418 
419 	/* Add elements to all HW event rings */
420 	mhi_event = mhi_cntrl->mhi_event;
421 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
422 		struct mhi_ring *ring = &mhi_event->ring;
423 
424 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
425 			continue;
426 
427 		ring->wp = ring->base + ring->len - ring->el_size;
428 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
429 		/* Update to all cores */
430 		smp_wmb();
431 
432 		spin_lock_irq(&mhi_event->lock);
433 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
434 			mhi_ring_er_db(mhi_event);
435 		spin_unlock_irq(&mhi_event->lock);
436 	}
437 
438 	read_unlock_bh(&mhi_cntrl->pm_lock);
439 
440 	/*
441 	 * The MHI devices are only created when the client device switches its
442 	 * Execution Environment (EE) to either SBL or AMSS states
443 	 */
444 	mhi_create_devices(mhi_cntrl);
445 
446 	read_lock_bh(&mhi_cntrl->pm_lock);
447 
448 error_mission_mode:
449 	mhi_cntrl->wake_put(mhi_cntrl, false);
450 	read_unlock_bh(&mhi_cntrl->pm_lock);
451 
452 	return ret;
453 }
454 
455 /* Handle shutdown transitions */
456 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl)
457 {
458 	enum mhi_pm_state cur_state;
459 	struct mhi_event *mhi_event;
460 	struct mhi_cmd_ctxt *cmd_ctxt;
461 	struct mhi_cmd *mhi_cmd;
462 	struct mhi_event_ctxt *er_ctxt;
463 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
464 	int ret, i;
465 
466 	dev_dbg(dev, "Processing disable transition with PM state: %s\n",
467 		to_mhi_pm_state_str(mhi_cntrl->pm_state));
468 
469 	mutex_lock(&mhi_cntrl->pm_mutex);
470 
471 	/* Trigger MHI RESET so that the device will not access host memory */
472 	if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
473 		/* Skip MHI RESET if in RDDM state */
474 		if (mhi_cntrl->rddm_image && mhi_get_exec_env(mhi_cntrl) == MHI_EE_RDDM)
475 			goto skip_mhi_reset;
476 
477 		dev_dbg(dev, "Triggering MHI Reset in device\n");
478 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
479 
480 		/* Wait for the reset bit to be cleared by the device */
481 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
482 				 MHICTRL_RESET_MASK, 0, 25000);
483 		if (ret)
484 			dev_err(dev, "Device failed to clear MHI Reset\n");
485 
486 		/*
487 		 * Device will clear BHI_INTVEC as a part of RESET processing,
488 		 * hence re-program it
489 		 */
490 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
491 
492 		if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
493 			/* wait for ready to be set */
494 			ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
495 						 MHISTATUS,
496 						 MHISTATUS_READY_MASK, 1, 25000);
497 			if (ret)
498 				dev_err(dev, "Device failed to enter READY state\n");
499 		}
500 	}
501 
502 skip_mhi_reset:
503 	dev_dbg(dev,
504 		 "Waiting for all pending event ring processing to complete\n");
505 	mhi_event = mhi_cntrl->mhi_event;
506 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
507 		if (mhi_event->offload_ev)
508 			continue;
509 		disable_irq(mhi_cntrl->irq[mhi_event->irq]);
510 		tasklet_kill(&mhi_event->task);
511 	}
512 
513 	/* Release lock and wait for all pending threads to complete */
514 	mutex_unlock(&mhi_cntrl->pm_mutex);
515 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
516 	wake_up_all(&mhi_cntrl->state_event);
517 
518 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
519 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
520 
521 	mutex_lock(&mhi_cntrl->pm_mutex);
522 
523 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
524 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
525 
526 	/* Reset the ev rings and cmd rings */
527 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
528 	mhi_cmd = mhi_cntrl->mhi_cmd;
529 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
530 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
531 		struct mhi_ring *ring = &mhi_cmd->ring;
532 
533 		ring->rp = ring->base;
534 		ring->wp = ring->base;
535 		cmd_ctxt->rp = cmd_ctxt->rbase;
536 		cmd_ctxt->wp = cmd_ctxt->rbase;
537 	}
538 
539 	mhi_event = mhi_cntrl->mhi_event;
540 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
541 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
542 		     mhi_event++) {
543 		struct mhi_ring *ring = &mhi_event->ring;
544 
545 		/* Skip offload events */
546 		if (mhi_event->offload_ev)
547 			continue;
548 
549 		ring->rp = ring->base;
550 		ring->wp = ring->base;
551 		er_ctxt->rp = er_ctxt->rbase;
552 		er_ctxt->wp = er_ctxt->rbase;
553 	}
554 
555 	/* Move to disable state */
556 	write_lock_irq(&mhi_cntrl->pm_lock);
557 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
558 	write_unlock_irq(&mhi_cntrl->pm_lock);
559 	if (unlikely(cur_state != MHI_PM_DISABLE))
560 		dev_err(dev, "Error moving from PM state: %s to: %s\n",
561 			to_mhi_pm_state_str(cur_state),
562 			to_mhi_pm_state_str(MHI_PM_DISABLE));
563 
564 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
565 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
566 		mhi_state_str(mhi_cntrl->dev_state));
567 
568 	mutex_unlock(&mhi_cntrl->pm_mutex);
569 }
570 
571 /* Handle system error transitions */
572 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
573 {
574 	enum mhi_pm_state cur_state, prev_state;
575 	enum dev_st_transition next_state;
576 	struct mhi_event *mhi_event;
577 	struct mhi_cmd_ctxt *cmd_ctxt;
578 	struct mhi_cmd *mhi_cmd;
579 	struct mhi_event_ctxt *er_ctxt;
580 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
581 	int ret, i;
582 
583 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
584 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
585 		to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
586 
587 	/* We must notify MHI control driver so it can clean up first */
588 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
589 
590 	mutex_lock(&mhi_cntrl->pm_mutex);
591 	write_lock_irq(&mhi_cntrl->pm_lock);
592 	prev_state = mhi_cntrl->pm_state;
593 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
594 	write_unlock_irq(&mhi_cntrl->pm_lock);
595 
596 	if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
597 		dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
598 			to_mhi_pm_state_str(cur_state),
599 			to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
600 		goto exit_sys_error_transition;
601 	}
602 
603 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
604 	mhi_cntrl->dev_state = MHI_STATE_RESET;
605 
606 	/* Wake up threads waiting for state transition */
607 	wake_up_all(&mhi_cntrl->state_event);
608 
609 	/* Trigger MHI RESET so that the device will not access host memory */
610 	if (MHI_REG_ACCESS_VALID(prev_state)) {
611 		u32 in_reset = -1;
612 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
613 
614 		dev_dbg(dev, "Triggering MHI Reset in device\n");
615 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
616 
617 		/* Wait for the reset bit to be cleared by the device */
618 		ret = wait_event_timeout(mhi_cntrl->state_event,
619 					 mhi_read_reg_field(mhi_cntrl,
620 							    mhi_cntrl->regs,
621 							    MHICTRL,
622 							    MHICTRL_RESET_MASK,
623 							    &in_reset) ||
624 					!in_reset, timeout);
625 		if (!ret || in_reset) {
626 			dev_err(dev, "Device failed to exit MHI Reset state\n");
627 			goto exit_sys_error_transition;
628 		}
629 
630 		/*
631 		 * Device will clear BHI_INTVEC as a part of RESET processing,
632 		 * hence re-program it
633 		 */
634 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
635 	}
636 
637 	dev_dbg(dev,
638 		"Waiting for all pending event ring processing to complete\n");
639 	mhi_event = mhi_cntrl->mhi_event;
640 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
641 		if (mhi_event->offload_ev)
642 			continue;
643 		tasklet_kill(&mhi_event->task);
644 	}
645 
646 	/* Release lock and wait for all pending threads to complete */
647 	mutex_unlock(&mhi_cntrl->pm_mutex);
648 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
649 	wake_up_all(&mhi_cntrl->state_event);
650 
651 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
652 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
653 
654 	mutex_lock(&mhi_cntrl->pm_mutex);
655 
656 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
657 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
658 
659 	/* Reset the ev rings and cmd rings */
660 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
661 	mhi_cmd = mhi_cntrl->mhi_cmd;
662 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
663 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
664 		struct mhi_ring *ring = &mhi_cmd->ring;
665 
666 		ring->rp = ring->base;
667 		ring->wp = ring->base;
668 		cmd_ctxt->rp = cmd_ctxt->rbase;
669 		cmd_ctxt->wp = cmd_ctxt->rbase;
670 	}
671 
672 	mhi_event = mhi_cntrl->mhi_event;
673 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
674 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
675 	     mhi_event++) {
676 		struct mhi_ring *ring = &mhi_event->ring;
677 
678 		/* Skip offload events */
679 		if (mhi_event->offload_ev)
680 			continue;
681 
682 		ring->rp = ring->base;
683 		ring->wp = ring->base;
684 		er_ctxt->rp = er_ctxt->rbase;
685 		er_ctxt->wp = er_ctxt->rbase;
686 	}
687 
688 	/* Transition to next state */
689 	if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
690 		write_lock_irq(&mhi_cntrl->pm_lock);
691 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
692 		write_unlock_irq(&mhi_cntrl->pm_lock);
693 		if (cur_state != MHI_PM_POR) {
694 			dev_err(dev, "Error moving to state %s from %s\n",
695 				to_mhi_pm_state_str(MHI_PM_POR),
696 				to_mhi_pm_state_str(cur_state));
697 			goto exit_sys_error_transition;
698 		}
699 		next_state = DEV_ST_TRANSITION_PBL;
700 	} else {
701 		next_state = DEV_ST_TRANSITION_READY;
702 	}
703 
704 	mhi_queue_state_transition(mhi_cntrl, next_state);
705 
706 exit_sys_error_transition:
707 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
708 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
709 		mhi_state_str(mhi_cntrl->dev_state));
710 
711 	mutex_unlock(&mhi_cntrl->pm_mutex);
712 }
713 
714 /* Queue a new work item and schedule work */
715 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
716 			       enum dev_st_transition state)
717 {
718 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
719 	unsigned long flags;
720 
721 	if (!item)
722 		return -ENOMEM;
723 
724 	item->state = state;
725 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
726 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
727 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
728 
729 	queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
730 
731 	return 0;
732 }
733 
734 /* SYS_ERR worker */
735 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
736 {
737 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
738 
739 	/* skip if controller supports RDDM */
740 	if (mhi_cntrl->rddm_image) {
741 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
742 		return;
743 	}
744 
745 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
746 }
747 
748 /* Device State Transition worker */
749 void mhi_pm_st_worker(struct work_struct *work)
750 {
751 	struct state_transition *itr, *tmp;
752 	LIST_HEAD(head);
753 	struct mhi_controller *mhi_cntrl = container_of(work,
754 							struct mhi_controller,
755 							st_worker);
756 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
757 
758 	spin_lock_irq(&mhi_cntrl->transition_lock);
759 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
760 	spin_unlock_irq(&mhi_cntrl->transition_lock);
761 
762 	list_for_each_entry_safe(itr, tmp, &head, node) {
763 		list_del(&itr->node);
764 		dev_dbg(dev, "Handling state transition: %s\n",
765 			TO_DEV_STATE_TRANS_STR(itr->state));
766 
767 		switch (itr->state) {
768 		case DEV_ST_TRANSITION_PBL:
769 			write_lock_irq(&mhi_cntrl->pm_lock);
770 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
771 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
772 			write_unlock_irq(&mhi_cntrl->pm_lock);
773 			mhi_fw_load_handler(mhi_cntrl);
774 			break;
775 		case DEV_ST_TRANSITION_SBL:
776 			write_lock_irq(&mhi_cntrl->pm_lock);
777 			mhi_cntrl->ee = MHI_EE_SBL;
778 			write_unlock_irq(&mhi_cntrl->pm_lock);
779 			/*
780 			 * The MHI devices are only created when the client
781 			 * device switches its Execution Environment (EE) to
782 			 * either SBL or AMSS states
783 			 */
784 			mhi_create_devices(mhi_cntrl);
785 			if (mhi_cntrl->fbc_download)
786 				mhi_download_amss_image(mhi_cntrl);
787 			break;
788 		case DEV_ST_TRANSITION_MISSION_MODE:
789 			mhi_pm_mission_mode_transition(mhi_cntrl);
790 			break;
791 		case DEV_ST_TRANSITION_FP:
792 			write_lock_irq(&mhi_cntrl->pm_lock);
793 			mhi_cntrl->ee = MHI_EE_FP;
794 			write_unlock_irq(&mhi_cntrl->pm_lock);
795 			mhi_create_devices(mhi_cntrl);
796 			break;
797 		case DEV_ST_TRANSITION_READY:
798 			mhi_ready_state_transition(mhi_cntrl);
799 			break;
800 		case DEV_ST_TRANSITION_SYS_ERR:
801 			mhi_pm_sys_error_transition(mhi_cntrl);
802 			break;
803 		case DEV_ST_TRANSITION_DISABLE:
804 			mhi_pm_disable_transition(mhi_cntrl);
805 			break;
806 		default:
807 			break;
808 		}
809 		kfree(itr);
810 	}
811 }
812 
813 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
814 {
815 	struct mhi_chan *itr, *tmp;
816 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
817 	enum mhi_pm_state new_state;
818 	int ret;
819 
820 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
821 		return -EINVAL;
822 
823 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
824 		return -EIO;
825 
826 	/* Return busy if there are any pending resources */
827 	if (atomic_read(&mhi_cntrl->dev_wake) ||
828 	    atomic_read(&mhi_cntrl->pending_pkts))
829 		return -EBUSY;
830 
831 	/* Take MHI out of M2 state */
832 	read_lock_bh(&mhi_cntrl->pm_lock);
833 	mhi_cntrl->wake_get(mhi_cntrl, false);
834 	read_unlock_bh(&mhi_cntrl->pm_lock);
835 
836 	ret = wait_event_timeout(mhi_cntrl->state_event,
837 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
838 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
839 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
840 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
841 
842 	read_lock_bh(&mhi_cntrl->pm_lock);
843 	mhi_cntrl->wake_put(mhi_cntrl, false);
844 	read_unlock_bh(&mhi_cntrl->pm_lock);
845 
846 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
847 		dev_err(dev,
848 			"Could not enter M0/M1 state");
849 		return -EIO;
850 	}
851 
852 	write_lock_irq(&mhi_cntrl->pm_lock);
853 
854 	if (atomic_read(&mhi_cntrl->dev_wake) ||
855 	    atomic_read(&mhi_cntrl->pending_pkts)) {
856 		write_unlock_irq(&mhi_cntrl->pm_lock);
857 		return -EBUSY;
858 	}
859 
860 	dev_dbg(dev, "Allowing M3 transition\n");
861 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
862 	if (new_state != MHI_PM_M3_ENTER) {
863 		write_unlock_irq(&mhi_cntrl->pm_lock);
864 		dev_err(dev,
865 			"Error setting to PM state: %s from: %s\n",
866 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
867 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
868 		return -EIO;
869 	}
870 
871 	/* Set MHI to M3 and wait for completion */
872 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
873 	write_unlock_irq(&mhi_cntrl->pm_lock);
874 	dev_dbg(dev, "Waiting for M3 completion\n");
875 
876 	ret = wait_event_timeout(mhi_cntrl->state_event,
877 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
878 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
879 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
880 
881 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
882 		dev_err(dev,
883 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
884 			mhi_state_str(mhi_cntrl->dev_state),
885 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
886 		return -EIO;
887 	}
888 
889 	/* Notify clients about entering LPM */
890 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
891 		mutex_lock(&itr->mutex);
892 		if (itr->mhi_dev)
893 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
894 		mutex_unlock(&itr->mutex);
895 	}
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
900 
901 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
902 {
903 	struct mhi_chan *itr, *tmp;
904 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
905 	enum mhi_pm_state cur_state;
906 	int ret;
907 
908 	dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
909 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
910 		mhi_state_str(mhi_cntrl->dev_state));
911 
912 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
913 		return 0;
914 
915 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
916 		return -EIO;
917 
918 	if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
919 		dev_warn(dev, "Resuming from non M3 state (%s)\n",
920 			 mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
921 		if (!force)
922 			return -EINVAL;
923 	}
924 
925 	/* Notify clients about exiting LPM */
926 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
927 		mutex_lock(&itr->mutex);
928 		if (itr->mhi_dev)
929 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
930 		mutex_unlock(&itr->mutex);
931 	}
932 
933 	write_lock_irq(&mhi_cntrl->pm_lock);
934 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
935 	if (cur_state != MHI_PM_M3_EXIT) {
936 		write_unlock_irq(&mhi_cntrl->pm_lock);
937 		dev_info(dev,
938 			 "Error setting to PM state: %s from: %s\n",
939 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
940 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
941 		return -EIO;
942 	}
943 
944 	/* Set MHI to M0 and wait for completion */
945 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
946 	write_unlock_irq(&mhi_cntrl->pm_lock);
947 
948 	ret = wait_event_timeout(mhi_cntrl->state_event,
949 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
950 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
951 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
952 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
953 
954 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
955 		dev_err(dev,
956 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
957 			mhi_state_str(mhi_cntrl->dev_state),
958 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
959 		return -EIO;
960 	}
961 
962 	return 0;
963 }
964 
965 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
966 {
967 	return __mhi_pm_resume(mhi_cntrl, false);
968 }
969 EXPORT_SYMBOL_GPL(mhi_pm_resume);
970 
971 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
972 {
973 	return __mhi_pm_resume(mhi_cntrl, true);
974 }
975 EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
976 
977 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
978 {
979 	int ret;
980 
981 	/* Wake up the device */
982 	read_lock_bh(&mhi_cntrl->pm_lock);
983 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
984 		read_unlock_bh(&mhi_cntrl->pm_lock);
985 		return -EIO;
986 	}
987 	mhi_cntrl->wake_get(mhi_cntrl, true);
988 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
989 		mhi_trigger_resume(mhi_cntrl);
990 	read_unlock_bh(&mhi_cntrl->pm_lock);
991 
992 	ret = wait_event_timeout(mhi_cntrl->state_event,
993 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
994 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
995 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
996 
997 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
998 		read_lock_bh(&mhi_cntrl->pm_lock);
999 		mhi_cntrl->wake_put(mhi_cntrl, false);
1000 		read_unlock_bh(&mhi_cntrl->pm_lock);
1001 		return -EIO;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 /* Assert device wake db */
1008 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
1009 {
1010 	unsigned long flags;
1011 
1012 	/*
1013 	 * If force flag is set, then increment the wake count value and
1014 	 * ring wake db
1015 	 */
1016 	if (unlikely(force)) {
1017 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1018 		atomic_inc(&mhi_cntrl->dev_wake);
1019 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
1020 		    !mhi_cntrl->wake_set) {
1021 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1022 			mhi_cntrl->wake_set = true;
1023 		}
1024 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1025 	} else {
1026 		/*
1027 		 * If resources are already requested, then just increment
1028 		 * the wake count value and return
1029 		 */
1030 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
1031 			return;
1032 
1033 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1034 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
1035 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
1036 		    !mhi_cntrl->wake_set) {
1037 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1038 			mhi_cntrl->wake_set = true;
1039 		}
1040 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1041 	}
1042 }
1043 
1044 /* De-assert device wake db */
1045 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
1046 				  bool override)
1047 {
1048 	unsigned long flags;
1049 
1050 	/*
1051 	 * Only continue if there is a single resource, else just decrement
1052 	 * and return
1053 	 */
1054 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
1055 		return;
1056 
1057 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1058 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
1059 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
1060 	    mhi_cntrl->wake_set) {
1061 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
1062 		mhi_cntrl->wake_set = false;
1063 	}
1064 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1065 }
1066 
1067 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
1068 {
1069 	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
1070 	enum mhi_state state;
1071 	enum mhi_ee_type current_ee;
1072 	enum dev_st_transition next_state;
1073 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1074 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
1075 	int ret, i;
1076 
1077 	dev_info(dev, "Requested to power ON\n");
1078 
1079 	/* Supply default wake routines if not provided by controller driver */
1080 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
1081 	    !mhi_cntrl->wake_toggle) {
1082 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
1083 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
1084 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
1085 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
1086 	}
1087 
1088 	mutex_lock(&mhi_cntrl->pm_mutex);
1089 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1090 
1091 	/* Setup BHI INTVEC */
1092 	write_lock_irq(&mhi_cntrl->pm_lock);
1093 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1094 	mhi_cntrl->pm_state = MHI_PM_POR;
1095 	mhi_cntrl->ee = MHI_EE_MAX;
1096 	current_ee = mhi_get_exec_env(mhi_cntrl);
1097 	write_unlock_irq(&mhi_cntrl->pm_lock);
1098 
1099 	/* Confirm that the device is in valid exec env */
1100 	if (!MHI_POWER_UP_CAPABLE(current_ee)) {
1101 		dev_err(dev, "%s is not a valid EE for power on\n",
1102 			TO_MHI_EXEC_STR(current_ee));
1103 		ret = -EIO;
1104 		goto error_exit;
1105 	}
1106 
1107 	state = mhi_get_mhi_state(mhi_cntrl);
1108 	dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
1109 		TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
1110 
1111 	if (state == MHI_STATE_SYS_ERR) {
1112 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
1113 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
1114 				 MHICTRL_RESET_MASK, 0, interval_us);
1115 		if (ret) {
1116 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1117 			goto error_exit;
1118 		}
1119 
1120 		/*
1121 		 * device cleares INTVEC as part of RESET processing,
1122 		 * re-program it
1123 		 */
1124 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1125 	}
1126 
1127 	/* IRQs have been requested during probe, so we just need to enable them. */
1128 	enable_irq(mhi_cntrl->irq[0]);
1129 
1130 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
1131 		if (mhi_event->offload_ev)
1132 			continue;
1133 
1134 		enable_irq(mhi_cntrl->irq[mhi_event->irq]);
1135 	}
1136 
1137 	/* Transition to next state */
1138 	next_state = MHI_IN_PBL(current_ee) ?
1139 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1140 
1141 	mhi_queue_state_transition(mhi_cntrl, next_state);
1142 
1143 	mutex_unlock(&mhi_cntrl->pm_mutex);
1144 
1145 	dev_info(dev, "Power on setup success\n");
1146 
1147 	return 0;
1148 
1149 error_exit:
1150 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1151 	mutex_unlock(&mhi_cntrl->pm_mutex);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1156 
1157 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1158 {
1159 	enum mhi_pm_state cur_state, transition_state;
1160 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1161 
1162 	mutex_lock(&mhi_cntrl->pm_mutex);
1163 	write_lock_irq(&mhi_cntrl->pm_lock);
1164 	cur_state = mhi_cntrl->pm_state;
1165 	if (cur_state == MHI_PM_DISABLE) {
1166 		write_unlock_irq(&mhi_cntrl->pm_lock);
1167 		mutex_unlock(&mhi_cntrl->pm_mutex);
1168 		return; /* Already powered down */
1169 	}
1170 
1171 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1172 	transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
1173 			   MHI_PM_LD_ERR_FATAL_DETECT;
1174 
1175 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
1176 	if (cur_state != transition_state) {
1177 		dev_err(dev, "Failed to move to state: %s from: %s\n",
1178 			to_mhi_pm_state_str(transition_state),
1179 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1180 		/* Force link down or error fatal detected state */
1181 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
1182 	}
1183 
1184 	/* mark device inactive to avoid any further host processing */
1185 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
1186 	mhi_cntrl->dev_state = MHI_STATE_RESET;
1187 
1188 	wake_up_all(&mhi_cntrl->state_event);
1189 
1190 	write_unlock_irq(&mhi_cntrl->pm_lock);
1191 	mutex_unlock(&mhi_cntrl->pm_mutex);
1192 
1193 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
1194 
1195 	/* Wait for shutdown to complete */
1196 	flush_work(&mhi_cntrl->st_worker);
1197 
1198 	disable_irq(mhi_cntrl->irq[0]);
1199 }
1200 EXPORT_SYMBOL_GPL(mhi_power_down);
1201 
1202 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1203 {
1204 	int ret = mhi_async_power_up(mhi_cntrl);
1205 
1206 	if (ret)
1207 		return ret;
1208 
1209 	wait_event_timeout(mhi_cntrl->state_event,
1210 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1211 			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1212 			   msecs_to_jiffies(mhi_cntrl->timeout_ms));
1213 
1214 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1215 	if (ret)
1216 		mhi_power_down(mhi_cntrl, false);
1217 
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL(mhi_sync_power_up);
1221 
1222 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1223 {
1224 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1225 	int ret;
1226 
1227 	/* Check if device is already in RDDM */
1228 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1229 		return 0;
1230 
1231 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1232 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1233 
1234 	/* Wait for RDDM event */
1235 	ret = wait_event_timeout(mhi_cntrl->state_event,
1236 				 mhi_cntrl->ee == MHI_EE_RDDM,
1237 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1238 	ret = ret ? 0 : -EIO;
1239 
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1243 
1244 void mhi_device_get(struct mhi_device *mhi_dev)
1245 {
1246 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1247 
1248 	mhi_dev->dev_wake++;
1249 	read_lock_bh(&mhi_cntrl->pm_lock);
1250 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1251 		mhi_trigger_resume(mhi_cntrl);
1252 
1253 	mhi_cntrl->wake_get(mhi_cntrl, true);
1254 	read_unlock_bh(&mhi_cntrl->pm_lock);
1255 }
1256 EXPORT_SYMBOL_GPL(mhi_device_get);
1257 
1258 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1259 {
1260 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1261 	int ret;
1262 
1263 	ret = __mhi_device_get_sync(mhi_cntrl);
1264 	if (!ret)
1265 		mhi_dev->dev_wake++;
1266 
1267 	return ret;
1268 }
1269 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1270 
1271 void mhi_device_put(struct mhi_device *mhi_dev)
1272 {
1273 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1274 
1275 	mhi_dev->dev_wake--;
1276 	read_lock_bh(&mhi_cntrl->pm_lock);
1277 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1278 		mhi_trigger_resume(mhi_cntrl);
1279 
1280 	mhi_cntrl->wake_put(mhi_cntrl, false);
1281 	read_unlock_bh(&mhi_cntrl->pm_lock);
1282 }
1283 EXPORT_SYMBOL_GPL(mhi_device_put);
1284