1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. 4 * 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/device.h> 9 #include <linux/dma-direction.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/list.h> 13 #include <linux/mhi.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/wait.h> 17 #include "internal.h" 18 19 /* 20 * Not all MHI state transitions are synchronous. Transitions like Linkdown, 21 * SYS_ERR, and shutdown can happen anytime asynchronously. This function will 22 * transition to a new state only if we're allowed to. 23 * 24 * Priority increases as we go down. For instance, from any state in L0, the 25 * transition can be made to states in L1, L2 and L3. A notable exception to 26 * this rule is state DISABLE. From DISABLE state we can only transition to 27 * POR state. Also, while in L2 state, user cannot jump back to previous 28 * L1 or L0 states. 29 * 30 * Valid transitions: 31 * L0: DISABLE <--> POR 32 * POR <--> POR 33 * POR -> M0 -> M2 --> M0 34 * POR -> FW_DL_ERR 35 * FW_DL_ERR <--> FW_DL_ERR 36 * M0 <--> M0 37 * M0 -> FW_DL_ERR 38 * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0 39 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR 40 * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT 41 * SHUTDOWN_PROCESS -> DISABLE 42 * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT 43 * LD_ERR_FATAL_DETECT -> DISABLE 44 */ 45 static const struct mhi_pm_transitions dev_state_transitions[] = { 46 /* L0 States */ 47 { 48 MHI_PM_DISABLE, 49 MHI_PM_POR 50 }, 51 { 52 MHI_PM_POR, 53 MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 | 54 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 55 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR 56 }, 57 { 58 MHI_PM_M0, 59 MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER | 60 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 61 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR 62 }, 63 { 64 MHI_PM_M2, 65 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 66 MHI_PM_LD_ERR_FATAL_DETECT 67 }, 68 { 69 MHI_PM_M3_ENTER, 70 MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 71 MHI_PM_LD_ERR_FATAL_DETECT 72 }, 73 { 74 MHI_PM_M3, 75 MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT | 76 MHI_PM_LD_ERR_FATAL_DETECT 77 }, 78 { 79 MHI_PM_M3_EXIT, 80 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 81 MHI_PM_LD_ERR_FATAL_DETECT 82 }, 83 { 84 MHI_PM_FW_DL_ERR, 85 MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT | 86 MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT 87 }, 88 /* L1 States */ 89 { 90 MHI_PM_SYS_ERR_DETECT, 91 MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS | 92 MHI_PM_LD_ERR_FATAL_DETECT 93 }, 94 { 95 MHI_PM_SYS_ERR_PROCESS, 96 MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS | 97 MHI_PM_LD_ERR_FATAL_DETECT 98 }, 99 /* L2 States */ 100 { 101 MHI_PM_SHUTDOWN_PROCESS, 102 MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT 103 }, 104 /* L3 States */ 105 { 106 MHI_PM_LD_ERR_FATAL_DETECT, 107 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE 108 }, 109 }; 110 111 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl, 112 enum mhi_pm_state state) 113 { 114 unsigned long cur_state = mhi_cntrl->pm_state; 115 int index = find_last_bit(&cur_state, 32); 116 117 if (unlikely(index >= ARRAY_SIZE(dev_state_transitions))) 118 return cur_state; 119 120 if (unlikely(dev_state_transitions[index].from_state != cur_state)) 121 return cur_state; 122 123 if (unlikely(!(dev_state_transitions[index].to_states & state))) 124 return cur_state; 125 126 mhi_cntrl->pm_state = state; 127 return mhi_cntrl->pm_state; 128 } 129 130 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state) 131 { 132 struct device *dev = &mhi_cntrl->mhi_dev->dev; 133 int ret; 134 135 if (state == MHI_STATE_RESET) { 136 ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 137 MHICTRL_RESET_MASK, 1); 138 } else { 139 ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 140 MHICTRL_MHISTATE_MASK, state); 141 } 142 143 if (ret) 144 dev_err(dev, "Failed to set MHI state to: %s\n", 145 mhi_state_str(state)); 146 } 147 148 /* NOP for backward compatibility, host allowed to ring DB in M2 state */ 149 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl) 150 { 151 } 152 153 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl) 154 { 155 mhi_cntrl->wake_get(mhi_cntrl, false); 156 mhi_cntrl->wake_put(mhi_cntrl, true); 157 } 158 159 /* Handle device ready state transition */ 160 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl) 161 { 162 struct mhi_event *mhi_event; 163 enum mhi_pm_state cur_state; 164 struct device *dev = &mhi_cntrl->mhi_dev->dev; 165 u32 interval_us = 25000; /* poll register field every 25 milliseconds */ 166 int ret, i; 167 168 /* Check if device entered error state */ 169 if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { 170 dev_err(dev, "Device link is not accessible\n"); 171 return -EIO; 172 } 173 174 /* Wait for RESET to be cleared and READY bit to be set by the device */ 175 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 176 MHICTRL_RESET_MASK, 0, interval_us); 177 if (ret) { 178 dev_err(dev, "Device failed to clear MHI Reset\n"); 179 return ret; 180 } 181 182 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, 183 MHISTATUS_READY_MASK, 1, interval_us); 184 if (ret) { 185 dev_err(dev, "Device failed to enter MHI Ready\n"); 186 return ret; 187 } 188 189 dev_dbg(dev, "Device in READY State\n"); 190 write_lock_irq(&mhi_cntrl->pm_lock); 191 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); 192 mhi_cntrl->dev_state = MHI_STATE_READY; 193 write_unlock_irq(&mhi_cntrl->pm_lock); 194 195 if (cur_state != MHI_PM_POR) { 196 dev_err(dev, "Error moving to state %s from %s\n", 197 to_mhi_pm_state_str(MHI_PM_POR), 198 to_mhi_pm_state_str(cur_state)); 199 return -EIO; 200 } 201 202 read_lock_bh(&mhi_cntrl->pm_lock); 203 if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { 204 dev_err(dev, "Device registers not accessible\n"); 205 goto error_mmio; 206 } 207 208 /* Configure MMIO registers */ 209 ret = mhi_init_mmio(mhi_cntrl); 210 if (ret) { 211 dev_err(dev, "Error configuring MMIO registers\n"); 212 goto error_mmio; 213 } 214 215 /* Add elements to all SW event rings */ 216 mhi_event = mhi_cntrl->mhi_event; 217 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 218 struct mhi_ring *ring = &mhi_event->ring; 219 220 /* Skip if this is an offload or HW event */ 221 if (mhi_event->offload_ev || mhi_event->hw_ring) 222 continue; 223 224 ring->wp = ring->base + ring->len - ring->el_size; 225 *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); 226 /* Update all cores */ 227 smp_wmb(); 228 229 /* Ring the event ring db */ 230 spin_lock_irq(&mhi_event->lock); 231 mhi_ring_er_db(mhi_event); 232 spin_unlock_irq(&mhi_event->lock); 233 } 234 235 /* Set MHI to M0 state */ 236 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); 237 read_unlock_bh(&mhi_cntrl->pm_lock); 238 239 return 0; 240 241 error_mmio: 242 read_unlock_bh(&mhi_cntrl->pm_lock); 243 244 return -EIO; 245 } 246 247 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl) 248 { 249 enum mhi_pm_state cur_state; 250 struct mhi_chan *mhi_chan; 251 struct device *dev = &mhi_cntrl->mhi_dev->dev; 252 int i; 253 254 write_lock_irq(&mhi_cntrl->pm_lock); 255 mhi_cntrl->dev_state = MHI_STATE_M0; 256 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0); 257 write_unlock_irq(&mhi_cntrl->pm_lock); 258 if (unlikely(cur_state != MHI_PM_M0)) { 259 dev_err(dev, "Unable to transition to M0 state\n"); 260 return -EIO; 261 } 262 mhi_cntrl->M0++; 263 264 /* Wake up the device */ 265 read_lock_bh(&mhi_cntrl->pm_lock); 266 mhi_cntrl->wake_get(mhi_cntrl, true); 267 268 /* Ring all event rings and CMD ring only if we're in mission mode */ 269 if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) { 270 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 271 struct mhi_cmd *mhi_cmd = 272 &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; 273 274 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 275 if (mhi_event->offload_ev) 276 continue; 277 278 spin_lock_irq(&mhi_event->lock); 279 mhi_ring_er_db(mhi_event); 280 spin_unlock_irq(&mhi_event->lock); 281 } 282 283 /* Only ring primary cmd ring if ring is not empty */ 284 spin_lock_irq(&mhi_cmd->lock); 285 if (mhi_cmd->ring.rp != mhi_cmd->ring.wp) 286 mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); 287 spin_unlock_irq(&mhi_cmd->lock); 288 } 289 290 /* Ring channel DB registers */ 291 mhi_chan = mhi_cntrl->mhi_chan; 292 for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { 293 struct mhi_ring *tre_ring = &mhi_chan->tre_ring; 294 295 if (mhi_chan->db_cfg.reset_req) { 296 write_lock_irq(&mhi_chan->lock); 297 mhi_chan->db_cfg.db_mode = true; 298 write_unlock_irq(&mhi_chan->lock); 299 } 300 301 read_lock_irq(&mhi_chan->lock); 302 303 /* Only ring DB if ring is not empty */ 304 if (tre_ring->base && tre_ring->wp != tre_ring->rp && 305 mhi_chan->ch_state == MHI_CH_STATE_ENABLED) 306 mhi_ring_chan_db(mhi_cntrl, mhi_chan); 307 read_unlock_irq(&mhi_chan->lock); 308 } 309 310 mhi_cntrl->wake_put(mhi_cntrl, false); 311 read_unlock_bh(&mhi_cntrl->pm_lock); 312 wake_up_all(&mhi_cntrl->state_event); 313 314 return 0; 315 } 316 317 /* 318 * After receiving the MHI state change event from the device indicating the 319 * transition to M1 state, the host can transition the device to M2 state 320 * for keeping it in low power state. 321 */ 322 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl) 323 { 324 enum mhi_pm_state state; 325 struct device *dev = &mhi_cntrl->mhi_dev->dev; 326 327 write_lock_irq(&mhi_cntrl->pm_lock); 328 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2); 329 if (state == MHI_PM_M2) { 330 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2); 331 mhi_cntrl->dev_state = MHI_STATE_M2; 332 333 write_unlock_irq(&mhi_cntrl->pm_lock); 334 335 mhi_cntrl->M2++; 336 wake_up_all(&mhi_cntrl->state_event); 337 338 /* If there are any pending resources, exit M2 immediately */ 339 if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) || 340 atomic_read(&mhi_cntrl->dev_wake))) { 341 dev_dbg(dev, 342 "Exiting M2, pending_pkts: %d dev_wake: %d\n", 343 atomic_read(&mhi_cntrl->pending_pkts), 344 atomic_read(&mhi_cntrl->dev_wake)); 345 read_lock_bh(&mhi_cntrl->pm_lock); 346 mhi_cntrl->wake_get(mhi_cntrl, true); 347 mhi_cntrl->wake_put(mhi_cntrl, true); 348 read_unlock_bh(&mhi_cntrl->pm_lock); 349 } else { 350 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE); 351 } 352 } else { 353 write_unlock_irq(&mhi_cntrl->pm_lock); 354 } 355 } 356 357 /* MHI M3 completion handler */ 358 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl) 359 { 360 enum mhi_pm_state state; 361 struct device *dev = &mhi_cntrl->mhi_dev->dev; 362 363 write_lock_irq(&mhi_cntrl->pm_lock); 364 mhi_cntrl->dev_state = MHI_STATE_M3; 365 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3); 366 write_unlock_irq(&mhi_cntrl->pm_lock); 367 if (state != MHI_PM_M3) { 368 dev_err(dev, "Unable to transition to M3 state\n"); 369 return -EIO; 370 } 371 372 mhi_cntrl->M3++; 373 wake_up_all(&mhi_cntrl->state_event); 374 375 return 0; 376 } 377 378 /* Handle device Mission Mode transition */ 379 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl) 380 { 381 struct mhi_event *mhi_event; 382 struct device *dev = &mhi_cntrl->mhi_dev->dev; 383 enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee; 384 int i, ret; 385 386 dev_dbg(dev, "Processing Mission Mode transition\n"); 387 388 write_lock_irq(&mhi_cntrl->pm_lock); 389 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) 390 ee = mhi_get_exec_env(mhi_cntrl); 391 392 if (!MHI_IN_MISSION_MODE(ee)) { 393 mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; 394 write_unlock_irq(&mhi_cntrl->pm_lock); 395 wake_up_all(&mhi_cntrl->state_event); 396 return -EIO; 397 } 398 mhi_cntrl->ee = ee; 399 write_unlock_irq(&mhi_cntrl->pm_lock); 400 401 wake_up_all(&mhi_cntrl->state_event); 402 403 device_for_each_child(&mhi_cntrl->mhi_dev->dev, ¤t_ee, 404 mhi_destroy_device); 405 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE); 406 407 /* Force MHI to be in M0 state before continuing */ 408 ret = __mhi_device_get_sync(mhi_cntrl); 409 if (ret) 410 return ret; 411 412 read_lock_bh(&mhi_cntrl->pm_lock); 413 414 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 415 ret = -EIO; 416 goto error_mission_mode; 417 } 418 419 /* Add elements to all HW event rings */ 420 mhi_event = mhi_cntrl->mhi_event; 421 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 422 struct mhi_ring *ring = &mhi_event->ring; 423 424 if (mhi_event->offload_ev || !mhi_event->hw_ring) 425 continue; 426 427 ring->wp = ring->base + ring->len - ring->el_size; 428 *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); 429 /* Update to all cores */ 430 smp_wmb(); 431 432 spin_lock_irq(&mhi_event->lock); 433 if (MHI_DB_ACCESS_VALID(mhi_cntrl)) 434 mhi_ring_er_db(mhi_event); 435 spin_unlock_irq(&mhi_event->lock); 436 } 437 438 read_unlock_bh(&mhi_cntrl->pm_lock); 439 440 /* 441 * The MHI devices are only created when the client device switches its 442 * Execution Environment (EE) to either SBL or AMSS states 443 */ 444 mhi_create_devices(mhi_cntrl); 445 446 read_lock_bh(&mhi_cntrl->pm_lock); 447 448 error_mission_mode: 449 mhi_cntrl->wake_put(mhi_cntrl, false); 450 read_unlock_bh(&mhi_cntrl->pm_lock); 451 452 return ret; 453 } 454 455 /* Handle shutdown transitions */ 456 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl) 457 { 458 enum mhi_pm_state cur_state; 459 struct mhi_event *mhi_event; 460 struct mhi_cmd_ctxt *cmd_ctxt; 461 struct mhi_cmd *mhi_cmd; 462 struct mhi_event_ctxt *er_ctxt; 463 struct device *dev = &mhi_cntrl->mhi_dev->dev; 464 int ret, i; 465 466 dev_dbg(dev, "Processing disable transition with PM state: %s\n", 467 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 468 469 mutex_lock(&mhi_cntrl->pm_mutex); 470 471 /* Trigger MHI RESET so that the device will not access host memory */ 472 if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { 473 dev_dbg(dev, "Triggering MHI Reset in device\n"); 474 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 475 476 /* Wait for the reset bit to be cleared by the device */ 477 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 478 MHICTRL_RESET_MASK, 0, 25000); 479 if (ret) 480 dev_err(dev, "Device failed to clear MHI Reset\n"); 481 482 /* 483 * Device will clear BHI_INTVEC as a part of RESET processing, 484 * hence re-program it 485 */ 486 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 487 488 if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { 489 /* wait for ready to be set */ 490 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, 491 MHISTATUS, 492 MHISTATUS_READY_MASK, 1, 25000); 493 if (ret) 494 dev_err(dev, "Device failed to enter READY state\n"); 495 } 496 } 497 498 dev_dbg(dev, 499 "Waiting for all pending event ring processing to complete\n"); 500 mhi_event = mhi_cntrl->mhi_event; 501 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 502 if (mhi_event->offload_ev) 503 continue; 504 disable_irq(mhi_cntrl->irq[mhi_event->irq]); 505 tasklet_kill(&mhi_event->task); 506 } 507 508 /* Release lock and wait for all pending threads to complete */ 509 mutex_unlock(&mhi_cntrl->pm_mutex); 510 dev_dbg(dev, "Waiting for all pending threads to complete\n"); 511 wake_up_all(&mhi_cntrl->state_event); 512 513 dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); 514 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); 515 516 mutex_lock(&mhi_cntrl->pm_mutex); 517 518 WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); 519 WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); 520 521 /* Reset the ev rings and cmd rings */ 522 dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); 523 mhi_cmd = mhi_cntrl->mhi_cmd; 524 cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; 525 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { 526 struct mhi_ring *ring = &mhi_cmd->ring; 527 528 ring->rp = ring->base; 529 ring->wp = ring->base; 530 cmd_ctxt->rp = cmd_ctxt->rbase; 531 cmd_ctxt->wp = cmd_ctxt->rbase; 532 } 533 534 mhi_event = mhi_cntrl->mhi_event; 535 er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; 536 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, 537 mhi_event++) { 538 struct mhi_ring *ring = &mhi_event->ring; 539 540 /* Skip offload events */ 541 if (mhi_event->offload_ev) 542 continue; 543 544 ring->rp = ring->base; 545 ring->wp = ring->base; 546 er_ctxt->rp = er_ctxt->rbase; 547 er_ctxt->wp = er_ctxt->rbase; 548 } 549 550 /* Move to disable state */ 551 write_lock_irq(&mhi_cntrl->pm_lock); 552 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE); 553 write_unlock_irq(&mhi_cntrl->pm_lock); 554 if (unlikely(cur_state != MHI_PM_DISABLE)) 555 dev_err(dev, "Error moving from PM state: %s to: %s\n", 556 to_mhi_pm_state_str(cur_state), 557 to_mhi_pm_state_str(MHI_PM_DISABLE)); 558 559 dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", 560 to_mhi_pm_state_str(mhi_cntrl->pm_state), 561 mhi_state_str(mhi_cntrl->dev_state)); 562 563 mutex_unlock(&mhi_cntrl->pm_mutex); 564 } 565 566 /* Handle system error transitions */ 567 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl) 568 { 569 enum mhi_pm_state cur_state, prev_state; 570 enum dev_st_transition next_state; 571 struct mhi_event *mhi_event; 572 struct mhi_cmd_ctxt *cmd_ctxt; 573 struct mhi_cmd *mhi_cmd; 574 struct mhi_event_ctxt *er_ctxt; 575 struct device *dev = &mhi_cntrl->mhi_dev->dev; 576 int ret, i; 577 578 dev_dbg(dev, "Transitioning from PM state: %s to: %s\n", 579 to_mhi_pm_state_str(mhi_cntrl->pm_state), 580 to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); 581 582 /* We must notify MHI control driver so it can clean up first */ 583 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR); 584 585 mutex_lock(&mhi_cntrl->pm_mutex); 586 write_lock_irq(&mhi_cntrl->pm_lock); 587 prev_state = mhi_cntrl->pm_state; 588 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS); 589 write_unlock_irq(&mhi_cntrl->pm_lock); 590 591 if (cur_state != MHI_PM_SYS_ERR_PROCESS) { 592 dev_err(dev, "Failed to transition from PM state: %s to: %s\n", 593 to_mhi_pm_state_str(cur_state), 594 to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); 595 goto exit_sys_error_transition; 596 } 597 598 mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; 599 mhi_cntrl->dev_state = MHI_STATE_RESET; 600 601 /* Wake up threads waiting for state transition */ 602 wake_up_all(&mhi_cntrl->state_event); 603 604 /* Trigger MHI RESET so that the device will not access host memory */ 605 if (MHI_REG_ACCESS_VALID(prev_state)) { 606 u32 in_reset = -1; 607 unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms); 608 609 dev_dbg(dev, "Triggering MHI Reset in device\n"); 610 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 611 612 /* Wait for the reset bit to be cleared by the device */ 613 ret = wait_event_timeout(mhi_cntrl->state_event, 614 mhi_read_reg_field(mhi_cntrl, 615 mhi_cntrl->regs, 616 MHICTRL, 617 MHICTRL_RESET_MASK, 618 &in_reset) || 619 !in_reset, timeout); 620 if (!ret || in_reset) { 621 dev_err(dev, "Device failed to exit MHI Reset state\n"); 622 goto exit_sys_error_transition; 623 } 624 625 /* 626 * Device will clear BHI_INTVEC as a part of RESET processing, 627 * hence re-program it 628 */ 629 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 630 } 631 632 dev_dbg(dev, 633 "Waiting for all pending event ring processing to complete\n"); 634 mhi_event = mhi_cntrl->mhi_event; 635 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 636 if (mhi_event->offload_ev) 637 continue; 638 tasklet_kill(&mhi_event->task); 639 } 640 641 /* Release lock and wait for all pending threads to complete */ 642 mutex_unlock(&mhi_cntrl->pm_mutex); 643 dev_dbg(dev, "Waiting for all pending threads to complete\n"); 644 wake_up_all(&mhi_cntrl->state_event); 645 646 dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); 647 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); 648 649 mutex_lock(&mhi_cntrl->pm_mutex); 650 651 WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); 652 WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); 653 654 /* Reset the ev rings and cmd rings */ 655 dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); 656 mhi_cmd = mhi_cntrl->mhi_cmd; 657 cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; 658 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { 659 struct mhi_ring *ring = &mhi_cmd->ring; 660 661 ring->rp = ring->base; 662 ring->wp = ring->base; 663 cmd_ctxt->rp = cmd_ctxt->rbase; 664 cmd_ctxt->wp = cmd_ctxt->rbase; 665 } 666 667 mhi_event = mhi_cntrl->mhi_event; 668 er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; 669 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, 670 mhi_event++) { 671 struct mhi_ring *ring = &mhi_event->ring; 672 673 /* Skip offload events */ 674 if (mhi_event->offload_ev) 675 continue; 676 677 ring->rp = ring->base; 678 ring->wp = ring->base; 679 er_ctxt->rp = er_ctxt->rbase; 680 er_ctxt->wp = er_ctxt->rbase; 681 } 682 683 /* Transition to next state */ 684 if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { 685 write_lock_irq(&mhi_cntrl->pm_lock); 686 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); 687 write_unlock_irq(&mhi_cntrl->pm_lock); 688 if (cur_state != MHI_PM_POR) { 689 dev_err(dev, "Error moving to state %s from %s\n", 690 to_mhi_pm_state_str(MHI_PM_POR), 691 to_mhi_pm_state_str(cur_state)); 692 goto exit_sys_error_transition; 693 } 694 next_state = DEV_ST_TRANSITION_PBL; 695 } else { 696 next_state = DEV_ST_TRANSITION_READY; 697 } 698 699 mhi_queue_state_transition(mhi_cntrl, next_state); 700 701 exit_sys_error_transition: 702 dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", 703 to_mhi_pm_state_str(mhi_cntrl->pm_state), 704 mhi_state_str(mhi_cntrl->dev_state)); 705 706 mutex_unlock(&mhi_cntrl->pm_mutex); 707 } 708 709 /* Queue a new work item and schedule work */ 710 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl, 711 enum dev_st_transition state) 712 { 713 struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC); 714 unsigned long flags; 715 716 if (!item) 717 return -ENOMEM; 718 719 item->state = state; 720 spin_lock_irqsave(&mhi_cntrl->transition_lock, flags); 721 list_add_tail(&item->node, &mhi_cntrl->transition_list); 722 spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags); 723 724 queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker); 725 726 return 0; 727 } 728 729 /* SYS_ERR worker */ 730 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl) 731 { 732 struct device *dev = &mhi_cntrl->mhi_dev->dev; 733 734 /* skip if controller supports RDDM */ 735 if (mhi_cntrl->rddm_image) { 736 dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n"); 737 return; 738 } 739 740 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR); 741 } 742 743 /* Device State Transition worker */ 744 void mhi_pm_st_worker(struct work_struct *work) 745 { 746 struct state_transition *itr, *tmp; 747 LIST_HEAD(head); 748 struct mhi_controller *mhi_cntrl = container_of(work, 749 struct mhi_controller, 750 st_worker); 751 struct device *dev = &mhi_cntrl->mhi_dev->dev; 752 753 spin_lock_irq(&mhi_cntrl->transition_lock); 754 list_splice_tail_init(&mhi_cntrl->transition_list, &head); 755 spin_unlock_irq(&mhi_cntrl->transition_lock); 756 757 list_for_each_entry_safe(itr, tmp, &head, node) { 758 list_del(&itr->node); 759 dev_dbg(dev, "Handling state transition: %s\n", 760 TO_DEV_STATE_TRANS_STR(itr->state)); 761 762 switch (itr->state) { 763 case DEV_ST_TRANSITION_PBL: 764 write_lock_irq(&mhi_cntrl->pm_lock); 765 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) 766 mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); 767 write_unlock_irq(&mhi_cntrl->pm_lock); 768 mhi_fw_load_handler(mhi_cntrl); 769 break; 770 case DEV_ST_TRANSITION_SBL: 771 write_lock_irq(&mhi_cntrl->pm_lock); 772 mhi_cntrl->ee = MHI_EE_SBL; 773 write_unlock_irq(&mhi_cntrl->pm_lock); 774 /* 775 * The MHI devices are only created when the client 776 * device switches its Execution Environment (EE) to 777 * either SBL or AMSS states 778 */ 779 mhi_create_devices(mhi_cntrl); 780 if (mhi_cntrl->fbc_download) 781 mhi_download_amss_image(mhi_cntrl); 782 break; 783 case DEV_ST_TRANSITION_MISSION_MODE: 784 mhi_pm_mission_mode_transition(mhi_cntrl); 785 break; 786 case DEV_ST_TRANSITION_FP: 787 write_lock_irq(&mhi_cntrl->pm_lock); 788 mhi_cntrl->ee = MHI_EE_FP; 789 write_unlock_irq(&mhi_cntrl->pm_lock); 790 mhi_create_devices(mhi_cntrl); 791 break; 792 case DEV_ST_TRANSITION_READY: 793 mhi_ready_state_transition(mhi_cntrl); 794 break; 795 case DEV_ST_TRANSITION_SYS_ERR: 796 mhi_pm_sys_error_transition(mhi_cntrl); 797 break; 798 case DEV_ST_TRANSITION_DISABLE: 799 mhi_pm_disable_transition(mhi_cntrl); 800 break; 801 default: 802 break; 803 } 804 kfree(itr); 805 } 806 } 807 808 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl) 809 { 810 struct mhi_chan *itr, *tmp; 811 struct device *dev = &mhi_cntrl->mhi_dev->dev; 812 enum mhi_pm_state new_state; 813 int ret; 814 815 if (mhi_cntrl->pm_state == MHI_PM_DISABLE) 816 return -EINVAL; 817 818 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) 819 return -EIO; 820 821 /* Return busy if there are any pending resources */ 822 if (atomic_read(&mhi_cntrl->dev_wake) || 823 atomic_read(&mhi_cntrl->pending_pkts)) 824 return -EBUSY; 825 826 /* Take MHI out of M2 state */ 827 read_lock_bh(&mhi_cntrl->pm_lock); 828 mhi_cntrl->wake_get(mhi_cntrl, false); 829 read_unlock_bh(&mhi_cntrl->pm_lock); 830 831 ret = wait_event_timeout(mhi_cntrl->state_event, 832 mhi_cntrl->dev_state == MHI_STATE_M0 || 833 mhi_cntrl->dev_state == MHI_STATE_M1 || 834 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 835 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 836 837 read_lock_bh(&mhi_cntrl->pm_lock); 838 mhi_cntrl->wake_put(mhi_cntrl, false); 839 read_unlock_bh(&mhi_cntrl->pm_lock); 840 841 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 842 dev_err(dev, 843 "Could not enter M0/M1 state"); 844 return -EIO; 845 } 846 847 write_lock_irq(&mhi_cntrl->pm_lock); 848 849 if (atomic_read(&mhi_cntrl->dev_wake) || 850 atomic_read(&mhi_cntrl->pending_pkts)) { 851 write_unlock_irq(&mhi_cntrl->pm_lock); 852 return -EBUSY; 853 } 854 855 dev_dbg(dev, "Allowing M3 transition\n"); 856 new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER); 857 if (new_state != MHI_PM_M3_ENTER) { 858 write_unlock_irq(&mhi_cntrl->pm_lock); 859 dev_err(dev, 860 "Error setting to PM state: %s from: %s\n", 861 to_mhi_pm_state_str(MHI_PM_M3_ENTER), 862 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 863 return -EIO; 864 } 865 866 /* Set MHI to M3 and wait for completion */ 867 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3); 868 write_unlock_irq(&mhi_cntrl->pm_lock); 869 dev_dbg(dev, "Waiting for M3 completion\n"); 870 871 ret = wait_event_timeout(mhi_cntrl->state_event, 872 mhi_cntrl->dev_state == MHI_STATE_M3 || 873 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 874 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 875 876 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 877 dev_err(dev, 878 "Did not enter M3 state, MHI state: %s, PM state: %s\n", 879 mhi_state_str(mhi_cntrl->dev_state), 880 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 881 return -EIO; 882 } 883 884 /* Notify clients about entering LPM */ 885 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { 886 mutex_lock(&itr->mutex); 887 if (itr->mhi_dev) 888 mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER); 889 mutex_unlock(&itr->mutex); 890 } 891 892 return 0; 893 } 894 EXPORT_SYMBOL_GPL(mhi_pm_suspend); 895 896 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force) 897 { 898 struct mhi_chan *itr, *tmp; 899 struct device *dev = &mhi_cntrl->mhi_dev->dev; 900 enum mhi_pm_state cur_state; 901 int ret; 902 903 dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n", 904 to_mhi_pm_state_str(mhi_cntrl->pm_state), 905 mhi_state_str(mhi_cntrl->dev_state)); 906 907 if (mhi_cntrl->pm_state == MHI_PM_DISABLE) 908 return 0; 909 910 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) 911 return -EIO; 912 913 if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) { 914 dev_warn(dev, "Resuming from non M3 state (%s)\n", 915 mhi_state_str(mhi_get_mhi_state(mhi_cntrl))); 916 if (!force) 917 return -EINVAL; 918 } 919 920 /* Notify clients about exiting LPM */ 921 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { 922 mutex_lock(&itr->mutex); 923 if (itr->mhi_dev) 924 mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT); 925 mutex_unlock(&itr->mutex); 926 } 927 928 write_lock_irq(&mhi_cntrl->pm_lock); 929 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT); 930 if (cur_state != MHI_PM_M3_EXIT) { 931 write_unlock_irq(&mhi_cntrl->pm_lock); 932 dev_info(dev, 933 "Error setting to PM state: %s from: %s\n", 934 to_mhi_pm_state_str(MHI_PM_M3_EXIT), 935 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 936 return -EIO; 937 } 938 939 /* Set MHI to M0 and wait for completion */ 940 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); 941 write_unlock_irq(&mhi_cntrl->pm_lock); 942 943 ret = wait_event_timeout(mhi_cntrl->state_event, 944 mhi_cntrl->dev_state == MHI_STATE_M0 || 945 mhi_cntrl->dev_state == MHI_STATE_M2 || 946 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 947 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 948 949 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 950 dev_err(dev, 951 "Did not enter M0 state, MHI state: %s, PM state: %s\n", 952 mhi_state_str(mhi_cntrl->dev_state), 953 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 954 return -EIO; 955 } 956 957 return 0; 958 } 959 960 int mhi_pm_resume(struct mhi_controller *mhi_cntrl) 961 { 962 return __mhi_pm_resume(mhi_cntrl, false); 963 } 964 EXPORT_SYMBOL_GPL(mhi_pm_resume); 965 966 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl) 967 { 968 return __mhi_pm_resume(mhi_cntrl, true); 969 } 970 EXPORT_SYMBOL_GPL(mhi_pm_resume_force); 971 972 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl) 973 { 974 int ret; 975 976 /* Wake up the device */ 977 read_lock_bh(&mhi_cntrl->pm_lock); 978 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 979 read_unlock_bh(&mhi_cntrl->pm_lock); 980 return -EIO; 981 } 982 mhi_cntrl->wake_get(mhi_cntrl, true); 983 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 984 mhi_trigger_resume(mhi_cntrl); 985 read_unlock_bh(&mhi_cntrl->pm_lock); 986 987 ret = wait_event_timeout(mhi_cntrl->state_event, 988 mhi_cntrl->pm_state == MHI_PM_M0 || 989 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 990 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 991 992 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 993 read_lock_bh(&mhi_cntrl->pm_lock); 994 mhi_cntrl->wake_put(mhi_cntrl, false); 995 read_unlock_bh(&mhi_cntrl->pm_lock); 996 return -EIO; 997 } 998 999 return 0; 1000 } 1001 1002 /* Assert device wake db */ 1003 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force) 1004 { 1005 unsigned long flags; 1006 1007 /* 1008 * If force flag is set, then increment the wake count value and 1009 * ring wake db 1010 */ 1011 if (unlikely(force)) { 1012 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1013 atomic_inc(&mhi_cntrl->dev_wake); 1014 if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) && 1015 !mhi_cntrl->wake_set) { 1016 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); 1017 mhi_cntrl->wake_set = true; 1018 } 1019 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1020 } else { 1021 /* 1022 * If resources are already requested, then just increment 1023 * the wake count value and return 1024 */ 1025 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0))) 1026 return; 1027 1028 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1029 if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) && 1030 MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) && 1031 !mhi_cntrl->wake_set) { 1032 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); 1033 mhi_cntrl->wake_set = true; 1034 } 1035 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1036 } 1037 } 1038 1039 /* De-assert device wake db */ 1040 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl, 1041 bool override) 1042 { 1043 unsigned long flags; 1044 1045 /* 1046 * Only continue if there is a single resource, else just decrement 1047 * and return 1048 */ 1049 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1))) 1050 return; 1051 1052 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1053 if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) && 1054 MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override && 1055 mhi_cntrl->wake_set) { 1056 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0); 1057 mhi_cntrl->wake_set = false; 1058 } 1059 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1060 } 1061 1062 int mhi_async_power_up(struct mhi_controller *mhi_cntrl) 1063 { 1064 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 1065 enum mhi_state state; 1066 enum mhi_ee_type current_ee; 1067 enum dev_st_transition next_state; 1068 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1069 u32 interval_us = 25000; /* poll register field every 25 milliseconds */ 1070 int ret, i; 1071 1072 dev_info(dev, "Requested to power ON\n"); 1073 1074 /* Supply default wake routines if not provided by controller driver */ 1075 if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put || 1076 !mhi_cntrl->wake_toggle) { 1077 mhi_cntrl->wake_get = mhi_assert_dev_wake; 1078 mhi_cntrl->wake_put = mhi_deassert_dev_wake; 1079 mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ? 1080 mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake; 1081 } 1082 1083 mutex_lock(&mhi_cntrl->pm_mutex); 1084 mhi_cntrl->pm_state = MHI_PM_DISABLE; 1085 1086 /* Setup BHI INTVEC */ 1087 write_lock_irq(&mhi_cntrl->pm_lock); 1088 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 1089 mhi_cntrl->pm_state = MHI_PM_POR; 1090 mhi_cntrl->ee = MHI_EE_MAX; 1091 current_ee = mhi_get_exec_env(mhi_cntrl); 1092 write_unlock_irq(&mhi_cntrl->pm_lock); 1093 1094 /* Confirm that the device is in valid exec env */ 1095 if (!MHI_POWER_UP_CAPABLE(current_ee)) { 1096 dev_err(dev, "%s is not a valid EE for power on\n", 1097 TO_MHI_EXEC_STR(current_ee)); 1098 ret = -EIO; 1099 goto error_exit; 1100 } 1101 1102 state = mhi_get_mhi_state(mhi_cntrl); 1103 dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n", 1104 TO_MHI_EXEC_STR(current_ee), mhi_state_str(state)); 1105 1106 if (state == MHI_STATE_SYS_ERR) { 1107 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 1108 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 1109 MHICTRL_RESET_MASK, 0, interval_us); 1110 if (ret) { 1111 dev_info(dev, "Failed to reset MHI due to syserr state\n"); 1112 goto error_exit; 1113 } 1114 1115 /* 1116 * device cleares INTVEC as part of RESET processing, 1117 * re-program it 1118 */ 1119 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 1120 } 1121 1122 /* IRQs have been requested during probe, so we just need to enable them. */ 1123 enable_irq(mhi_cntrl->irq[0]); 1124 1125 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 1126 if (mhi_event->offload_ev) 1127 continue; 1128 1129 enable_irq(mhi_cntrl->irq[mhi_event->irq]); 1130 } 1131 1132 /* Transition to next state */ 1133 next_state = MHI_IN_PBL(current_ee) ? 1134 DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY; 1135 1136 mhi_queue_state_transition(mhi_cntrl, next_state); 1137 1138 mutex_unlock(&mhi_cntrl->pm_mutex); 1139 1140 dev_info(dev, "Power on setup success\n"); 1141 1142 return 0; 1143 1144 error_exit: 1145 mhi_cntrl->pm_state = MHI_PM_DISABLE; 1146 mutex_unlock(&mhi_cntrl->pm_mutex); 1147 1148 return ret; 1149 } 1150 EXPORT_SYMBOL_GPL(mhi_async_power_up); 1151 1152 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful) 1153 { 1154 enum mhi_pm_state cur_state, transition_state; 1155 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1156 1157 mutex_lock(&mhi_cntrl->pm_mutex); 1158 write_lock_irq(&mhi_cntrl->pm_lock); 1159 cur_state = mhi_cntrl->pm_state; 1160 if (cur_state == MHI_PM_DISABLE) { 1161 write_unlock_irq(&mhi_cntrl->pm_lock); 1162 mutex_unlock(&mhi_cntrl->pm_mutex); 1163 return; /* Already powered down */ 1164 } 1165 1166 /* If it's not a graceful shutdown, force MHI to linkdown state */ 1167 transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS : 1168 MHI_PM_LD_ERR_FATAL_DETECT; 1169 1170 cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state); 1171 if (cur_state != transition_state) { 1172 dev_err(dev, "Failed to move to state: %s from: %s\n", 1173 to_mhi_pm_state_str(transition_state), 1174 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 1175 /* Force link down or error fatal detected state */ 1176 mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; 1177 } 1178 1179 /* mark device inactive to avoid any further host processing */ 1180 mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; 1181 mhi_cntrl->dev_state = MHI_STATE_RESET; 1182 1183 wake_up_all(&mhi_cntrl->state_event); 1184 1185 write_unlock_irq(&mhi_cntrl->pm_lock); 1186 mutex_unlock(&mhi_cntrl->pm_mutex); 1187 1188 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE); 1189 1190 /* Wait for shutdown to complete */ 1191 flush_work(&mhi_cntrl->st_worker); 1192 1193 disable_irq(mhi_cntrl->irq[0]); 1194 } 1195 EXPORT_SYMBOL_GPL(mhi_power_down); 1196 1197 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl) 1198 { 1199 int ret = mhi_async_power_up(mhi_cntrl); 1200 1201 if (ret) 1202 return ret; 1203 1204 wait_event_timeout(mhi_cntrl->state_event, 1205 MHI_IN_MISSION_MODE(mhi_cntrl->ee) || 1206 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 1207 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 1208 1209 ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT; 1210 if (ret) 1211 mhi_power_down(mhi_cntrl, false); 1212 1213 return ret; 1214 } 1215 EXPORT_SYMBOL(mhi_sync_power_up); 1216 1217 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl) 1218 { 1219 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1220 int ret; 1221 1222 /* Check if device is already in RDDM */ 1223 if (mhi_cntrl->ee == MHI_EE_RDDM) 1224 return 0; 1225 1226 dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n"); 1227 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); 1228 1229 /* Wait for RDDM event */ 1230 ret = wait_event_timeout(mhi_cntrl->state_event, 1231 mhi_cntrl->ee == MHI_EE_RDDM, 1232 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 1233 ret = ret ? 0 : -EIO; 1234 1235 return ret; 1236 } 1237 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode); 1238 1239 void mhi_device_get(struct mhi_device *mhi_dev) 1240 { 1241 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1242 1243 mhi_dev->dev_wake++; 1244 read_lock_bh(&mhi_cntrl->pm_lock); 1245 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 1246 mhi_trigger_resume(mhi_cntrl); 1247 1248 mhi_cntrl->wake_get(mhi_cntrl, true); 1249 read_unlock_bh(&mhi_cntrl->pm_lock); 1250 } 1251 EXPORT_SYMBOL_GPL(mhi_device_get); 1252 1253 int mhi_device_get_sync(struct mhi_device *mhi_dev) 1254 { 1255 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1256 int ret; 1257 1258 ret = __mhi_device_get_sync(mhi_cntrl); 1259 if (!ret) 1260 mhi_dev->dev_wake++; 1261 1262 return ret; 1263 } 1264 EXPORT_SYMBOL_GPL(mhi_device_get_sync); 1265 1266 void mhi_device_put(struct mhi_device *mhi_dev) 1267 { 1268 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1269 1270 mhi_dev->dev_wake--; 1271 read_lock_bh(&mhi_cntrl->pm_lock); 1272 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 1273 mhi_trigger_resume(mhi_cntrl); 1274 1275 mhi_cntrl->wake_put(mhi_cntrl, false); 1276 read_unlock_bh(&mhi_cntrl->pm_lock); 1277 } 1278 EXPORT_SYMBOL_GPL(mhi_device_put); 1279