xref: /openbmc/linux/drivers/bus/mhi/host/pm.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 
19 /*
20  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
21  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
22  * transition to a new state only if we're allowed to.
23  *
24  * Priority increases as we go down. For instance, from any state in L0, the
25  * transition can be made to states in L1, L2 and L3. A notable exception to
26  * this rule is state DISABLE.  From DISABLE state we can only transition to
27  * POR state. Also, while in L2 state, user cannot jump back to previous
28  * L1 or L0 states.
29  *
30  * Valid transitions:
31  * L0: DISABLE <--> POR
32  *     POR <--> POR
33  *     POR -> M0 -> M2 --> M0
34  *     POR -> FW_DL_ERR
35  *     FW_DL_ERR <--> FW_DL_ERR
36  *     M0 <--> M0
37  *     M0 -> FW_DL_ERR
38  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
39  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
40  * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
41  *     SHUTDOWN_PROCESS -> DISABLE
42  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
43  *     LD_ERR_FATAL_DETECT -> DISABLE
44  */
45 static const struct mhi_pm_transitions dev_state_transitions[] = {
46 	/* L0 States */
47 	{
48 		MHI_PM_DISABLE,
49 		MHI_PM_POR
50 	},
51 	{
52 		MHI_PM_POR,
53 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
54 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
55 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
56 	},
57 	{
58 		MHI_PM_M0,
59 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
60 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
61 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
62 	},
63 	{
64 		MHI_PM_M2,
65 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
66 		MHI_PM_LD_ERR_FATAL_DETECT
67 	},
68 	{
69 		MHI_PM_M3_ENTER,
70 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
71 		MHI_PM_LD_ERR_FATAL_DETECT
72 	},
73 	{
74 		MHI_PM_M3,
75 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
76 		MHI_PM_LD_ERR_FATAL_DETECT
77 	},
78 	{
79 		MHI_PM_M3_EXIT,
80 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
81 		MHI_PM_LD_ERR_FATAL_DETECT
82 	},
83 	{
84 		MHI_PM_FW_DL_ERR,
85 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
86 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
87 	},
88 	/* L1 States */
89 	{
90 		MHI_PM_SYS_ERR_DETECT,
91 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
92 		MHI_PM_LD_ERR_FATAL_DETECT
93 	},
94 	{
95 		MHI_PM_SYS_ERR_PROCESS,
96 		MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
97 		MHI_PM_LD_ERR_FATAL_DETECT
98 	},
99 	/* L2 States */
100 	{
101 		MHI_PM_SHUTDOWN_PROCESS,
102 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
103 	},
104 	/* L3 States */
105 	{
106 		MHI_PM_LD_ERR_FATAL_DETECT,
107 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
108 	},
109 };
110 
111 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
112 						   enum mhi_pm_state state)
113 {
114 	unsigned long cur_state = mhi_cntrl->pm_state;
115 	int index = find_last_bit(&cur_state, 32);
116 
117 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
118 		return cur_state;
119 
120 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
121 		return cur_state;
122 
123 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
124 		return cur_state;
125 
126 	mhi_cntrl->pm_state = state;
127 	return mhi_cntrl->pm_state;
128 }
129 
130 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
131 {
132 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
133 	int ret;
134 
135 	if (state == MHI_STATE_RESET) {
136 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
137 					  MHICTRL_RESET_MASK, 1);
138 	} else {
139 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
140 					  MHICTRL_MHISTATE_MASK, state);
141 	}
142 
143 	if (ret)
144 		dev_err(dev, "Failed to set MHI state to: %s\n",
145 			mhi_state_str(state));
146 }
147 
148 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
149 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
150 {
151 }
152 
153 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
154 {
155 	mhi_cntrl->wake_get(mhi_cntrl, false);
156 	mhi_cntrl->wake_put(mhi_cntrl, true);
157 }
158 
159 /* Handle device ready state transition */
160 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
161 {
162 	struct mhi_event *mhi_event;
163 	enum mhi_pm_state cur_state;
164 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
165 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
166 	int ret, i;
167 
168 	/* Check if device entered error state */
169 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
170 		dev_err(dev, "Device link is not accessible\n");
171 		return -EIO;
172 	}
173 
174 	/* Wait for RESET to be cleared and READY bit to be set by the device */
175 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
176 				 MHICTRL_RESET_MASK, 0, interval_us);
177 	if (ret) {
178 		dev_err(dev, "Device failed to clear MHI Reset\n");
179 		return ret;
180 	}
181 
182 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
183 				 MHISTATUS_READY_MASK, 1, interval_us);
184 	if (ret) {
185 		dev_err(dev, "Device failed to enter MHI Ready\n");
186 		return ret;
187 	}
188 
189 	dev_dbg(dev, "Device in READY State\n");
190 	write_lock_irq(&mhi_cntrl->pm_lock);
191 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
192 	mhi_cntrl->dev_state = MHI_STATE_READY;
193 	write_unlock_irq(&mhi_cntrl->pm_lock);
194 
195 	if (cur_state != MHI_PM_POR) {
196 		dev_err(dev, "Error moving to state %s from %s\n",
197 			to_mhi_pm_state_str(MHI_PM_POR),
198 			to_mhi_pm_state_str(cur_state));
199 		return -EIO;
200 	}
201 
202 	read_lock_bh(&mhi_cntrl->pm_lock);
203 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
204 		dev_err(dev, "Device registers not accessible\n");
205 		goto error_mmio;
206 	}
207 
208 	/* Configure MMIO registers */
209 	ret = mhi_init_mmio(mhi_cntrl);
210 	if (ret) {
211 		dev_err(dev, "Error configuring MMIO registers\n");
212 		goto error_mmio;
213 	}
214 
215 	/* Add elements to all SW event rings */
216 	mhi_event = mhi_cntrl->mhi_event;
217 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
218 		struct mhi_ring *ring = &mhi_event->ring;
219 
220 		/* Skip if this is an offload or HW event */
221 		if (mhi_event->offload_ev || mhi_event->hw_ring)
222 			continue;
223 
224 		ring->wp = ring->base + ring->len - ring->el_size;
225 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
226 		/* Update all cores */
227 		smp_wmb();
228 
229 		/* Ring the event ring db */
230 		spin_lock_irq(&mhi_event->lock);
231 		mhi_ring_er_db(mhi_event);
232 		spin_unlock_irq(&mhi_event->lock);
233 	}
234 
235 	/* Set MHI to M0 state */
236 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
237 	read_unlock_bh(&mhi_cntrl->pm_lock);
238 
239 	return 0;
240 
241 error_mmio:
242 	read_unlock_bh(&mhi_cntrl->pm_lock);
243 
244 	return -EIO;
245 }
246 
247 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
248 {
249 	enum mhi_pm_state cur_state;
250 	struct mhi_chan *mhi_chan;
251 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
252 	int i;
253 
254 	write_lock_irq(&mhi_cntrl->pm_lock);
255 	mhi_cntrl->dev_state = MHI_STATE_M0;
256 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
257 	write_unlock_irq(&mhi_cntrl->pm_lock);
258 	if (unlikely(cur_state != MHI_PM_M0)) {
259 		dev_err(dev, "Unable to transition to M0 state\n");
260 		return -EIO;
261 	}
262 	mhi_cntrl->M0++;
263 
264 	/* Wake up the device */
265 	read_lock_bh(&mhi_cntrl->pm_lock);
266 	mhi_cntrl->wake_get(mhi_cntrl, true);
267 
268 	/* Ring all event rings and CMD ring only if we're in mission mode */
269 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
270 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
271 		struct mhi_cmd *mhi_cmd =
272 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
273 
274 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
275 			if (mhi_event->offload_ev)
276 				continue;
277 
278 			spin_lock_irq(&mhi_event->lock);
279 			mhi_ring_er_db(mhi_event);
280 			spin_unlock_irq(&mhi_event->lock);
281 		}
282 
283 		/* Only ring primary cmd ring if ring is not empty */
284 		spin_lock_irq(&mhi_cmd->lock);
285 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
286 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
287 		spin_unlock_irq(&mhi_cmd->lock);
288 	}
289 
290 	/* Ring channel DB registers */
291 	mhi_chan = mhi_cntrl->mhi_chan;
292 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
293 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
294 
295 		if (mhi_chan->db_cfg.reset_req) {
296 			write_lock_irq(&mhi_chan->lock);
297 			mhi_chan->db_cfg.db_mode = true;
298 			write_unlock_irq(&mhi_chan->lock);
299 		}
300 
301 		read_lock_irq(&mhi_chan->lock);
302 
303 		/* Only ring DB if ring is not empty */
304 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp)
305 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
306 		read_unlock_irq(&mhi_chan->lock);
307 	}
308 
309 	mhi_cntrl->wake_put(mhi_cntrl, false);
310 	read_unlock_bh(&mhi_cntrl->pm_lock);
311 	wake_up_all(&mhi_cntrl->state_event);
312 
313 	return 0;
314 }
315 
316 /*
317  * After receiving the MHI state change event from the device indicating the
318  * transition to M1 state, the host can transition the device to M2 state
319  * for keeping it in low power state.
320  */
321 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
322 {
323 	enum mhi_pm_state state;
324 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
325 
326 	write_lock_irq(&mhi_cntrl->pm_lock);
327 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
328 	if (state == MHI_PM_M2) {
329 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
330 		mhi_cntrl->dev_state = MHI_STATE_M2;
331 
332 		write_unlock_irq(&mhi_cntrl->pm_lock);
333 
334 		mhi_cntrl->M2++;
335 		wake_up_all(&mhi_cntrl->state_event);
336 
337 		/* If there are any pending resources, exit M2 immediately */
338 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
339 			     atomic_read(&mhi_cntrl->dev_wake))) {
340 			dev_dbg(dev,
341 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
342 				atomic_read(&mhi_cntrl->pending_pkts),
343 				atomic_read(&mhi_cntrl->dev_wake));
344 			read_lock_bh(&mhi_cntrl->pm_lock);
345 			mhi_cntrl->wake_get(mhi_cntrl, true);
346 			mhi_cntrl->wake_put(mhi_cntrl, true);
347 			read_unlock_bh(&mhi_cntrl->pm_lock);
348 		} else {
349 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
350 		}
351 	} else {
352 		write_unlock_irq(&mhi_cntrl->pm_lock);
353 	}
354 }
355 
356 /* MHI M3 completion handler */
357 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
358 {
359 	enum mhi_pm_state state;
360 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
361 
362 	write_lock_irq(&mhi_cntrl->pm_lock);
363 	mhi_cntrl->dev_state = MHI_STATE_M3;
364 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
365 	write_unlock_irq(&mhi_cntrl->pm_lock);
366 	if (state != MHI_PM_M3) {
367 		dev_err(dev, "Unable to transition to M3 state\n");
368 		return -EIO;
369 	}
370 
371 	mhi_cntrl->M3++;
372 	wake_up_all(&mhi_cntrl->state_event);
373 
374 	return 0;
375 }
376 
377 /* Handle device Mission Mode transition */
378 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
379 {
380 	struct mhi_event *mhi_event;
381 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
382 	enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
383 	int i, ret;
384 
385 	dev_dbg(dev, "Processing Mission Mode transition\n");
386 
387 	write_lock_irq(&mhi_cntrl->pm_lock);
388 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
389 		ee = mhi_get_exec_env(mhi_cntrl);
390 
391 	if (!MHI_IN_MISSION_MODE(ee)) {
392 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
393 		write_unlock_irq(&mhi_cntrl->pm_lock);
394 		wake_up_all(&mhi_cntrl->state_event);
395 		return -EIO;
396 	}
397 	mhi_cntrl->ee = ee;
398 	write_unlock_irq(&mhi_cntrl->pm_lock);
399 
400 	wake_up_all(&mhi_cntrl->state_event);
401 
402 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
403 			      mhi_destroy_device);
404 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
405 
406 	/* Force MHI to be in M0 state before continuing */
407 	ret = __mhi_device_get_sync(mhi_cntrl);
408 	if (ret)
409 		return ret;
410 
411 	read_lock_bh(&mhi_cntrl->pm_lock);
412 
413 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
414 		ret = -EIO;
415 		goto error_mission_mode;
416 	}
417 
418 	/* Add elements to all HW event rings */
419 	mhi_event = mhi_cntrl->mhi_event;
420 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
421 		struct mhi_ring *ring = &mhi_event->ring;
422 
423 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
424 			continue;
425 
426 		ring->wp = ring->base + ring->len - ring->el_size;
427 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
428 		/* Update to all cores */
429 		smp_wmb();
430 
431 		spin_lock_irq(&mhi_event->lock);
432 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
433 			mhi_ring_er_db(mhi_event);
434 		spin_unlock_irq(&mhi_event->lock);
435 	}
436 
437 	read_unlock_bh(&mhi_cntrl->pm_lock);
438 
439 	/*
440 	 * The MHI devices are only created when the client device switches its
441 	 * Execution Environment (EE) to either SBL or AMSS states
442 	 */
443 	mhi_create_devices(mhi_cntrl);
444 
445 	read_lock_bh(&mhi_cntrl->pm_lock);
446 
447 error_mission_mode:
448 	mhi_cntrl->wake_put(mhi_cntrl, false);
449 	read_unlock_bh(&mhi_cntrl->pm_lock);
450 
451 	return ret;
452 }
453 
454 /* Handle shutdown transitions */
455 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl)
456 {
457 	enum mhi_pm_state cur_state;
458 	struct mhi_event *mhi_event;
459 	struct mhi_cmd_ctxt *cmd_ctxt;
460 	struct mhi_cmd *mhi_cmd;
461 	struct mhi_event_ctxt *er_ctxt;
462 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
463 	int ret, i;
464 
465 	dev_dbg(dev, "Processing disable transition with PM state: %s\n",
466 		to_mhi_pm_state_str(mhi_cntrl->pm_state));
467 
468 	mutex_lock(&mhi_cntrl->pm_mutex);
469 
470 	/* Trigger MHI RESET so that the device will not access host memory */
471 	if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
472 		dev_dbg(dev, "Triggering MHI Reset in device\n");
473 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
474 
475 		/* Wait for the reset bit to be cleared by the device */
476 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
477 				 MHICTRL_RESET_MASK, 0, 25000);
478 		if (ret)
479 			dev_err(dev, "Device failed to clear MHI Reset\n");
480 
481 		/*
482 		 * Device will clear BHI_INTVEC as a part of RESET processing,
483 		 * hence re-program it
484 		 */
485 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
486 
487 		if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
488 			/* wait for ready to be set */
489 			ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
490 						 MHISTATUS,
491 						 MHISTATUS_READY_MASK, 1, 25000);
492 			if (ret)
493 				dev_err(dev, "Device failed to enter READY state\n");
494 		}
495 	}
496 
497 	dev_dbg(dev,
498 		 "Waiting for all pending event ring processing to complete\n");
499 	mhi_event = mhi_cntrl->mhi_event;
500 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
501 		if (mhi_event->offload_ev)
502 			continue;
503 		disable_irq(mhi_cntrl->irq[mhi_event->irq]);
504 		tasklet_kill(&mhi_event->task);
505 	}
506 
507 	/* Release lock and wait for all pending threads to complete */
508 	mutex_unlock(&mhi_cntrl->pm_mutex);
509 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
510 	wake_up_all(&mhi_cntrl->state_event);
511 
512 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
513 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
514 
515 	mutex_lock(&mhi_cntrl->pm_mutex);
516 
517 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
518 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
519 
520 	/* Reset the ev rings and cmd rings */
521 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
522 	mhi_cmd = mhi_cntrl->mhi_cmd;
523 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
524 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
525 		struct mhi_ring *ring = &mhi_cmd->ring;
526 
527 		ring->rp = ring->base;
528 		ring->wp = ring->base;
529 		cmd_ctxt->rp = cmd_ctxt->rbase;
530 		cmd_ctxt->wp = cmd_ctxt->rbase;
531 	}
532 
533 	mhi_event = mhi_cntrl->mhi_event;
534 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
535 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
536 		     mhi_event++) {
537 		struct mhi_ring *ring = &mhi_event->ring;
538 
539 		/* Skip offload events */
540 		if (mhi_event->offload_ev)
541 			continue;
542 
543 		ring->rp = ring->base;
544 		ring->wp = ring->base;
545 		er_ctxt->rp = er_ctxt->rbase;
546 		er_ctxt->wp = er_ctxt->rbase;
547 	}
548 
549 	/* Move to disable state */
550 	write_lock_irq(&mhi_cntrl->pm_lock);
551 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
552 	write_unlock_irq(&mhi_cntrl->pm_lock);
553 	if (unlikely(cur_state != MHI_PM_DISABLE))
554 		dev_err(dev, "Error moving from PM state: %s to: %s\n",
555 			to_mhi_pm_state_str(cur_state),
556 			to_mhi_pm_state_str(MHI_PM_DISABLE));
557 
558 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
559 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
560 		mhi_state_str(mhi_cntrl->dev_state));
561 
562 	mutex_unlock(&mhi_cntrl->pm_mutex);
563 }
564 
565 /* Handle system error transitions */
566 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
567 {
568 	enum mhi_pm_state cur_state, prev_state;
569 	enum dev_st_transition next_state;
570 	struct mhi_event *mhi_event;
571 	struct mhi_cmd_ctxt *cmd_ctxt;
572 	struct mhi_cmd *mhi_cmd;
573 	struct mhi_event_ctxt *er_ctxt;
574 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
575 	int ret, i;
576 
577 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
578 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
579 		to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
580 
581 	/* We must notify MHI control driver so it can clean up first */
582 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
583 
584 	mutex_lock(&mhi_cntrl->pm_mutex);
585 	write_lock_irq(&mhi_cntrl->pm_lock);
586 	prev_state = mhi_cntrl->pm_state;
587 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
588 	write_unlock_irq(&mhi_cntrl->pm_lock);
589 
590 	if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
591 		dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
592 			to_mhi_pm_state_str(cur_state),
593 			to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
594 		goto exit_sys_error_transition;
595 	}
596 
597 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
598 	mhi_cntrl->dev_state = MHI_STATE_RESET;
599 
600 	/* Wake up threads waiting for state transition */
601 	wake_up_all(&mhi_cntrl->state_event);
602 
603 	/* Trigger MHI RESET so that the device will not access host memory */
604 	if (MHI_REG_ACCESS_VALID(prev_state)) {
605 		u32 in_reset = -1;
606 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
607 
608 		dev_dbg(dev, "Triggering MHI Reset in device\n");
609 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
610 
611 		/* Wait for the reset bit to be cleared by the device */
612 		ret = wait_event_timeout(mhi_cntrl->state_event,
613 					 mhi_read_reg_field(mhi_cntrl,
614 							    mhi_cntrl->regs,
615 							    MHICTRL,
616 							    MHICTRL_RESET_MASK,
617 							    &in_reset) ||
618 					!in_reset, timeout);
619 		if (!ret || in_reset) {
620 			dev_err(dev, "Device failed to exit MHI Reset state\n");
621 			goto exit_sys_error_transition;
622 		}
623 
624 		/*
625 		 * Device will clear BHI_INTVEC as a part of RESET processing,
626 		 * hence re-program it
627 		 */
628 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
629 	}
630 
631 	dev_dbg(dev,
632 		"Waiting for all pending event ring processing to complete\n");
633 	mhi_event = mhi_cntrl->mhi_event;
634 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
635 		if (mhi_event->offload_ev)
636 			continue;
637 		tasklet_kill(&mhi_event->task);
638 	}
639 
640 	/* Release lock and wait for all pending threads to complete */
641 	mutex_unlock(&mhi_cntrl->pm_mutex);
642 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
643 	wake_up_all(&mhi_cntrl->state_event);
644 
645 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
646 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
647 
648 	mutex_lock(&mhi_cntrl->pm_mutex);
649 
650 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
651 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
652 
653 	/* Reset the ev rings and cmd rings */
654 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
655 	mhi_cmd = mhi_cntrl->mhi_cmd;
656 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
657 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
658 		struct mhi_ring *ring = &mhi_cmd->ring;
659 
660 		ring->rp = ring->base;
661 		ring->wp = ring->base;
662 		cmd_ctxt->rp = cmd_ctxt->rbase;
663 		cmd_ctxt->wp = cmd_ctxt->rbase;
664 	}
665 
666 	mhi_event = mhi_cntrl->mhi_event;
667 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
668 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
669 	     mhi_event++) {
670 		struct mhi_ring *ring = &mhi_event->ring;
671 
672 		/* Skip offload events */
673 		if (mhi_event->offload_ev)
674 			continue;
675 
676 		ring->rp = ring->base;
677 		ring->wp = ring->base;
678 		er_ctxt->rp = er_ctxt->rbase;
679 		er_ctxt->wp = er_ctxt->rbase;
680 	}
681 
682 	/* Transition to next state */
683 	if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
684 		write_lock_irq(&mhi_cntrl->pm_lock);
685 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
686 		write_unlock_irq(&mhi_cntrl->pm_lock);
687 		if (cur_state != MHI_PM_POR) {
688 			dev_err(dev, "Error moving to state %s from %s\n",
689 				to_mhi_pm_state_str(MHI_PM_POR),
690 				to_mhi_pm_state_str(cur_state));
691 			goto exit_sys_error_transition;
692 		}
693 		next_state = DEV_ST_TRANSITION_PBL;
694 	} else {
695 		next_state = DEV_ST_TRANSITION_READY;
696 	}
697 
698 	mhi_queue_state_transition(mhi_cntrl, next_state);
699 
700 exit_sys_error_transition:
701 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
702 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
703 		mhi_state_str(mhi_cntrl->dev_state));
704 
705 	mutex_unlock(&mhi_cntrl->pm_mutex);
706 }
707 
708 /* Queue a new work item and schedule work */
709 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
710 			       enum dev_st_transition state)
711 {
712 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
713 	unsigned long flags;
714 
715 	if (!item)
716 		return -ENOMEM;
717 
718 	item->state = state;
719 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
720 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
721 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
722 
723 	queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
724 
725 	return 0;
726 }
727 
728 /* SYS_ERR worker */
729 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
730 {
731 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
732 
733 	/* skip if controller supports RDDM */
734 	if (mhi_cntrl->rddm_image) {
735 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
736 		return;
737 	}
738 
739 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
740 }
741 
742 /* Device State Transition worker */
743 void mhi_pm_st_worker(struct work_struct *work)
744 {
745 	struct state_transition *itr, *tmp;
746 	LIST_HEAD(head);
747 	struct mhi_controller *mhi_cntrl = container_of(work,
748 							struct mhi_controller,
749 							st_worker);
750 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
751 
752 	spin_lock_irq(&mhi_cntrl->transition_lock);
753 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
754 	spin_unlock_irq(&mhi_cntrl->transition_lock);
755 
756 	list_for_each_entry_safe(itr, tmp, &head, node) {
757 		list_del(&itr->node);
758 		dev_dbg(dev, "Handling state transition: %s\n",
759 			TO_DEV_STATE_TRANS_STR(itr->state));
760 
761 		switch (itr->state) {
762 		case DEV_ST_TRANSITION_PBL:
763 			write_lock_irq(&mhi_cntrl->pm_lock);
764 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
765 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
766 			write_unlock_irq(&mhi_cntrl->pm_lock);
767 			mhi_fw_load_handler(mhi_cntrl);
768 			break;
769 		case DEV_ST_TRANSITION_SBL:
770 			write_lock_irq(&mhi_cntrl->pm_lock);
771 			mhi_cntrl->ee = MHI_EE_SBL;
772 			write_unlock_irq(&mhi_cntrl->pm_lock);
773 			/*
774 			 * The MHI devices are only created when the client
775 			 * device switches its Execution Environment (EE) to
776 			 * either SBL or AMSS states
777 			 */
778 			mhi_create_devices(mhi_cntrl);
779 			if (mhi_cntrl->fbc_download)
780 				mhi_download_amss_image(mhi_cntrl);
781 			break;
782 		case DEV_ST_TRANSITION_MISSION_MODE:
783 			mhi_pm_mission_mode_transition(mhi_cntrl);
784 			break;
785 		case DEV_ST_TRANSITION_FP:
786 			write_lock_irq(&mhi_cntrl->pm_lock);
787 			mhi_cntrl->ee = MHI_EE_FP;
788 			write_unlock_irq(&mhi_cntrl->pm_lock);
789 			mhi_create_devices(mhi_cntrl);
790 			break;
791 		case DEV_ST_TRANSITION_READY:
792 			mhi_ready_state_transition(mhi_cntrl);
793 			break;
794 		case DEV_ST_TRANSITION_SYS_ERR:
795 			mhi_pm_sys_error_transition(mhi_cntrl);
796 			break;
797 		case DEV_ST_TRANSITION_DISABLE:
798 			mhi_pm_disable_transition(mhi_cntrl);
799 			break;
800 		default:
801 			break;
802 		}
803 		kfree(itr);
804 	}
805 }
806 
807 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
808 {
809 	struct mhi_chan *itr, *tmp;
810 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
811 	enum mhi_pm_state new_state;
812 	int ret;
813 
814 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
815 		return -EINVAL;
816 
817 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
818 		return -EIO;
819 
820 	/* Return busy if there are any pending resources */
821 	if (atomic_read(&mhi_cntrl->dev_wake) ||
822 	    atomic_read(&mhi_cntrl->pending_pkts))
823 		return -EBUSY;
824 
825 	/* Take MHI out of M2 state */
826 	read_lock_bh(&mhi_cntrl->pm_lock);
827 	mhi_cntrl->wake_get(mhi_cntrl, false);
828 	read_unlock_bh(&mhi_cntrl->pm_lock);
829 
830 	ret = wait_event_timeout(mhi_cntrl->state_event,
831 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
832 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
833 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
834 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
835 
836 	read_lock_bh(&mhi_cntrl->pm_lock);
837 	mhi_cntrl->wake_put(mhi_cntrl, false);
838 	read_unlock_bh(&mhi_cntrl->pm_lock);
839 
840 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
841 		dev_err(dev,
842 			"Could not enter M0/M1 state");
843 		return -EIO;
844 	}
845 
846 	write_lock_irq(&mhi_cntrl->pm_lock);
847 
848 	if (atomic_read(&mhi_cntrl->dev_wake) ||
849 	    atomic_read(&mhi_cntrl->pending_pkts)) {
850 		write_unlock_irq(&mhi_cntrl->pm_lock);
851 		return -EBUSY;
852 	}
853 
854 	dev_dbg(dev, "Allowing M3 transition\n");
855 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
856 	if (new_state != MHI_PM_M3_ENTER) {
857 		write_unlock_irq(&mhi_cntrl->pm_lock);
858 		dev_err(dev,
859 			"Error setting to PM state: %s from: %s\n",
860 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
861 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
862 		return -EIO;
863 	}
864 
865 	/* Set MHI to M3 and wait for completion */
866 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
867 	write_unlock_irq(&mhi_cntrl->pm_lock);
868 	dev_dbg(dev, "Waiting for M3 completion\n");
869 
870 	ret = wait_event_timeout(mhi_cntrl->state_event,
871 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
872 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
873 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
874 
875 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
876 		dev_err(dev,
877 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
878 			mhi_state_str(mhi_cntrl->dev_state),
879 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
880 		return -EIO;
881 	}
882 
883 	/* Notify clients about entering LPM */
884 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
885 		mutex_lock(&itr->mutex);
886 		if (itr->mhi_dev)
887 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
888 		mutex_unlock(&itr->mutex);
889 	}
890 
891 	return 0;
892 }
893 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
894 
895 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
896 {
897 	struct mhi_chan *itr, *tmp;
898 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
899 	enum mhi_pm_state cur_state;
900 	int ret;
901 
902 	dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
903 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
904 		mhi_state_str(mhi_cntrl->dev_state));
905 
906 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
907 		return 0;
908 
909 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
910 		return -EIO;
911 
912 	if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
913 		dev_warn(dev, "Resuming from non M3 state (%s)\n",
914 			 mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
915 		if (!force)
916 			return -EINVAL;
917 	}
918 
919 	/* Notify clients about exiting LPM */
920 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
921 		mutex_lock(&itr->mutex);
922 		if (itr->mhi_dev)
923 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
924 		mutex_unlock(&itr->mutex);
925 	}
926 
927 	write_lock_irq(&mhi_cntrl->pm_lock);
928 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
929 	if (cur_state != MHI_PM_M3_EXIT) {
930 		write_unlock_irq(&mhi_cntrl->pm_lock);
931 		dev_info(dev,
932 			 "Error setting to PM state: %s from: %s\n",
933 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
934 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
935 		return -EIO;
936 	}
937 
938 	/* Set MHI to M0 and wait for completion */
939 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
940 	write_unlock_irq(&mhi_cntrl->pm_lock);
941 
942 	ret = wait_event_timeout(mhi_cntrl->state_event,
943 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
944 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
945 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
946 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
947 
948 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
949 		dev_err(dev,
950 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
951 			mhi_state_str(mhi_cntrl->dev_state),
952 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
953 		return -EIO;
954 	}
955 
956 	return 0;
957 }
958 
959 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
960 {
961 	return __mhi_pm_resume(mhi_cntrl, false);
962 }
963 EXPORT_SYMBOL_GPL(mhi_pm_resume);
964 
965 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
966 {
967 	return __mhi_pm_resume(mhi_cntrl, true);
968 }
969 EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
970 
971 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
972 {
973 	int ret;
974 
975 	/* Wake up the device */
976 	read_lock_bh(&mhi_cntrl->pm_lock);
977 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
978 		read_unlock_bh(&mhi_cntrl->pm_lock);
979 		return -EIO;
980 	}
981 	mhi_cntrl->wake_get(mhi_cntrl, true);
982 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
983 		mhi_trigger_resume(mhi_cntrl);
984 	read_unlock_bh(&mhi_cntrl->pm_lock);
985 
986 	ret = wait_event_timeout(mhi_cntrl->state_event,
987 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
988 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
989 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
990 
991 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
992 		read_lock_bh(&mhi_cntrl->pm_lock);
993 		mhi_cntrl->wake_put(mhi_cntrl, false);
994 		read_unlock_bh(&mhi_cntrl->pm_lock);
995 		return -EIO;
996 	}
997 
998 	return 0;
999 }
1000 
1001 /* Assert device wake db */
1002 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
1003 {
1004 	unsigned long flags;
1005 
1006 	/*
1007 	 * If force flag is set, then increment the wake count value and
1008 	 * ring wake db
1009 	 */
1010 	if (unlikely(force)) {
1011 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1012 		atomic_inc(&mhi_cntrl->dev_wake);
1013 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
1014 		    !mhi_cntrl->wake_set) {
1015 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1016 			mhi_cntrl->wake_set = true;
1017 		}
1018 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1019 	} else {
1020 		/*
1021 		 * If resources are already requested, then just increment
1022 		 * the wake count value and return
1023 		 */
1024 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
1025 			return;
1026 
1027 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1028 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
1029 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
1030 		    !mhi_cntrl->wake_set) {
1031 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1032 			mhi_cntrl->wake_set = true;
1033 		}
1034 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1035 	}
1036 }
1037 
1038 /* De-assert device wake db */
1039 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
1040 				  bool override)
1041 {
1042 	unsigned long flags;
1043 
1044 	/*
1045 	 * Only continue if there is a single resource, else just decrement
1046 	 * and return
1047 	 */
1048 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
1049 		return;
1050 
1051 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1052 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
1053 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
1054 	    mhi_cntrl->wake_set) {
1055 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
1056 		mhi_cntrl->wake_set = false;
1057 	}
1058 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1059 }
1060 
1061 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
1062 {
1063 	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
1064 	enum mhi_state state;
1065 	enum mhi_ee_type current_ee;
1066 	enum dev_st_transition next_state;
1067 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1068 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
1069 	int ret, i;
1070 
1071 	dev_info(dev, "Requested to power ON\n");
1072 
1073 	/* Supply default wake routines if not provided by controller driver */
1074 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
1075 	    !mhi_cntrl->wake_toggle) {
1076 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
1077 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
1078 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
1079 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
1080 	}
1081 
1082 	mutex_lock(&mhi_cntrl->pm_mutex);
1083 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1084 
1085 	/* Setup BHI INTVEC */
1086 	write_lock_irq(&mhi_cntrl->pm_lock);
1087 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1088 	mhi_cntrl->pm_state = MHI_PM_POR;
1089 	mhi_cntrl->ee = MHI_EE_MAX;
1090 	current_ee = mhi_get_exec_env(mhi_cntrl);
1091 	write_unlock_irq(&mhi_cntrl->pm_lock);
1092 
1093 	/* Confirm that the device is in valid exec env */
1094 	if (!MHI_POWER_UP_CAPABLE(current_ee)) {
1095 		dev_err(dev, "%s is not a valid EE for power on\n",
1096 			TO_MHI_EXEC_STR(current_ee));
1097 		ret = -EIO;
1098 		goto error_exit;
1099 	}
1100 
1101 	state = mhi_get_mhi_state(mhi_cntrl);
1102 	dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
1103 		TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
1104 
1105 	if (state == MHI_STATE_SYS_ERR) {
1106 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
1107 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
1108 				 MHICTRL_RESET_MASK, 0, interval_us);
1109 		if (ret) {
1110 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1111 			goto error_exit;
1112 		}
1113 
1114 		/*
1115 		 * device cleares INTVEC as part of RESET processing,
1116 		 * re-program it
1117 		 */
1118 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1119 	}
1120 
1121 	/* IRQs have been requested during probe, so we just need to enable them. */
1122 	enable_irq(mhi_cntrl->irq[0]);
1123 
1124 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
1125 		if (mhi_event->offload_ev)
1126 			continue;
1127 
1128 		enable_irq(mhi_cntrl->irq[mhi_event->irq]);
1129 	}
1130 
1131 	/* Transition to next state */
1132 	next_state = MHI_IN_PBL(current_ee) ?
1133 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1134 
1135 	mhi_queue_state_transition(mhi_cntrl, next_state);
1136 
1137 	mutex_unlock(&mhi_cntrl->pm_mutex);
1138 
1139 	dev_info(dev, "Power on setup success\n");
1140 
1141 	return 0;
1142 
1143 error_exit:
1144 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1145 	mutex_unlock(&mhi_cntrl->pm_mutex);
1146 
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1150 
1151 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1152 {
1153 	enum mhi_pm_state cur_state, transition_state;
1154 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1155 
1156 	mutex_lock(&mhi_cntrl->pm_mutex);
1157 	write_lock_irq(&mhi_cntrl->pm_lock);
1158 	cur_state = mhi_cntrl->pm_state;
1159 	if (cur_state == MHI_PM_DISABLE) {
1160 		write_unlock_irq(&mhi_cntrl->pm_lock);
1161 		mutex_unlock(&mhi_cntrl->pm_mutex);
1162 		return; /* Already powered down */
1163 	}
1164 
1165 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1166 	transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
1167 			   MHI_PM_LD_ERR_FATAL_DETECT;
1168 
1169 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
1170 	if (cur_state != transition_state) {
1171 		dev_err(dev, "Failed to move to state: %s from: %s\n",
1172 			to_mhi_pm_state_str(transition_state),
1173 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1174 		/* Force link down or error fatal detected state */
1175 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
1176 	}
1177 
1178 	/* mark device inactive to avoid any further host processing */
1179 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
1180 	mhi_cntrl->dev_state = MHI_STATE_RESET;
1181 
1182 	wake_up_all(&mhi_cntrl->state_event);
1183 
1184 	write_unlock_irq(&mhi_cntrl->pm_lock);
1185 	mutex_unlock(&mhi_cntrl->pm_mutex);
1186 
1187 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
1188 
1189 	/* Wait for shutdown to complete */
1190 	flush_work(&mhi_cntrl->st_worker);
1191 
1192 	disable_irq(mhi_cntrl->irq[0]);
1193 }
1194 EXPORT_SYMBOL_GPL(mhi_power_down);
1195 
1196 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1197 {
1198 	int ret = mhi_async_power_up(mhi_cntrl);
1199 
1200 	if (ret)
1201 		return ret;
1202 
1203 	wait_event_timeout(mhi_cntrl->state_event,
1204 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1205 			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1206 			   msecs_to_jiffies(mhi_cntrl->timeout_ms));
1207 
1208 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1209 	if (ret)
1210 		mhi_power_down(mhi_cntrl, false);
1211 
1212 	return ret;
1213 }
1214 EXPORT_SYMBOL(mhi_sync_power_up);
1215 
1216 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1217 {
1218 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1219 	int ret;
1220 
1221 	/* Check if device is already in RDDM */
1222 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1223 		return 0;
1224 
1225 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1226 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1227 
1228 	/* Wait for RDDM event */
1229 	ret = wait_event_timeout(mhi_cntrl->state_event,
1230 				 mhi_cntrl->ee == MHI_EE_RDDM,
1231 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1232 	ret = ret ? 0 : -EIO;
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1237 
1238 void mhi_device_get(struct mhi_device *mhi_dev)
1239 {
1240 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1241 
1242 	mhi_dev->dev_wake++;
1243 	read_lock_bh(&mhi_cntrl->pm_lock);
1244 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1245 		mhi_trigger_resume(mhi_cntrl);
1246 
1247 	mhi_cntrl->wake_get(mhi_cntrl, true);
1248 	read_unlock_bh(&mhi_cntrl->pm_lock);
1249 }
1250 EXPORT_SYMBOL_GPL(mhi_device_get);
1251 
1252 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1253 {
1254 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1255 	int ret;
1256 
1257 	ret = __mhi_device_get_sync(mhi_cntrl);
1258 	if (!ret)
1259 		mhi_dev->dev_wake++;
1260 
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1264 
1265 void mhi_device_put(struct mhi_device *mhi_dev)
1266 {
1267 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1268 
1269 	mhi_dev->dev_wake--;
1270 	read_lock_bh(&mhi_cntrl->pm_lock);
1271 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1272 		mhi_trigger_resume(mhi_cntrl);
1273 
1274 	mhi_cntrl->wake_put(mhi_cntrl, false);
1275 	read_unlock_bh(&mhi_cntrl->pm_lock);
1276 }
1277 EXPORT_SYMBOL_GPL(mhi_device_put);
1278