1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. 4 * 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/device.h> 9 #include <linux/dma-direction.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/list.h> 13 #include <linux/mhi.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/wait.h> 17 #include "internal.h" 18 19 /* 20 * Not all MHI state transitions are synchronous. Transitions like Linkdown, 21 * SYS_ERR, and shutdown can happen anytime asynchronously. This function will 22 * transition to a new state only if we're allowed to. 23 * 24 * Priority increases as we go down. For instance, from any state in L0, the 25 * transition can be made to states in L1, L2 and L3. A notable exception to 26 * this rule is state DISABLE. From DISABLE state we can only transition to 27 * POR state. Also, while in L2 state, user cannot jump back to previous 28 * L1 or L0 states. 29 * 30 * Valid transitions: 31 * L0: DISABLE <--> POR 32 * POR <--> POR 33 * POR -> M0 -> M2 --> M0 34 * POR -> FW_DL_ERR 35 * FW_DL_ERR <--> FW_DL_ERR 36 * M0 <--> M0 37 * M0 -> FW_DL_ERR 38 * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0 39 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR 40 * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT 41 * SHUTDOWN_PROCESS -> DISABLE 42 * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT 43 * LD_ERR_FATAL_DETECT -> DISABLE 44 */ 45 static const struct mhi_pm_transitions dev_state_transitions[] = { 46 /* L0 States */ 47 { 48 MHI_PM_DISABLE, 49 MHI_PM_POR 50 }, 51 { 52 MHI_PM_POR, 53 MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 | 54 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 55 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR 56 }, 57 { 58 MHI_PM_M0, 59 MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER | 60 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 61 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR 62 }, 63 { 64 MHI_PM_M2, 65 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 66 MHI_PM_LD_ERR_FATAL_DETECT 67 }, 68 { 69 MHI_PM_M3_ENTER, 70 MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 71 MHI_PM_LD_ERR_FATAL_DETECT 72 }, 73 { 74 MHI_PM_M3, 75 MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT | 76 MHI_PM_LD_ERR_FATAL_DETECT 77 }, 78 { 79 MHI_PM_M3_EXIT, 80 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | 81 MHI_PM_LD_ERR_FATAL_DETECT 82 }, 83 { 84 MHI_PM_FW_DL_ERR, 85 MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT | 86 MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT 87 }, 88 /* L1 States */ 89 { 90 MHI_PM_SYS_ERR_DETECT, 91 MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS | 92 MHI_PM_LD_ERR_FATAL_DETECT 93 }, 94 { 95 MHI_PM_SYS_ERR_PROCESS, 96 MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS | 97 MHI_PM_LD_ERR_FATAL_DETECT 98 }, 99 /* L2 States */ 100 { 101 MHI_PM_SHUTDOWN_PROCESS, 102 MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT 103 }, 104 /* L3 States */ 105 { 106 MHI_PM_LD_ERR_FATAL_DETECT, 107 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE 108 }, 109 }; 110 111 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl, 112 enum mhi_pm_state state) 113 { 114 unsigned long cur_state = mhi_cntrl->pm_state; 115 int index = find_last_bit(&cur_state, 32); 116 117 if (unlikely(index >= ARRAY_SIZE(dev_state_transitions))) 118 return cur_state; 119 120 if (unlikely(dev_state_transitions[index].from_state != cur_state)) 121 return cur_state; 122 123 if (unlikely(!(dev_state_transitions[index].to_states & state))) 124 return cur_state; 125 126 mhi_cntrl->pm_state = state; 127 return mhi_cntrl->pm_state; 128 } 129 130 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state) 131 { 132 struct device *dev = &mhi_cntrl->mhi_dev->dev; 133 int ret; 134 135 if (state == MHI_STATE_RESET) { 136 ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 137 MHICTRL_RESET_MASK, 1); 138 } else { 139 ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 140 MHICTRL_MHISTATE_MASK, state); 141 } 142 143 if (ret) 144 dev_err(dev, "Failed to set MHI state to: %s\n", 145 mhi_state_str(state)); 146 } 147 148 /* NOP for backward compatibility, host allowed to ring DB in M2 state */ 149 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl) 150 { 151 } 152 153 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl) 154 { 155 mhi_cntrl->wake_get(mhi_cntrl, false); 156 mhi_cntrl->wake_put(mhi_cntrl, true); 157 } 158 159 /* Handle device ready state transition */ 160 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl) 161 { 162 struct mhi_event *mhi_event; 163 enum mhi_pm_state cur_state; 164 struct device *dev = &mhi_cntrl->mhi_dev->dev; 165 u32 interval_us = 25000; /* poll register field every 25 milliseconds */ 166 int ret, i; 167 168 /* Check if device entered error state */ 169 if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { 170 dev_err(dev, "Device link is not accessible\n"); 171 return -EIO; 172 } 173 174 /* Wait for RESET to be cleared and READY bit to be set by the device */ 175 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 176 MHICTRL_RESET_MASK, 0, interval_us); 177 if (ret) { 178 dev_err(dev, "Device failed to clear MHI Reset\n"); 179 return ret; 180 } 181 182 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, 183 MHISTATUS_READY_MASK, 1, interval_us); 184 if (ret) { 185 dev_err(dev, "Device failed to enter MHI Ready\n"); 186 return ret; 187 } 188 189 dev_dbg(dev, "Device in READY State\n"); 190 write_lock_irq(&mhi_cntrl->pm_lock); 191 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); 192 mhi_cntrl->dev_state = MHI_STATE_READY; 193 write_unlock_irq(&mhi_cntrl->pm_lock); 194 195 if (cur_state != MHI_PM_POR) { 196 dev_err(dev, "Error moving to state %s from %s\n", 197 to_mhi_pm_state_str(MHI_PM_POR), 198 to_mhi_pm_state_str(cur_state)); 199 return -EIO; 200 } 201 202 read_lock_bh(&mhi_cntrl->pm_lock); 203 if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { 204 dev_err(dev, "Device registers not accessible\n"); 205 goto error_mmio; 206 } 207 208 /* Configure MMIO registers */ 209 ret = mhi_init_mmio(mhi_cntrl); 210 if (ret) { 211 dev_err(dev, "Error configuring MMIO registers\n"); 212 goto error_mmio; 213 } 214 215 /* Add elements to all SW event rings */ 216 mhi_event = mhi_cntrl->mhi_event; 217 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 218 struct mhi_ring *ring = &mhi_event->ring; 219 220 /* Skip if this is an offload or HW event */ 221 if (mhi_event->offload_ev || mhi_event->hw_ring) 222 continue; 223 224 ring->wp = ring->base + ring->len - ring->el_size; 225 *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); 226 /* Update all cores */ 227 smp_wmb(); 228 229 /* Ring the event ring db */ 230 spin_lock_irq(&mhi_event->lock); 231 mhi_ring_er_db(mhi_event); 232 spin_unlock_irq(&mhi_event->lock); 233 } 234 235 /* Set MHI to M0 state */ 236 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); 237 read_unlock_bh(&mhi_cntrl->pm_lock); 238 239 return 0; 240 241 error_mmio: 242 read_unlock_bh(&mhi_cntrl->pm_lock); 243 244 return -EIO; 245 } 246 247 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl) 248 { 249 enum mhi_pm_state cur_state; 250 struct mhi_chan *mhi_chan; 251 struct device *dev = &mhi_cntrl->mhi_dev->dev; 252 int i; 253 254 write_lock_irq(&mhi_cntrl->pm_lock); 255 mhi_cntrl->dev_state = MHI_STATE_M0; 256 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0); 257 write_unlock_irq(&mhi_cntrl->pm_lock); 258 if (unlikely(cur_state != MHI_PM_M0)) { 259 dev_err(dev, "Unable to transition to M0 state\n"); 260 return -EIO; 261 } 262 mhi_cntrl->M0++; 263 264 /* Wake up the device */ 265 read_lock_bh(&mhi_cntrl->pm_lock); 266 mhi_cntrl->wake_get(mhi_cntrl, true); 267 268 /* Ring all event rings and CMD ring only if we're in mission mode */ 269 if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) { 270 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 271 struct mhi_cmd *mhi_cmd = 272 &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; 273 274 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 275 if (mhi_event->offload_ev) 276 continue; 277 278 spin_lock_irq(&mhi_event->lock); 279 mhi_ring_er_db(mhi_event); 280 spin_unlock_irq(&mhi_event->lock); 281 } 282 283 /* Only ring primary cmd ring if ring is not empty */ 284 spin_lock_irq(&mhi_cmd->lock); 285 if (mhi_cmd->ring.rp != mhi_cmd->ring.wp) 286 mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); 287 spin_unlock_irq(&mhi_cmd->lock); 288 } 289 290 /* Ring channel DB registers */ 291 mhi_chan = mhi_cntrl->mhi_chan; 292 for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { 293 struct mhi_ring *tre_ring = &mhi_chan->tre_ring; 294 295 if (mhi_chan->db_cfg.reset_req) { 296 write_lock_irq(&mhi_chan->lock); 297 mhi_chan->db_cfg.db_mode = true; 298 write_unlock_irq(&mhi_chan->lock); 299 } 300 301 read_lock_irq(&mhi_chan->lock); 302 303 /* Only ring DB if ring is not empty */ 304 if (tre_ring->base && tre_ring->wp != tre_ring->rp) 305 mhi_ring_chan_db(mhi_cntrl, mhi_chan); 306 read_unlock_irq(&mhi_chan->lock); 307 } 308 309 mhi_cntrl->wake_put(mhi_cntrl, false); 310 read_unlock_bh(&mhi_cntrl->pm_lock); 311 wake_up_all(&mhi_cntrl->state_event); 312 313 return 0; 314 } 315 316 /* 317 * After receiving the MHI state change event from the device indicating the 318 * transition to M1 state, the host can transition the device to M2 state 319 * for keeping it in low power state. 320 */ 321 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl) 322 { 323 enum mhi_pm_state state; 324 struct device *dev = &mhi_cntrl->mhi_dev->dev; 325 326 write_lock_irq(&mhi_cntrl->pm_lock); 327 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2); 328 if (state == MHI_PM_M2) { 329 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2); 330 mhi_cntrl->dev_state = MHI_STATE_M2; 331 332 write_unlock_irq(&mhi_cntrl->pm_lock); 333 334 mhi_cntrl->M2++; 335 wake_up_all(&mhi_cntrl->state_event); 336 337 /* If there are any pending resources, exit M2 immediately */ 338 if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) || 339 atomic_read(&mhi_cntrl->dev_wake))) { 340 dev_dbg(dev, 341 "Exiting M2, pending_pkts: %d dev_wake: %d\n", 342 atomic_read(&mhi_cntrl->pending_pkts), 343 atomic_read(&mhi_cntrl->dev_wake)); 344 read_lock_bh(&mhi_cntrl->pm_lock); 345 mhi_cntrl->wake_get(mhi_cntrl, true); 346 mhi_cntrl->wake_put(mhi_cntrl, true); 347 read_unlock_bh(&mhi_cntrl->pm_lock); 348 } else { 349 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE); 350 } 351 } else { 352 write_unlock_irq(&mhi_cntrl->pm_lock); 353 } 354 } 355 356 /* MHI M3 completion handler */ 357 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl) 358 { 359 enum mhi_pm_state state; 360 struct device *dev = &mhi_cntrl->mhi_dev->dev; 361 362 write_lock_irq(&mhi_cntrl->pm_lock); 363 mhi_cntrl->dev_state = MHI_STATE_M3; 364 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3); 365 write_unlock_irq(&mhi_cntrl->pm_lock); 366 if (state != MHI_PM_M3) { 367 dev_err(dev, "Unable to transition to M3 state\n"); 368 return -EIO; 369 } 370 371 mhi_cntrl->M3++; 372 wake_up_all(&mhi_cntrl->state_event); 373 374 return 0; 375 } 376 377 /* Handle device Mission Mode transition */ 378 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl) 379 { 380 struct mhi_event *mhi_event; 381 struct device *dev = &mhi_cntrl->mhi_dev->dev; 382 enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee; 383 int i, ret; 384 385 dev_dbg(dev, "Processing Mission Mode transition\n"); 386 387 write_lock_irq(&mhi_cntrl->pm_lock); 388 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) 389 ee = mhi_get_exec_env(mhi_cntrl); 390 391 if (!MHI_IN_MISSION_MODE(ee)) { 392 mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; 393 write_unlock_irq(&mhi_cntrl->pm_lock); 394 wake_up_all(&mhi_cntrl->state_event); 395 return -EIO; 396 } 397 mhi_cntrl->ee = ee; 398 write_unlock_irq(&mhi_cntrl->pm_lock); 399 400 wake_up_all(&mhi_cntrl->state_event); 401 402 device_for_each_child(&mhi_cntrl->mhi_dev->dev, ¤t_ee, 403 mhi_destroy_device); 404 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE); 405 406 /* Force MHI to be in M0 state before continuing */ 407 ret = __mhi_device_get_sync(mhi_cntrl); 408 if (ret) 409 return ret; 410 411 read_lock_bh(&mhi_cntrl->pm_lock); 412 413 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 414 ret = -EIO; 415 goto error_mission_mode; 416 } 417 418 /* Add elements to all HW event rings */ 419 mhi_event = mhi_cntrl->mhi_event; 420 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 421 struct mhi_ring *ring = &mhi_event->ring; 422 423 if (mhi_event->offload_ev || !mhi_event->hw_ring) 424 continue; 425 426 ring->wp = ring->base + ring->len - ring->el_size; 427 *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); 428 /* Update to all cores */ 429 smp_wmb(); 430 431 spin_lock_irq(&mhi_event->lock); 432 if (MHI_DB_ACCESS_VALID(mhi_cntrl)) 433 mhi_ring_er_db(mhi_event); 434 spin_unlock_irq(&mhi_event->lock); 435 } 436 437 read_unlock_bh(&mhi_cntrl->pm_lock); 438 439 /* 440 * The MHI devices are only created when the client device switches its 441 * Execution Environment (EE) to either SBL or AMSS states 442 */ 443 mhi_create_devices(mhi_cntrl); 444 445 read_lock_bh(&mhi_cntrl->pm_lock); 446 447 error_mission_mode: 448 mhi_cntrl->wake_put(mhi_cntrl, false); 449 read_unlock_bh(&mhi_cntrl->pm_lock); 450 451 return ret; 452 } 453 454 /* Handle shutdown transitions */ 455 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl) 456 { 457 enum mhi_pm_state cur_state; 458 struct mhi_event *mhi_event; 459 struct mhi_cmd_ctxt *cmd_ctxt; 460 struct mhi_cmd *mhi_cmd; 461 struct mhi_event_ctxt *er_ctxt; 462 struct device *dev = &mhi_cntrl->mhi_dev->dev; 463 int ret, i; 464 465 dev_dbg(dev, "Processing disable transition with PM state: %s\n", 466 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 467 468 mutex_lock(&mhi_cntrl->pm_mutex); 469 470 /* Trigger MHI RESET so that the device will not access host memory */ 471 if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { 472 dev_dbg(dev, "Triggering MHI Reset in device\n"); 473 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 474 475 /* Wait for the reset bit to be cleared by the device */ 476 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 477 MHICTRL_RESET_MASK, 0, 25000); 478 if (ret) 479 dev_err(dev, "Device failed to clear MHI Reset\n"); 480 481 /* 482 * Device will clear BHI_INTVEC as a part of RESET processing, 483 * hence re-program it 484 */ 485 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 486 487 if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { 488 /* wait for ready to be set */ 489 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, 490 MHISTATUS, 491 MHISTATUS_READY_MASK, 1, 25000); 492 if (ret) 493 dev_err(dev, "Device failed to enter READY state\n"); 494 } 495 } 496 497 dev_dbg(dev, 498 "Waiting for all pending event ring processing to complete\n"); 499 mhi_event = mhi_cntrl->mhi_event; 500 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 501 if (mhi_event->offload_ev) 502 continue; 503 disable_irq(mhi_cntrl->irq[mhi_event->irq]); 504 tasklet_kill(&mhi_event->task); 505 } 506 507 /* Release lock and wait for all pending threads to complete */ 508 mutex_unlock(&mhi_cntrl->pm_mutex); 509 dev_dbg(dev, "Waiting for all pending threads to complete\n"); 510 wake_up_all(&mhi_cntrl->state_event); 511 512 dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); 513 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); 514 515 mutex_lock(&mhi_cntrl->pm_mutex); 516 517 WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); 518 WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); 519 520 /* Reset the ev rings and cmd rings */ 521 dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); 522 mhi_cmd = mhi_cntrl->mhi_cmd; 523 cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; 524 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { 525 struct mhi_ring *ring = &mhi_cmd->ring; 526 527 ring->rp = ring->base; 528 ring->wp = ring->base; 529 cmd_ctxt->rp = cmd_ctxt->rbase; 530 cmd_ctxt->wp = cmd_ctxt->rbase; 531 } 532 533 mhi_event = mhi_cntrl->mhi_event; 534 er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; 535 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, 536 mhi_event++) { 537 struct mhi_ring *ring = &mhi_event->ring; 538 539 /* Skip offload events */ 540 if (mhi_event->offload_ev) 541 continue; 542 543 ring->rp = ring->base; 544 ring->wp = ring->base; 545 er_ctxt->rp = er_ctxt->rbase; 546 er_ctxt->wp = er_ctxt->rbase; 547 } 548 549 /* Move to disable state */ 550 write_lock_irq(&mhi_cntrl->pm_lock); 551 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE); 552 write_unlock_irq(&mhi_cntrl->pm_lock); 553 if (unlikely(cur_state != MHI_PM_DISABLE)) 554 dev_err(dev, "Error moving from PM state: %s to: %s\n", 555 to_mhi_pm_state_str(cur_state), 556 to_mhi_pm_state_str(MHI_PM_DISABLE)); 557 558 dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", 559 to_mhi_pm_state_str(mhi_cntrl->pm_state), 560 mhi_state_str(mhi_cntrl->dev_state)); 561 562 mutex_unlock(&mhi_cntrl->pm_mutex); 563 } 564 565 /* Handle system error transitions */ 566 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl) 567 { 568 enum mhi_pm_state cur_state, prev_state; 569 enum dev_st_transition next_state; 570 struct mhi_event *mhi_event; 571 struct mhi_cmd_ctxt *cmd_ctxt; 572 struct mhi_cmd *mhi_cmd; 573 struct mhi_event_ctxt *er_ctxt; 574 struct device *dev = &mhi_cntrl->mhi_dev->dev; 575 int ret, i; 576 577 dev_dbg(dev, "Transitioning from PM state: %s to: %s\n", 578 to_mhi_pm_state_str(mhi_cntrl->pm_state), 579 to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); 580 581 /* We must notify MHI control driver so it can clean up first */ 582 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR); 583 584 mutex_lock(&mhi_cntrl->pm_mutex); 585 write_lock_irq(&mhi_cntrl->pm_lock); 586 prev_state = mhi_cntrl->pm_state; 587 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS); 588 write_unlock_irq(&mhi_cntrl->pm_lock); 589 590 if (cur_state != MHI_PM_SYS_ERR_PROCESS) { 591 dev_err(dev, "Failed to transition from PM state: %s to: %s\n", 592 to_mhi_pm_state_str(cur_state), 593 to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); 594 goto exit_sys_error_transition; 595 } 596 597 mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; 598 mhi_cntrl->dev_state = MHI_STATE_RESET; 599 600 /* Wake up threads waiting for state transition */ 601 wake_up_all(&mhi_cntrl->state_event); 602 603 /* Trigger MHI RESET so that the device will not access host memory */ 604 if (MHI_REG_ACCESS_VALID(prev_state)) { 605 u32 in_reset = -1; 606 unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms); 607 608 dev_dbg(dev, "Triggering MHI Reset in device\n"); 609 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 610 611 /* Wait for the reset bit to be cleared by the device */ 612 ret = wait_event_timeout(mhi_cntrl->state_event, 613 mhi_read_reg_field(mhi_cntrl, 614 mhi_cntrl->regs, 615 MHICTRL, 616 MHICTRL_RESET_MASK, 617 &in_reset) || 618 !in_reset, timeout); 619 if (!ret || in_reset) { 620 dev_err(dev, "Device failed to exit MHI Reset state\n"); 621 goto exit_sys_error_transition; 622 } 623 624 /* 625 * Device will clear BHI_INTVEC as a part of RESET processing, 626 * hence re-program it 627 */ 628 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 629 } 630 631 dev_dbg(dev, 632 "Waiting for all pending event ring processing to complete\n"); 633 mhi_event = mhi_cntrl->mhi_event; 634 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 635 if (mhi_event->offload_ev) 636 continue; 637 tasklet_kill(&mhi_event->task); 638 } 639 640 /* Release lock and wait for all pending threads to complete */ 641 mutex_unlock(&mhi_cntrl->pm_mutex); 642 dev_dbg(dev, "Waiting for all pending threads to complete\n"); 643 wake_up_all(&mhi_cntrl->state_event); 644 645 dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); 646 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); 647 648 mutex_lock(&mhi_cntrl->pm_mutex); 649 650 WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); 651 WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); 652 653 /* Reset the ev rings and cmd rings */ 654 dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); 655 mhi_cmd = mhi_cntrl->mhi_cmd; 656 cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; 657 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { 658 struct mhi_ring *ring = &mhi_cmd->ring; 659 660 ring->rp = ring->base; 661 ring->wp = ring->base; 662 cmd_ctxt->rp = cmd_ctxt->rbase; 663 cmd_ctxt->wp = cmd_ctxt->rbase; 664 } 665 666 mhi_event = mhi_cntrl->mhi_event; 667 er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; 668 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, 669 mhi_event++) { 670 struct mhi_ring *ring = &mhi_event->ring; 671 672 /* Skip offload events */ 673 if (mhi_event->offload_ev) 674 continue; 675 676 ring->rp = ring->base; 677 ring->wp = ring->base; 678 er_ctxt->rp = er_ctxt->rbase; 679 er_ctxt->wp = er_ctxt->rbase; 680 } 681 682 /* Transition to next state */ 683 if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { 684 write_lock_irq(&mhi_cntrl->pm_lock); 685 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); 686 write_unlock_irq(&mhi_cntrl->pm_lock); 687 if (cur_state != MHI_PM_POR) { 688 dev_err(dev, "Error moving to state %s from %s\n", 689 to_mhi_pm_state_str(MHI_PM_POR), 690 to_mhi_pm_state_str(cur_state)); 691 goto exit_sys_error_transition; 692 } 693 next_state = DEV_ST_TRANSITION_PBL; 694 } else { 695 next_state = DEV_ST_TRANSITION_READY; 696 } 697 698 mhi_queue_state_transition(mhi_cntrl, next_state); 699 700 exit_sys_error_transition: 701 dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", 702 to_mhi_pm_state_str(mhi_cntrl->pm_state), 703 mhi_state_str(mhi_cntrl->dev_state)); 704 705 mutex_unlock(&mhi_cntrl->pm_mutex); 706 } 707 708 /* Queue a new work item and schedule work */ 709 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl, 710 enum dev_st_transition state) 711 { 712 struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC); 713 unsigned long flags; 714 715 if (!item) 716 return -ENOMEM; 717 718 item->state = state; 719 spin_lock_irqsave(&mhi_cntrl->transition_lock, flags); 720 list_add_tail(&item->node, &mhi_cntrl->transition_list); 721 spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags); 722 723 queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker); 724 725 return 0; 726 } 727 728 /* SYS_ERR worker */ 729 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl) 730 { 731 struct device *dev = &mhi_cntrl->mhi_dev->dev; 732 733 /* skip if controller supports RDDM */ 734 if (mhi_cntrl->rddm_image) { 735 dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n"); 736 return; 737 } 738 739 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR); 740 } 741 742 /* Device State Transition worker */ 743 void mhi_pm_st_worker(struct work_struct *work) 744 { 745 struct state_transition *itr, *tmp; 746 LIST_HEAD(head); 747 struct mhi_controller *mhi_cntrl = container_of(work, 748 struct mhi_controller, 749 st_worker); 750 struct device *dev = &mhi_cntrl->mhi_dev->dev; 751 752 spin_lock_irq(&mhi_cntrl->transition_lock); 753 list_splice_tail_init(&mhi_cntrl->transition_list, &head); 754 spin_unlock_irq(&mhi_cntrl->transition_lock); 755 756 list_for_each_entry_safe(itr, tmp, &head, node) { 757 list_del(&itr->node); 758 dev_dbg(dev, "Handling state transition: %s\n", 759 TO_DEV_STATE_TRANS_STR(itr->state)); 760 761 switch (itr->state) { 762 case DEV_ST_TRANSITION_PBL: 763 write_lock_irq(&mhi_cntrl->pm_lock); 764 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) 765 mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); 766 write_unlock_irq(&mhi_cntrl->pm_lock); 767 mhi_fw_load_handler(mhi_cntrl); 768 break; 769 case DEV_ST_TRANSITION_SBL: 770 write_lock_irq(&mhi_cntrl->pm_lock); 771 mhi_cntrl->ee = MHI_EE_SBL; 772 write_unlock_irq(&mhi_cntrl->pm_lock); 773 /* 774 * The MHI devices are only created when the client 775 * device switches its Execution Environment (EE) to 776 * either SBL or AMSS states 777 */ 778 mhi_create_devices(mhi_cntrl); 779 if (mhi_cntrl->fbc_download) 780 mhi_download_amss_image(mhi_cntrl); 781 break; 782 case DEV_ST_TRANSITION_MISSION_MODE: 783 mhi_pm_mission_mode_transition(mhi_cntrl); 784 break; 785 case DEV_ST_TRANSITION_FP: 786 write_lock_irq(&mhi_cntrl->pm_lock); 787 mhi_cntrl->ee = MHI_EE_FP; 788 write_unlock_irq(&mhi_cntrl->pm_lock); 789 mhi_create_devices(mhi_cntrl); 790 break; 791 case DEV_ST_TRANSITION_READY: 792 mhi_ready_state_transition(mhi_cntrl); 793 break; 794 case DEV_ST_TRANSITION_SYS_ERR: 795 mhi_pm_sys_error_transition(mhi_cntrl); 796 break; 797 case DEV_ST_TRANSITION_DISABLE: 798 mhi_pm_disable_transition(mhi_cntrl); 799 break; 800 default: 801 break; 802 } 803 kfree(itr); 804 } 805 } 806 807 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl) 808 { 809 struct mhi_chan *itr, *tmp; 810 struct device *dev = &mhi_cntrl->mhi_dev->dev; 811 enum mhi_pm_state new_state; 812 int ret; 813 814 if (mhi_cntrl->pm_state == MHI_PM_DISABLE) 815 return -EINVAL; 816 817 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) 818 return -EIO; 819 820 /* Return busy if there are any pending resources */ 821 if (atomic_read(&mhi_cntrl->dev_wake) || 822 atomic_read(&mhi_cntrl->pending_pkts)) 823 return -EBUSY; 824 825 /* Take MHI out of M2 state */ 826 read_lock_bh(&mhi_cntrl->pm_lock); 827 mhi_cntrl->wake_get(mhi_cntrl, false); 828 read_unlock_bh(&mhi_cntrl->pm_lock); 829 830 ret = wait_event_timeout(mhi_cntrl->state_event, 831 mhi_cntrl->dev_state == MHI_STATE_M0 || 832 mhi_cntrl->dev_state == MHI_STATE_M1 || 833 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 834 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 835 836 read_lock_bh(&mhi_cntrl->pm_lock); 837 mhi_cntrl->wake_put(mhi_cntrl, false); 838 read_unlock_bh(&mhi_cntrl->pm_lock); 839 840 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 841 dev_err(dev, 842 "Could not enter M0/M1 state"); 843 return -EIO; 844 } 845 846 write_lock_irq(&mhi_cntrl->pm_lock); 847 848 if (atomic_read(&mhi_cntrl->dev_wake) || 849 atomic_read(&mhi_cntrl->pending_pkts)) { 850 write_unlock_irq(&mhi_cntrl->pm_lock); 851 return -EBUSY; 852 } 853 854 dev_dbg(dev, "Allowing M3 transition\n"); 855 new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER); 856 if (new_state != MHI_PM_M3_ENTER) { 857 write_unlock_irq(&mhi_cntrl->pm_lock); 858 dev_err(dev, 859 "Error setting to PM state: %s from: %s\n", 860 to_mhi_pm_state_str(MHI_PM_M3_ENTER), 861 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 862 return -EIO; 863 } 864 865 /* Set MHI to M3 and wait for completion */ 866 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3); 867 write_unlock_irq(&mhi_cntrl->pm_lock); 868 dev_dbg(dev, "Waiting for M3 completion\n"); 869 870 ret = wait_event_timeout(mhi_cntrl->state_event, 871 mhi_cntrl->dev_state == MHI_STATE_M3 || 872 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 873 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 874 875 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 876 dev_err(dev, 877 "Did not enter M3 state, MHI state: %s, PM state: %s\n", 878 mhi_state_str(mhi_cntrl->dev_state), 879 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 880 return -EIO; 881 } 882 883 /* Notify clients about entering LPM */ 884 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { 885 mutex_lock(&itr->mutex); 886 if (itr->mhi_dev) 887 mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER); 888 mutex_unlock(&itr->mutex); 889 } 890 891 return 0; 892 } 893 EXPORT_SYMBOL_GPL(mhi_pm_suspend); 894 895 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force) 896 { 897 struct mhi_chan *itr, *tmp; 898 struct device *dev = &mhi_cntrl->mhi_dev->dev; 899 enum mhi_pm_state cur_state; 900 int ret; 901 902 dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n", 903 to_mhi_pm_state_str(mhi_cntrl->pm_state), 904 mhi_state_str(mhi_cntrl->dev_state)); 905 906 if (mhi_cntrl->pm_state == MHI_PM_DISABLE) 907 return 0; 908 909 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) 910 return -EIO; 911 912 if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) { 913 dev_warn(dev, "Resuming from non M3 state (%s)\n", 914 mhi_state_str(mhi_get_mhi_state(mhi_cntrl))); 915 if (!force) 916 return -EINVAL; 917 } 918 919 /* Notify clients about exiting LPM */ 920 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { 921 mutex_lock(&itr->mutex); 922 if (itr->mhi_dev) 923 mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT); 924 mutex_unlock(&itr->mutex); 925 } 926 927 write_lock_irq(&mhi_cntrl->pm_lock); 928 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT); 929 if (cur_state != MHI_PM_M3_EXIT) { 930 write_unlock_irq(&mhi_cntrl->pm_lock); 931 dev_info(dev, 932 "Error setting to PM state: %s from: %s\n", 933 to_mhi_pm_state_str(MHI_PM_M3_EXIT), 934 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 935 return -EIO; 936 } 937 938 /* Set MHI to M0 and wait for completion */ 939 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); 940 write_unlock_irq(&mhi_cntrl->pm_lock); 941 942 ret = wait_event_timeout(mhi_cntrl->state_event, 943 mhi_cntrl->dev_state == MHI_STATE_M0 || 944 mhi_cntrl->dev_state == MHI_STATE_M2 || 945 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 946 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 947 948 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 949 dev_err(dev, 950 "Did not enter M0 state, MHI state: %s, PM state: %s\n", 951 mhi_state_str(mhi_cntrl->dev_state), 952 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 953 return -EIO; 954 } 955 956 return 0; 957 } 958 959 int mhi_pm_resume(struct mhi_controller *mhi_cntrl) 960 { 961 return __mhi_pm_resume(mhi_cntrl, false); 962 } 963 EXPORT_SYMBOL_GPL(mhi_pm_resume); 964 965 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl) 966 { 967 return __mhi_pm_resume(mhi_cntrl, true); 968 } 969 EXPORT_SYMBOL_GPL(mhi_pm_resume_force); 970 971 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl) 972 { 973 int ret; 974 975 /* Wake up the device */ 976 read_lock_bh(&mhi_cntrl->pm_lock); 977 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 978 read_unlock_bh(&mhi_cntrl->pm_lock); 979 return -EIO; 980 } 981 mhi_cntrl->wake_get(mhi_cntrl, true); 982 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 983 mhi_trigger_resume(mhi_cntrl); 984 read_unlock_bh(&mhi_cntrl->pm_lock); 985 986 ret = wait_event_timeout(mhi_cntrl->state_event, 987 mhi_cntrl->pm_state == MHI_PM_M0 || 988 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 989 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 990 991 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { 992 read_lock_bh(&mhi_cntrl->pm_lock); 993 mhi_cntrl->wake_put(mhi_cntrl, false); 994 read_unlock_bh(&mhi_cntrl->pm_lock); 995 return -EIO; 996 } 997 998 return 0; 999 } 1000 1001 /* Assert device wake db */ 1002 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force) 1003 { 1004 unsigned long flags; 1005 1006 /* 1007 * If force flag is set, then increment the wake count value and 1008 * ring wake db 1009 */ 1010 if (unlikely(force)) { 1011 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1012 atomic_inc(&mhi_cntrl->dev_wake); 1013 if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) && 1014 !mhi_cntrl->wake_set) { 1015 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); 1016 mhi_cntrl->wake_set = true; 1017 } 1018 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1019 } else { 1020 /* 1021 * If resources are already requested, then just increment 1022 * the wake count value and return 1023 */ 1024 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0))) 1025 return; 1026 1027 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1028 if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) && 1029 MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) && 1030 !mhi_cntrl->wake_set) { 1031 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); 1032 mhi_cntrl->wake_set = true; 1033 } 1034 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1035 } 1036 } 1037 1038 /* De-assert device wake db */ 1039 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl, 1040 bool override) 1041 { 1042 unsigned long flags; 1043 1044 /* 1045 * Only continue if there is a single resource, else just decrement 1046 * and return 1047 */ 1048 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1))) 1049 return; 1050 1051 spin_lock_irqsave(&mhi_cntrl->wlock, flags); 1052 if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) && 1053 MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override && 1054 mhi_cntrl->wake_set) { 1055 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0); 1056 mhi_cntrl->wake_set = false; 1057 } 1058 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); 1059 } 1060 1061 int mhi_async_power_up(struct mhi_controller *mhi_cntrl) 1062 { 1063 struct mhi_event *mhi_event = mhi_cntrl->mhi_event; 1064 enum mhi_state state; 1065 enum mhi_ee_type current_ee; 1066 enum dev_st_transition next_state; 1067 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1068 u32 interval_us = 25000; /* poll register field every 25 milliseconds */ 1069 int ret, i; 1070 1071 dev_info(dev, "Requested to power ON\n"); 1072 1073 /* Supply default wake routines if not provided by controller driver */ 1074 if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put || 1075 !mhi_cntrl->wake_toggle) { 1076 mhi_cntrl->wake_get = mhi_assert_dev_wake; 1077 mhi_cntrl->wake_put = mhi_deassert_dev_wake; 1078 mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ? 1079 mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake; 1080 } 1081 1082 mutex_lock(&mhi_cntrl->pm_mutex); 1083 mhi_cntrl->pm_state = MHI_PM_DISABLE; 1084 1085 /* Setup BHI INTVEC */ 1086 write_lock_irq(&mhi_cntrl->pm_lock); 1087 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 1088 mhi_cntrl->pm_state = MHI_PM_POR; 1089 mhi_cntrl->ee = MHI_EE_MAX; 1090 current_ee = mhi_get_exec_env(mhi_cntrl); 1091 write_unlock_irq(&mhi_cntrl->pm_lock); 1092 1093 /* Confirm that the device is in valid exec env */ 1094 if (!MHI_POWER_UP_CAPABLE(current_ee)) { 1095 dev_err(dev, "%s is not a valid EE for power on\n", 1096 TO_MHI_EXEC_STR(current_ee)); 1097 ret = -EIO; 1098 goto error_exit; 1099 } 1100 1101 state = mhi_get_mhi_state(mhi_cntrl); 1102 dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n", 1103 TO_MHI_EXEC_STR(current_ee), mhi_state_str(state)); 1104 1105 if (state == MHI_STATE_SYS_ERR) { 1106 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); 1107 ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, 1108 MHICTRL_RESET_MASK, 0, interval_us); 1109 if (ret) { 1110 dev_info(dev, "Failed to reset MHI due to syserr state\n"); 1111 goto error_exit; 1112 } 1113 1114 /* 1115 * device cleares INTVEC as part of RESET processing, 1116 * re-program it 1117 */ 1118 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); 1119 } 1120 1121 /* IRQs have been requested during probe, so we just need to enable them. */ 1122 enable_irq(mhi_cntrl->irq[0]); 1123 1124 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { 1125 if (mhi_event->offload_ev) 1126 continue; 1127 1128 enable_irq(mhi_cntrl->irq[mhi_event->irq]); 1129 } 1130 1131 /* Transition to next state */ 1132 next_state = MHI_IN_PBL(current_ee) ? 1133 DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY; 1134 1135 mhi_queue_state_transition(mhi_cntrl, next_state); 1136 1137 mutex_unlock(&mhi_cntrl->pm_mutex); 1138 1139 dev_info(dev, "Power on setup success\n"); 1140 1141 return 0; 1142 1143 error_exit: 1144 mhi_cntrl->pm_state = MHI_PM_DISABLE; 1145 mutex_unlock(&mhi_cntrl->pm_mutex); 1146 1147 return ret; 1148 } 1149 EXPORT_SYMBOL_GPL(mhi_async_power_up); 1150 1151 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful) 1152 { 1153 enum mhi_pm_state cur_state, transition_state; 1154 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1155 1156 mutex_lock(&mhi_cntrl->pm_mutex); 1157 write_lock_irq(&mhi_cntrl->pm_lock); 1158 cur_state = mhi_cntrl->pm_state; 1159 if (cur_state == MHI_PM_DISABLE) { 1160 write_unlock_irq(&mhi_cntrl->pm_lock); 1161 mutex_unlock(&mhi_cntrl->pm_mutex); 1162 return; /* Already powered down */ 1163 } 1164 1165 /* If it's not a graceful shutdown, force MHI to linkdown state */ 1166 transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS : 1167 MHI_PM_LD_ERR_FATAL_DETECT; 1168 1169 cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state); 1170 if (cur_state != transition_state) { 1171 dev_err(dev, "Failed to move to state: %s from: %s\n", 1172 to_mhi_pm_state_str(transition_state), 1173 to_mhi_pm_state_str(mhi_cntrl->pm_state)); 1174 /* Force link down or error fatal detected state */ 1175 mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; 1176 } 1177 1178 /* mark device inactive to avoid any further host processing */ 1179 mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; 1180 mhi_cntrl->dev_state = MHI_STATE_RESET; 1181 1182 wake_up_all(&mhi_cntrl->state_event); 1183 1184 write_unlock_irq(&mhi_cntrl->pm_lock); 1185 mutex_unlock(&mhi_cntrl->pm_mutex); 1186 1187 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE); 1188 1189 /* Wait for shutdown to complete */ 1190 flush_work(&mhi_cntrl->st_worker); 1191 1192 disable_irq(mhi_cntrl->irq[0]); 1193 } 1194 EXPORT_SYMBOL_GPL(mhi_power_down); 1195 1196 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl) 1197 { 1198 int ret = mhi_async_power_up(mhi_cntrl); 1199 1200 if (ret) 1201 return ret; 1202 1203 wait_event_timeout(mhi_cntrl->state_event, 1204 MHI_IN_MISSION_MODE(mhi_cntrl->ee) || 1205 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), 1206 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 1207 1208 ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT; 1209 if (ret) 1210 mhi_power_down(mhi_cntrl, false); 1211 1212 return ret; 1213 } 1214 EXPORT_SYMBOL(mhi_sync_power_up); 1215 1216 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl) 1217 { 1218 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1219 int ret; 1220 1221 /* Check if device is already in RDDM */ 1222 if (mhi_cntrl->ee == MHI_EE_RDDM) 1223 return 0; 1224 1225 dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n"); 1226 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); 1227 1228 /* Wait for RDDM event */ 1229 ret = wait_event_timeout(mhi_cntrl->state_event, 1230 mhi_cntrl->ee == MHI_EE_RDDM, 1231 msecs_to_jiffies(mhi_cntrl->timeout_ms)); 1232 ret = ret ? 0 : -EIO; 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode); 1237 1238 void mhi_device_get(struct mhi_device *mhi_dev) 1239 { 1240 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1241 1242 mhi_dev->dev_wake++; 1243 read_lock_bh(&mhi_cntrl->pm_lock); 1244 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 1245 mhi_trigger_resume(mhi_cntrl); 1246 1247 mhi_cntrl->wake_get(mhi_cntrl, true); 1248 read_unlock_bh(&mhi_cntrl->pm_lock); 1249 } 1250 EXPORT_SYMBOL_GPL(mhi_device_get); 1251 1252 int mhi_device_get_sync(struct mhi_device *mhi_dev) 1253 { 1254 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1255 int ret; 1256 1257 ret = __mhi_device_get_sync(mhi_cntrl); 1258 if (!ret) 1259 mhi_dev->dev_wake++; 1260 1261 return ret; 1262 } 1263 EXPORT_SYMBOL_GPL(mhi_device_get_sync); 1264 1265 void mhi_device_put(struct mhi_device *mhi_dev) 1266 { 1267 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; 1268 1269 mhi_dev->dev_wake--; 1270 read_lock_bh(&mhi_cntrl->pm_lock); 1271 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) 1272 mhi_trigger_resume(mhi_cntrl); 1273 1274 mhi_cntrl->wake_put(mhi_cntrl, false); 1275 read_unlock_bh(&mhi_cntrl->pm_lock); 1276 } 1277 EXPORT_SYMBOL_GPL(mhi_device_put); 1278