1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MHI Endpoint bus stack 4 * 5 * Copyright (C) 2022 Linaro Ltd. 6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> 7 */ 8 9 #include <linux/bitfield.h> 10 #include <linux/delay.h> 11 #include <linux/dma-direction.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/irq.h> 15 #include <linux/mhi_ep.h> 16 #include <linux/mod_devicetable.h> 17 #include <linux/module.h> 18 #include "internal.h" 19 20 #define M0_WAIT_DELAY_MS 100 21 #define M0_WAIT_COUNT 100 22 23 static DEFINE_IDA(mhi_ep_cntrl_ida); 24 25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id); 26 static int mhi_ep_destroy_device(struct device *dev, void *data); 27 28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx, 29 struct mhi_ring_element *el, bool bei) 30 { 31 struct device *dev = &mhi_cntrl->mhi_dev->dev; 32 union mhi_ep_ring_ctx *ctx; 33 struct mhi_ep_ring *ring; 34 int ret; 35 36 mutex_lock(&mhi_cntrl->event_lock); 37 ring = &mhi_cntrl->mhi_event[ring_idx].ring; 38 ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx]; 39 if (!ring->started) { 40 ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx); 41 if (ret) { 42 dev_err(dev, "Error starting event ring (%u)\n", ring_idx); 43 goto err_unlock; 44 } 45 } 46 47 /* Add element to the event ring */ 48 ret = mhi_ep_ring_add_element(ring, el); 49 if (ret) { 50 dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx); 51 goto err_unlock; 52 } 53 54 mutex_unlock(&mhi_cntrl->event_lock); 55 56 /* 57 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might 58 * set this flag for interrupt moderation as per MHI protocol. 59 */ 60 if (!bei) 61 mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector); 62 63 return 0; 64 65 err_unlock: 66 mutex_unlock(&mhi_cntrl->event_lock); 67 68 return ret; 69 } 70 71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring, 72 struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code) 73 { 74 struct mhi_ring_element *event; 75 int ret; 76 77 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); 78 if (!event) 79 return -ENOMEM; 80 81 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre)); 82 event->dword[0] = MHI_TRE_EV_DWORD0(code, len); 83 event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT); 84 85 ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre)); 86 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 87 88 return ret; 89 } 90 91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state) 92 { 93 struct mhi_ring_element *event; 94 int ret; 95 96 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); 97 if (!event) 98 return -ENOMEM; 99 100 event->dword[0] = MHI_SC_EV_DWORD0(state); 101 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT); 102 103 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 104 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 105 106 return ret; 107 } 108 109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env) 110 { 111 struct mhi_ring_element *event; 112 int ret; 113 114 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); 115 if (!event) 116 return -ENOMEM; 117 118 event->dword[0] = MHI_EE_EV_DWORD0(exec_env); 119 event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT); 120 121 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 122 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 123 124 return ret; 125 } 126 127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code) 128 { 129 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; 130 struct mhi_ring_element *event; 131 int ret; 132 133 event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA); 134 if (!event) 135 return -ENOMEM; 136 137 event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element)); 138 event->dword[0] = MHI_CC_EV_DWORD0(code); 139 event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT); 140 141 ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0); 142 kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event); 143 144 return ret; 145 } 146 147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el) 148 { 149 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; 150 struct device *dev = &mhi_cntrl->mhi_dev->dev; 151 struct mhi_result result = {}; 152 struct mhi_ep_chan *mhi_chan; 153 struct mhi_ep_ring *ch_ring; 154 u32 tmp, ch_id; 155 int ret; 156 157 ch_id = MHI_TRE_GET_CMD_CHID(el); 158 159 /* Check if the channel is supported by the controller */ 160 if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) { 161 dev_dbg(dev, "Channel (%u) not supported!\n", ch_id); 162 return -ENODEV; 163 } 164 165 mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; 166 ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring; 167 168 switch (MHI_TRE_GET_CMD_TYPE(el)) { 169 case MHI_PKT_TYPE_START_CHAN_CMD: 170 dev_dbg(dev, "Received START command for channel (%u)\n", ch_id); 171 172 mutex_lock(&mhi_chan->lock); 173 /* Initialize and configure the corresponding channel ring */ 174 if (!ch_ring->started) { 175 ret = mhi_ep_ring_start(mhi_cntrl, ch_ring, 176 (union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]); 177 if (ret) { 178 dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id); 179 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, 180 MHI_EV_CC_UNDEFINED_ERR); 181 if (ret) 182 dev_err(dev, "Error sending completion event: %d\n", ret); 183 184 goto err_unlock; 185 } 186 } 187 188 /* Set channel state to RUNNING */ 189 mhi_chan->state = MHI_CH_STATE_RUNNING; 190 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 191 tmp &= ~CHAN_CTX_CHSTATE_MASK; 192 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); 193 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 194 195 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 196 if (ret) { 197 dev_err(dev, "Error sending command completion event (%u)\n", 198 MHI_EV_CC_SUCCESS); 199 goto err_unlock; 200 } 201 202 mutex_unlock(&mhi_chan->lock); 203 204 /* 205 * Create MHI device only during UL channel start. Since the MHI 206 * channels operate in a pair, we'll associate both UL and DL 207 * channels to the same device. 208 * 209 * We also need to check for mhi_dev != NULL because, the host 210 * will issue START_CHAN command during resume and we don't 211 * destroy the device during suspend. 212 */ 213 if (!(ch_id % 2) && !mhi_chan->mhi_dev) { 214 ret = mhi_ep_create_device(mhi_cntrl, ch_id); 215 if (ret) { 216 dev_err(dev, "Error creating device for channel (%u)\n", ch_id); 217 mhi_ep_handle_syserr(mhi_cntrl); 218 return ret; 219 } 220 } 221 222 /* Finally, enable DB for the channel */ 223 mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id); 224 225 break; 226 case MHI_PKT_TYPE_STOP_CHAN_CMD: 227 dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id); 228 if (!ch_ring->started) { 229 dev_err(dev, "Channel (%u) not opened\n", ch_id); 230 return -ENODEV; 231 } 232 233 mutex_lock(&mhi_chan->lock); 234 /* Disable DB for the channel */ 235 mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id); 236 237 /* Send channel disconnect status to client drivers */ 238 if (mhi_chan->xfer_cb) { 239 result.transaction_status = -ENOTCONN; 240 result.bytes_xferd = 0; 241 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 242 } 243 244 /* Set channel state to STOP */ 245 mhi_chan->state = MHI_CH_STATE_STOP; 246 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 247 tmp &= ~CHAN_CTX_CHSTATE_MASK; 248 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP); 249 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 250 251 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 252 if (ret) { 253 dev_err(dev, "Error sending command completion event (%u)\n", 254 MHI_EV_CC_SUCCESS); 255 goto err_unlock; 256 } 257 258 mutex_unlock(&mhi_chan->lock); 259 break; 260 case MHI_PKT_TYPE_RESET_CHAN_CMD: 261 dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id); 262 if (!ch_ring->started) { 263 dev_err(dev, "Channel (%u) not opened\n", ch_id); 264 return -ENODEV; 265 } 266 267 mutex_lock(&mhi_chan->lock); 268 /* Stop and reset the transfer ring */ 269 mhi_ep_ring_reset(mhi_cntrl, ch_ring); 270 271 /* Send channel disconnect status to client driver */ 272 if (mhi_chan->xfer_cb) { 273 result.transaction_status = -ENOTCONN; 274 result.bytes_xferd = 0; 275 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 276 } 277 278 /* Set channel state to DISABLED */ 279 mhi_chan->state = MHI_CH_STATE_DISABLED; 280 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg); 281 tmp &= ~CHAN_CTX_CHSTATE_MASK; 282 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); 283 mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp); 284 285 ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS); 286 if (ret) { 287 dev_err(dev, "Error sending command completion event (%u)\n", 288 MHI_EV_CC_SUCCESS); 289 goto err_unlock; 290 } 291 292 mutex_unlock(&mhi_chan->lock); 293 break; 294 default: 295 dev_err(dev, "Invalid command received: %lu for channel (%u)\n", 296 MHI_TRE_GET_CMD_TYPE(el), ch_id); 297 return -EINVAL; 298 } 299 300 return 0; 301 302 err_unlock: 303 mutex_unlock(&mhi_chan->lock); 304 305 return ret; 306 } 307 308 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir) 309 { 310 struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan : 311 mhi_dev->ul_chan; 312 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 313 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 314 315 return !!(ring->rd_offset == ring->wr_offset); 316 } 317 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty); 318 319 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl, 320 struct mhi_ep_ring *ring, 321 struct mhi_result *result, 322 u32 len) 323 { 324 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 325 struct device *dev = &mhi_cntrl->mhi_dev->dev; 326 size_t tr_len, read_offset, write_offset; 327 struct mhi_ep_buf_info buf_info = {}; 328 struct mhi_ring_element *el; 329 bool tr_done = false; 330 u32 buf_left; 331 int ret; 332 333 buf_left = len; 334 335 do { 336 /* Don't process the transfer ring if the channel is not in RUNNING state */ 337 if (mhi_chan->state != MHI_CH_STATE_RUNNING) { 338 dev_err(dev, "Channel not available\n"); 339 return -ENODEV; 340 } 341 342 el = &ring->ring_cache[ring->rd_offset]; 343 344 /* Check if there is data pending to be read from previous read operation */ 345 if (mhi_chan->tre_bytes_left) { 346 dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left); 347 tr_len = min(buf_left, mhi_chan->tre_bytes_left); 348 } else { 349 mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el); 350 mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el); 351 mhi_chan->tre_bytes_left = mhi_chan->tre_size; 352 353 tr_len = min(buf_left, mhi_chan->tre_size); 354 } 355 356 read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left; 357 write_offset = len - buf_left; 358 359 buf_info.host_addr = mhi_chan->tre_loc + read_offset; 360 buf_info.dev_addr = result->buf_addr + write_offset; 361 buf_info.size = tr_len; 362 363 dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id); 364 ret = mhi_cntrl->read_from_host(mhi_cntrl, &buf_info); 365 if (ret < 0) { 366 dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n"); 367 return ret; 368 } 369 370 buf_left -= tr_len; 371 mhi_chan->tre_bytes_left -= tr_len; 372 373 /* 374 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been 375 * read completely: 376 * 377 * 1. Send completion event to the host based on the flags set in TRE. 378 * 2. Increment the local read offset of the transfer ring. 379 */ 380 if (!mhi_chan->tre_bytes_left) { 381 /* 382 * The host will split the data packet into multiple TREs if it can't fit 383 * the packet in a single TRE. In that case, CHAIN flag will be set by the 384 * host for all TREs except the last one. 385 */ 386 if (MHI_TRE_DATA_GET_CHAIN(el)) { 387 /* 388 * IEOB (Interrupt on End of Block) flag will be set by the host if 389 * it expects the completion event for all TREs of a TD. 390 */ 391 if (MHI_TRE_DATA_GET_IEOB(el)) { 392 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, 393 MHI_TRE_DATA_GET_LEN(el), 394 MHI_EV_CC_EOB); 395 if (ret < 0) { 396 dev_err(&mhi_chan->mhi_dev->dev, 397 "Error sending transfer compl. event\n"); 398 return ret; 399 } 400 } 401 } else { 402 /* 403 * IEOT (Interrupt on End of Transfer) flag will be set by the host 404 * for the last TRE of the TD and expects the completion event for 405 * the same. 406 */ 407 if (MHI_TRE_DATA_GET_IEOT(el)) { 408 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, 409 MHI_TRE_DATA_GET_LEN(el), 410 MHI_EV_CC_EOT); 411 if (ret < 0) { 412 dev_err(&mhi_chan->mhi_dev->dev, 413 "Error sending transfer compl. event\n"); 414 return ret; 415 } 416 } 417 418 tr_done = true; 419 } 420 421 mhi_ep_ring_inc_index(ring); 422 } 423 424 result->bytes_xferd += tr_len; 425 } while (buf_left && !tr_done); 426 427 return 0; 428 } 429 430 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el) 431 { 432 struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl; 433 struct mhi_result result = {}; 434 u32 len = MHI_EP_DEFAULT_MTU; 435 struct mhi_ep_chan *mhi_chan; 436 int ret; 437 438 mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 439 440 /* 441 * Bail out if transfer callback is not registered for the channel. 442 * This is most likely due to the client driver not loaded at this point. 443 */ 444 if (!mhi_chan->xfer_cb) { 445 dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n"); 446 return -ENODEV; 447 } 448 449 if (ring->ch_id % 2) { 450 /* DL channel */ 451 result.dir = mhi_chan->dir; 452 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 453 } else { 454 /* UL channel */ 455 result.buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA); 456 if (!result.buf_addr) 457 return -ENOMEM; 458 459 do { 460 ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len); 461 if (ret < 0) { 462 dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n"); 463 kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr); 464 return ret; 465 } 466 467 result.dir = mhi_chan->dir; 468 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 469 result.bytes_xferd = 0; 470 memset(result.buf_addr, 0, len); 471 472 /* Read until the ring becomes empty */ 473 } while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE)); 474 475 kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr); 476 } 477 478 return 0; 479 } 480 481 /* TODO: Handle partially formed TDs */ 482 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb) 483 { 484 struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl; 485 struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan; 486 struct device *dev = &mhi_chan->mhi_dev->dev; 487 struct mhi_ep_buf_info buf_info = {}; 488 struct mhi_ring_element *el; 489 u32 buf_left, read_offset; 490 struct mhi_ep_ring *ring; 491 enum mhi_ev_ccs code; 492 size_t tr_len; 493 u32 tre_len; 494 int ret; 495 496 buf_left = skb->len; 497 ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring; 498 499 mutex_lock(&mhi_chan->lock); 500 501 do { 502 /* Don't process the transfer ring if the channel is not in RUNNING state */ 503 if (mhi_chan->state != MHI_CH_STATE_RUNNING) { 504 dev_err(dev, "Channel not available\n"); 505 ret = -ENODEV; 506 goto err_exit; 507 } 508 509 if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) { 510 dev_err(dev, "TRE not available!\n"); 511 ret = -ENOSPC; 512 goto err_exit; 513 } 514 515 el = &ring->ring_cache[ring->rd_offset]; 516 tre_len = MHI_TRE_DATA_GET_LEN(el); 517 518 tr_len = min(buf_left, tre_len); 519 read_offset = skb->len - buf_left; 520 521 buf_info.dev_addr = skb->data + read_offset; 522 buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el); 523 buf_info.size = tr_len; 524 525 dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id); 526 ret = mhi_cntrl->write_to_host(mhi_cntrl, &buf_info); 527 if (ret < 0) { 528 dev_err(dev, "Error writing to the channel\n"); 529 goto err_exit; 530 } 531 532 buf_left -= tr_len; 533 /* 534 * For all TREs queued by the host for DL channel, only the EOT flag will be set. 535 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to 536 * the host so that the host can adjust the packet boundary to next TREs. Else send 537 * the EOT event to the host indicating the packet boundary. 538 */ 539 if (buf_left) 540 code = MHI_EV_CC_OVERFLOW; 541 else 542 code = MHI_EV_CC_EOT; 543 544 ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code); 545 if (ret) { 546 dev_err(dev, "Error sending transfer completion event\n"); 547 goto err_exit; 548 } 549 550 mhi_ep_ring_inc_index(ring); 551 } while (buf_left); 552 553 mutex_unlock(&mhi_chan->lock); 554 555 return 0; 556 557 err_exit: 558 mutex_unlock(&mhi_chan->lock); 559 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb); 563 564 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) 565 { 566 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; 567 struct device *dev = &mhi_cntrl->mhi_dev->dev; 568 int ret; 569 570 /* Update the number of event rings (NER) programmed by the host */ 571 mhi_ep_mmio_update_ner(mhi_cntrl); 572 573 dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n", 574 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings); 575 576 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; 577 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; 578 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; 579 580 /* Get the channel context base pointer from host */ 581 mhi_ep_mmio_get_chc_base(mhi_cntrl); 582 583 /* Allocate and map memory for caching host channel context */ 584 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, 585 &mhi_cntrl->ch_ctx_cache_phys, 586 (void __iomem **) &mhi_cntrl->ch_ctx_cache, 587 ch_ctx_host_size); 588 if (ret) { 589 dev_err(dev, "Failed to allocate and map ch_ctx_cache\n"); 590 return ret; 591 } 592 593 /* Get the event context base pointer from host */ 594 mhi_ep_mmio_get_erc_base(mhi_cntrl); 595 596 /* Allocate and map memory for caching host event context */ 597 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, 598 &mhi_cntrl->ev_ctx_cache_phys, 599 (void __iomem **) &mhi_cntrl->ev_ctx_cache, 600 ev_ctx_host_size); 601 if (ret) { 602 dev_err(dev, "Failed to allocate and map ev_ctx_cache\n"); 603 goto err_ch_ctx; 604 } 605 606 /* Get the command context base pointer from host */ 607 mhi_ep_mmio_get_crc_base(mhi_cntrl); 608 609 /* Allocate and map memory for caching host command context */ 610 ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, 611 &mhi_cntrl->cmd_ctx_cache_phys, 612 (void __iomem **) &mhi_cntrl->cmd_ctx_cache, 613 cmd_ctx_host_size); 614 if (ret) { 615 dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n"); 616 goto err_ev_ctx; 617 } 618 619 /* Initialize command ring */ 620 ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring, 621 (union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache); 622 if (ret) { 623 dev_err(dev, "Failed to start the command ring\n"); 624 goto err_cmd_ctx; 625 } 626 627 return ret; 628 629 err_cmd_ctx: 630 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, 631 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); 632 633 err_ev_ctx: 634 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, 635 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); 636 637 err_ch_ctx: 638 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, 639 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); 640 641 return ret; 642 } 643 644 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl) 645 { 646 size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size; 647 648 ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan; 649 ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings; 650 cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS; 651 652 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys, 653 (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size); 654 655 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys, 656 (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size); 657 658 mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys, 659 (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size); 660 } 661 662 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl) 663 { 664 /* 665 * Doorbell interrupts are enabled when the corresponding channel gets started. 666 * Enabling all interrupts here triggers spurious irqs as some of the interrupts 667 * associated with hw channels always get triggered. 668 */ 669 mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl); 670 mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl); 671 } 672 673 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl) 674 { 675 struct device *dev = &mhi_cntrl->mhi_dev->dev; 676 enum mhi_state state; 677 bool mhi_reset; 678 u32 count = 0; 679 int ret; 680 681 /* Wait for Host to set the M0 state */ 682 do { 683 msleep(M0_WAIT_DELAY_MS); 684 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); 685 if (mhi_reset) { 686 /* Clear the MHI reset if host is in reset state */ 687 mhi_ep_mmio_clear_reset(mhi_cntrl); 688 dev_info(dev, "Detected Host reset while waiting for M0\n"); 689 } 690 count++; 691 } while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT); 692 693 if (state != MHI_STATE_M0) { 694 dev_err(dev, "Host failed to enter M0\n"); 695 return -ETIMEDOUT; 696 } 697 698 ret = mhi_ep_cache_host_cfg(mhi_cntrl); 699 if (ret) { 700 dev_err(dev, "Failed to cache host config\n"); 701 return ret; 702 } 703 704 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 705 706 /* Enable all interrupts now */ 707 mhi_ep_enable_int(mhi_cntrl); 708 709 return 0; 710 } 711 712 static void mhi_ep_cmd_ring_worker(struct work_struct *work) 713 { 714 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work); 715 struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring; 716 struct device *dev = &mhi_cntrl->mhi_dev->dev; 717 struct mhi_ring_element *el; 718 int ret; 719 720 /* Update the write offset for the ring */ 721 ret = mhi_ep_update_wr_offset(ring); 722 if (ret) { 723 dev_err(dev, "Error updating write offset for ring\n"); 724 return; 725 } 726 727 /* Sanity check to make sure there are elements in the ring */ 728 if (ring->rd_offset == ring->wr_offset) 729 return; 730 731 /* 732 * Process command ring element till write offset. In case of an error, just try to 733 * process next element. 734 */ 735 while (ring->rd_offset != ring->wr_offset) { 736 el = &ring->ring_cache[ring->rd_offset]; 737 738 ret = mhi_ep_process_cmd_ring(ring, el); 739 if (ret && ret != -ENODEV) 740 dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset); 741 742 mhi_ep_ring_inc_index(ring); 743 } 744 } 745 746 static void mhi_ep_ch_ring_worker(struct work_struct *work) 747 { 748 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work); 749 struct device *dev = &mhi_cntrl->mhi_dev->dev; 750 struct mhi_ep_ring_item *itr, *tmp; 751 struct mhi_ring_element *el; 752 struct mhi_ep_ring *ring; 753 struct mhi_ep_chan *chan; 754 unsigned long flags; 755 LIST_HEAD(head); 756 int ret; 757 758 spin_lock_irqsave(&mhi_cntrl->list_lock, flags); 759 list_splice_tail_init(&mhi_cntrl->ch_db_list, &head); 760 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); 761 762 /* Process each queued channel ring. In case of an error, just process next element. */ 763 list_for_each_entry_safe(itr, tmp, &head, node) { 764 list_del(&itr->node); 765 ring = itr->ring; 766 767 chan = &mhi_cntrl->mhi_chan[ring->ch_id]; 768 mutex_lock(&chan->lock); 769 770 /* 771 * The ring could've stopped while we waited to grab the (chan->lock), so do 772 * a sanity check before going further. 773 */ 774 if (!ring->started) { 775 mutex_unlock(&chan->lock); 776 kfree(itr); 777 continue; 778 } 779 780 /* Update the write offset for the ring */ 781 ret = mhi_ep_update_wr_offset(ring); 782 if (ret) { 783 dev_err(dev, "Error updating write offset for ring\n"); 784 mutex_unlock(&chan->lock); 785 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 786 continue; 787 } 788 789 /* Sanity check to make sure there are elements in the ring */ 790 if (ring->rd_offset == ring->wr_offset) { 791 mutex_unlock(&chan->lock); 792 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 793 continue; 794 } 795 796 el = &ring->ring_cache[ring->rd_offset]; 797 798 dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id); 799 ret = mhi_ep_process_ch_ring(ring, el); 800 if (ret) { 801 dev_err(dev, "Error processing ring for channel (%u): %d\n", 802 ring->ch_id, ret); 803 mutex_unlock(&chan->lock); 804 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 805 continue; 806 } 807 808 mutex_unlock(&chan->lock); 809 kmem_cache_free(mhi_cntrl->ring_item_cache, itr); 810 } 811 } 812 813 static void mhi_ep_state_worker(struct work_struct *work) 814 { 815 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work); 816 struct device *dev = &mhi_cntrl->mhi_dev->dev; 817 struct mhi_ep_state_transition *itr, *tmp; 818 unsigned long flags; 819 LIST_HEAD(head); 820 int ret; 821 822 spin_lock_irqsave(&mhi_cntrl->list_lock, flags); 823 list_splice_tail_init(&mhi_cntrl->st_transition_list, &head); 824 spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags); 825 826 list_for_each_entry_safe(itr, tmp, &head, node) { 827 list_del(&itr->node); 828 dev_dbg(dev, "Handling MHI state transition to %s\n", 829 mhi_state_str(itr->state)); 830 831 switch (itr->state) { 832 case MHI_STATE_M0: 833 ret = mhi_ep_set_m0_state(mhi_cntrl); 834 if (ret) 835 dev_err(dev, "Failed to transition to M0 state\n"); 836 break; 837 case MHI_STATE_M3: 838 ret = mhi_ep_set_m3_state(mhi_cntrl); 839 if (ret) 840 dev_err(dev, "Failed to transition to M3 state\n"); 841 break; 842 default: 843 dev_err(dev, "Invalid MHI state transition: %d\n", itr->state); 844 break; 845 } 846 kfree(itr); 847 } 848 } 849 850 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int, 851 u32 ch_idx) 852 { 853 struct mhi_ep_ring_item *item; 854 struct mhi_ep_ring *ring; 855 bool work = !!ch_int; 856 LIST_HEAD(head); 857 u32 i; 858 859 /* First add the ring items to a local list */ 860 for_each_set_bit(i, &ch_int, 32) { 861 /* Channel index varies for each register: 0, 32, 64, 96 */ 862 u32 ch_id = ch_idx + i; 863 864 ring = &mhi_cntrl->mhi_chan[ch_id].ring; 865 item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC); 866 if (!item) 867 return; 868 869 item->ring = ring; 870 list_add_tail(&item->node, &head); 871 } 872 873 /* Now, splice the local list into ch_db_list and queue the work item */ 874 if (work) { 875 spin_lock(&mhi_cntrl->list_lock); 876 list_splice_tail_init(&head, &mhi_cntrl->ch_db_list); 877 spin_unlock(&mhi_cntrl->list_lock); 878 879 queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work); 880 } 881 } 882 883 /* 884 * Channel interrupt statuses are contained in 4 registers each of 32bit length. 885 * For checking all interrupts, we need to loop through each registers and then 886 * check for bits set. 887 */ 888 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl) 889 { 890 u32 ch_int, ch_idx, i; 891 892 /* Bail out if there is no channel doorbell interrupt */ 893 if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl)) 894 return; 895 896 for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) { 897 ch_idx = i * MHI_MASK_CH_LEN; 898 899 /* Only process channel interrupt if the mask is enabled */ 900 ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask; 901 if (ch_int) { 902 mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx); 903 mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i), 904 mhi_cntrl->chdb[i].status); 905 } 906 } 907 } 908 909 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl, 910 enum mhi_state state) 911 { 912 struct mhi_ep_state_transition *item; 913 914 item = kzalloc(sizeof(*item), GFP_ATOMIC); 915 if (!item) 916 return; 917 918 item->state = state; 919 spin_lock(&mhi_cntrl->list_lock); 920 list_add_tail(&item->node, &mhi_cntrl->st_transition_list); 921 spin_unlock(&mhi_cntrl->list_lock); 922 923 queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work); 924 } 925 926 /* 927 * Interrupt handler that services interrupts raised by the host writing to 928 * MHICTRL and Command ring doorbell (CRDB) registers for state change and 929 * channel interrupts. 930 */ 931 static irqreturn_t mhi_ep_irq(int irq, void *data) 932 { 933 struct mhi_ep_cntrl *mhi_cntrl = data; 934 struct device *dev = &mhi_cntrl->mhi_dev->dev; 935 enum mhi_state state; 936 u32 int_value; 937 bool mhi_reset; 938 939 /* Acknowledge the ctrl interrupt */ 940 int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS); 941 mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value); 942 943 /* Check for ctrl interrupt */ 944 if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) { 945 dev_dbg(dev, "Processing ctrl interrupt\n"); 946 mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset); 947 if (mhi_reset) { 948 dev_info(dev, "Host triggered MHI reset!\n"); 949 disable_irq_nosync(mhi_cntrl->irq); 950 schedule_work(&mhi_cntrl->reset_work); 951 return IRQ_HANDLED; 952 } 953 954 mhi_ep_process_ctrl_interrupt(mhi_cntrl, state); 955 } 956 957 /* Check for command doorbell interrupt */ 958 if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) { 959 dev_dbg(dev, "Processing command doorbell interrupt\n"); 960 queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work); 961 } 962 963 /* Check for channel interrupts */ 964 mhi_ep_check_channel_interrupt(mhi_cntrl); 965 966 return IRQ_HANDLED; 967 } 968 969 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl) 970 { 971 struct mhi_ep_ring *ch_ring, *ev_ring; 972 struct mhi_result result = {}; 973 struct mhi_ep_chan *mhi_chan; 974 int i; 975 976 /* Stop all the channels */ 977 for (i = 0; i < mhi_cntrl->max_chan; i++) { 978 mhi_chan = &mhi_cntrl->mhi_chan[i]; 979 if (!mhi_chan->ring.started) 980 continue; 981 982 mutex_lock(&mhi_chan->lock); 983 /* Send channel disconnect status to client drivers */ 984 if (mhi_chan->xfer_cb) { 985 result.transaction_status = -ENOTCONN; 986 result.bytes_xferd = 0; 987 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 988 } 989 990 mhi_chan->state = MHI_CH_STATE_DISABLED; 991 mutex_unlock(&mhi_chan->lock); 992 } 993 994 flush_workqueue(mhi_cntrl->wq); 995 996 /* Destroy devices associated with all channels */ 997 device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device); 998 999 /* Stop and reset the transfer rings */ 1000 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1001 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1002 if (!mhi_chan->ring.started) 1003 continue; 1004 1005 ch_ring = &mhi_cntrl->mhi_chan[i].ring; 1006 mutex_lock(&mhi_chan->lock); 1007 mhi_ep_ring_reset(mhi_cntrl, ch_ring); 1008 mutex_unlock(&mhi_chan->lock); 1009 } 1010 1011 /* Stop and reset the event rings */ 1012 for (i = 0; i < mhi_cntrl->event_rings; i++) { 1013 ev_ring = &mhi_cntrl->mhi_event[i].ring; 1014 if (!ev_ring->started) 1015 continue; 1016 1017 mutex_lock(&mhi_cntrl->event_lock); 1018 mhi_ep_ring_reset(mhi_cntrl, ev_ring); 1019 mutex_unlock(&mhi_cntrl->event_lock); 1020 } 1021 1022 /* Stop and reset the command ring */ 1023 mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring); 1024 1025 mhi_ep_free_host_cfg(mhi_cntrl); 1026 mhi_ep_mmio_mask_interrupts(mhi_cntrl); 1027 1028 mhi_cntrl->enabled = false; 1029 } 1030 1031 static void mhi_ep_reset_worker(struct work_struct *work) 1032 { 1033 struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work); 1034 enum mhi_state cur_state; 1035 1036 mhi_ep_power_down(mhi_cntrl); 1037 1038 mutex_lock(&mhi_cntrl->state_lock); 1039 1040 /* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */ 1041 mhi_ep_mmio_reset(mhi_cntrl); 1042 cur_state = mhi_cntrl->mhi_state; 1043 1044 /* 1045 * Only proceed further if the reset is due to SYS_ERR. The host will 1046 * issue reset during shutdown also and we don't need to do re-init in 1047 * that case. 1048 */ 1049 if (cur_state == MHI_STATE_SYS_ERR) 1050 mhi_ep_power_up(mhi_cntrl); 1051 1052 mutex_unlock(&mhi_cntrl->state_lock); 1053 } 1054 1055 /* 1056 * We don't need to do anything special other than setting the MHI SYS_ERR 1057 * state. The host will reset all contexts and issue MHI RESET so that we 1058 * could also recover from error state. 1059 */ 1060 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl) 1061 { 1062 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1063 int ret; 1064 1065 ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); 1066 if (ret) 1067 return; 1068 1069 /* Signal host that the device went to SYS_ERR state */ 1070 ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR); 1071 if (ret) 1072 dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret); 1073 } 1074 1075 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl) 1076 { 1077 struct device *dev = &mhi_cntrl->mhi_dev->dev; 1078 int ret, i; 1079 1080 /* 1081 * Mask all interrupts until the state machine is ready. Interrupts will 1082 * be enabled later with mhi_ep_enable(). 1083 */ 1084 mhi_ep_mmio_mask_interrupts(mhi_cntrl); 1085 mhi_ep_mmio_init(mhi_cntrl); 1086 1087 mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)), 1088 GFP_KERNEL); 1089 if (!mhi_cntrl->mhi_event) 1090 return -ENOMEM; 1091 1092 /* Initialize command, channel and event rings */ 1093 mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0); 1094 for (i = 0; i < mhi_cntrl->max_chan; i++) 1095 mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i); 1096 for (i = 0; i < mhi_cntrl->event_rings; i++) 1097 mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i); 1098 1099 mhi_cntrl->mhi_state = MHI_STATE_RESET; 1100 1101 /* Set AMSS EE before signaling ready state */ 1102 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 1103 1104 /* All set, notify the host that we are ready */ 1105 ret = mhi_ep_set_ready_state(mhi_cntrl); 1106 if (ret) 1107 goto err_free_event; 1108 1109 dev_dbg(dev, "READY state notification sent to the host\n"); 1110 1111 ret = mhi_ep_enable(mhi_cntrl); 1112 if (ret) { 1113 dev_err(dev, "Failed to enable MHI endpoint\n"); 1114 goto err_free_event; 1115 } 1116 1117 enable_irq(mhi_cntrl->irq); 1118 mhi_cntrl->enabled = true; 1119 1120 return 0; 1121 1122 err_free_event: 1123 kfree(mhi_cntrl->mhi_event); 1124 1125 return ret; 1126 } 1127 EXPORT_SYMBOL_GPL(mhi_ep_power_up); 1128 1129 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl) 1130 { 1131 if (mhi_cntrl->enabled) { 1132 mhi_ep_abort_transfer(mhi_cntrl); 1133 kfree(mhi_cntrl->mhi_event); 1134 disable_irq(mhi_cntrl->irq); 1135 } 1136 } 1137 EXPORT_SYMBOL_GPL(mhi_ep_power_down); 1138 1139 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl) 1140 { 1141 struct mhi_ep_chan *mhi_chan; 1142 u32 tmp; 1143 int i; 1144 1145 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1146 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1147 1148 if (!mhi_chan->mhi_dev) 1149 continue; 1150 1151 mutex_lock(&mhi_chan->lock); 1152 /* Skip if the channel is not currently running */ 1153 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); 1154 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) { 1155 mutex_unlock(&mhi_chan->lock); 1156 continue; 1157 } 1158 1159 dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n"); 1160 /* Set channel state to SUSPENDED */ 1161 mhi_chan->state = MHI_CH_STATE_SUSPENDED; 1162 tmp &= ~CHAN_CTX_CHSTATE_MASK; 1163 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED); 1164 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); 1165 mutex_unlock(&mhi_chan->lock); 1166 } 1167 } 1168 1169 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl) 1170 { 1171 struct mhi_ep_chan *mhi_chan; 1172 u32 tmp; 1173 int i; 1174 1175 for (i = 0; i < mhi_cntrl->max_chan; i++) { 1176 mhi_chan = &mhi_cntrl->mhi_chan[i]; 1177 1178 if (!mhi_chan->mhi_dev) 1179 continue; 1180 1181 mutex_lock(&mhi_chan->lock); 1182 /* Skip if the channel is not currently suspended */ 1183 tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg); 1184 if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) { 1185 mutex_unlock(&mhi_chan->lock); 1186 continue; 1187 } 1188 1189 dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n"); 1190 /* Set channel state to RUNNING */ 1191 mhi_chan->state = MHI_CH_STATE_RUNNING; 1192 tmp &= ~CHAN_CTX_CHSTATE_MASK; 1193 tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING); 1194 mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp); 1195 mutex_unlock(&mhi_chan->lock); 1196 } 1197 } 1198 1199 static void mhi_ep_release_device(struct device *dev) 1200 { 1201 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1202 1203 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1204 mhi_dev->mhi_cntrl->mhi_dev = NULL; 1205 1206 /* 1207 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI 1208 * devices for the channels will only get created in mhi_ep_create_device() 1209 * if the mhi_dev associated with it is NULL. 1210 */ 1211 if (mhi_dev->ul_chan) 1212 mhi_dev->ul_chan->mhi_dev = NULL; 1213 1214 if (mhi_dev->dl_chan) 1215 mhi_dev->dl_chan->mhi_dev = NULL; 1216 1217 kfree(mhi_dev); 1218 } 1219 1220 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl, 1221 enum mhi_device_type dev_type) 1222 { 1223 struct mhi_ep_device *mhi_dev; 1224 struct device *dev; 1225 1226 mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); 1227 if (!mhi_dev) 1228 return ERR_PTR(-ENOMEM); 1229 1230 dev = &mhi_dev->dev; 1231 device_initialize(dev); 1232 dev->bus = &mhi_ep_bus_type; 1233 dev->release = mhi_ep_release_device; 1234 1235 /* Controller device is always allocated first */ 1236 if (dev_type == MHI_DEVICE_CONTROLLER) 1237 /* for MHI controller device, parent is the bus device (e.g. PCI EPF) */ 1238 dev->parent = mhi_cntrl->cntrl_dev; 1239 else 1240 /* for MHI client devices, parent is the MHI controller device */ 1241 dev->parent = &mhi_cntrl->mhi_dev->dev; 1242 1243 mhi_dev->mhi_cntrl = mhi_cntrl; 1244 mhi_dev->dev_type = dev_type; 1245 1246 return mhi_dev; 1247 } 1248 1249 /* 1250 * MHI channels are always defined in pairs with UL as the even numbered 1251 * channel and DL as odd numbered one. This function gets UL channel (primary) 1252 * as the ch_id and always looks after the next entry in channel list for 1253 * the corresponding DL channel (secondary). 1254 */ 1255 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id) 1256 { 1257 struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id]; 1258 struct device *dev = mhi_cntrl->cntrl_dev; 1259 struct mhi_ep_device *mhi_dev; 1260 int ret; 1261 1262 /* Check if the channel name is same for both UL and DL */ 1263 if (strcmp(mhi_chan->name, mhi_chan[1].name)) { 1264 dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n", 1265 mhi_chan->name, mhi_chan[1].name); 1266 return -EINVAL; 1267 } 1268 1269 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER); 1270 if (IS_ERR(mhi_dev)) 1271 return PTR_ERR(mhi_dev); 1272 1273 /* Configure primary channel */ 1274 mhi_dev->ul_chan = mhi_chan; 1275 get_device(&mhi_dev->dev); 1276 mhi_chan->mhi_dev = mhi_dev; 1277 1278 /* Configure secondary channel as well */ 1279 mhi_chan++; 1280 mhi_dev->dl_chan = mhi_chan; 1281 get_device(&mhi_dev->dev); 1282 mhi_chan->mhi_dev = mhi_dev; 1283 1284 /* Channel name is same for both UL and DL */ 1285 mhi_dev->name = mhi_chan->name; 1286 ret = dev_set_name(&mhi_dev->dev, "%s_%s", 1287 dev_name(&mhi_cntrl->mhi_dev->dev), 1288 mhi_dev->name); 1289 if (ret) { 1290 put_device(&mhi_dev->dev); 1291 return ret; 1292 } 1293 1294 ret = device_add(&mhi_dev->dev); 1295 if (ret) 1296 put_device(&mhi_dev->dev); 1297 1298 return ret; 1299 } 1300 1301 static int mhi_ep_destroy_device(struct device *dev, void *data) 1302 { 1303 struct mhi_ep_device *mhi_dev; 1304 struct mhi_ep_cntrl *mhi_cntrl; 1305 struct mhi_ep_chan *ul_chan, *dl_chan; 1306 1307 if (dev->bus != &mhi_ep_bus_type) 1308 return 0; 1309 1310 mhi_dev = to_mhi_ep_device(dev); 1311 mhi_cntrl = mhi_dev->mhi_cntrl; 1312 1313 /* Only destroy devices created for channels */ 1314 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1315 return 0; 1316 1317 ul_chan = mhi_dev->ul_chan; 1318 dl_chan = mhi_dev->dl_chan; 1319 1320 if (ul_chan) 1321 put_device(&ul_chan->mhi_dev->dev); 1322 1323 if (dl_chan) 1324 put_device(&dl_chan->mhi_dev->dev); 1325 1326 dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n", 1327 mhi_dev->name); 1328 1329 /* Notify the client and remove the device from MHI bus */ 1330 device_del(dev); 1331 put_device(dev); 1332 1333 return 0; 1334 } 1335 1336 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl, 1337 const struct mhi_ep_cntrl_config *config) 1338 { 1339 const struct mhi_ep_channel_config *ch_cfg; 1340 struct device *dev = mhi_cntrl->cntrl_dev; 1341 u32 chan, i; 1342 int ret = -EINVAL; 1343 1344 mhi_cntrl->max_chan = config->max_channels; 1345 1346 /* 1347 * Allocate max_channels supported by the MHI endpoint and populate 1348 * only the defined channels 1349 */ 1350 mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan), 1351 GFP_KERNEL); 1352 if (!mhi_cntrl->mhi_chan) 1353 return -ENOMEM; 1354 1355 for (i = 0; i < config->num_channels; i++) { 1356 struct mhi_ep_chan *mhi_chan; 1357 1358 ch_cfg = &config->ch_cfg[i]; 1359 1360 chan = ch_cfg->num; 1361 if (chan >= mhi_cntrl->max_chan) { 1362 dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n", 1363 chan, mhi_cntrl->max_chan); 1364 goto error_chan_cfg; 1365 } 1366 1367 /* Bi-directional and direction less channels are not supported */ 1368 if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) { 1369 dev_err(dev, "Invalid direction (%u) for channel (%u)\n", 1370 ch_cfg->dir, chan); 1371 goto error_chan_cfg; 1372 } 1373 1374 mhi_chan = &mhi_cntrl->mhi_chan[chan]; 1375 mhi_chan->name = ch_cfg->name; 1376 mhi_chan->chan = chan; 1377 mhi_chan->dir = ch_cfg->dir; 1378 mutex_init(&mhi_chan->lock); 1379 } 1380 1381 return 0; 1382 1383 error_chan_cfg: 1384 kfree(mhi_cntrl->mhi_chan); 1385 1386 return ret; 1387 } 1388 1389 /* 1390 * Allocate channel and command rings here. Event rings will be allocated 1391 * in mhi_ep_power_up() as the config comes from the host. 1392 */ 1393 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl, 1394 const struct mhi_ep_cntrl_config *config) 1395 { 1396 struct mhi_ep_device *mhi_dev; 1397 int ret; 1398 1399 if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq) 1400 return -EINVAL; 1401 1402 ret = mhi_ep_chan_init(mhi_cntrl, config); 1403 if (ret) 1404 return ret; 1405 1406 mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); 1407 if (!mhi_cntrl->mhi_cmd) { 1408 ret = -ENOMEM; 1409 goto err_free_ch; 1410 } 1411 1412 mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el", 1413 sizeof(struct mhi_ring_element), 0, 1414 SLAB_CACHE_DMA, NULL); 1415 if (!mhi_cntrl->ev_ring_el_cache) { 1416 ret = -ENOMEM; 1417 goto err_free_cmd; 1418 } 1419 1420 mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0, 1421 SLAB_CACHE_DMA, NULL); 1422 if (!mhi_cntrl->tre_buf_cache) { 1423 ret = -ENOMEM; 1424 goto err_destroy_ev_ring_el_cache; 1425 } 1426 1427 mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item", 1428 sizeof(struct mhi_ep_ring_item), 0, 1429 0, NULL); 1430 if (!mhi_cntrl->ev_ring_el_cache) { 1431 ret = -ENOMEM; 1432 goto err_destroy_tre_buf_cache; 1433 } 1434 INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker); 1435 INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker); 1436 INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker); 1437 INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker); 1438 1439 mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0); 1440 if (!mhi_cntrl->wq) { 1441 ret = -ENOMEM; 1442 goto err_destroy_ring_item_cache; 1443 } 1444 1445 INIT_LIST_HEAD(&mhi_cntrl->st_transition_list); 1446 INIT_LIST_HEAD(&mhi_cntrl->ch_db_list); 1447 spin_lock_init(&mhi_cntrl->list_lock); 1448 mutex_init(&mhi_cntrl->state_lock); 1449 mutex_init(&mhi_cntrl->event_lock); 1450 1451 /* Set MHI version and AMSS EE before enumeration */ 1452 mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version); 1453 mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS); 1454 1455 /* Set controller index */ 1456 ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL); 1457 if (ret < 0) 1458 goto err_destroy_wq; 1459 1460 mhi_cntrl->index = ret; 1461 1462 irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN); 1463 ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH, 1464 "doorbell_irq", mhi_cntrl); 1465 if (ret) { 1466 dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n"); 1467 goto err_ida_free; 1468 } 1469 1470 /* Allocate the controller device */ 1471 mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER); 1472 if (IS_ERR(mhi_dev)) { 1473 dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n"); 1474 ret = PTR_ERR(mhi_dev); 1475 goto err_free_irq; 1476 } 1477 1478 ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index); 1479 if (ret) 1480 goto err_put_dev; 1481 1482 mhi_dev->name = dev_name(&mhi_dev->dev); 1483 mhi_cntrl->mhi_dev = mhi_dev; 1484 1485 ret = device_add(&mhi_dev->dev); 1486 if (ret) 1487 goto err_put_dev; 1488 1489 dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n"); 1490 1491 return 0; 1492 1493 err_put_dev: 1494 put_device(&mhi_dev->dev); 1495 err_free_irq: 1496 free_irq(mhi_cntrl->irq, mhi_cntrl); 1497 err_ida_free: 1498 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); 1499 err_destroy_wq: 1500 destroy_workqueue(mhi_cntrl->wq); 1501 err_destroy_ring_item_cache: 1502 kmem_cache_destroy(mhi_cntrl->ring_item_cache); 1503 err_destroy_ev_ring_el_cache: 1504 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); 1505 err_destroy_tre_buf_cache: 1506 kmem_cache_destroy(mhi_cntrl->tre_buf_cache); 1507 err_free_cmd: 1508 kfree(mhi_cntrl->mhi_cmd); 1509 err_free_ch: 1510 kfree(mhi_cntrl->mhi_chan); 1511 1512 return ret; 1513 } 1514 EXPORT_SYMBOL_GPL(mhi_ep_register_controller); 1515 1516 /* 1517 * It is expected that the controller drivers will power down the MHI EP stack 1518 * using "mhi_ep_power_down()" before calling this function to unregister themselves. 1519 */ 1520 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl) 1521 { 1522 struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev; 1523 1524 destroy_workqueue(mhi_cntrl->wq); 1525 1526 free_irq(mhi_cntrl->irq, mhi_cntrl); 1527 1528 kmem_cache_destroy(mhi_cntrl->tre_buf_cache); 1529 kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache); 1530 kmem_cache_destroy(mhi_cntrl->ring_item_cache); 1531 kfree(mhi_cntrl->mhi_cmd); 1532 kfree(mhi_cntrl->mhi_chan); 1533 1534 device_del(&mhi_dev->dev); 1535 put_device(&mhi_dev->dev); 1536 1537 ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index); 1538 } 1539 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller); 1540 1541 static int mhi_ep_driver_probe(struct device *dev) 1542 { 1543 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1544 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); 1545 struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan; 1546 struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan; 1547 1548 ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; 1549 dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; 1550 1551 return mhi_drv->probe(mhi_dev, mhi_dev->id); 1552 } 1553 1554 static int mhi_ep_driver_remove(struct device *dev) 1555 { 1556 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1557 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver); 1558 struct mhi_result result = {}; 1559 struct mhi_ep_chan *mhi_chan; 1560 int dir; 1561 1562 /* Skip if it is a controller device */ 1563 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1564 return 0; 1565 1566 /* Disconnect the channels associated with the driver */ 1567 for (dir = 0; dir < 2; dir++) { 1568 mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; 1569 1570 if (!mhi_chan) 1571 continue; 1572 1573 mutex_lock(&mhi_chan->lock); 1574 /* Send channel disconnect status to the client driver */ 1575 if (mhi_chan->xfer_cb) { 1576 result.transaction_status = -ENOTCONN; 1577 result.bytes_xferd = 0; 1578 mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result); 1579 } 1580 1581 mhi_chan->state = MHI_CH_STATE_DISABLED; 1582 mhi_chan->xfer_cb = NULL; 1583 mutex_unlock(&mhi_chan->lock); 1584 } 1585 1586 /* Remove the client driver now */ 1587 mhi_drv->remove(mhi_dev); 1588 1589 return 0; 1590 } 1591 1592 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner) 1593 { 1594 struct device_driver *driver = &mhi_drv->driver; 1595 1596 if (!mhi_drv->probe || !mhi_drv->remove) 1597 return -EINVAL; 1598 1599 /* Client drivers should have callbacks defined for both channels */ 1600 if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb) 1601 return -EINVAL; 1602 1603 driver->bus = &mhi_ep_bus_type; 1604 driver->owner = owner; 1605 driver->probe = mhi_ep_driver_probe; 1606 driver->remove = mhi_ep_driver_remove; 1607 1608 return driver_register(driver); 1609 } 1610 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register); 1611 1612 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv) 1613 { 1614 driver_unregister(&mhi_drv->driver); 1615 } 1616 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister); 1617 1618 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env) 1619 { 1620 const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1621 1622 return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT, 1623 mhi_dev->name); 1624 } 1625 1626 static int mhi_ep_match(struct device *dev, struct device_driver *drv) 1627 { 1628 struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev); 1629 struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv); 1630 const struct mhi_device_id *id; 1631 1632 /* 1633 * If the device is a controller type then there is no client driver 1634 * associated with it 1635 */ 1636 if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) 1637 return 0; 1638 1639 for (id = mhi_drv->id_table; id->chan[0]; id++) 1640 if (!strcmp(mhi_dev->name, id->chan)) { 1641 mhi_dev->id = id; 1642 return 1; 1643 } 1644 1645 return 0; 1646 }; 1647 1648 struct bus_type mhi_ep_bus_type = { 1649 .name = "mhi_ep", 1650 .dev_name = "mhi_ep", 1651 .match = mhi_ep_match, 1652 .uevent = mhi_ep_uevent, 1653 }; 1654 1655 static int __init mhi_ep_init(void) 1656 { 1657 return bus_register(&mhi_ep_bus_type); 1658 } 1659 1660 static void __exit mhi_ep_exit(void) 1661 { 1662 bus_unregister(&mhi_ep_bus_type); 1663 } 1664 1665 postcore_initcall(mhi_ep_init); 1666 module_exit(mhi_ep_exit); 1667 1668 MODULE_LICENSE("GPL v2"); 1669 MODULE_DESCRIPTION("MHI Bus Endpoint stack"); 1670 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); 1671