xref: /openbmc/linux/drivers/bus/mhi/ep/main.c (revision adb19164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 	 * set this flag for interrupt moderation as per MHI protocol.
59 	 */
60 	if (!bei)
61 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62 
63 	return 0;
64 
65 err_unlock:
66 	mutex_unlock(&mhi_cntrl->event_lock);
67 
68 	return ret;
69 }
70 
71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 	struct mhi_ring_element *event;
75 	int ret;
76 
77 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
78 	if (!event)
79 		return -ENOMEM;
80 
81 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82 	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83 	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84 
85 	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87 
88 	return ret;
89 }
90 
91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92 {
93 	struct mhi_ring_element *event;
94 	int ret;
95 
96 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
97 	if (!event)
98 		return -ENOMEM;
99 
100 	event->dword[0] = MHI_SC_EV_DWORD0(state);
101 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102 
103 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105 
106 	return ret;
107 }
108 
109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110 {
111 	struct mhi_ring_element *event;
112 	int ret;
113 
114 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
115 	if (!event)
116 		return -ENOMEM;
117 
118 	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120 
121 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123 
124 	return ret;
125 }
126 
127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128 {
129 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130 	struct mhi_ring_element *event;
131 	int ret;
132 
133 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
134 	if (!event)
135 		return -ENOMEM;
136 
137 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138 	event->dword[0] = MHI_CC_EV_DWORD0(code);
139 	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140 
141 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143 
144 	return ret;
145 }
146 
147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148 {
149 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
151 	struct mhi_result result = {};
152 	struct mhi_ep_chan *mhi_chan;
153 	struct mhi_ep_ring *ch_ring;
154 	u32 tmp, ch_id;
155 	int ret;
156 
157 	ch_id = MHI_TRE_GET_CMD_CHID(el);
158 
159 	/* Check if the channel is supported by the controller */
160 	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161 		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162 		return -ENODEV;
163 	}
164 
165 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167 
168 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
169 	case MHI_PKT_TYPE_START_CHAN_CMD:
170 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171 
172 		mutex_lock(&mhi_chan->lock);
173 		/* Initialize and configure the corresponding channel ring */
174 		if (!ch_ring->started) {
175 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177 			if (ret) {
178 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180 							MHI_EV_CC_UNDEFINED_ERR);
181 				if (ret)
182 					dev_err(dev, "Error sending completion event: %d\n", ret);
183 
184 				goto err_unlock;
185 			}
186 		}
187 
188 		/* Set channel state to RUNNING */
189 		mhi_chan->state = MHI_CH_STATE_RUNNING;
190 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
191 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
192 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
193 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
194 
195 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
196 		if (ret) {
197 			dev_err(dev, "Error sending command completion event (%u)\n",
198 				MHI_EV_CC_SUCCESS);
199 			goto err_unlock;
200 		}
201 
202 		mutex_unlock(&mhi_chan->lock);
203 
204 		/*
205 		 * Create MHI device only during UL channel start. Since the MHI
206 		 * channels operate in a pair, we'll associate both UL and DL
207 		 * channels to the same device.
208 		 *
209 		 * We also need to check for mhi_dev != NULL because, the host
210 		 * will issue START_CHAN command during resume and we don't
211 		 * destroy the device during suspend.
212 		 */
213 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
214 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
215 			if (ret) {
216 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
217 				mhi_ep_handle_syserr(mhi_cntrl);
218 				return ret;
219 			}
220 		}
221 
222 		/* Finally, enable DB for the channel */
223 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
224 
225 		break;
226 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
227 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
228 		if (!ch_ring->started) {
229 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
230 			return -ENODEV;
231 		}
232 
233 		mutex_lock(&mhi_chan->lock);
234 		/* Disable DB for the channel */
235 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
236 
237 		/* Send channel disconnect status to client drivers */
238 		if (mhi_chan->xfer_cb) {
239 			result.transaction_status = -ENOTCONN;
240 			result.bytes_xferd = 0;
241 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
242 		}
243 
244 		/* Set channel state to STOP */
245 		mhi_chan->state = MHI_CH_STATE_STOP;
246 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
247 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
248 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
249 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
250 
251 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
252 		if (ret) {
253 			dev_err(dev, "Error sending command completion event (%u)\n",
254 				MHI_EV_CC_SUCCESS);
255 			goto err_unlock;
256 		}
257 
258 		mutex_unlock(&mhi_chan->lock);
259 		break;
260 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
261 		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
262 		if (!ch_ring->started) {
263 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
264 			return -ENODEV;
265 		}
266 
267 		mutex_lock(&mhi_chan->lock);
268 		/* Stop and reset the transfer ring */
269 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
270 
271 		/* Send channel disconnect status to client driver */
272 		if (mhi_chan->xfer_cb) {
273 			result.transaction_status = -ENOTCONN;
274 			result.bytes_xferd = 0;
275 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
276 		}
277 
278 		/* Set channel state to DISABLED */
279 		mhi_chan->state = MHI_CH_STATE_DISABLED;
280 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
281 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
282 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
283 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
284 
285 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
286 		if (ret) {
287 			dev_err(dev, "Error sending command completion event (%u)\n",
288 				MHI_EV_CC_SUCCESS);
289 			goto err_unlock;
290 		}
291 
292 		mutex_unlock(&mhi_chan->lock);
293 		break;
294 	default:
295 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
296 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
297 		return -EINVAL;
298 	}
299 
300 	return 0;
301 
302 err_unlock:
303 	mutex_unlock(&mhi_chan->lock);
304 
305 	return ret;
306 }
307 
308 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
309 {
310 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
311 								mhi_dev->ul_chan;
312 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
313 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
314 
315 	return !!(ring->rd_offset == ring->wr_offset);
316 }
317 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
318 
319 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
320 				struct mhi_ep_ring *ring,
321 				struct mhi_result *result,
322 				u32 len)
323 {
324 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
325 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
326 	size_t tr_len, read_offset, write_offset;
327 	struct mhi_ep_buf_info buf_info = {};
328 	struct mhi_ring_element *el;
329 	bool tr_done = false;
330 	u32 buf_left;
331 	int ret;
332 
333 	buf_left = len;
334 
335 	do {
336 		/* Don't process the transfer ring if the channel is not in RUNNING state */
337 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
338 			dev_err(dev, "Channel not available\n");
339 			return -ENODEV;
340 		}
341 
342 		el = &ring->ring_cache[ring->rd_offset];
343 
344 		/* Check if there is data pending to be read from previous read operation */
345 		if (mhi_chan->tre_bytes_left) {
346 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
347 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
348 		} else {
349 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
350 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
351 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
352 
353 			tr_len = min(buf_left, mhi_chan->tre_size);
354 		}
355 
356 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
357 		write_offset = len - buf_left;
358 
359 		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
360 		buf_info.dev_addr = result->buf_addr + write_offset;
361 		buf_info.size = tr_len;
362 
363 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
364 		ret = mhi_cntrl->read_from_host(mhi_cntrl, &buf_info);
365 		if (ret < 0) {
366 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
367 			return ret;
368 		}
369 
370 		buf_left -= tr_len;
371 		mhi_chan->tre_bytes_left -= tr_len;
372 
373 		/*
374 		 * Once the TRE (Transfer Ring Element) of a TD (Transfer Descriptor) has been
375 		 * read completely:
376 		 *
377 		 * 1. Send completion event to the host based on the flags set in TRE.
378 		 * 2. Increment the local read offset of the transfer ring.
379 		 */
380 		if (!mhi_chan->tre_bytes_left) {
381 			/*
382 			 * The host will split the data packet into multiple TREs if it can't fit
383 			 * the packet in a single TRE. In that case, CHAIN flag will be set by the
384 			 * host for all TREs except the last one.
385 			 */
386 			if (MHI_TRE_DATA_GET_CHAIN(el)) {
387 				/*
388 				 * IEOB (Interrupt on End of Block) flag will be set by the host if
389 				 * it expects the completion event for all TREs of a TD.
390 				 */
391 				if (MHI_TRE_DATA_GET_IEOB(el)) {
392 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
393 								     MHI_TRE_DATA_GET_LEN(el),
394 								     MHI_EV_CC_EOB);
395 					if (ret < 0) {
396 						dev_err(&mhi_chan->mhi_dev->dev,
397 							"Error sending transfer compl. event\n");
398 						return ret;
399 					}
400 				}
401 			} else {
402 				/*
403 				 * IEOT (Interrupt on End of Transfer) flag will be set by the host
404 				 * for the last TRE of the TD and expects the completion event for
405 				 * the same.
406 				 */
407 				if (MHI_TRE_DATA_GET_IEOT(el)) {
408 					ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
409 								     MHI_TRE_DATA_GET_LEN(el),
410 								     MHI_EV_CC_EOT);
411 					if (ret < 0) {
412 						dev_err(&mhi_chan->mhi_dev->dev,
413 							"Error sending transfer compl. event\n");
414 						return ret;
415 					}
416 				}
417 
418 				tr_done = true;
419 			}
420 
421 			mhi_ep_ring_inc_index(ring);
422 		}
423 
424 		result->bytes_xferd += tr_len;
425 	} while (buf_left && !tr_done);
426 
427 	return 0;
428 }
429 
430 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
431 {
432 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
433 	struct mhi_result result = {};
434 	u32 len = MHI_EP_DEFAULT_MTU;
435 	struct mhi_ep_chan *mhi_chan;
436 	int ret;
437 
438 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
439 
440 	/*
441 	 * Bail out if transfer callback is not registered for the channel.
442 	 * This is most likely due to the client driver not loaded at this point.
443 	 */
444 	if (!mhi_chan->xfer_cb) {
445 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
446 		return -ENODEV;
447 	}
448 
449 	if (ring->ch_id % 2) {
450 		/* DL channel */
451 		result.dir = mhi_chan->dir;
452 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
453 	} else {
454 		/* UL channel */
455 		result.buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
456 		if (!result.buf_addr)
457 			return -ENOMEM;
458 
459 		do {
460 			ret = mhi_ep_read_channel(mhi_cntrl, ring, &result, len);
461 			if (ret < 0) {
462 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
463 				kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
464 				return ret;
465 			}
466 
467 			result.dir = mhi_chan->dir;
468 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
469 			result.bytes_xferd = 0;
470 			memset(result.buf_addr, 0, len);
471 
472 			/* Read until the ring becomes empty */
473 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
474 
475 		kmem_cache_free(mhi_cntrl->tre_buf_cache, result.buf_addr);
476 	}
477 
478 	return 0;
479 }
480 
481 /* TODO: Handle partially formed TDs */
482 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
483 {
484 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
485 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
486 	struct device *dev = &mhi_chan->mhi_dev->dev;
487 	struct mhi_ep_buf_info buf_info = {};
488 	struct mhi_ring_element *el;
489 	u32 buf_left, read_offset;
490 	struct mhi_ep_ring *ring;
491 	enum mhi_ev_ccs code;
492 	size_t tr_len;
493 	u32 tre_len;
494 	int ret;
495 
496 	buf_left = skb->len;
497 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
498 
499 	mutex_lock(&mhi_chan->lock);
500 
501 	do {
502 		/* Don't process the transfer ring if the channel is not in RUNNING state */
503 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
504 			dev_err(dev, "Channel not available\n");
505 			ret = -ENODEV;
506 			goto err_exit;
507 		}
508 
509 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
510 			dev_err(dev, "TRE not available!\n");
511 			ret = -ENOSPC;
512 			goto err_exit;
513 		}
514 
515 		el = &ring->ring_cache[ring->rd_offset];
516 		tre_len = MHI_TRE_DATA_GET_LEN(el);
517 
518 		tr_len = min(buf_left, tre_len);
519 		read_offset = skb->len - buf_left;
520 
521 		buf_info.dev_addr = skb->data + read_offset;
522 		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
523 		buf_info.size = tr_len;
524 
525 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
526 		ret = mhi_cntrl->write_to_host(mhi_cntrl, &buf_info);
527 		if (ret < 0) {
528 			dev_err(dev, "Error writing to the channel\n");
529 			goto err_exit;
530 		}
531 
532 		buf_left -= tr_len;
533 		/*
534 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
535 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
536 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
537 		 * the EOT event to the host indicating the packet boundary.
538 		 */
539 		if (buf_left)
540 			code = MHI_EV_CC_OVERFLOW;
541 		else
542 			code = MHI_EV_CC_EOT;
543 
544 		ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, tr_len, code);
545 		if (ret) {
546 			dev_err(dev, "Error sending transfer completion event\n");
547 			goto err_exit;
548 		}
549 
550 		mhi_ep_ring_inc_index(ring);
551 	} while (buf_left);
552 
553 	mutex_unlock(&mhi_chan->lock);
554 
555 	return 0;
556 
557 err_exit:
558 	mutex_unlock(&mhi_chan->lock);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
563 
564 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
565 {
566 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
567 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
568 	int ret;
569 
570 	/* Update the number of event rings (NER) programmed by the host */
571 	mhi_ep_mmio_update_ner(mhi_cntrl);
572 
573 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
574 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
575 
576 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
577 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
578 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
579 
580 	/* Get the channel context base pointer from host */
581 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
582 
583 	/* Allocate and map memory for caching host channel context */
584 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
585 				   &mhi_cntrl->ch_ctx_cache_phys,
586 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
587 				   ch_ctx_host_size);
588 	if (ret) {
589 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
590 		return ret;
591 	}
592 
593 	/* Get the event context base pointer from host */
594 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
595 
596 	/* Allocate and map memory for caching host event context */
597 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
598 				   &mhi_cntrl->ev_ctx_cache_phys,
599 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
600 				   ev_ctx_host_size);
601 	if (ret) {
602 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
603 		goto err_ch_ctx;
604 	}
605 
606 	/* Get the command context base pointer from host */
607 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
608 
609 	/* Allocate and map memory for caching host command context */
610 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
611 				   &mhi_cntrl->cmd_ctx_cache_phys,
612 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
613 				   cmd_ctx_host_size);
614 	if (ret) {
615 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
616 		goto err_ev_ctx;
617 	}
618 
619 	/* Initialize command ring */
620 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
621 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
622 	if (ret) {
623 		dev_err(dev, "Failed to start the command ring\n");
624 		goto err_cmd_ctx;
625 	}
626 
627 	return ret;
628 
629 err_cmd_ctx:
630 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
631 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
632 
633 err_ev_ctx:
634 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
635 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
636 
637 err_ch_ctx:
638 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
639 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
640 
641 	return ret;
642 }
643 
644 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
645 {
646 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
647 
648 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
649 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
650 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
651 
652 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
653 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
654 
655 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
656 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
657 
658 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
659 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
660 }
661 
662 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
663 {
664 	/*
665 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
666 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
667 	 * associated with hw channels always get triggered.
668 	 */
669 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
670 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
671 }
672 
673 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
674 {
675 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
676 	enum mhi_state state;
677 	bool mhi_reset;
678 	u32 count = 0;
679 	int ret;
680 
681 	/* Wait for Host to set the M0 state */
682 	do {
683 		msleep(M0_WAIT_DELAY_MS);
684 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
685 		if (mhi_reset) {
686 			/* Clear the MHI reset if host is in reset state */
687 			mhi_ep_mmio_clear_reset(mhi_cntrl);
688 			dev_info(dev, "Detected Host reset while waiting for M0\n");
689 		}
690 		count++;
691 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
692 
693 	if (state != MHI_STATE_M0) {
694 		dev_err(dev, "Host failed to enter M0\n");
695 		return -ETIMEDOUT;
696 	}
697 
698 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
699 	if (ret) {
700 		dev_err(dev, "Failed to cache host config\n");
701 		return ret;
702 	}
703 
704 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
705 
706 	/* Enable all interrupts now */
707 	mhi_ep_enable_int(mhi_cntrl);
708 
709 	return 0;
710 }
711 
712 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
713 {
714 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
715 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
716 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
717 	struct mhi_ring_element *el;
718 	int ret;
719 
720 	/* Update the write offset for the ring */
721 	ret = mhi_ep_update_wr_offset(ring);
722 	if (ret) {
723 		dev_err(dev, "Error updating write offset for ring\n");
724 		return;
725 	}
726 
727 	/* Sanity check to make sure there are elements in the ring */
728 	if (ring->rd_offset == ring->wr_offset)
729 		return;
730 
731 	/*
732 	 * Process command ring element till write offset. In case of an error, just try to
733 	 * process next element.
734 	 */
735 	while (ring->rd_offset != ring->wr_offset) {
736 		el = &ring->ring_cache[ring->rd_offset];
737 
738 		ret = mhi_ep_process_cmd_ring(ring, el);
739 		if (ret && ret != -ENODEV)
740 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
741 
742 		mhi_ep_ring_inc_index(ring);
743 	}
744 }
745 
746 static void mhi_ep_ch_ring_worker(struct work_struct *work)
747 {
748 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
749 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
750 	struct mhi_ep_ring_item *itr, *tmp;
751 	struct mhi_ring_element *el;
752 	struct mhi_ep_ring *ring;
753 	struct mhi_ep_chan *chan;
754 	unsigned long flags;
755 	LIST_HEAD(head);
756 	int ret;
757 
758 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
759 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
760 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
761 
762 	/* Process each queued channel ring. In case of an error, just process next element. */
763 	list_for_each_entry_safe(itr, tmp, &head, node) {
764 		list_del(&itr->node);
765 		ring = itr->ring;
766 
767 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
768 		mutex_lock(&chan->lock);
769 
770 		/*
771 		 * The ring could've stopped while we waited to grab the (chan->lock), so do
772 		 * a sanity check before going further.
773 		 */
774 		if (!ring->started) {
775 			mutex_unlock(&chan->lock);
776 			kfree(itr);
777 			continue;
778 		}
779 
780 		/* Update the write offset for the ring */
781 		ret = mhi_ep_update_wr_offset(ring);
782 		if (ret) {
783 			dev_err(dev, "Error updating write offset for ring\n");
784 			mutex_unlock(&chan->lock);
785 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
786 			continue;
787 		}
788 
789 		/* Sanity check to make sure there are elements in the ring */
790 		if (ring->rd_offset == ring->wr_offset) {
791 			mutex_unlock(&chan->lock);
792 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
793 			continue;
794 		}
795 
796 		el = &ring->ring_cache[ring->rd_offset];
797 
798 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
799 		ret = mhi_ep_process_ch_ring(ring, el);
800 		if (ret) {
801 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
802 				ring->ch_id, ret);
803 			mutex_unlock(&chan->lock);
804 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
805 			continue;
806 		}
807 
808 		mutex_unlock(&chan->lock);
809 		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
810 	}
811 }
812 
813 static void mhi_ep_state_worker(struct work_struct *work)
814 {
815 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
816 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
817 	struct mhi_ep_state_transition *itr, *tmp;
818 	unsigned long flags;
819 	LIST_HEAD(head);
820 	int ret;
821 
822 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
823 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
824 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
825 
826 	list_for_each_entry_safe(itr, tmp, &head, node) {
827 		list_del(&itr->node);
828 		dev_dbg(dev, "Handling MHI state transition to %s\n",
829 			 mhi_state_str(itr->state));
830 
831 		switch (itr->state) {
832 		case MHI_STATE_M0:
833 			ret = mhi_ep_set_m0_state(mhi_cntrl);
834 			if (ret)
835 				dev_err(dev, "Failed to transition to M0 state\n");
836 			break;
837 		case MHI_STATE_M3:
838 			ret = mhi_ep_set_m3_state(mhi_cntrl);
839 			if (ret)
840 				dev_err(dev, "Failed to transition to M3 state\n");
841 			break;
842 		default:
843 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
844 			break;
845 		}
846 		kfree(itr);
847 	}
848 }
849 
850 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
851 				    u32 ch_idx)
852 {
853 	struct mhi_ep_ring_item *item;
854 	struct mhi_ep_ring *ring;
855 	bool work = !!ch_int;
856 	LIST_HEAD(head);
857 	u32 i;
858 
859 	/* First add the ring items to a local list */
860 	for_each_set_bit(i, &ch_int, 32) {
861 		/* Channel index varies for each register: 0, 32, 64, 96 */
862 		u32 ch_id = ch_idx + i;
863 
864 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
865 		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
866 		if (!item)
867 			return;
868 
869 		item->ring = ring;
870 		list_add_tail(&item->node, &head);
871 	}
872 
873 	/* Now, splice the local list into ch_db_list and queue the work item */
874 	if (work) {
875 		spin_lock(&mhi_cntrl->list_lock);
876 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
877 		spin_unlock(&mhi_cntrl->list_lock);
878 
879 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
880 	}
881 }
882 
883 /*
884  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
885  * For checking all interrupts, we need to loop through each registers and then
886  * check for bits set.
887  */
888 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
889 {
890 	u32 ch_int, ch_idx, i;
891 
892 	/* Bail out if there is no channel doorbell interrupt */
893 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
894 		return;
895 
896 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
897 		ch_idx = i * MHI_MASK_CH_LEN;
898 
899 		/* Only process channel interrupt if the mask is enabled */
900 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
901 		if (ch_int) {
902 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
903 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
904 							mhi_cntrl->chdb[i].status);
905 		}
906 	}
907 }
908 
909 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
910 					 enum mhi_state state)
911 {
912 	struct mhi_ep_state_transition *item;
913 
914 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
915 	if (!item)
916 		return;
917 
918 	item->state = state;
919 	spin_lock(&mhi_cntrl->list_lock);
920 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
921 	spin_unlock(&mhi_cntrl->list_lock);
922 
923 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
924 }
925 
926 /*
927  * Interrupt handler that services interrupts raised by the host writing to
928  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
929  * channel interrupts.
930  */
931 static irqreturn_t mhi_ep_irq(int irq, void *data)
932 {
933 	struct mhi_ep_cntrl *mhi_cntrl = data;
934 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
935 	enum mhi_state state;
936 	u32 int_value;
937 	bool mhi_reset;
938 
939 	/* Acknowledge the ctrl interrupt */
940 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
941 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
942 
943 	/* Check for ctrl interrupt */
944 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
945 		dev_dbg(dev, "Processing ctrl interrupt\n");
946 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
947 		if (mhi_reset) {
948 			dev_info(dev, "Host triggered MHI reset!\n");
949 			disable_irq_nosync(mhi_cntrl->irq);
950 			schedule_work(&mhi_cntrl->reset_work);
951 			return IRQ_HANDLED;
952 		}
953 
954 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
955 	}
956 
957 	/* Check for command doorbell interrupt */
958 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
959 		dev_dbg(dev, "Processing command doorbell interrupt\n");
960 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
961 	}
962 
963 	/* Check for channel interrupts */
964 	mhi_ep_check_channel_interrupt(mhi_cntrl);
965 
966 	return IRQ_HANDLED;
967 }
968 
969 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
970 {
971 	struct mhi_ep_ring *ch_ring, *ev_ring;
972 	struct mhi_result result = {};
973 	struct mhi_ep_chan *mhi_chan;
974 	int i;
975 
976 	/* Stop all the channels */
977 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
978 		mhi_chan = &mhi_cntrl->mhi_chan[i];
979 		if (!mhi_chan->ring.started)
980 			continue;
981 
982 		mutex_lock(&mhi_chan->lock);
983 		/* Send channel disconnect status to client drivers */
984 		if (mhi_chan->xfer_cb) {
985 			result.transaction_status = -ENOTCONN;
986 			result.bytes_xferd = 0;
987 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
988 		}
989 
990 		mhi_chan->state = MHI_CH_STATE_DISABLED;
991 		mutex_unlock(&mhi_chan->lock);
992 	}
993 
994 	flush_workqueue(mhi_cntrl->wq);
995 
996 	/* Destroy devices associated with all channels */
997 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
998 
999 	/* Stop and reset the transfer rings */
1000 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1001 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1002 		if (!mhi_chan->ring.started)
1003 			continue;
1004 
1005 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1006 		mutex_lock(&mhi_chan->lock);
1007 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1008 		mutex_unlock(&mhi_chan->lock);
1009 	}
1010 
1011 	/* Stop and reset the event rings */
1012 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1013 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1014 		if (!ev_ring->started)
1015 			continue;
1016 
1017 		mutex_lock(&mhi_cntrl->event_lock);
1018 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1019 		mutex_unlock(&mhi_cntrl->event_lock);
1020 	}
1021 
1022 	/* Stop and reset the command ring */
1023 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1024 
1025 	mhi_ep_free_host_cfg(mhi_cntrl);
1026 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1027 
1028 	mhi_cntrl->enabled = false;
1029 }
1030 
1031 static void mhi_ep_reset_worker(struct work_struct *work)
1032 {
1033 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1034 	enum mhi_state cur_state;
1035 
1036 	mhi_ep_power_down(mhi_cntrl);
1037 
1038 	mutex_lock(&mhi_cntrl->state_lock);
1039 
1040 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1041 	mhi_ep_mmio_reset(mhi_cntrl);
1042 	cur_state = mhi_cntrl->mhi_state;
1043 
1044 	/*
1045 	 * Only proceed further if the reset is due to SYS_ERR. The host will
1046 	 * issue reset during shutdown also and we don't need to do re-init in
1047 	 * that case.
1048 	 */
1049 	if (cur_state == MHI_STATE_SYS_ERR)
1050 		mhi_ep_power_up(mhi_cntrl);
1051 
1052 	mutex_unlock(&mhi_cntrl->state_lock);
1053 }
1054 
1055 /*
1056  * We don't need to do anything special other than setting the MHI SYS_ERR
1057  * state. The host will reset all contexts and issue MHI RESET so that we
1058  * could also recover from error state.
1059  */
1060 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1061 {
1062 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1063 	int ret;
1064 
1065 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1066 	if (ret)
1067 		return;
1068 
1069 	/* Signal host that the device went to SYS_ERR state */
1070 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1071 	if (ret)
1072 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1073 }
1074 
1075 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1076 {
1077 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1078 	int ret, i;
1079 
1080 	/*
1081 	 * Mask all interrupts until the state machine is ready. Interrupts will
1082 	 * be enabled later with mhi_ep_enable().
1083 	 */
1084 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1085 	mhi_ep_mmio_init(mhi_cntrl);
1086 
1087 	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1088 					GFP_KERNEL);
1089 	if (!mhi_cntrl->mhi_event)
1090 		return -ENOMEM;
1091 
1092 	/* Initialize command, channel and event rings */
1093 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1094 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1095 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1096 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1097 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1098 
1099 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1100 
1101 	/* Set AMSS EE before signaling ready state */
1102 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1103 
1104 	/* All set, notify the host that we are ready */
1105 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1106 	if (ret)
1107 		goto err_free_event;
1108 
1109 	dev_dbg(dev, "READY state notification sent to the host\n");
1110 
1111 	ret = mhi_ep_enable(mhi_cntrl);
1112 	if (ret) {
1113 		dev_err(dev, "Failed to enable MHI endpoint\n");
1114 		goto err_free_event;
1115 	}
1116 
1117 	enable_irq(mhi_cntrl->irq);
1118 	mhi_cntrl->enabled = true;
1119 
1120 	return 0;
1121 
1122 err_free_event:
1123 	kfree(mhi_cntrl->mhi_event);
1124 
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1128 
1129 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1130 {
1131 	if (mhi_cntrl->enabled) {
1132 		mhi_ep_abort_transfer(mhi_cntrl);
1133 		kfree(mhi_cntrl->mhi_event);
1134 		disable_irq(mhi_cntrl->irq);
1135 	}
1136 }
1137 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1138 
1139 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1140 {
1141 	struct mhi_ep_chan *mhi_chan;
1142 	u32 tmp;
1143 	int i;
1144 
1145 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1146 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1147 
1148 		if (!mhi_chan->mhi_dev)
1149 			continue;
1150 
1151 		mutex_lock(&mhi_chan->lock);
1152 		/* Skip if the channel is not currently running */
1153 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1154 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1155 			mutex_unlock(&mhi_chan->lock);
1156 			continue;
1157 		}
1158 
1159 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1160 		/* Set channel state to SUSPENDED */
1161 		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1162 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1163 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1164 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1165 		mutex_unlock(&mhi_chan->lock);
1166 	}
1167 }
1168 
1169 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1170 {
1171 	struct mhi_ep_chan *mhi_chan;
1172 	u32 tmp;
1173 	int i;
1174 
1175 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1176 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1177 
1178 		if (!mhi_chan->mhi_dev)
1179 			continue;
1180 
1181 		mutex_lock(&mhi_chan->lock);
1182 		/* Skip if the channel is not currently suspended */
1183 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1184 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1185 			mutex_unlock(&mhi_chan->lock);
1186 			continue;
1187 		}
1188 
1189 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1190 		/* Set channel state to RUNNING */
1191 		mhi_chan->state = MHI_CH_STATE_RUNNING;
1192 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1193 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1194 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1195 		mutex_unlock(&mhi_chan->lock);
1196 	}
1197 }
1198 
1199 static void mhi_ep_release_device(struct device *dev)
1200 {
1201 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1202 
1203 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1204 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1205 
1206 	/*
1207 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1208 	 * devices for the channels will only get created in mhi_ep_create_device()
1209 	 * if the mhi_dev associated with it is NULL.
1210 	 */
1211 	if (mhi_dev->ul_chan)
1212 		mhi_dev->ul_chan->mhi_dev = NULL;
1213 
1214 	if (mhi_dev->dl_chan)
1215 		mhi_dev->dl_chan->mhi_dev = NULL;
1216 
1217 	kfree(mhi_dev);
1218 }
1219 
1220 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1221 						 enum mhi_device_type dev_type)
1222 {
1223 	struct mhi_ep_device *mhi_dev;
1224 	struct device *dev;
1225 
1226 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1227 	if (!mhi_dev)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	dev = &mhi_dev->dev;
1231 	device_initialize(dev);
1232 	dev->bus = &mhi_ep_bus_type;
1233 	dev->release = mhi_ep_release_device;
1234 
1235 	/* Controller device is always allocated first */
1236 	if (dev_type == MHI_DEVICE_CONTROLLER)
1237 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1238 		dev->parent = mhi_cntrl->cntrl_dev;
1239 	else
1240 		/* for MHI client devices, parent is the MHI controller device */
1241 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1242 
1243 	mhi_dev->mhi_cntrl = mhi_cntrl;
1244 	mhi_dev->dev_type = dev_type;
1245 
1246 	return mhi_dev;
1247 }
1248 
1249 /*
1250  * MHI channels are always defined in pairs with UL as the even numbered
1251  * channel and DL as odd numbered one. This function gets UL channel (primary)
1252  * as the ch_id and always looks after the next entry in channel list for
1253  * the corresponding DL channel (secondary).
1254  */
1255 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1256 {
1257 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1258 	struct device *dev = mhi_cntrl->cntrl_dev;
1259 	struct mhi_ep_device *mhi_dev;
1260 	int ret;
1261 
1262 	/* Check if the channel name is same for both UL and DL */
1263 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1264 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1265 			mhi_chan->name, mhi_chan[1].name);
1266 		return -EINVAL;
1267 	}
1268 
1269 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1270 	if (IS_ERR(mhi_dev))
1271 		return PTR_ERR(mhi_dev);
1272 
1273 	/* Configure primary channel */
1274 	mhi_dev->ul_chan = mhi_chan;
1275 	get_device(&mhi_dev->dev);
1276 	mhi_chan->mhi_dev = mhi_dev;
1277 
1278 	/* Configure secondary channel as well */
1279 	mhi_chan++;
1280 	mhi_dev->dl_chan = mhi_chan;
1281 	get_device(&mhi_dev->dev);
1282 	mhi_chan->mhi_dev = mhi_dev;
1283 
1284 	/* Channel name is same for both UL and DL */
1285 	mhi_dev->name = mhi_chan->name;
1286 	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1287 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1288 		     mhi_dev->name);
1289 	if (ret) {
1290 		put_device(&mhi_dev->dev);
1291 		return ret;
1292 	}
1293 
1294 	ret = device_add(&mhi_dev->dev);
1295 	if (ret)
1296 		put_device(&mhi_dev->dev);
1297 
1298 	return ret;
1299 }
1300 
1301 static int mhi_ep_destroy_device(struct device *dev, void *data)
1302 {
1303 	struct mhi_ep_device *mhi_dev;
1304 	struct mhi_ep_cntrl *mhi_cntrl;
1305 	struct mhi_ep_chan *ul_chan, *dl_chan;
1306 
1307 	if (dev->bus != &mhi_ep_bus_type)
1308 		return 0;
1309 
1310 	mhi_dev = to_mhi_ep_device(dev);
1311 	mhi_cntrl = mhi_dev->mhi_cntrl;
1312 
1313 	/* Only destroy devices created for channels */
1314 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1315 		return 0;
1316 
1317 	ul_chan = mhi_dev->ul_chan;
1318 	dl_chan = mhi_dev->dl_chan;
1319 
1320 	if (ul_chan)
1321 		put_device(&ul_chan->mhi_dev->dev);
1322 
1323 	if (dl_chan)
1324 		put_device(&dl_chan->mhi_dev->dev);
1325 
1326 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1327 		 mhi_dev->name);
1328 
1329 	/* Notify the client and remove the device from MHI bus */
1330 	device_del(dev);
1331 	put_device(dev);
1332 
1333 	return 0;
1334 }
1335 
1336 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1337 			    const struct mhi_ep_cntrl_config *config)
1338 {
1339 	const struct mhi_ep_channel_config *ch_cfg;
1340 	struct device *dev = mhi_cntrl->cntrl_dev;
1341 	u32 chan, i;
1342 	int ret = -EINVAL;
1343 
1344 	mhi_cntrl->max_chan = config->max_channels;
1345 
1346 	/*
1347 	 * Allocate max_channels supported by the MHI endpoint and populate
1348 	 * only the defined channels
1349 	 */
1350 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1351 				      GFP_KERNEL);
1352 	if (!mhi_cntrl->mhi_chan)
1353 		return -ENOMEM;
1354 
1355 	for (i = 0; i < config->num_channels; i++) {
1356 		struct mhi_ep_chan *mhi_chan;
1357 
1358 		ch_cfg = &config->ch_cfg[i];
1359 
1360 		chan = ch_cfg->num;
1361 		if (chan >= mhi_cntrl->max_chan) {
1362 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1363 				chan, mhi_cntrl->max_chan);
1364 			goto error_chan_cfg;
1365 		}
1366 
1367 		/* Bi-directional and direction less channels are not supported */
1368 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1369 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1370 				ch_cfg->dir, chan);
1371 			goto error_chan_cfg;
1372 		}
1373 
1374 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1375 		mhi_chan->name = ch_cfg->name;
1376 		mhi_chan->chan = chan;
1377 		mhi_chan->dir = ch_cfg->dir;
1378 		mutex_init(&mhi_chan->lock);
1379 	}
1380 
1381 	return 0;
1382 
1383 error_chan_cfg:
1384 	kfree(mhi_cntrl->mhi_chan);
1385 
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Allocate channel and command rings here. Event rings will be allocated
1391  * in mhi_ep_power_up() as the config comes from the host.
1392  */
1393 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1394 				const struct mhi_ep_cntrl_config *config)
1395 {
1396 	struct mhi_ep_device *mhi_dev;
1397 	int ret;
1398 
1399 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1400 		return -EINVAL;
1401 
1402 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1403 	if (ret)
1404 		return ret;
1405 
1406 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1407 	if (!mhi_cntrl->mhi_cmd) {
1408 		ret = -ENOMEM;
1409 		goto err_free_ch;
1410 	}
1411 
1412 	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1413 							sizeof(struct mhi_ring_element), 0,
1414 							SLAB_CACHE_DMA, NULL);
1415 	if (!mhi_cntrl->ev_ring_el_cache) {
1416 		ret = -ENOMEM;
1417 		goto err_free_cmd;
1418 	}
1419 
1420 	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1421 						      SLAB_CACHE_DMA, NULL);
1422 	if (!mhi_cntrl->tre_buf_cache) {
1423 		ret = -ENOMEM;
1424 		goto err_destroy_ev_ring_el_cache;
1425 	}
1426 
1427 	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1428 							sizeof(struct mhi_ep_ring_item), 0,
1429 							0, NULL);
1430 	if (!mhi_cntrl->ev_ring_el_cache) {
1431 		ret = -ENOMEM;
1432 		goto err_destroy_tre_buf_cache;
1433 	}
1434 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1435 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1436 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1437 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1438 
1439 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1440 	if (!mhi_cntrl->wq) {
1441 		ret = -ENOMEM;
1442 		goto err_destroy_ring_item_cache;
1443 	}
1444 
1445 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1446 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1447 	spin_lock_init(&mhi_cntrl->list_lock);
1448 	mutex_init(&mhi_cntrl->state_lock);
1449 	mutex_init(&mhi_cntrl->event_lock);
1450 
1451 	/* Set MHI version and AMSS EE before enumeration */
1452 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1453 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1454 
1455 	/* Set controller index */
1456 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1457 	if (ret < 0)
1458 		goto err_destroy_wq;
1459 
1460 	mhi_cntrl->index = ret;
1461 
1462 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1463 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1464 			  "doorbell_irq", mhi_cntrl);
1465 	if (ret) {
1466 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1467 		goto err_ida_free;
1468 	}
1469 
1470 	/* Allocate the controller device */
1471 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1472 	if (IS_ERR(mhi_dev)) {
1473 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1474 		ret = PTR_ERR(mhi_dev);
1475 		goto err_free_irq;
1476 	}
1477 
1478 	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1479 	if (ret)
1480 		goto err_put_dev;
1481 
1482 	mhi_dev->name = dev_name(&mhi_dev->dev);
1483 	mhi_cntrl->mhi_dev = mhi_dev;
1484 
1485 	ret = device_add(&mhi_dev->dev);
1486 	if (ret)
1487 		goto err_put_dev;
1488 
1489 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1490 
1491 	return 0;
1492 
1493 err_put_dev:
1494 	put_device(&mhi_dev->dev);
1495 err_free_irq:
1496 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1497 err_ida_free:
1498 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1499 err_destroy_wq:
1500 	destroy_workqueue(mhi_cntrl->wq);
1501 err_destroy_ring_item_cache:
1502 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1503 err_destroy_ev_ring_el_cache:
1504 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1505 err_destroy_tre_buf_cache:
1506 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1507 err_free_cmd:
1508 	kfree(mhi_cntrl->mhi_cmd);
1509 err_free_ch:
1510 	kfree(mhi_cntrl->mhi_chan);
1511 
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1515 
1516 /*
1517  * It is expected that the controller drivers will power down the MHI EP stack
1518  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1519  */
1520 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1521 {
1522 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1523 
1524 	destroy_workqueue(mhi_cntrl->wq);
1525 
1526 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1527 
1528 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1529 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1530 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1531 	kfree(mhi_cntrl->mhi_cmd);
1532 	kfree(mhi_cntrl->mhi_chan);
1533 
1534 	device_del(&mhi_dev->dev);
1535 	put_device(&mhi_dev->dev);
1536 
1537 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1538 }
1539 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1540 
1541 static int mhi_ep_driver_probe(struct device *dev)
1542 {
1543 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1544 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1545 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1546 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1547 
1548 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1549 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1550 
1551 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1552 }
1553 
1554 static int mhi_ep_driver_remove(struct device *dev)
1555 {
1556 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1557 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1558 	struct mhi_result result = {};
1559 	struct mhi_ep_chan *mhi_chan;
1560 	int dir;
1561 
1562 	/* Skip if it is a controller device */
1563 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1564 		return 0;
1565 
1566 	/* Disconnect the channels associated with the driver */
1567 	for (dir = 0; dir < 2; dir++) {
1568 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1569 
1570 		if (!mhi_chan)
1571 			continue;
1572 
1573 		mutex_lock(&mhi_chan->lock);
1574 		/* Send channel disconnect status to the client driver */
1575 		if (mhi_chan->xfer_cb) {
1576 			result.transaction_status = -ENOTCONN;
1577 			result.bytes_xferd = 0;
1578 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1579 		}
1580 
1581 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1582 		mhi_chan->xfer_cb = NULL;
1583 		mutex_unlock(&mhi_chan->lock);
1584 	}
1585 
1586 	/* Remove the client driver now */
1587 	mhi_drv->remove(mhi_dev);
1588 
1589 	return 0;
1590 }
1591 
1592 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1593 {
1594 	struct device_driver *driver = &mhi_drv->driver;
1595 
1596 	if (!mhi_drv->probe || !mhi_drv->remove)
1597 		return -EINVAL;
1598 
1599 	/* Client drivers should have callbacks defined for both channels */
1600 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1601 		return -EINVAL;
1602 
1603 	driver->bus = &mhi_ep_bus_type;
1604 	driver->owner = owner;
1605 	driver->probe = mhi_ep_driver_probe;
1606 	driver->remove = mhi_ep_driver_remove;
1607 
1608 	return driver_register(driver);
1609 }
1610 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1611 
1612 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1613 {
1614 	driver_unregister(&mhi_drv->driver);
1615 }
1616 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1617 
1618 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1619 {
1620 	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1621 
1622 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1623 					mhi_dev->name);
1624 }
1625 
1626 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1627 {
1628 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1629 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1630 	const struct mhi_device_id *id;
1631 
1632 	/*
1633 	 * If the device is a controller type then there is no client driver
1634 	 * associated with it
1635 	 */
1636 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1637 		return 0;
1638 
1639 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1640 		if (!strcmp(mhi_dev->name, id->chan)) {
1641 			mhi_dev->id = id;
1642 			return 1;
1643 		}
1644 
1645 	return 0;
1646 };
1647 
1648 struct bus_type mhi_ep_bus_type = {
1649 	.name = "mhi_ep",
1650 	.dev_name = "mhi_ep",
1651 	.match = mhi_ep_match,
1652 	.uevent = mhi_ep_uevent,
1653 };
1654 
1655 static int __init mhi_ep_init(void)
1656 {
1657 	return bus_register(&mhi_ep_bus_type);
1658 }
1659 
1660 static void __exit mhi_ep_exit(void)
1661 {
1662 	bus_unregister(&mhi_ep_bus_type);
1663 }
1664 
1665 postcore_initcall(mhi_ep_init);
1666 module_exit(mhi_ep_exit);
1667 
1668 MODULE_LICENSE("GPL v2");
1669 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1670 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1671