xref: /openbmc/linux/drivers/bus/mhi/ep/main.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MHI Endpoint bus stack
4  *
5  * Copyright (C) 2022 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/dma-direction.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/mhi_ep.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include "internal.h"
19 
20 #define M0_WAIT_DELAY_MS	100
21 #define M0_WAIT_COUNT		100
22 
23 static DEFINE_IDA(mhi_ep_cntrl_ida);
24 
25 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26 static int mhi_ep_destroy_device(struct device *dev, void *data);
27 
28 static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29 			     struct mhi_ring_element *el, bool bei)
30 {
31 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32 	union mhi_ep_ring_ctx *ctx;
33 	struct mhi_ep_ring *ring;
34 	int ret;
35 
36 	mutex_lock(&mhi_cntrl->event_lock);
37 	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38 	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39 	if (!ring->started) {
40 		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41 		if (ret) {
42 			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43 			goto err_unlock;
44 		}
45 	}
46 
47 	/* Add element to the event ring */
48 	ret = mhi_ep_ring_add_element(ring, el);
49 	if (ret) {
50 		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51 		goto err_unlock;
52 	}
53 
54 	mutex_unlock(&mhi_cntrl->event_lock);
55 
56 	/*
57 	 * Raise IRQ to host only if the BEI flag is not set in TRE. Host might
58 	 * set this flag for interrupt moderation as per MHI protocol.
59 	 */
60 	if (!bei)
61 		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
62 
63 	return 0;
64 
65 err_unlock:
66 	mutex_unlock(&mhi_cntrl->event_lock);
67 
68 	return ret;
69 }
70 
71 static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
72 					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
73 {
74 	struct mhi_ring_element *event;
75 	int ret;
76 
77 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
78 	if (!event)
79 		return -ENOMEM;
80 
81 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
82 	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
83 	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
84 
85 	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
86 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
87 
88 	return ret;
89 }
90 
91 int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
92 {
93 	struct mhi_ring_element *event;
94 	int ret;
95 
96 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
97 	if (!event)
98 		return -ENOMEM;
99 
100 	event->dword[0] = MHI_SC_EV_DWORD0(state);
101 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
102 
103 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
104 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
105 
106 	return ret;
107 }
108 
109 int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
110 {
111 	struct mhi_ring_element *event;
112 	int ret;
113 
114 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
115 	if (!event)
116 		return -ENOMEM;
117 
118 	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
119 	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
120 
121 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
122 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
123 
124 	return ret;
125 }
126 
127 static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
128 {
129 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
130 	struct mhi_ring_element *event;
131 	int ret;
132 
133 	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL);
134 	if (!event)
135 		return -ENOMEM;
136 
137 	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
138 	event->dword[0] = MHI_CC_EV_DWORD0(code);
139 	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
140 
141 	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
142 	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
143 
144 	return ret;
145 }
146 
147 static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
148 {
149 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
150 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
151 	struct mhi_result result = {};
152 	struct mhi_ep_chan *mhi_chan;
153 	struct mhi_ep_ring *ch_ring;
154 	u32 tmp, ch_id;
155 	int ret;
156 
157 	ch_id = MHI_TRE_GET_CMD_CHID(el);
158 
159 	/* Check if the channel is supported by the controller */
160 	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
161 		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
162 		return -ENODEV;
163 	}
164 
165 	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
166 	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
167 
168 	switch (MHI_TRE_GET_CMD_TYPE(el)) {
169 	case MHI_PKT_TYPE_START_CHAN_CMD:
170 		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
171 
172 		mutex_lock(&mhi_chan->lock);
173 		/* Initialize and configure the corresponding channel ring */
174 		if (!ch_ring->started) {
175 			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
176 				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
177 			if (ret) {
178 				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
179 				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
180 							MHI_EV_CC_UNDEFINED_ERR);
181 				if (ret)
182 					dev_err(dev, "Error sending completion event: %d\n", ret);
183 
184 				goto err_unlock;
185 			}
186 
187 			mhi_chan->rd_offset = ch_ring->rd_offset;
188 		}
189 
190 		/* Set channel state to RUNNING */
191 		mhi_chan->state = MHI_CH_STATE_RUNNING;
192 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
193 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
194 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
195 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
196 
197 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
198 		if (ret) {
199 			dev_err(dev, "Error sending command completion event (%u)\n",
200 				MHI_EV_CC_SUCCESS);
201 			goto err_unlock;
202 		}
203 
204 		mutex_unlock(&mhi_chan->lock);
205 
206 		/*
207 		 * Create MHI device only during UL channel start. Since the MHI
208 		 * channels operate in a pair, we'll associate both UL and DL
209 		 * channels to the same device.
210 		 *
211 		 * We also need to check for mhi_dev != NULL because, the host
212 		 * will issue START_CHAN command during resume and we don't
213 		 * destroy the device during suspend.
214 		 */
215 		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
216 			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
217 			if (ret) {
218 				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
219 				mhi_ep_handle_syserr(mhi_cntrl);
220 				return ret;
221 			}
222 		}
223 
224 		/* Finally, enable DB for the channel */
225 		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
226 
227 		break;
228 	case MHI_PKT_TYPE_STOP_CHAN_CMD:
229 		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
230 		if (!ch_ring->started) {
231 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
232 			return -ENODEV;
233 		}
234 
235 		mutex_lock(&mhi_chan->lock);
236 		/* Disable DB for the channel */
237 		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
238 
239 		/* Send channel disconnect status to client drivers */
240 		if (mhi_chan->xfer_cb) {
241 			result.transaction_status = -ENOTCONN;
242 			result.bytes_xferd = 0;
243 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
244 		}
245 
246 		/* Set channel state to STOP */
247 		mhi_chan->state = MHI_CH_STATE_STOP;
248 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
249 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
250 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
251 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
252 
253 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
254 		if (ret) {
255 			dev_err(dev, "Error sending command completion event (%u)\n",
256 				MHI_EV_CC_SUCCESS);
257 			goto err_unlock;
258 		}
259 
260 		mutex_unlock(&mhi_chan->lock);
261 		break;
262 	case MHI_PKT_TYPE_RESET_CHAN_CMD:
263 		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
264 		if (!ch_ring->started) {
265 			dev_err(dev, "Channel (%u) not opened\n", ch_id);
266 			return -ENODEV;
267 		}
268 
269 		mutex_lock(&mhi_chan->lock);
270 		/* Stop and reset the transfer ring */
271 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
272 
273 		/* Send channel disconnect status to client driver */
274 		if (mhi_chan->xfer_cb) {
275 			result.transaction_status = -ENOTCONN;
276 			result.bytes_xferd = 0;
277 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
278 		}
279 
280 		/* Set channel state to DISABLED */
281 		mhi_chan->state = MHI_CH_STATE_DISABLED;
282 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
283 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
284 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
285 		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
286 
287 		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
288 		if (ret) {
289 			dev_err(dev, "Error sending command completion event (%u)\n",
290 				MHI_EV_CC_SUCCESS);
291 			goto err_unlock;
292 		}
293 
294 		mutex_unlock(&mhi_chan->lock);
295 		break;
296 	default:
297 		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
298 			MHI_TRE_GET_CMD_TYPE(el), ch_id);
299 		return -EINVAL;
300 	}
301 
302 	return 0;
303 
304 err_unlock:
305 	mutex_unlock(&mhi_chan->lock);
306 
307 	return ret;
308 }
309 
310 bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
311 {
312 	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
313 								mhi_dev->ul_chan;
314 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
315 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
316 
317 	return !!(mhi_chan->rd_offset == ring->wr_offset);
318 }
319 EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
320 
321 static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
322 {
323 	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
324 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
325 	struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
326 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
327 	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
328 	struct mhi_result result = {};
329 	int ret;
330 
331 	if (mhi_chan->xfer_cb) {
332 		result.buf_addr = buf_info->cb_buf;
333 		result.dir = mhi_chan->dir;
334 		result.bytes_xferd = buf_info->size;
335 
336 		mhi_chan->xfer_cb(mhi_dev, &result);
337 	}
338 
339 	/*
340 	 * The host will split the data packet into multiple TREs if it can't fit
341 	 * the packet in a single TRE. In that case, CHAIN flag will be set by the
342 	 * host for all TREs except the last one.
343 	 */
344 	if (buf_info->code != MHI_EV_CC_OVERFLOW) {
345 		if (MHI_TRE_DATA_GET_CHAIN(el)) {
346 			/*
347 			 * IEOB (Interrupt on End of Block) flag will be set by the host if
348 			 * it expects the completion event for all TREs of a TD.
349 			 */
350 			if (MHI_TRE_DATA_GET_IEOB(el)) {
351 				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
352 							     MHI_TRE_DATA_GET_LEN(el),
353 							     MHI_EV_CC_EOB);
354 				if (ret < 0) {
355 					dev_err(&mhi_chan->mhi_dev->dev,
356 						"Error sending transfer compl. event\n");
357 					goto err_free_tre_buf;
358 				}
359 			}
360 		} else {
361 			/*
362 			 * IEOT (Interrupt on End of Transfer) flag will be set by the host
363 			 * for the last TRE of the TD and expects the completion event for
364 			 * the same.
365 			 */
366 			if (MHI_TRE_DATA_GET_IEOT(el)) {
367 				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368 							     MHI_TRE_DATA_GET_LEN(el),
369 							     MHI_EV_CC_EOT);
370 				if (ret < 0) {
371 					dev_err(&mhi_chan->mhi_dev->dev,
372 						"Error sending transfer compl. event\n");
373 					goto err_free_tre_buf;
374 				}
375 			}
376 		}
377 	}
378 
379 	mhi_ep_ring_inc_index(ring);
380 
381 err_free_tre_buf:
382 	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
383 }
384 
385 static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
386 			       struct mhi_ep_ring *ring)
387 {
388 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
389 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
390 	size_t tr_len, read_offset, write_offset;
391 	struct mhi_ep_buf_info buf_info = {};
392 	u32 len = MHI_EP_DEFAULT_MTU;
393 	struct mhi_ring_element *el;
394 	bool tr_done = false;
395 	void *buf_addr;
396 	u32 buf_left;
397 	int ret;
398 
399 	buf_left = len;
400 
401 	do {
402 		/* Don't process the transfer ring if the channel is not in RUNNING state */
403 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
404 			dev_err(dev, "Channel not available\n");
405 			return -ENODEV;
406 		}
407 
408 		el = &ring->ring_cache[mhi_chan->rd_offset];
409 
410 		/* Check if there is data pending to be read from previous read operation */
411 		if (mhi_chan->tre_bytes_left) {
412 			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
413 			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
414 		} else {
415 			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
416 			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
417 			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
418 
419 			tr_len = min(buf_left, mhi_chan->tre_size);
420 		}
421 
422 		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
423 		write_offset = len - buf_left;
424 
425 		buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL);
426 		if (!buf_addr)
427 			return -ENOMEM;
428 
429 		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
430 		buf_info.dev_addr = buf_addr + write_offset;
431 		buf_info.size = tr_len;
432 		buf_info.cb = mhi_ep_read_completion;
433 		buf_info.cb_buf = buf_addr;
434 		buf_info.mhi_dev = mhi_chan->mhi_dev;
435 
436 		if (mhi_chan->tre_bytes_left - tr_len)
437 			buf_info.code = MHI_EV_CC_OVERFLOW;
438 
439 		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
440 		ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
441 		if (ret < 0) {
442 			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
443 			goto err_free_buf_addr;
444 		}
445 
446 		buf_left -= tr_len;
447 		mhi_chan->tre_bytes_left -= tr_len;
448 
449 		if (!mhi_chan->tre_bytes_left) {
450 			if (MHI_TRE_DATA_GET_IEOT(el))
451 				tr_done = true;
452 
453 			mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
454 		}
455 	} while (buf_left && !tr_done);
456 
457 	return 0;
458 
459 err_free_buf_addr:
460 	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
461 
462 	return ret;
463 }
464 
465 static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
466 {
467 	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
468 	struct mhi_result result = {};
469 	struct mhi_ep_chan *mhi_chan;
470 	int ret;
471 
472 	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
473 
474 	/*
475 	 * Bail out if transfer callback is not registered for the channel.
476 	 * This is most likely due to the client driver not loaded at this point.
477 	 */
478 	if (!mhi_chan->xfer_cb) {
479 		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
480 		return -ENODEV;
481 	}
482 
483 	if (ring->ch_id % 2) {
484 		/* DL channel */
485 		result.dir = mhi_chan->dir;
486 		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
487 	} else {
488 		/* UL channel */
489 		do {
490 			ret = mhi_ep_read_channel(mhi_cntrl, ring);
491 			if (ret < 0) {
492 				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
493 				return ret;
494 			}
495 
496 			/* Read until the ring becomes empty */
497 		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
498 	}
499 
500 	return 0;
501 }
502 
503 static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
504 {
505 	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
506 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
507 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
508 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
509 	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
510 	struct device *dev = &mhi_dev->dev;
511 	struct mhi_result result = {};
512 	int ret;
513 
514 	if (mhi_chan->xfer_cb) {
515 		result.buf_addr = buf_info->cb_buf;
516 		result.dir = mhi_chan->dir;
517 		result.bytes_xferd = buf_info->size;
518 
519 		mhi_chan->xfer_cb(mhi_dev, &result);
520 	}
521 
522 	ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
523 					   buf_info->code);
524 	if (ret) {
525 		dev_err(dev, "Error sending transfer completion event\n");
526 		return;
527 	}
528 
529 	mhi_ep_ring_inc_index(ring);
530 }
531 
532 /* TODO: Handle partially formed TDs */
533 int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
534 {
535 	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
536 	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
537 	struct device *dev = &mhi_chan->mhi_dev->dev;
538 	struct mhi_ep_buf_info buf_info = {};
539 	struct mhi_ring_element *el;
540 	u32 buf_left, read_offset;
541 	struct mhi_ep_ring *ring;
542 	size_t tr_len;
543 	u32 tre_len;
544 	int ret;
545 
546 	buf_left = skb->len;
547 	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
548 
549 	mutex_lock(&mhi_chan->lock);
550 
551 	do {
552 		/* Don't process the transfer ring if the channel is not in RUNNING state */
553 		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
554 			dev_err(dev, "Channel not available\n");
555 			ret = -ENODEV;
556 			goto err_exit;
557 		}
558 
559 		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
560 			dev_err(dev, "TRE not available!\n");
561 			ret = -ENOSPC;
562 			goto err_exit;
563 		}
564 
565 		el = &ring->ring_cache[mhi_chan->rd_offset];
566 		tre_len = MHI_TRE_DATA_GET_LEN(el);
567 
568 		tr_len = min(buf_left, tre_len);
569 		read_offset = skb->len - buf_left;
570 
571 		buf_info.dev_addr = skb->data + read_offset;
572 		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
573 		buf_info.size = tr_len;
574 		buf_info.cb = mhi_ep_skb_completion;
575 		buf_info.cb_buf = skb;
576 		buf_info.mhi_dev = mhi_dev;
577 
578 		/*
579 		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
580 		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
581 		 * the host so that the host can adjust the packet boundary to next TREs. Else send
582 		 * the EOT event to the host indicating the packet boundary.
583 		 */
584 		if (buf_left - tr_len)
585 			buf_info.code = MHI_EV_CC_OVERFLOW;
586 		else
587 			buf_info.code = MHI_EV_CC_EOT;
588 
589 		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
590 		ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
591 		if (ret < 0) {
592 			dev_err(dev, "Error writing to the channel\n");
593 			goto err_exit;
594 		}
595 
596 		buf_left -= tr_len;
597 
598 		/*
599 		 * Update the read offset cached in mhi_chan. Actual read offset
600 		 * will be updated by the completion handler.
601 		 */
602 		mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
603 	} while (buf_left);
604 
605 	mutex_unlock(&mhi_chan->lock);
606 
607 	return 0;
608 
609 err_exit:
610 	mutex_unlock(&mhi_chan->lock);
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
615 
616 static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
617 {
618 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
619 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
620 	int ret;
621 
622 	/* Update the number of event rings (NER) programmed by the host */
623 	mhi_ep_mmio_update_ner(mhi_cntrl);
624 
625 	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
626 		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
627 
628 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
629 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
630 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
631 
632 	/* Get the channel context base pointer from host */
633 	mhi_ep_mmio_get_chc_base(mhi_cntrl);
634 
635 	/* Allocate and map memory for caching host channel context */
636 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
637 				   &mhi_cntrl->ch_ctx_cache_phys,
638 				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
639 				   ch_ctx_host_size);
640 	if (ret) {
641 		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
642 		return ret;
643 	}
644 
645 	/* Get the event context base pointer from host */
646 	mhi_ep_mmio_get_erc_base(mhi_cntrl);
647 
648 	/* Allocate and map memory for caching host event context */
649 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
650 				   &mhi_cntrl->ev_ctx_cache_phys,
651 				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
652 				   ev_ctx_host_size);
653 	if (ret) {
654 		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
655 		goto err_ch_ctx;
656 	}
657 
658 	/* Get the command context base pointer from host */
659 	mhi_ep_mmio_get_crc_base(mhi_cntrl);
660 
661 	/* Allocate and map memory for caching host command context */
662 	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
663 				   &mhi_cntrl->cmd_ctx_cache_phys,
664 				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
665 				   cmd_ctx_host_size);
666 	if (ret) {
667 		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
668 		goto err_ev_ctx;
669 	}
670 
671 	/* Initialize command ring */
672 	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
673 				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
674 	if (ret) {
675 		dev_err(dev, "Failed to start the command ring\n");
676 		goto err_cmd_ctx;
677 	}
678 
679 	return ret;
680 
681 err_cmd_ctx:
682 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
683 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
684 
685 err_ev_ctx:
686 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
687 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
688 
689 err_ch_ctx:
690 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
691 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
692 
693 	return ret;
694 }
695 
696 static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
697 {
698 	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
699 
700 	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
701 	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
702 	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
703 
704 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
705 			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
706 
707 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
708 			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
709 
710 	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
711 			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
712 }
713 
714 static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
715 {
716 	/*
717 	 * Doorbell interrupts are enabled when the corresponding channel gets started.
718 	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
719 	 * associated with hw channels always get triggered.
720 	 */
721 	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
722 	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
723 }
724 
725 static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
726 {
727 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
728 	enum mhi_state state;
729 	bool mhi_reset;
730 	u32 count = 0;
731 	int ret;
732 
733 	/* Wait for Host to set the M0 state */
734 	do {
735 		msleep(M0_WAIT_DELAY_MS);
736 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
737 		if (mhi_reset) {
738 			/* Clear the MHI reset if host is in reset state */
739 			mhi_ep_mmio_clear_reset(mhi_cntrl);
740 			dev_info(dev, "Detected Host reset while waiting for M0\n");
741 		}
742 		count++;
743 	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
744 
745 	if (state != MHI_STATE_M0) {
746 		dev_err(dev, "Host failed to enter M0\n");
747 		return -ETIMEDOUT;
748 	}
749 
750 	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
751 	if (ret) {
752 		dev_err(dev, "Failed to cache host config\n");
753 		return ret;
754 	}
755 
756 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
757 
758 	/* Enable all interrupts now */
759 	mhi_ep_enable_int(mhi_cntrl);
760 
761 	return 0;
762 }
763 
764 static void mhi_ep_cmd_ring_worker(struct work_struct *work)
765 {
766 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
767 	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
768 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
769 	struct mhi_ring_element *el;
770 	int ret;
771 
772 	/* Update the write offset for the ring */
773 	ret = mhi_ep_update_wr_offset(ring);
774 	if (ret) {
775 		dev_err(dev, "Error updating write offset for ring\n");
776 		return;
777 	}
778 
779 	/* Sanity check to make sure there are elements in the ring */
780 	if (ring->rd_offset == ring->wr_offset)
781 		return;
782 
783 	/*
784 	 * Process command ring element till write offset. In case of an error, just try to
785 	 * process next element.
786 	 */
787 	while (ring->rd_offset != ring->wr_offset) {
788 		el = &ring->ring_cache[ring->rd_offset];
789 
790 		ret = mhi_ep_process_cmd_ring(ring, el);
791 		if (ret && ret != -ENODEV)
792 			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
793 
794 		mhi_ep_ring_inc_index(ring);
795 	}
796 }
797 
798 static void mhi_ep_ch_ring_worker(struct work_struct *work)
799 {
800 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
801 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
802 	struct mhi_ep_ring_item *itr, *tmp;
803 	struct mhi_ep_ring *ring;
804 	struct mhi_ep_chan *chan;
805 	unsigned long flags;
806 	LIST_HEAD(head);
807 	int ret;
808 
809 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
810 	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
811 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
812 
813 	/* Process each queued channel ring. In case of an error, just process next element. */
814 	list_for_each_entry_safe(itr, tmp, &head, node) {
815 		list_del(&itr->node);
816 		ring = itr->ring;
817 
818 		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
819 		mutex_lock(&chan->lock);
820 
821 		/*
822 		 * The ring could've stopped while we waited to grab the (chan->lock), so do
823 		 * a sanity check before going further.
824 		 */
825 		if (!ring->started) {
826 			mutex_unlock(&chan->lock);
827 			kfree(itr);
828 			continue;
829 		}
830 
831 		/* Update the write offset for the ring */
832 		ret = mhi_ep_update_wr_offset(ring);
833 		if (ret) {
834 			dev_err(dev, "Error updating write offset for ring\n");
835 			mutex_unlock(&chan->lock);
836 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
837 			continue;
838 		}
839 
840 		/* Sanity check to make sure there are elements in the ring */
841 		if (chan->rd_offset == ring->wr_offset) {
842 			mutex_unlock(&chan->lock);
843 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
844 			continue;
845 		}
846 
847 		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
848 		ret = mhi_ep_process_ch_ring(ring);
849 		if (ret) {
850 			dev_err(dev, "Error processing ring for channel (%u): %d\n",
851 				ring->ch_id, ret);
852 			mutex_unlock(&chan->lock);
853 			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
854 			continue;
855 		}
856 
857 		mutex_unlock(&chan->lock);
858 		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
859 	}
860 }
861 
862 static void mhi_ep_state_worker(struct work_struct *work)
863 {
864 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
865 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
866 	struct mhi_ep_state_transition *itr, *tmp;
867 	unsigned long flags;
868 	LIST_HEAD(head);
869 	int ret;
870 
871 	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
872 	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
873 	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
874 
875 	list_for_each_entry_safe(itr, tmp, &head, node) {
876 		list_del(&itr->node);
877 		dev_dbg(dev, "Handling MHI state transition to %s\n",
878 			 mhi_state_str(itr->state));
879 
880 		switch (itr->state) {
881 		case MHI_STATE_M0:
882 			ret = mhi_ep_set_m0_state(mhi_cntrl);
883 			if (ret)
884 				dev_err(dev, "Failed to transition to M0 state\n");
885 			break;
886 		case MHI_STATE_M3:
887 			ret = mhi_ep_set_m3_state(mhi_cntrl);
888 			if (ret)
889 				dev_err(dev, "Failed to transition to M3 state\n");
890 			break;
891 		default:
892 			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
893 			break;
894 		}
895 		kfree(itr);
896 	}
897 }
898 
899 static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
900 				    u32 ch_idx)
901 {
902 	struct mhi_ep_ring_item *item;
903 	struct mhi_ep_ring *ring;
904 	bool work = !!ch_int;
905 	LIST_HEAD(head);
906 	u32 i;
907 
908 	/* First add the ring items to a local list */
909 	for_each_set_bit(i, &ch_int, 32) {
910 		/* Channel index varies for each register: 0, 32, 64, 96 */
911 		u32 ch_id = ch_idx + i;
912 
913 		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
914 		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
915 		if (!item)
916 			return;
917 
918 		item->ring = ring;
919 		list_add_tail(&item->node, &head);
920 	}
921 
922 	/* Now, splice the local list into ch_db_list and queue the work item */
923 	if (work) {
924 		spin_lock(&mhi_cntrl->list_lock);
925 		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
926 		spin_unlock(&mhi_cntrl->list_lock);
927 
928 		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
929 	}
930 }
931 
932 /*
933  * Channel interrupt statuses are contained in 4 registers each of 32bit length.
934  * For checking all interrupts, we need to loop through each registers and then
935  * check for bits set.
936  */
937 static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
938 {
939 	u32 ch_int, ch_idx, i;
940 
941 	/* Bail out if there is no channel doorbell interrupt */
942 	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
943 		return;
944 
945 	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
946 		ch_idx = i * MHI_MASK_CH_LEN;
947 
948 		/* Only process channel interrupt if the mask is enabled */
949 		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
950 		if (ch_int) {
951 			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
952 			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
953 							mhi_cntrl->chdb[i].status);
954 		}
955 	}
956 }
957 
958 static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
959 					 enum mhi_state state)
960 {
961 	struct mhi_ep_state_transition *item;
962 
963 	item = kzalloc(sizeof(*item), GFP_ATOMIC);
964 	if (!item)
965 		return;
966 
967 	item->state = state;
968 	spin_lock(&mhi_cntrl->list_lock);
969 	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
970 	spin_unlock(&mhi_cntrl->list_lock);
971 
972 	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
973 }
974 
975 /*
976  * Interrupt handler that services interrupts raised by the host writing to
977  * MHICTRL and Command ring doorbell (CRDB) registers for state change and
978  * channel interrupts.
979  */
980 static irqreturn_t mhi_ep_irq(int irq, void *data)
981 {
982 	struct mhi_ep_cntrl *mhi_cntrl = data;
983 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
984 	enum mhi_state state;
985 	u32 int_value;
986 	bool mhi_reset;
987 
988 	/* Acknowledge the ctrl interrupt */
989 	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
990 	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
991 
992 	/* Check for ctrl interrupt */
993 	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
994 		dev_dbg(dev, "Processing ctrl interrupt\n");
995 		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
996 		if (mhi_reset) {
997 			dev_info(dev, "Host triggered MHI reset!\n");
998 			disable_irq_nosync(mhi_cntrl->irq);
999 			schedule_work(&mhi_cntrl->reset_work);
1000 			return IRQ_HANDLED;
1001 		}
1002 
1003 		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1004 	}
1005 
1006 	/* Check for command doorbell interrupt */
1007 	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1008 		dev_dbg(dev, "Processing command doorbell interrupt\n");
1009 		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1010 	}
1011 
1012 	/* Check for channel interrupts */
1013 	mhi_ep_check_channel_interrupt(mhi_cntrl);
1014 
1015 	return IRQ_HANDLED;
1016 }
1017 
1018 static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1019 {
1020 	struct mhi_ep_ring *ch_ring, *ev_ring;
1021 	struct mhi_result result = {};
1022 	struct mhi_ep_chan *mhi_chan;
1023 	int i;
1024 
1025 	/* Stop all the channels */
1026 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1027 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1028 		if (!mhi_chan->ring.started)
1029 			continue;
1030 
1031 		mutex_lock(&mhi_chan->lock);
1032 		/* Send channel disconnect status to client drivers */
1033 		if (mhi_chan->xfer_cb) {
1034 			result.transaction_status = -ENOTCONN;
1035 			result.bytes_xferd = 0;
1036 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1037 		}
1038 
1039 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1040 		mutex_unlock(&mhi_chan->lock);
1041 	}
1042 
1043 	flush_workqueue(mhi_cntrl->wq);
1044 
1045 	/* Destroy devices associated with all channels */
1046 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1047 
1048 	/* Stop and reset the transfer rings */
1049 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1050 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1051 		if (!mhi_chan->ring.started)
1052 			continue;
1053 
1054 		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1055 		mutex_lock(&mhi_chan->lock);
1056 		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1057 		mutex_unlock(&mhi_chan->lock);
1058 	}
1059 
1060 	/* Stop and reset the event rings */
1061 	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1062 		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1063 		if (!ev_ring->started)
1064 			continue;
1065 
1066 		mutex_lock(&mhi_cntrl->event_lock);
1067 		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1068 		mutex_unlock(&mhi_cntrl->event_lock);
1069 	}
1070 
1071 	/* Stop and reset the command ring */
1072 	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1073 
1074 	mhi_ep_free_host_cfg(mhi_cntrl);
1075 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1076 
1077 	mhi_cntrl->enabled = false;
1078 }
1079 
1080 static void mhi_ep_reset_worker(struct work_struct *work)
1081 {
1082 	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1083 	enum mhi_state cur_state;
1084 
1085 	mhi_ep_power_down(mhi_cntrl);
1086 
1087 	mutex_lock(&mhi_cntrl->state_lock);
1088 
1089 	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1090 	mhi_ep_mmio_reset(mhi_cntrl);
1091 	cur_state = mhi_cntrl->mhi_state;
1092 
1093 	/*
1094 	 * Only proceed further if the reset is due to SYS_ERR. The host will
1095 	 * issue reset during shutdown also and we don't need to do re-init in
1096 	 * that case.
1097 	 */
1098 	if (cur_state == MHI_STATE_SYS_ERR)
1099 		mhi_ep_power_up(mhi_cntrl);
1100 
1101 	mutex_unlock(&mhi_cntrl->state_lock);
1102 }
1103 
1104 /*
1105  * We don't need to do anything special other than setting the MHI SYS_ERR
1106  * state. The host will reset all contexts and issue MHI RESET so that we
1107  * could also recover from error state.
1108  */
1109 void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1110 {
1111 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1112 	int ret;
1113 
1114 	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1115 	if (ret)
1116 		return;
1117 
1118 	/* Signal host that the device went to SYS_ERR state */
1119 	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1120 	if (ret)
1121 		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1122 }
1123 
1124 int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1125 {
1126 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1127 	int ret, i;
1128 
1129 	/*
1130 	 * Mask all interrupts until the state machine is ready. Interrupts will
1131 	 * be enabled later with mhi_ep_enable().
1132 	 */
1133 	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1134 	mhi_ep_mmio_init(mhi_cntrl);
1135 
1136 	mhi_cntrl->mhi_event = kzalloc(mhi_cntrl->event_rings * (sizeof(*mhi_cntrl->mhi_event)),
1137 					GFP_KERNEL);
1138 	if (!mhi_cntrl->mhi_event)
1139 		return -ENOMEM;
1140 
1141 	/* Initialize command, channel and event rings */
1142 	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1143 	for (i = 0; i < mhi_cntrl->max_chan; i++)
1144 		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1145 	for (i = 0; i < mhi_cntrl->event_rings; i++)
1146 		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1147 
1148 	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1149 
1150 	/* Set AMSS EE before signaling ready state */
1151 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1152 
1153 	/* All set, notify the host that we are ready */
1154 	ret = mhi_ep_set_ready_state(mhi_cntrl);
1155 	if (ret)
1156 		goto err_free_event;
1157 
1158 	dev_dbg(dev, "READY state notification sent to the host\n");
1159 
1160 	ret = mhi_ep_enable(mhi_cntrl);
1161 	if (ret) {
1162 		dev_err(dev, "Failed to enable MHI endpoint\n");
1163 		goto err_free_event;
1164 	}
1165 
1166 	enable_irq(mhi_cntrl->irq);
1167 	mhi_cntrl->enabled = true;
1168 
1169 	return 0;
1170 
1171 err_free_event:
1172 	kfree(mhi_cntrl->mhi_event);
1173 
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1177 
1178 void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1179 {
1180 	if (mhi_cntrl->enabled) {
1181 		mhi_ep_abort_transfer(mhi_cntrl);
1182 		kfree(mhi_cntrl->mhi_event);
1183 		disable_irq(mhi_cntrl->irq);
1184 	}
1185 }
1186 EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1187 
1188 void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1189 {
1190 	struct mhi_ep_chan *mhi_chan;
1191 	u32 tmp;
1192 	int i;
1193 
1194 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1195 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1196 
1197 		if (!mhi_chan->mhi_dev)
1198 			continue;
1199 
1200 		mutex_lock(&mhi_chan->lock);
1201 		/* Skip if the channel is not currently running */
1202 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1203 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1204 			mutex_unlock(&mhi_chan->lock);
1205 			continue;
1206 		}
1207 
1208 		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1209 		/* Set channel state to SUSPENDED */
1210 		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1211 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1212 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1213 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1214 		mutex_unlock(&mhi_chan->lock);
1215 	}
1216 }
1217 
1218 void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1219 {
1220 	struct mhi_ep_chan *mhi_chan;
1221 	u32 tmp;
1222 	int i;
1223 
1224 	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1225 		mhi_chan = &mhi_cntrl->mhi_chan[i];
1226 
1227 		if (!mhi_chan->mhi_dev)
1228 			continue;
1229 
1230 		mutex_lock(&mhi_chan->lock);
1231 		/* Skip if the channel is not currently suspended */
1232 		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1233 		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1234 			mutex_unlock(&mhi_chan->lock);
1235 			continue;
1236 		}
1237 
1238 		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1239 		/* Set channel state to RUNNING */
1240 		mhi_chan->state = MHI_CH_STATE_RUNNING;
1241 		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1242 		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1243 		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1244 		mutex_unlock(&mhi_chan->lock);
1245 	}
1246 }
1247 
1248 static void mhi_ep_release_device(struct device *dev)
1249 {
1250 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1251 
1252 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1253 		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1254 
1255 	/*
1256 	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1257 	 * devices for the channels will only get created in mhi_ep_create_device()
1258 	 * if the mhi_dev associated with it is NULL.
1259 	 */
1260 	if (mhi_dev->ul_chan)
1261 		mhi_dev->ul_chan->mhi_dev = NULL;
1262 
1263 	if (mhi_dev->dl_chan)
1264 		mhi_dev->dl_chan->mhi_dev = NULL;
1265 
1266 	kfree(mhi_dev);
1267 }
1268 
1269 static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1270 						 enum mhi_device_type dev_type)
1271 {
1272 	struct mhi_ep_device *mhi_dev;
1273 	struct device *dev;
1274 
1275 	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1276 	if (!mhi_dev)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	dev = &mhi_dev->dev;
1280 	device_initialize(dev);
1281 	dev->bus = &mhi_ep_bus_type;
1282 	dev->release = mhi_ep_release_device;
1283 
1284 	/* Controller device is always allocated first */
1285 	if (dev_type == MHI_DEVICE_CONTROLLER)
1286 		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1287 		dev->parent = mhi_cntrl->cntrl_dev;
1288 	else
1289 		/* for MHI client devices, parent is the MHI controller device */
1290 		dev->parent = &mhi_cntrl->mhi_dev->dev;
1291 
1292 	mhi_dev->mhi_cntrl = mhi_cntrl;
1293 	mhi_dev->dev_type = dev_type;
1294 
1295 	return mhi_dev;
1296 }
1297 
1298 /*
1299  * MHI channels are always defined in pairs with UL as the even numbered
1300  * channel and DL as odd numbered one. This function gets UL channel (primary)
1301  * as the ch_id and always looks after the next entry in channel list for
1302  * the corresponding DL channel (secondary).
1303  */
1304 static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1305 {
1306 	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1307 	struct device *dev = mhi_cntrl->cntrl_dev;
1308 	struct mhi_ep_device *mhi_dev;
1309 	int ret;
1310 
1311 	/* Check if the channel name is same for both UL and DL */
1312 	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1313 		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1314 			mhi_chan->name, mhi_chan[1].name);
1315 		return -EINVAL;
1316 	}
1317 
1318 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1319 	if (IS_ERR(mhi_dev))
1320 		return PTR_ERR(mhi_dev);
1321 
1322 	/* Configure primary channel */
1323 	mhi_dev->ul_chan = mhi_chan;
1324 	get_device(&mhi_dev->dev);
1325 	mhi_chan->mhi_dev = mhi_dev;
1326 
1327 	/* Configure secondary channel as well */
1328 	mhi_chan++;
1329 	mhi_dev->dl_chan = mhi_chan;
1330 	get_device(&mhi_dev->dev);
1331 	mhi_chan->mhi_dev = mhi_dev;
1332 
1333 	/* Channel name is same for both UL and DL */
1334 	mhi_dev->name = mhi_chan->name;
1335 	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1336 		     dev_name(&mhi_cntrl->mhi_dev->dev),
1337 		     mhi_dev->name);
1338 	if (ret) {
1339 		put_device(&mhi_dev->dev);
1340 		return ret;
1341 	}
1342 
1343 	ret = device_add(&mhi_dev->dev);
1344 	if (ret)
1345 		put_device(&mhi_dev->dev);
1346 
1347 	return ret;
1348 }
1349 
1350 static int mhi_ep_destroy_device(struct device *dev, void *data)
1351 {
1352 	struct mhi_ep_device *mhi_dev;
1353 	struct mhi_ep_cntrl *mhi_cntrl;
1354 	struct mhi_ep_chan *ul_chan, *dl_chan;
1355 
1356 	if (dev->bus != &mhi_ep_bus_type)
1357 		return 0;
1358 
1359 	mhi_dev = to_mhi_ep_device(dev);
1360 	mhi_cntrl = mhi_dev->mhi_cntrl;
1361 
1362 	/* Only destroy devices created for channels */
1363 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1364 		return 0;
1365 
1366 	ul_chan = mhi_dev->ul_chan;
1367 	dl_chan = mhi_dev->dl_chan;
1368 
1369 	if (ul_chan)
1370 		put_device(&ul_chan->mhi_dev->dev);
1371 
1372 	if (dl_chan)
1373 		put_device(&dl_chan->mhi_dev->dev);
1374 
1375 	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1376 		 mhi_dev->name);
1377 
1378 	/* Notify the client and remove the device from MHI bus */
1379 	device_del(dev);
1380 	put_device(dev);
1381 
1382 	return 0;
1383 }
1384 
1385 static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1386 			    const struct mhi_ep_cntrl_config *config)
1387 {
1388 	const struct mhi_ep_channel_config *ch_cfg;
1389 	struct device *dev = mhi_cntrl->cntrl_dev;
1390 	u32 chan, i;
1391 	int ret = -EINVAL;
1392 
1393 	mhi_cntrl->max_chan = config->max_channels;
1394 
1395 	/*
1396 	 * Allocate max_channels supported by the MHI endpoint and populate
1397 	 * only the defined channels
1398 	 */
1399 	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1400 				      GFP_KERNEL);
1401 	if (!mhi_cntrl->mhi_chan)
1402 		return -ENOMEM;
1403 
1404 	for (i = 0; i < config->num_channels; i++) {
1405 		struct mhi_ep_chan *mhi_chan;
1406 
1407 		ch_cfg = &config->ch_cfg[i];
1408 
1409 		chan = ch_cfg->num;
1410 		if (chan >= mhi_cntrl->max_chan) {
1411 			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1412 				chan, mhi_cntrl->max_chan);
1413 			goto error_chan_cfg;
1414 		}
1415 
1416 		/* Bi-directional and direction less channels are not supported */
1417 		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1418 			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1419 				ch_cfg->dir, chan);
1420 			goto error_chan_cfg;
1421 		}
1422 
1423 		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1424 		mhi_chan->name = ch_cfg->name;
1425 		mhi_chan->chan = chan;
1426 		mhi_chan->dir = ch_cfg->dir;
1427 		mutex_init(&mhi_chan->lock);
1428 	}
1429 
1430 	return 0;
1431 
1432 error_chan_cfg:
1433 	kfree(mhi_cntrl->mhi_chan);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * Allocate channel and command rings here. Event rings will be allocated
1440  * in mhi_ep_power_up() as the config comes from the host.
1441  */
1442 int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1443 				const struct mhi_ep_cntrl_config *config)
1444 {
1445 	struct mhi_ep_device *mhi_dev;
1446 	int ret;
1447 
1448 	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1449 		return -EINVAL;
1450 
1451 	ret = mhi_ep_chan_init(mhi_cntrl, config);
1452 	if (ret)
1453 		return ret;
1454 
1455 	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1456 	if (!mhi_cntrl->mhi_cmd) {
1457 		ret = -ENOMEM;
1458 		goto err_free_ch;
1459 	}
1460 
1461 	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1462 							sizeof(struct mhi_ring_element), 0,
1463 							0, NULL);
1464 	if (!mhi_cntrl->ev_ring_el_cache) {
1465 		ret = -ENOMEM;
1466 		goto err_free_cmd;
1467 	}
1468 
1469 	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1470 						      0, NULL);
1471 	if (!mhi_cntrl->tre_buf_cache) {
1472 		ret = -ENOMEM;
1473 		goto err_destroy_ev_ring_el_cache;
1474 	}
1475 
1476 	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1477 							sizeof(struct mhi_ep_ring_item), 0,
1478 							0, NULL);
1479 	if (!mhi_cntrl->ring_item_cache) {
1480 		ret = -ENOMEM;
1481 		goto err_destroy_tre_buf_cache;
1482 	}
1483 
1484 	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1485 	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1486 	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1487 	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1488 
1489 	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1490 	if (!mhi_cntrl->wq) {
1491 		ret = -ENOMEM;
1492 		goto err_destroy_ring_item_cache;
1493 	}
1494 
1495 	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1496 	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1497 	spin_lock_init(&mhi_cntrl->list_lock);
1498 	mutex_init(&mhi_cntrl->state_lock);
1499 	mutex_init(&mhi_cntrl->event_lock);
1500 
1501 	/* Set MHI version and AMSS EE before enumeration */
1502 	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1503 	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1504 
1505 	/* Set controller index */
1506 	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1507 	if (ret < 0)
1508 		goto err_destroy_wq;
1509 
1510 	mhi_cntrl->index = ret;
1511 
1512 	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1513 	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1514 			  "doorbell_irq", mhi_cntrl);
1515 	if (ret) {
1516 		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1517 		goto err_ida_free;
1518 	}
1519 
1520 	/* Allocate the controller device */
1521 	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1522 	if (IS_ERR(mhi_dev)) {
1523 		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1524 		ret = PTR_ERR(mhi_dev);
1525 		goto err_free_irq;
1526 	}
1527 
1528 	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1529 	if (ret)
1530 		goto err_put_dev;
1531 
1532 	mhi_dev->name = dev_name(&mhi_dev->dev);
1533 	mhi_cntrl->mhi_dev = mhi_dev;
1534 
1535 	ret = device_add(&mhi_dev->dev);
1536 	if (ret)
1537 		goto err_put_dev;
1538 
1539 	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1540 
1541 	return 0;
1542 
1543 err_put_dev:
1544 	put_device(&mhi_dev->dev);
1545 err_free_irq:
1546 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1547 err_ida_free:
1548 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1549 err_destroy_wq:
1550 	destroy_workqueue(mhi_cntrl->wq);
1551 err_destroy_ring_item_cache:
1552 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1553 err_destroy_ev_ring_el_cache:
1554 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1555 err_destroy_tre_buf_cache:
1556 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1557 err_free_cmd:
1558 	kfree(mhi_cntrl->mhi_cmd);
1559 err_free_ch:
1560 	kfree(mhi_cntrl->mhi_chan);
1561 
1562 	return ret;
1563 }
1564 EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1565 
1566 /*
1567  * It is expected that the controller drivers will power down the MHI EP stack
1568  * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1569  */
1570 void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1571 {
1572 	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1573 
1574 	destroy_workqueue(mhi_cntrl->wq);
1575 
1576 	free_irq(mhi_cntrl->irq, mhi_cntrl);
1577 
1578 	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1579 	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1580 	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1581 	kfree(mhi_cntrl->mhi_cmd);
1582 	kfree(mhi_cntrl->mhi_chan);
1583 
1584 	device_del(&mhi_dev->dev);
1585 	put_device(&mhi_dev->dev);
1586 
1587 	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1588 }
1589 EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1590 
1591 static int mhi_ep_driver_probe(struct device *dev)
1592 {
1593 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1594 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1595 	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1596 	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1597 
1598 	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1599 	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1600 
1601 	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1602 }
1603 
1604 static int mhi_ep_driver_remove(struct device *dev)
1605 {
1606 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1607 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1608 	struct mhi_result result = {};
1609 	struct mhi_ep_chan *mhi_chan;
1610 	int dir;
1611 
1612 	/* Skip if it is a controller device */
1613 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1614 		return 0;
1615 
1616 	/* Disconnect the channels associated with the driver */
1617 	for (dir = 0; dir < 2; dir++) {
1618 		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1619 
1620 		if (!mhi_chan)
1621 			continue;
1622 
1623 		mutex_lock(&mhi_chan->lock);
1624 		/* Send channel disconnect status to the client driver */
1625 		if (mhi_chan->xfer_cb) {
1626 			result.transaction_status = -ENOTCONN;
1627 			result.bytes_xferd = 0;
1628 			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1629 		}
1630 
1631 		mhi_chan->state = MHI_CH_STATE_DISABLED;
1632 		mhi_chan->xfer_cb = NULL;
1633 		mutex_unlock(&mhi_chan->lock);
1634 	}
1635 
1636 	/* Remove the client driver now */
1637 	mhi_drv->remove(mhi_dev);
1638 
1639 	return 0;
1640 }
1641 
1642 int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1643 {
1644 	struct device_driver *driver = &mhi_drv->driver;
1645 
1646 	if (!mhi_drv->probe || !mhi_drv->remove)
1647 		return -EINVAL;
1648 
1649 	/* Client drivers should have callbacks defined for both channels */
1650 	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1651 		return -EINVAL;
1652 
1653 	driver->bus = &mhi_ep_bus_type;
1654 	driver->owner = owner;
1655 	driver->probe = mhi_ep_driver_probe;
1656 	driver->remove = mhi_ep_driver_remove;
1657 
1658 	return driver_register(driver);
1659 }
1660 EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1661 
1662 void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1663 {
1664 	driver_unregister(&mhi_drv->driver);
1665 }
1666 EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1667 
1668 static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1669 {
1670 	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1671 
1672 	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1673 					mhi_dev->name);
1674 }
1675 
1676 static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1677 {
1678 	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1679 	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1680 	const struct mhi_device_id *id;
1681 
1682 	/*
1683 	 * If the device is a controller type then there is no client driver
1684 	 * associated with it
1685 	 */
1686 	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1687 		return 0;
1688 
1689 	for (id = mhi_drv->id_table; id->chan[0]; id++)
1690 		if (!strcmp(mhi_dev->name, id->chan)) {
1691 			mhi_dev->id = id;
1692 			return 1;
1693 		}
1694 
1695 	return 0;
1696 };
1697 
1698 struct bus_type mhi_ep_bus_type = {
1699 	.name = "mhi_ep",
1700 	.dev_name = "mhi_ep",
1701 	.match = mhi_ep_match,
1702 	.uevent = mhi_ep_uevent,
1703 };
1704 
1705 static int __init mhi_ep_init(void)
1706 {
1707 	return bus_register(&mhi_ep_bus_type);
1708 }
1709 
1710 static void __exit mhi_ep_exit(void)
1711 {
1712 	bus_unregister(&mhi_ep_bus_type);
1713 }
1714 
1715 postcore_initcall(mhi_ep_init);
1716 module_exit(mhi_ep_exit);
1717 
1718 MODULE_LICENSE("GPL v2");
1719 MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1720 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1721