1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/limits.h> 19 #include <linux/bitops.h> 20 #include <linux/msi.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 25 #include "fsl-mc-private.h" 26 27 /* 28 * Default DMA mask for devices on a fsl-mc bus 29 */ 30 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 31 32 static struct fsl_mc_version mc_version; 33 34 /** 35 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 36 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 37 * @num_translation_ranges: number of entries in addr_translation_ranges 38 * @translation_ranges: array of bus to system address translation ranges 39 * @fsl_mc_regs: base address of register bank 40 */ 41 struct fsl_mc { 42 struct fsl_mc_device *root_mc_bus_dev; 43 u8 num_translation_ranges; 44 struct fsl_mc_addr_translation_range *translation_ranges; 45 void __iomem *fsl_mc_regs; 46 }; 47 48 /** 49 * struct fsl_mc_addr_translation_range - bus to system address translation 50 * range 51 * @mc_region_type: Type of MC region for the range being translated 52 * @start_mc_offset: Start MC offset of the range being translated 53 * @end_mc_offset: MC offset of the first byte after the range (last MC 54 * offset of the range is end_mc_offset - 1) 55 * @start_phys_addr: system physical address corresponding to start_mc_addr 56 */ 57 struct fsl_mc_addr_translation_range { 58 enum dprc_region_type mc_region_type; 59 u64 start_mc_offset; 60 u64 end_mc_offset; 61 phys_addr_t start_phys_addr; 62 }; 63 64 #define FSL_MC_GCR1 0x0 65 #define GCR1_P1_STOP BIT(31) 66 #define GCR1_P2_STOP BIT(30) 67 68 #define FSL_MC_FAPR 0x28 69 #define MC_FAPR_PL BIT(18) 70 #define MC_FAPR_BMT BIT(17) 71 72 static phys_addr_t mc_portal_base_phys_addr; 73 74 /** 75 * fsl_mc_bus_match - device to driver matching callback 76 * @dev: the fsl-mc device to match against 77 * @drv: the device driver to search for matching fsl-mc object type 78 * structures 79 * 80 * Returns 1 on success, 0 otherwise. 81 */ 82 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 83 { 84 const struct fsl_mc_device_id *id; 85 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 86 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 87 bool found = false; 88 89 /* When driver_override is set, only bind to the matching driver */ 90 if (mc_dev->driver_override) { 91 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 92 goto out; 93 } 94 95 if (!mc_drv->match_id_table) 96 goto out; 97 98 /* 99 * If the object is not 'plugged' don't match. 100 * Only exception is the root DPRC, which is a special case. 101 */ 102 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 103 !fsl_mc_is_root_dprc(&mc_dev->dev)) 104 goto out; 105 106 /* 107 * Traverse the match_id table of the given driver, trying to find 108 * a matching for the given device. 109 */ 110 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 111 if (id->vendor == mc_dev->obj_desc.vendor && 112 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 113 found = true; 114 115 break; 116 } 117 } 118 119 out: 120 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 121 return found; 122 } 123 124 /* 125 * fsl_mc_bus_uevent - callback invoked when a device is added 126 */ 127 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env) 128 { 129 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 130 131 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 132 mc_dev->obj_desc.vendor, 133 mc_dev->obj_desc.type)) 134 return -ENOMEM; 135 136 return 0; 137 } 138 139 static int fsl_mc_dma_configure(struct device *dev) 140 { 141 struct device *dma_dev = dev; 142 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 143 u32 input_id = mc_dev->icid; 144 145 while (dev_is_fsl_mc(dma_dev)) 146 dma_dev = dma_dev->parent; 147 148 if (dev_of_node(dma_dev)) 149 return of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 150 151 return acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 152 } 153 154 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 155 char *buf) 156 { 157 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 158 159 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 160 mc_dev->obj_desc.type); 161 } 162 static DEVICE_ATTR_RO(modalias); 163 164 static ssize_t driver_override_store(struct device *dev, 165 struct device_attribute *attr, 166 const char *buf, size_t count) 167 { 168 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 169 char *driver_override, *old = mc_dev->driver_override; 170 char *cp; 171 172 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 173 return -EINVAL; 174 175 if (count >= (PAGE_SIZE - 1)) 176 return -EINVAL; 177 178 driver_override = kstrndup(buf, count, GFP_KERNEL); 179 if (!driver_override) 180 return -ENOMEM; 181 182 cp = strchr(driver_override, '\n'); 183 if (cp) 184 *cp = '\0'; 185 186 if (strlen(driver_override)) { 187 mc_dev->driver_override = driver_override; 188 } else { 189 kfree(driver_override); 190 mc_dev->driver_override = NULL; 191 } 192 193 kfree(old); 194 195 return count; 196 } 197 198 static ssize_t driver_override_show(struct device *dev, 199 struct device_attribute *attr, char *buf) 200 { 201 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 202 203 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 204 } 205 static DEVICE_ATTR_RW(driver_override); 206 207 static struct attribute *fsl_mc_dev_attrs[] = { 208 &dev_attr_modalias.attr, 209 &dev_attr_driver_override.attr, 210 NULL, 211 }; 212 213 ATTRIBUTE_GROUPS(fsl_mc_dev); 214 215 static int scan_fsl_mc_bus(struct device *dev, void *data) 216 { 217 struct fsl_mc_device *root_mc_dev; 218 struct fsl_mc_bus *root_mc_bus; 219 220 if (!fsl_mc_is_root_dprc(dev)) 221 goto exit; 222 223 root_mc_dev = to_fsl_mc_device(dev); 224 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 225 mutex_lock(&root_mc_bus->scan_mutex); 226 dprc_scan_objects(root_mc_dev, false); 227 mutex_unlock(&root_mc_bus->scan_mutex); 228 229 exit: 230 return 0; 231 } 232 233 static ssize_t rescan_store(struct bus_type *bus, 234 const char *buf, size_t count) 235 { 236 unsigned long val; 237 238 if (kstrtoul(buf, 0, &val) < 0) 239 return -EINVAL; 240 241 if (val) 242 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 243 244 return count; 245 } 246 static BUS_ATTR_WO(rescan); 247 248 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 249 { 250 struct fsl_mc_device *root_mc_dev; 251 unsigned long val; 252 char *buf = data; 253 254 if (!fsl_mc_is_root_dprc(dev)) 255 goto exit; 256 257 root_mc_dev = to_fsl_mc_device(dev); 258 259 if (kstrtoul(buf, 0, &val) < 0) 260 return -EINVAL; 261 262 if (val) 263 enable_dprc_irq(root_mc_dev); 264 else 265 disable_dprc_irq(root_mc_dev); 266 267 exit: 268 return 0; 269 } 270 271 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 272 { 273 struct fsl_mc_device *root_mc_dev; 274 char *buf = data; 275 276 if (!fsl_mc_is_root_dprc(dev)) 277 goto exit; 278 279 root_mc_dev = to_fsl_mc_device(dev); 280 281 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 282 exit: 283 return 0; 284 } 285 286 static ssize_t autorescan_store(struct bus_type *bus, 287 const char *buf, size_t count) 288 { 289 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 290 291 return count; 292 } 293 294 static ssize_t autorescan_show(struct bus_type *bus, char *buf) 295 { 296 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 297 return strlen(buf); 298 } 299 300 static BUS_ATTR_RW(autorescan); 301 302 static struct attribute *fsl_mc_bus_attrs[] = { 303 &bus_attr_rescan.attr, 304 &bus_attr_autorescan.attr, 305 NULL, 306 }; 307 308 ATTRIBUTE_GROUPS(fsl_mc_bus); 309 310 struct bus_type fsl_mc_bus_type = { 311 .name = "fsl-mc", 312 .match = fsl_mc_bus_match, 313 .uevent = fsl_mc_bus_uevent, 314 .dma_configure = fsl_mc_dma_configure, 315 .dev_groups = fsl_mc_dev_groups, 316 .bus_groups = fsl_mc_bus_groups, 317 }; 318 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 319 320 struct device_type fsl_mc_bus_dprc_type = { 321 .name = "fsl_mc_bus_dprc" 322 }; 323 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 324 325 struct device_type fsl_mc_bus_dpni_type = { 326 .name = "fsl_mc_bus_dpni" 327 }; 328 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 329 330 struct device_type fsl_mc_bus_dpio_type = { 331 .name = "fsl_mc_bus_dpio" 332 }; 333 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 334 335 struct device_type fsl_mc_bus_dpsw_type = { 336 .name = "fsl_mc_bus_dpsw" 337 }; 338 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 339 340 struct device_type fsl_mc_bus_dpbp_type = { 341 .name = "fsl_mc_bus_dpbp" 342 }; 343 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 344 345 struct device_type fsl_mc_bus_dpcon_type = { 346 .name = "fsl_mc_bus_dpcon" 347 }; 348 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 349 350 struct device_type fsl_mc_bus_dpmcp_type = { 351 .name = "fsl_mc_bus_dpmcp" 352 }; 353 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 354 355 struct device_type fsl_mc_bus_dpmac_type = { 356 .name = "fsl_mc_bus_dpmac" 357 }; 358 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 359 360 struct device_type fsl_mc_bus_dprtc_type = { 361 .name = "fsl_mc_bus_dprtc" 362 }; 363 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 364 365 struct device_type fsl_mc_bus_dpseci_type = { 366 .name = "fsl_mc_bus_dpseci" 367 }; 368 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 369 370 struct device_type fsl_mc_bus_dpdmux_type = { 371 .name = "fsl_mc_bus_dpdmux" 372 }; 373 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 374 375 struct device_type fsl_mc_bus_dpdcei_type = { 376 .name = "fsl_mc_bus_dpdcei" 377 }; 378 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 379 380 struct device_type fsl_mc_bus_dpaiop_type = { 381 .name = "fsl_mc_bus_dpaiop" 382 }; 383 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 384 385 struct device_type fsl_mc_bus_dpci_type = { 386 .name = "fsl_mc_bus_dpci" 387 }; 388 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 389 390 struct device_type fsl_mc_bus_dpdmai_type = { 391 .name = "fsl_mc_bus_dpdmai" 392 }; 393 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 394 395 struct device_type fsl_mc_bus_dpdbg_type = { 396 .name = "fsl_mc_bus_dpdbg" 397 }; 398 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 399 400 static struct device_type *fsl_mc_get_device_type(const char *type) 401 { 402 static const struct { 403 struct device_type *dev_type; 404 const char *type; 405 } dev_types[] = { 406 { &fsl_mc_bus_dprc_type, "dprc" }, 407 { &fsl_mc_bus_dpni_type, "dpni" }, 408 { &fsl_mc_bus_dpio_type, "dpio" }, 409 { &fsl_mc_bus_dpsw_type, "dpsw" }, 410 { &fsl_mc_bus_dpbp_type, "dpbp" }, 411 { &fsl_mc_bus_dpcon_type, "dpcon" }, 412 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 413 { &fsl_mc_bus_dpmac_type, "dpmac" }, 414 { &fsl_mc_bus_dprtc_type, "dprtc" }, 415 { &fsl_mc_bus_dpseci_type, "dpseci" }, 416 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 417 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 418 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 419 { &fsl_mc_bus_dpci_type, "dpci" }, 420 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 421 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 422 { NULL, NULL } 423 }; 424 int i; 425 426 for (i = 0; dev_types[i].dev_type; i++) 427 if (!strcmp(dev_types[i].type, type)) 428 return dev_types[i].dev_type; 429 430 return NULL; 431 } 432 433 static int fsl_mc_driver_probe(struct device *dev) 434 { 435 struct fsl_mc_driver *mc_drv; 436 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 437 int error; 438 439 mc_drv = to_fsl_mc_driver(dev->driver); 440 441 error = mc_drv->probe(mc_dev); 442 if (error < 0) { 443 if (error != -EPROBE_DEFER) 444 dev_err(dev, "%s failed: %d\n", __func__, error); 445 return error; 446 } 447 448 return 0; 449 } 450 451 static int fsl_mc_driver_remove(struct device *dev) 452 { 453 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 454 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 455 int error; 456 457 error = mc_drv->remove(mc_dev); 458 if (error < 0) { 459 dev_err(dev, "%s failed: %d\n", __func__, error); 460 return error; 461 } 462 463 return 0; 464 } 465 466 static void fsl_mc_driver_shutdown(struct device *dev) 467 { 468 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 469 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 470 471 mc_drv->shutdown(mc_dev); 472 } 473 474 /* 475 * __fsl_mc_driver_register - registers a child device driver with the 476 * MC bus 477 * 478 * This function is implicitly invoked from the registration function of 479 * fsl_mc device drivers, which is generated by the 480 * module_fsl_mc_driver() macro. 481 */ 482 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 483 struct module *owner) 484 { 485 int error; 486 487 mc_driver->driver.owner = owner; 488 mc_driver->driver.bus = &fsl_mc_bus_type; 489 490 if (mc_driver->probe) 491 mc_driver->driver.probe = fsl_mc_driver_probe; 492 493 if (mc_driver->remove) 494 mc_driver->driver.remove = fsl_mc_driver_remove; 495 496 if (mc_driver->shutdown) 497 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 498 499 error = driver_register(&mc_driver->driver); 500 if (error < 0) { 501 pr_err("driver_register() failed for %s: %d\n", 502 mc_driver->driver.name, error); 503 return error; 504 } 505 506 return 0; 507 } 508 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 509 510 /* 511 * fsl_mc_driver_unregister - unregisters a device driver from the 512 * MC bus 513 */ 514 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 515 { 516 driver_unregister(&mc_driver->driver); 517 } 518 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 519 520 /** 521 * mc_get_version() - Retrieves the Management Complex firmware 522 * version information 523 * @mc_io: Pointer to opaque I/O object 524 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 525 * @mc_ver_info: Returned version information structure 526 * 527 * Return: '0' on Success; Error code otherwise. 528 */ 529 static int mc_get_version(struct fsl_mc_io *mc_io, 530 u32 cmd_flags, 531 struct fsl_mc_version *mc_ver_info) 532 { 533 struct fsl_mc_command cmd = { 0 }; 534 struct dpmng_rsp_get_version *rsp_params; 535 int err; 536 537 /* prepare command */ 538 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 539 cmd_flags, 540 0); 541 542 /* send command to mc*/ 543 err = mc_send_command(mc_io, &cmd); 544 if (err) 545 return err; 546 547 /* retrieve response parameters */ 548 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 549 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 550 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 551 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 552 553 return 0; 554 } 555 556 /** 557 * fsl_mc_get_version - function to retrieve the MC f/w version information 558 * 559 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 560 */ 561 struct fsl_mc_version *fsl_mc_get_version(void) 562 { 563 if (mc_version.major) 564 return &mc_version; 565 566 return NULL; 567 } 568 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 569 570 /* 571 * fsl_mc_get_root_dprc - function to traverse to the root dprc 572 */ 573 void fsl_mc_get_root_dprc(struct device *dev, 574 struct device **root_dprc_dev) 575 { 576 if (!dev) { 577 *root_dprc_dev = NULL; 578 } else if (!dev_is_fsl_mc(dev)) { 579 *root_dprc_dev = NULL; 580 } else { 581 *root_dprc_dev = dev; 582 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 583 *root_dprc_dev = (*root_dprc_dev)->parent; 584 } 585 } 586 587 static int get_dprc_attr(struct fsl_mc_io *mc_io, 588 int container_id, struct dprc_attributes *attr) 589 { 590 u16 dprc_handle; 591 int error; 592 593 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 594 if (error < 0) { 595 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 596 return error; 597 } 598 599 memset(attr, 0, sizeof(struct dprc_attributes)); 600 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 601 if (error < 0) { 602 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 603 error); 604 goto common_cleanup; 605 } 606 607 error = 0; 608 609 common_cleanup: 610 (void)dprc_close(mc_io, 0, dprc_handle); 611 return error; 612 } 613 614 static int get_dprc_icid(struct fsl_mc_io *mc_io, 615 int container_id, u32 *icid) 616 { 617 struct dprc_attributes attr; 618 int error; 619 620 error = get_dprc_attr(mc_io, container_id, &attr); 621 if (error == 0) 622 *icid = attr.icid; 623 624 return error; 625 } 626 627 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 628 enum dprc_region_type mc_region_type, 629 u64 mc_offset, phys_addr_t *phys_addr) 630 { 631 int i; 632 struct device *root_dprc_dev; 633 struct fsl_mc *mc; 634 635 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 636 mc = dev_get_drvdata(root_dprc_dev->parent); 637 638 if (mc->num_translation_ranges == 0) { 639 /* 640 * Do identity mapping: 641 */ 642 *phys_addr = mc_offset; 643 return 0; 644 } 645 646 for (i = 0; i < mc->num_translation_ranges; i++) { 647 struct fsl_mc_addr_translation_range *range = 648 &mc->translation_ranges[i]; 649 650 if (mc_region_type == range->mc_region_type && 651 mc_offset >= range->start_mc_offset && 652 mc_offset < range->end_mc_offset) { 653 *phys_addr = range->start_phys_addr + 654 (mc_offset - range->start_mc_offset); 655 return 0; 656 } 657 } 658 659 return -EFAULT; 660 } 661 662 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 663 struct fsl_mc_device *mc_bus_dev) 664 { 665 int i; 666 int error; 667 struct resource *regions; 668 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 669 struct device *parent_dev = mc_dev->dev.parent; 670 enum dprc_region_type mc_region_type; 671 672 if (is_fsl_mc_bus_dprc(mc_dev) || 673 is_fsl_mc_bus_dpmcp(mc_dev)) { 674 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 675 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 676 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 677 } else { 678 /* 679 * This function should not have been called for this MC object 680 * type, as this object type is not supposed to have MMIO 681 * regions 682 */ 683 return -EINVAL; 684 } 685 686 regions = kmalloc_array(obj_desc->region_count, 687 sizeof(regions[0]), GFP_KERNEL); 688 if (!regions) 689 return -ENOMEM; 690 691 for (i = 0; i < obj_desc->region_count; i++) { 692 struct dprc_region_desc region_desc; 693 694 error = dprc_get_obj_region(mc_bus_dev->mc_io, 695 0, 696 mc_bus_dev->mc_handle, 697 obj_desc->type, 698 obj_desc->id, i, ®ion_desc); 699 if (error < 0) { 700 dev_err(parent_dev, 701 "dprc_get_obj_region() failed: %d\n", error); 702 goto error_cleanup_regions; 703 } 704 /* 705 * Older MC only returned region offset and no base address 706 * If base address is in the region_desc use it otherwise 707 * revert to old mechanism 708 */ 709 if (region_desc.base_address) { 710 regions[i].start = region_desc.base_address + 711 region_desc.base_offset; 712 } else { 713 error = translate_mc_addr(mc_dev, mc_region_type, 714 region_desc.base_offset, 715 ®ions[i].start); 716 717 /* 718 * Some versions of the MC firmware wrongly report 719 * 0 for register base address of the DPMCP associated 720 * with child DPRC objects thus rendering them unusable. 721 * This is particularly troublesome in ACPI boot 722 * scenarios where the legacy way of extracting this 723 * base address from the device tree does not apply. 724 * Given that DPMCPs share the same base address, 725 * workaround this by using the base address extracted 726 * from the root DPRC container. 727 */ 728 if (is_fsl_mc_bus_dprc(mc_dev) && 729 regions[i].start == region_desc.base_offset) 730 regions[i].start += mc_portal_base_phys_addr; 731 } 732 733 if (error < 0) { 734 dev_err(parent_dev, 735 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 736 region_desc.base_offset, 737 obj_desc->type, obj_desc->id, i); 738 goto error_cleanup_regions; 739 } 740 741 regions[i].end = regions[i].start + region_desc.size - 1; 742 regions[i].name = "fsl-mc object MMIO region"; 743 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 744 regions[i].flags |= IORESOURCE_MEM; 745 } 746 747 mc_dev->regions = regions; 748 return 0; 749 750 error_cleanup_regions: 751 kfree(regions); 752 return error; 753 } 754 755 /* 756 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 757 */ 758 bool fsl_mc_is_root_dprc(struct device *dev) 759 { 760 struct device *root_dprc_dev; 761 762 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 763 if (!root_dprc_dev) 764 return false; 765 return dev == root_dprc_dev; 766 } 767 768 static void fsl_mc_device_release(struct device *dev) 769 { 770 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 771 772 kfree(mc_dev->regions); 773 774 if (is_fsl_mc_bus_dprc(mc_dev)) 775 kfree(to_fsl_mc_bus(mc_dev)); 776 else 777 kfree(mc_dev); 778 } 779 780 /* 781 * Add a newly discovered fsl-mc device to be visible in Linux 782 */ 783 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 784 struct fsl_mc_io *mc_io, 785 struct device *parent_dev, 786 struct fsl_mc_device **new_mc_dev) 787 { 788 int error; 789 struct fsl_mc_device *mc_dev = NULL; 790 struct fsl_mc_bus *mc_bus = NULL; 791 struct fsl_mc_device *parent_mc_dev; 792 793 if (dev_is_fsl_mc(parent_dev)) 794 parent_mc_dev = to_fsl_mc_device(parent_dev); 795 else 796 parent_mc_dev = NULL; 797 798 if (strcmp(obj_desc->type, "dprc") == 0) { 799 /* 800 * Allocate an MC bus device object: 801 */ 802 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 803 if (!mc_bus) 804 return -ENOMEM; 805 806 mutex_init(&mc_bus->scan_mutex); 807 mc_dev = &mc_bus->mc_dev; 808 } else { 809 /* 810 * Allocate a regular fsl_mc_device object: 811 */ 812 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 813 if (!mc_dev) 814 return -ENOMEM; 815 } 816 817 mc_dev->obj_desc = *obj_desc; 818 mc_dev->mc_io = mc_io; 819 device_initialize(&mc_dev->dev); 820 mc_dev->dev.parent = parent_dev; 821 mc_dev->dev.bus = &fsl_mc_bus_type; 822 mc_dev->dev.release = fsl_mc_device_release; 823 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 824 if (!mc_dev->dev.type) { 825 error = -ENODEV; 826 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 827 goto error_cleanup_dev; 828 } 829 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 830 831 if (strcmp(obj_desc->type, "dprc") == 0) { 832 struct fsl_mc_io *mc_io2; 833 834 mc_dev->flags |= FSL_MC_IS_DPRC; 835 836 /* 837 * To get the DPRC's ICID, we need to open the DPRC 838 * in get_dprc_icid(). For child DPRCs, we do so using the 839 * parent DPRC's MC portal instead of the child DPRC's MC 840 * portal, in case the child DPRC is already opened with 841 * its own portal (e.g., the DPRC used by AIOP). 842 * 843 * NOTE: There cannot be more than one active open for a 844 * given MC object, using the same MC portal. 845 */ 846 if (parent_mc_dev) { 847 /* 848 * device being added is a child DPRC device 849 */ 850 mc_io2 = parent_mc_dev->mc_io; 851 } else { 852 /* 853 * device being added is the root DPRC device 854 */ 855 if (!mc_io) { 856 error = -EINVAL; 857 goto error_cleanup_dev; 858 } 859 860 mc_io2 = mc_io; 861 } 862 863 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 864 if (error < 0) 865 goto error_cleanup_dev; 866 } else { 867 /* 868 * A non-DPRC object has to be a child of a DPRC, use the 869 * parent's ICID and interrupt domain. 870 */ 871 mc_dev->icid = parent_mc_dev->icid; 872 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 873 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 874 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 875 dev_set_msi_domain(&mc_dev->dev, 876 dev_get_msi_domain(&parent_mc_dev->dev)); 877 } 878 879 /* 880 * Get MMIO regions for the device from the MC: 881 * 882 * NOTE: the root DPRC is a special case as its MMIO region is 883 * obtained from the device tree 884 */ 885 if (parent_mc_dev && obj_desc->region_count != 0) { 886 error = fsl_mc_device_get_mmio_regions(mc_dev, 887 parent_mc_dev); 888 if (error < 0) 889 goto error_cleanup_dev; 890 } 891 892 /* 893 * The device-specific probe callback will get invoked by device_add() 894 */ 895 error = device_add(&mc_dev->dev); 896 if (error < 0) { 897 dev_err(parent_dev, 898 "device_add() failed for device %s: %d\n", 899 dev_name(&mc_dev->dev), error); 900 goto error_cleanup_dev; 901 } 902 903 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 904 905 *new_mc_dev = mc_dev; 906 return 0; 907 908 error_cleanup_dev: 909 kfree(mc_dev->regions); 910 kfree(mc_bus); 911 kfree(mc_dev); 912 913 return error; 914 } 915 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 916 917 static struct notifier_block fsl_mc_nb; 918 919 /** 920 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 921 * Linux 922 * 923 * @mc_dev: Pointer to an fsl-mc device 924 */ 925 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 926 { 927 kfree(mc_dev->driver_override); 928 mc_dev->driver_override = NULL; 929 930 /* 931 * The device-specific remove callback will get invoked by device_del() 932 */ 933 device_del(&mc_dev->dev); 934 put_device(&mc_dev->dev); 935 } 936 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 937 938 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 939 u16 if_id) 940 { 941 struct fsl_mc_device *mc_bus_dev, *endpoint; 942 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 943 struct dprc_endpoint endpoint1 = {{ 0 }}; 944 struct dprc_endpoint endpoint2 = {{ 0 }}; 945 int state, err; 946 947 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 948 strcpy(endpoint1.type, mc_dev->obj_desc.type); 949 endpoint1.id = mc_dev->obj_desc.id; 950 endpoint1.if_id = if_id; 951 952 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 953 mc_bus_dev->mc_handle, 954 &endpoint1, &endpoint2, 955 &state); 956 957 if (err == -ENOTCONN || state == -1) 958 return ERR_PTR(-ENOTCONN); 959 960 if (err < 0) { 961 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 962 return ERR_PTR(err); 963 } 964 965 strcpy(endpoint_desc.type, endpoint2.type); 966 endpoint_desc.id = endpoint2.id; 967 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 968 969 /* 970 * We know that the device has an endpoint because we verified by 971 * interrogating the firmware. This is the case when the device was not 972 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 973 * Force a rescan of the devices in this container and retry the lookup. 974 */ 975 if (!endpoint) { 976 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 977 978 if (mutex_trylock(&mc_bus->scan_mutex)) { 979 err = dprc_scan_objects(mc_bus_dev, true); 980 mutex_unlock(&mc_bus->scan_mutex); 981 } 982 983 if (err < 0) 984 return ERR_PTR(err); 985 } 986 987 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 988 /* 989 * This means that the endpoint might reside in a different isolation 990 * context (DPRC/container). Not much to do, so return a permssion 991 * error. 992 */ 993 if (!endpoint) 994 return ERR_PTR(-EPERM); 995 996 return endpoint; 997 } 998 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 999 1000 static int parse_mc_ranges(struct device *dev, 1001 int *paddr_cells, 1002 int *mc_addr_cells, 1003 int *mc_size_cells, 1004 const __be32 **ranges_start) 1005 { 1006 const __be32 *prop; 1007 int range_tuple_cell_count; 1008 int ranges_len; 1009 int tuple_len; 1010 struct device_node *mc_node = dev->of_node; 1011 1012 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); 1013 if (!(*ranges_start) || !ranges_len) { 1014 dev_warn(dev, 1015 "missing or empty ranges property for device tree node '%pOFn'\n", 1016 mc_node); 1017 return 0; 1018 } 1019 1020 *paddr_cells = of_n_addr_cells(mc_node); 1021 1022 prop = of_get_property(mc_node, "#address-cells", NULL); 1023 if (prop) 1024 *mc_addr_cells = be32_to_cpup(prop); 1025 else 1026 *mc_addr_cells = *paddr_cells; 1027 1028 prop = of_get_property(mc_node, "#size-cells", NULL); 1029 if (prop) 1030 *mc_size_cells = be32_to_cpup(prop); 1031 else 1032 *mc_size_cells = of_n_size_cells(mc_node); 1033 1034 range_tuple_cell_count = *paddr_cells + *mc_addr_cells + 1035 *mc_size_cells; 1036 1037 tuple_len = range_tuple_cell_count * sizeof(__be32); 1038 if (ranges_len % tuple_len != 0) { 1039 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); 1040 return -EINVAL; 1041 } 1042 1043 return ranges_len / tuple_len; 1044 } 1045 1046 static int get_mc_addr_translation_ranges(struct device *dev, 1047 struct fsl_mc_addr_translation_range 1048 **ranges, 1049 u8 *num_ranges) 1050 { 1051 int ret; 1052 int paddr_cells; 1053 int mc_addr_cells; 1054 int mc_size_cells; 1055 int i; 1056 const __be32 *ranges_start; 1057 const __be32 *cell; 1058 1059 ret = parse_mc_ranges(dev, 1060 &paddr_cells, 1061 &mc_addr_cells, 1062 &mc_size_cells, 1063 &ranges_start); 1064 if (ret < 0) 1065 return ret; 1066 1067 *num_ranges = ret; 1068 if (!ret) { 1069 /* 1070 * Missing or empty ranges property ("ranges;") for the 1071 * 'fsl,qoriq-mc' node. In this case, identity mapping 1072 * will be used. 1073 */ 1074 *ranges = NULL; 1075 return 0; 1076 } 1077 1078 *ranges = devm_kcalloc(dev, *num_ranges, 1079 sizeof(struct fsl_mc_addr_translation_range), 1080 GFP_KERNEL); 1081 if (!(*ranges)) 1082 return -ENOMEM; 1083 1084 cell = ranges_start; 1085 for (i = 0; i < *num_ranges; ++i) { 1086 struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; 1087 1088 range->mc_region_type = of_read_number(cell, 1); 1089 range->start_mc_offset = of_read_number(cell + 1, 1090 mc_addr_cells - 1); 1091 cell += mc_addr_cells; 1092 range->start_phys_addr = of_read_number(cell, paddr_cells); 1093 cell += paddr_cells; 1094 range->end_mc_offset = range->start_mc_offset + 1095 of_read_number(cell, mc_size_cells); 1096 1097 cell += mc_size_cells; 1098 } 1099 1100 return 0; 1101 } 1102 1103 /* 1104 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1105 * added 1106 */ 1107 static int fsl_mc_bus_probe(struct platform_device *pdev) 1108 { 1109 struct fsl_mc_obj_desc obj_desc; 1110 int error; 1111 struct fsl_mc *mc; 1112 struct fsl_mc_device *mc_bus_dev = NULL; 1113 struct fsl_mc_io *mc_io = NULL; 1114 int container_id; 1115 phys_addr_t mc_portal_phys_addr; 1116 u32 mc_portal_size, mc_stream_id; 1117 struct resource *plat_res; 1118 1119 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1120 if (!mc) 1121 return -ENOMEM; 1122 1123 platform_set_drvdata(pdev, mc); 1124 1125 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1126 if (plat_res) { 1127 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1128 if (IS_ERR(mc->fsl_mc_regs)) 1129 return PTR_ERR(mc->fsl_mc_regs); 1130 } 1131 1132 if (mc->fsl_mc_regs) { 1133 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1134 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1135 /* 1136 * HW ORs the PL and BMT bit, places the result in bit 1137 * 14 of the StreamID and ORs in the ICID. Calculate it 1138 * accordingly. 1139 */ 1140 mc_stream_id = (mc_stream_id & 0xffff) | 1141 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1142 BIT(14) : 0); 1143 error = acpi_dma_configure_id(&pdev->dev, 1144 DEV_DMA_COHERENT, 1145 &mc_stream_id); 1146 if (error == -EPROBE_DEFER) 1147 return error; 1148 if (error) 1149 dev_warn(&pdev->dev, 1150 "failed to configure dma: %d.\n", 1151 error); 1152 } 1153 1154 /* 1155 * Some bootloaders pause the MC firmware before booting the 1156 * kernel so that MC will not cause faults as soon as the 1157 * SMMU probes due to the fact that there's no configuration 1158 * in place for MC. 1159 * At this point MC should have all its SMMU setup done so make 1160 * sure it is resumed. 1161 */ 1162 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1163 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1164 mc->fsl_mc_regs + FSL_MC_GCR1); 1165 } 1166 1167 /* 1168 * Get physical address of MC portal for the root DPRC: 1169 */ 1170 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1171 mc_portal_phys_addr = plat_res->start; 1172 mc_portal_size = resource_size(plat_res); 1173 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1174 1175 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1176 mc_portal_size, NULL, 1177 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1178 if (error < 0) 1179 return error; 1180 1181 error = mc_get_version(mc_io, 0, &mc_version); 1182 if (error != 0) { 1183 dev_err(&pdev->dev, 1184 "mc_get_version() failed with error %d\n", error); 1185 goto error_cleanup_mc_io; 1186 } 1187 1188 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1189 mc_version.major, mc_version.minor, mc_version.revision); 1190 1191 if (dev_of_node(&pdev->dev)) { 1192 error = get_mc_addr_translation_ranges(&pdev->dev, 1193 &mc->translation_ranges, 1194 &mc->num_translation_ranges); 1195 if (error < 0) 1196 goto error_cleanup_mc_io; 1197 } 1198 1199 error = dprc_get_container_id(mc_io, 0, &container_id); 1200 if (error < 0) { 1201 dev_err(&pdev->dev, 1202 "dprc_get_container_id() failed: %d\n", error); 1203 goto error_cleanup_mc_io; 1204 } 1205 1206 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1207 error = dprc_get_api_version(mc_io, 0, 1208 &obj_desc.ver_major, 1209 &obj_desc.ver_minor); 1210 if (error < 0) 1211 goto error_cleanup_mc_io; 1212 1213 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1214 strcpy(obj_desc.type, "dprc"); 1215 obj_desc.id = container_id; 1216 obj_desc.irq_count = 1; 1217 obj_desc.region_count = 0; 1218 1219 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1220 if (error < 0) 1221 goto error_cleanup_mc_io; 1222 1223 mc->root_mc_bus_dev = mc_bus_dev; 1224 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1225 return 0; 1226 1227 error_cleanup_mc_io: 1228 fsl_destroy_mc_io(mc_io); 1229 return error; 1230 } 1231 1232 /* 1233 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1234 * removed 1235 */ 1236 static int fsl_mc_bus_remove(struct platform_device *pdev) 1237 { 1238 struct fsl_mc *mc = platform_get_drvdata(pdev); 1239 1240 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1241 return -EINVAL; 1242 1243 fsl_mc_device_remove(mc->root_mc_bus_dev); 1244 1245 fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io); 1246 mc->root_mc_bus_dev->mc_io = NULL; 1247 1248 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1249 1250 if (mc->fsl_mc_regs) { 1251 /* 1252 * Pause the MC firmware so that it doesn't crash in certain 1253 * scenarios, such as kexec. 1254 */ 1255 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1256 (GCR1_P1_STOP | GCR1_P2_STOP), 1257 mc->fsl_mc_regs + FSL_MC_GCR1); 1258 } 1259 1260 return 0; 1261 } 1262 1263 static void fsl_mc_bus_shutdown(struct platform_device *pdev) 1264 { 1265 fsl_mc_bus_remove(pdev); 1266 } 1267 1268 static const struct of_device_id fsl_mc_bus_match_table[] = { 1269 {.compatible = "fsl,qoriq-mc",}, 1270 {}, 1271 }; 1272 1273 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1274 1275 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1276 {"NXP0008", 0 }, 1277 { } 1278 }; 1279 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1280 1281 static struct platform_driver fsl_mc_bus_driver = { 1282 .driver = { 1283 .name = "fsl_mc_bus", 1284 .pm = NULL, 1285 .of_match_table = fsl_mc_bus_match_table, 1286 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1287 }, 1288 .probe = fsl_mc_bus_probe, 1289 .remove = fsl_mc_bus_remove, 1290 .shutdown = fsl_mc_bus_shutdown, 1291 }; 1292 1293 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1294 unsigned long action, void *data) 1295 { 1296 struct device *dev = data; 1297 struct resource *res; 1298 void __iomem *fsl_mc_regs; 1299 1300 if (action != BUS_NOTIFY_ADD_DEVICE) 1301 return 0; 1302 1303 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1304 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1305 return 0; 1306 1307 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1308 if (!res) 1309 return 0; 1310 1311 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1312 if (!fsl_mc_regs) 1313 return 0; 1314 1315 /* 1316 * Make sure that the MC firmware is paused before the IOMMU setup for 1317 * it is done or otherwise the firmware will crash right after the SMMU 1318 * gets probed and enabled. 1319 */ 1320 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1321 fsl_mc_regs + FSL_MC_GCR1); 1322 iounmap(fsl_mc_regs); 1323 1324 return 0; 1325 } 1326 1327 static struct notifier_block fsl_mc_nb = { 1328 .notifier_call = fsl_mc_bus_notifier, 1329 }; 1330 1331 static int __init fsl_mc_bus_driver_init(void) 1332 { 1333 int error; 1334 1335 error = bus_register(&fsl_mc_bus_type); 1336 if (error < 0) { 1337 pr_err("bus type registration failed: %d\n", error); 1338 goto error_cleanup_cache; 1339 } 1340 1341 error = platform_driver_register(&fsl_mc_bus_driver); 1342 if (error < 0) { 1343 pr_err("platform_driver_register() failed: %d\n", error); 1344 goto error_cleanup_bus; 1345 } 1346 1347 error = dprc_driver_init(); 1348 if (error < 0) 1349 goto error_cleanup_driver; 1350 1351 error = fsl_mc_allocator_driver_init(); 1352 if (error < 0) 1353 goto error_cleanup_dprc_driver; 1354 1355 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1356 1357 error_cleanup_dprc_driver: 1358 dprc_driver_exit(); 1359 1360 error_cleanup_driver: 1361 platform_driver_unregister(&fsl_mc_bus_driver); 1362 1363 error_cleanup_bus: 1364 bus_unregister(&fsl_mc_bus_type); 1365 1366 error_cleanup_cache: 1367 return error; 1368 } 1369 postcore_initcall(fsl_mc_bus_driver_init); 1370