1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/limits.h> 19 #include <linux/bitops.h> 20 #include <linux/msi.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 25 #include "fsl-mc-private.h" 26 27 /* 28 * Default DMA mask for devices on a fsl-mc bus 29 */ 30 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 31 32 static struct fsl_mc_version mc_version; 33 34 /** 35 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 36 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 37 * @num_translation_ranges: number of entries in addr_translation_ranges 38 * @translation_ranges: array of bus to system address translation ranges 39 * @fsl_mc_regs: base address of register bank 40 */ 41 struct fsl_mc { 42 struct fsl_mc_device *root_mc_bus_dev; 43 u8 num_translation_ranges; 44 struct fsl_mc_addr_translation_range *translation_ranges; 45 void __iomem *fsl_mc_regs; 46 }; 47 48 /** 49 * struct fsl_mc_addr_translation_range - bus to system address translation 50 * range 51 * @mc_region_type: Type of MC region for the range being translated 52 * @start_mc_offset: Start MC offset of the range being translated 53 * @end_mc_offset: MC offset of the first byte after the range (last MC 54 * offset of the range is end_mc_offset - 1) 55 * @start_phys_addr: system physical address corresponding to start_mc_addr 56 */ 57 struct fsl_mc_addr_translation_range { 58 enum dprc_region_type mc_region_type; 59 u64 start_mc_offset; 60 u64 end_mc_offset; 61 phys_addr_t start_phys_addr; 62 }; 63 64 #define FSL_MC_GCR1 0x0 65 #define GCR1_P1_STOP BIT(31) 66 67 #define FSL_MC_FAPR 0x28 68 #define MC_FAPR_PL BIT(18) 69 #define MC_FAPR_BMT BIT(17) 70 71 /** 72 * fsl_mc_bus_match - device to driver matching callback 73 * @dev: the fsl-mc device to match against 74 * @drv: the device driver to search for matching fsl-mc object type 75 * structures 76 * 77 * Returns 1 on success, 0 otherwise. 78 */ 79 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 80 { 81 const struct fsl_mc_device_id *id; 82 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 83 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 84 bool found = false; 85 86 /* When driver_override is set, only bind to the matching driver */ 87 if (mc_dev->driver_override) { 88 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 89 goto out; 90 } 91 92 if (!mc_drv->match_id_table) 93 goto out; 94 95 /* 96 * If the object is not 'plugged' don't match. 97 * Only exception is the root DPRC, which is a special case. 98 */ 99 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 100 !fsl_mc_is_root_dprc(&mc_dev->dev)) 101 goto out; 102 103 /* 104 * Traverse the match_id table of the given driver, trying to find 105 * a matching for the given device. 106 */ 107 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 108 if (id->vendor == mc_dev->obj_desc.vendor && 109 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 110 found = true; 111 112 break; 113 } 114 } 115 116 out: 117 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 118 return found; 119 } 120 121 /* 122 * fsl_mc_bus_uevent - callback invoked when a device is added 123 */ 124 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env) 125 { 126 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 127 128 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 129 mc_dev->obj_desc.vendor, 130 mc_dev->obj_desc.type)) 131 return -ENOMEM; 132 133 return 0; 134 } 135 136 static int fsl_mc_dma_configure(struct device *dev) 137 { 138 struct device *dma_dev = dev; 139 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 140 u32 input_id = mc_dev->icid; 141 142 while (dev_is_fsl_mc(dma_dev)) 143 dma_dev = dma_dev->parent; 144 145 if (dev_of_node(dma_dev)) 146 return of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 147 148 return acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 149 } 150 151 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 152 char *buf) 153 { 154 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 155 156 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 157 mc_dev->obj_desc.type); 158 } 159 static DEVICE_ATTR_RO(modalias); 160 161 static ssize_t driver_override_store(struct device *dev, 162 struct device_attribute *attr, 163 const char *buf, size_t count) 164 { 165 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 166 char *driver_override, *old = mc_dev->driver_override; 167 char *cp; 168 169 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 170 return -EINVAL; 171 172 if (count >= (PAGE_SIZE - 1)) 173 return -EINVAL; 174 175 driver_override = kstrndup(buf, count, GFP_KERNEL); 176 if (!driver_override) 177 return -ENOMEM; 178 179 cp = strchr(driver_override, '\n'); 180 if (cp) 181 *cp = '\0'; 182 183 if (strlen(driver_override)) { 184 mc_dev->driver_override = driver_override; 185 } else { 186 kfree(driver_override); 187 mc_dev->driver_override = NULL; 188 } 189 190 kfree(old); 191 192 return count; 193 } 194 195 static ssize_t driver_override_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 199 200 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 201 } 202 static DEVICE_ATTR_RW(driver_override); 203 204 static struct attribute *fsl_mc_dev_attrs[] = { 205 &dev_attr_modalias.attr, 206 &dev_attr_driver_override.attr, 207 NULL, 208 }; 209 210 ATTRIBUTE_GROUPS(fsl_mc_dev); 211 212 static int scan_fsl_mc_bus(struct device *dev, void *data) 213 { 214 struct fsl_mc_device *root_mc_dev; 215 struct fsl_mc_bus *root_mc_bus; 216 217 if (!fsl_mc_is_root_dprc(dev)) 218 goto exit; 219 220 root_mc_dev = to_fsl_mc_device(dev); 221 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 222 mutex_lock(&root_mc_bus->scan_mutex); 223 dprc_scan_objects(root_mc_dev, NULL); 224 mutex_unlock(&root_mc_bus->scan_mutex); 225 226 exit: 227 return 0; 228 } 229 230 static ssize_t rescan_store(struct bus_type *bus, 231 const char *buf, size_t count) 232 { 233 unsigned long val; 234 235 if (kstrtoul(buf, 0, &val) < 0) 236 return -EINVAL; 237 238 if (val) 239 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 240 241 return count; 242 } 243 static BUS_ATTR_WO(rescan); 244 245 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 246 { 247 struct fsl_mc_device *root_mc_dev; 248 unsigned long val; 249 char *buf = data; 250 251 if (!fsl_mc_is_root_dprc(dev)) 252 goto exit; 253 254 root_mc_dev = to_fsl_mc_device(dev); 255 256 if (kstrtoul(buf, 0, &val) < 0) 257 return -EINVAL; 258 259 if (val) 260 enable_dprc_irq(root_mc_dev); 261 else 262 disable_dprc_irq(root_mc_dev); 263 264 exit: 265 return 0; 266 } 267 268 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 269 { 270 struct fsl_mc_device *root_mc_dev; 271 char *buf = data; 272 273 if (!fsl_mc_is_root_dprc(dev)) 274 goto exit; 275 276 root_mc_dev = to_fsl_mc_device(dev); 277 278 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 279 exit: 280 return 0; 281 } 282 283 static ssize_t autorescan_store(struct bus_type *bus, 284 const char *buf, size_t count) 285 { 286 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 287 288 return count; 289 } 290 291 static ssize_t autorescan_show(struct bus_type *bus, char *buf) 292 { 293 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 294 return strlen(buf); 295 } 296 297 static BUS_ATTR_RW(autorescan); 298 299 static struct attribute *fsl_mc_bus_attrs[] = { 300 &bus_attr_rescan.attr, 301 &bus_attr_autorescan.attr, 302 NULL, 303 }; 304 305 ATTRIBUTE_GROUPS(fsl_mc_bus); 306 307 struct bus_type fsl_mc_bus_type = { 308 .name = "fsl-mc", 309 .match = fsl_mc_bus_match, 310 .uevent = fsl_mc_bus_uevent, 311 .dma_configure = fsl_mc_dma_configure, 312 .dev_groups = fsl_mc_dev_groups, 313 .bus_groups = fsl_mc_bus_groups, 314 }; 315 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 316 317 struct device_type fsl_mc_bus_dprc_type = { 318 .name = "fsl_mc_bus_dprc" 319 }; 320 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 321 322 struct device_type fsl_mc_bus_dpni_type = { 323 .name = "fsl_mc_bus_dpni" 324 }; 325 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 326 327 struct device_type fsl_mc_bus_dpio_type = { 328 .name = "fsl_mc_bus_dpio" 329 }; 330 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 331 332 struct device_type fsl_mc_bus_dpsw_type = { 333 .name = "fsl_mc_bus_dpsw" 334 }; 335 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 336 337 struct device_type fsl_mc_bus_dpbp_type = { 338 .name = "fsl_mc_bus_dpbp" 339 }; 340 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 341 342 struct device_type fsl_mc_bus_dpcon_type = { 343 .name = "fsl_mc_bus_dpcon" 344 }; 345 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 346 347 struct device_type fsl_mc_bus_dpmcp_type = { 348 .name = "fsl_mc_bus_dpmcp" 349 }; 350 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 351 352 struct device_type fsl_mc_bus_dpmac_type = { 353 .name = "fsl_mc_bus_dpmac" 354 }; 355 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 356 357 struct device_type fsl_mc_bus_dprtc_type = { 358 .name = "fsl_mc_bus_dprtc" 359 }; 360 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 361 362 struct device_type fsl_mc_bus_dpseci_type = { 363 .name = "fsl_mc_bus_dpseci" 364 }; 365 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 366 367 struct device_type fsl_mc_bus_dpdmux_type = { 368 .name = "fsl_mc_bus_dpdmux" 369 }; 370 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 371 372 struct device_type fsl_mc_bus_dpdcei_type = { 373 .name = "fsl_mc_bus_dpdcei" 374 }; 375 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 376 377 struct device_type fsl_mc_bus_dpaiop_type = { 378 .name = "fsl_mc_bus_dpaiop" 379 }; 380 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 381 382 struct device_type fsl_mc_bus_dpci_type = { 383 .name = "fsl_mc_bus_dpci" 384 }; 385 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 386 387 struct device_type fsl_mc_bus_dpdmai_type = { 388 .name = "fsl_mc_bus_dpdmai" 389 }; 390 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 391 392 struct device_type fsl_mc_bus_dpdbg_type = { 393 .name = "fsl_mc_bus_dpdbg" 394 }; 395 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 396 397 static struct device_type *fsl_mc_get_device_type(const char *type) 398 { 399 static const struct { 400 struct device_type *dev_type; 401 const char *type; 402 } dev_types[] = { 403 { &fsl_mc_bus_dprc_type, "dprc" }, 404 { &fsl_mc_bus_dpni_type, "dpni" }, 405 { &fsl_mc_bus_dpio_type, "dpio" }, 406 { &fsl_mc_bus_dpsw_type, "dpsw" }, 407 { &fsl_mc_bus_dpbp_type, "dpbp" }, 408 { &fsl_mc_bus_dpcon_type, "dpcon" }, 409 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 410 { &fsl_mc_bus_dpmac_type, "dpmac" }, 411 { &fsl_mc_bus_dprtc_type, "dprtc" }, 412 { &fsl_mc_bus_dpseci_type, "dpseci" }, 413 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 414 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 415 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 416 { &fsl_mc_bus_dpci_type, "dpci" }, 417 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 418 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 419 { NULL, NULL } 420 }; 421 int i; 422 423 for (i = 0; dev_types[i].dev_type; i++) 424 if (!strcmp(dev_types[i].type, type)) 425 return dev_types[i].dev_type; 426 427 return NULL; 428 } 429 430 static int fsl_mc_driver_probe(struct device *dev) 431 { 432 struct fsl_mc_driver *mc_drv; 433 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 434 int error; 435 436 mc_drv = to_fsl_mc_driver(dev->driver); 437 438 error = mc_drv->probe(mc_dev); 439 if (error < 0) { 440 if (error != -EPROBE_DEFER) 441 dev_err(dev, "%s failed: %d\n", __func__, error); 442 return error; 443 } 444 445 return 0; 446 } 447 448 static int fsl_mc_driver_remove(struct device *dev) 449 { 450 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 451 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 452 int error; 453 454 error = mc_drv->remove(mc_dev); 455 if (error < 0) { 456 dev_err(dev, "%s failed: %d\n", __func__, error); 457 return error; 458 } 459 460 return 0; 461 } 462 463 static void fsl_mc_driver_shutdown(struct device *dev) 464 { 465 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 466 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 467 468 mc_drv->shutdown(mc_dev); 469 } 470 471 /* 472 * __fsl_mc_driver_register - registers a child device driver with the 473 * MC bus 474 * 475 * This function is implicitly invoked from the registration function of 476 * fsl_mc device drivers, which is generated by the 477 * module_fsl_mc_driver() macro. 478 */ 479 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 480 struct module *owner) 481 { 482 int error; 483 484 mc_driver->driver.owner = owner; 485 mc_driver->driver.bus = &fsl_mc_bus_type; 486 487 if (mc_driver->probe) 488 mc_driver->driver.probe = fsl_mc_driver_probe; 489 490 if (mc_driver->remove) 491 mc_driver->driver.remove = fsl_mc_driver_remove; 492 493 if (mc_driver->shutdown) 494 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 495 496 error = driver_register(&mc_driver->driver); 497 if (error < 0) { 498 pr_err("driver_register() failed for %s: %d\n", 499 mc_driver->driver.name, error); 500 return error; 501 } 502 503 return 0; 504 } 505 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 506 507 /* 508 * fsl_mc_driver_unregister - unregisters a device driver from the 509 * MC bus 510 */ 511 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 512 { 513 driver_unregister(&mc_driver->driver); 514 } 515 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 516 517 /** 518 * mc_get_version() - Retrieves the Management Complex firmware 519 * version information 520 * @mc_io: Pointer to opaque I/O object 521 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 522 * @mc_ver_info: Returned version information structure 523 * 524 * Return: '0' on Success; Error code otherwise. 525 */ 526 static int mc_get_version(struct fsl_mc_io *mc_io, 527 u32 cmd_flags, 528 struct fsl_mc_version *mc_ver_info) 529 { 530 struct fsl_mc_command cmd = { 0 }; 531 struct dpmng_rsp_get_version *rsp_params; 532 int err; 533 534 /* prepare command */ 535 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 536 cmd_flags, 537 0); 538 539 /* send command to mc*/ 540 err = mc_send_command(mc_io, &cmd); 541 if (err) 542 return err; 543 544 /* retrieve response parameters */ 545 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 546 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 547 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 548 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 549 550 return 0; 551 } 552 553 /** 554 * fsl_mc_get_version - function to retrieve the MC f/w version information 555 * 556 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 557 */ 558 struct fsl_mc_version *fsl_mc_get_version(void) 559 { 560 if (mc_version.major) 561 return &mc_version; 562 563 return NULL; 564 } 565 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 566 567 /* 568 * fsl_mc_get_root_dprc - function to traverse to the root dprc 569 */ 570 void fsl_mc_get_root_dprc(struct device *dev, 571 struct device **root_dprc_dev) 572 { 573 if (!dev) { 574 *root_dprc_dev = NULL; 575 } else if (!dev_is_fsl_mc(dev)) { 576 *root_dprc_dev = NULL; 577 } else { 578 *root_dprc_dev = dev; 579 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 580 *root_dprc_dev = (*root_dprc_dev)->parent; 581 } 582 } 583 584 static int get_dprc_attr(struct fsl_mc_io *mc_io, 585 int container_id, struct dprc_attributes *attr) 586 { 587 u16 dprc_handle; 588 int error; 589 590 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 591 if (error < 0) { 592 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 593 return error; 594 } 595 596 memset(attr, 0, sizeof(struct dprc_attributes)); 597 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 598 if (error < 0) { 599 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 600 error); 601 goto common_cleanup; 602 } 603 604 error = 0; 605 606 common_cleanup: 607 (void)dprc_close(mc_io, 0, dprc_handle); 608 return error; 609 } 610 611 static int get_dprc_icid(struct fsl_mc_io *mc_io, 612 int container_id, u32 *icid) 613 { 614 struct dprc_attributes attr; 615 int error; 616 617 error = get_dprc_attr(mc_io, container_id, &attr); 618 if (error == 0) 619 *icid = attr.icid; 620 621 return error; 622 } 623 624 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 625 enum dprc_region_type mc_region_type, 626 u64 mc_offset, phys_addr_t *phys_addr) 627 { 628 int i; 629 struct device *root_dprc_dev; 630 struct fsl_mc *mc; 631 632 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 633 mc = dev_get_drvdata(root_dprc_dev->parent); 634 635 if (mc->num_translation_ranges == 0) { 636 /* 637 * Do identity mapping: 638 */ 639 *phys_addr = mc_offset; 640 return 0; 641 } 642 643 for (i = 0; i < mc->num_translation_ranges; i++) { 644 struct fsl_mc_addr_translation_range *range = 645 &mc->translation_ranges[i]; 646 647 if (mc_region_type == range->mc_region_type && 648 mc_offset >= range->start_mc_offset && 649 mc_offset < range->end_mc_offset) { 650 *phys_addr = range->start_phys_addr + 651 (mc_offset - range->start_mc_offset); 652 return 0; 653 } 654 } 655 656 return -EFAULT; 657 } 658 659 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 660 struct fsl_mc_device *mc_bus_dev) 661 { 662 int i; 663 int error; 664 struct resource *regions; 665 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 666 struct device *parent_dev = mc_dev->dev.parent; 667 enum dprc_region_type mc_region_type; 668 669 if (is_fsl_mc_bus_dprc(mc_dev) || 670 is_fsl_mc_bus_dpmcp(mc_dev)) { 671 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 672 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 673 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 674 } else { 675 /* 676 * This function should not have been called for this MC object 677 * type, as this object type is not supposed to have MMIO 678 * regions 679 */ 680 return -EINVAL; 681 } 682 683 regions = kmalloc_array(obj_desc->region_count, 684 sizeof(regions[0]), GFP_KERNEL); 685 if (!regions) 686 return -ENOMEM; 687 688 for (i = 0; i < obj_desc->region_count; i++) { 689 struct dprc_region_desc region_desc; 690 691 error = dprc_get_obj_region(mc_bus_dev->mc_io, 692 0, 693 mc_bus_dev->mc_handle, 694 obj_desc->type, 695 obj_desc->id, i, ®ion_desc); 696 if (error < 0) { 697 dev_err(parent_dev, 698 "dprc_get_obj_region() failed: %d\n", error); 699 goto error_cleanup_regions; 700 } 701 /* 702 * Older MC only returned region offset and no base address 703 * If base address is in the region_desc use it otherwise 704 * revert to old mechanism 705 */ 706 if (region_desc.base_address) 707 regions[i].start = region_desc.base_address + 708 region_desc.base_offset; 709 else 710 error = translate_mc_addr(mc_dev, mc_region_type, 711 region_desc.base_offset, 712 ®ions[i].start); 713 714 if (error < 0) { 715 dev_err(parent_dev, 716 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 717 region_desc.base_offset, 718 obj_desc->type, obj_desc->id, i); 719 goto error_cleanup_regions; 720 } 721 722 regions[i].end = regions[i].start + region_desc.size - 1; 723 regions[i].name = "fsl-mc object MMIO region"; 724 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 725 regions[i].flags |= IORESOURCE_MEM; 726 } 727 728 mc_dev->regions = regions; 729 return 0; 730 731 error_cleanup_regions: 732 kfree(regions); 733 return error; 734 } 735 736 /* 737 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 738 */ 739 bool fsl_mc_is_root_dprc(struct device *dev) 740 { 741 struct device *root_dprc_dev; 742 743 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 744 if (!root_dprc_dev) 745 return false; 746 return dev == root_dprc_dev; 747 } 748 749 static void fsl_mc_device_release(struct device *dev) 750 { 751 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 752 753 kfree(mc_dev->regions); 754 755 if (is_fsl_mc_bus_dprc(mc_dev)) 756 kfree(to_fsl_mc_bus(mc_dev)); 757 else 758 kfree(mc_dev); 759 } 760 761 /* 762 * Add a newly discovered fsl-mc device to be visible in Linux 763 */ 764 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 765 struct fsl_mc_io *mc_io, 766 struct device *parent_dev, 767 struct fsl_mc_device **new_mc_dev) 768 { 769 int error; 770 struct fsl_mc_device *mc_dev = NULL; 771 struct fsl_mc_bus *mc_bus = NULL; 772 struct fsl_mc_device *parent_mc_dev; 773 774 if (dev_is_fsl_mc(parent_dev)) 775 parent_mc_dev = to_fsl_mc_device(parent_dev); 776 else 777 parent_mc_dev = NULL; 778 779 if (strcmp(obj_desc->type, "dprc") == 0) { 780 /* 781 * Allocate an MC bus device object: 782 */ 783 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 784 if (!mc_bus) 785 return -ENOMEM; 786 787 mutex_init(&mc_bus->scan_mutex); 788 mc_dev = &mc_bus->mc_dev; 789 } else { 790 /* 791 * Allocate a regular fsl_mc_device object: 792 */ 793 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 794 if (!mc_dev) 795 return -ENOMEM; 796 } 797 798 mc_dev->obj_desc = *obj_desc; 799 mc_dev->mc_io = mc_io; 800 device_initialize(&mc_dev->dev); 801 mc_dev->dev.parent = parent_dev; 802 mc_dev->dev.bus = &fsl_mc_bus_type; 803 mc_dev->dev.release = fsl_mc_device_release; 804 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 805 if (!mc_dev->dev.type) { 806 error = -ENODEV; 807 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 808 goto error_cleanup_dev; 809 } 810 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 811 812 if (strcmp(obj_desc->type, "dprc") == 0) { 813 struct fsl_mc_io *mc_io2; 814 815 mc_dev->flags |= FSL_MC_IS_DPRC; 816 817 /* 818 * To get the DPRC's ICID, we need to open the DPRC 819 * in get_dprc_icid(). For child DPRCs, we do so using the 820 * parent DPRC's MC portal instead of the child DPRC's MC 821 * portal, in case the child DPRC is already opened with 822 * its own portal (e.g., the DPRC used by AIOP). 823 * 824 * NOTE: There cannot be more than one active open for a 825 * given MC object, using the same MC portal. 826 */ 827 if (parent_mc_dev) { 828 /* 829 * device being added is a child DPRC device 830 */ 831 mc_io2 = parent_mc_dev->mc_io; 832 } else { 833 /* 834 * device being added is the root DPRC device 835 */ 836 if (!mc_io) { 837 error = -EINVAL; 838 goto error_cleanup_dev; 839 } 840 841 mc_io2 = mc_io; 842 } 843 844 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 845 if (error < 0) 846 goto error_cleanup_dev; 847 } else { 848 /* 849 * A non-DPRC object has to be a child of a DPRC, use the 850 * parent's ICID and interrupt domain. 851 */ 852 mc_dev->icid = parent_mc_dev->icid; 853 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 854 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 855 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 856 dev_set_msi_domain(&mc_dev->dev, 857 dev_get_msi_domain(&parent_mc_dev->dev)); 858 } 859 860 /* 861 * Get MMIO regions for the device from the MC: 862 * 863 * NOTE: the root DPRC is a special case as its MMIO region is 864 * obtained from the device tree 865 */ 866 if (parent_mc_dev && obj_desc->region_count != 0) { 867 error = fsl_mc_device_get_mmio_regions(mc_dev, 868 parent_mc_dev); 869 if (error < 0) 870 goto error_cleanup_dev; 871 } 872 873 /* 874 * The device-specific probe callback will get invoked by device_add() 875 */ 876 error = device_add(&mc_dev->dev); 877 if (error < 0) { 878 dev_err(parent_dev, 879 "device_add() failed for device %s: %d\n", 880 dev_name(&mc_dev->dev), error); 881 goto error_cleanup_dev; 882 } 883 884 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 885 886 *new_mc_dev = mc_dev; 887 return 0; 888 889 error_cleanup_dev: 890 kfree(mc_dev->regions); 891 kfree(mc_bus); 892 kfree(mc_dev); 893 894 return error; 895 } 896 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 897 898 /** 899 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 900 * Linux 901 * 902 * @mc_dev: Pointer to an fsl-mc device 903 */ 904 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 905 { 906 kfree(mc_dev->driver_override); 907 mc_dev->driver_override = NULL; 908 909 /* 910 * The device-specific remove callback will get invoked by device_del() 911 */ 912 device_del(&mc_dev->dev); 913 put_device(&mc_dev->dev); 914 } 915 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 916 917 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev) 918 { 919 struct fsl_mc_device *mc_bus_dev, *endpoint; 920 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 921 struct dprc_endpoint endpoint1 = {{ 0 }}; 922 struct dprc_endpoint endpoint2 = {{ 0 }}; 923 int state, err; 924 925 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 926 strcpy(endpoint1.type, mc_dev->obj_desc.type); 927 endpoint1.id = mc_dev->obj_desc.id; 928 929 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 930 mc_bus_dev->mc_handle, 931 &endpoint1, &endpoint2, 932 &state); 933 934 if (err == -ENOTCONN || state == -1) 935 return ERR_PTR(-ENOTCONN); 936 937 if (err < 0) { 938 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 939 return ERR_PTR(err); 940 } 941 942 strcpy(endpoint_desc.type, endpoint2.type); 943 endpoint_desc.id = endpoint2.id; 944 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 945 946 /* 947 * We know that the device has an endpoint because we verified by 948 * interrogating the firmware. This is the case when the device was not 949 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 950 * Differentiate this case by returning EPROBE_DEFER. 951 */ 952 if (!endpoint) 953 return ERR_PTR(-EPROBE_DEFER); 954 955 return endpoint; 956 } 957 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 958 959 static int parse_mc_ranges(struct device *dev, 960 int *paddr_cells, 961 int *mc_addr_cells, 962 int *mc_size_cells, 963 const __be32 **ranges_start) 964 { 965 const __be32 *prop; 966 int range_tuple_cell_count; 967 int ranges_len; 968 int tuple_len; 969 struct device_node *mc_node = dev->of_node; 970 971 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); 972 if (!(*ranges_start) || !ranges_len) { 973 dev_warn(dev, 974 "missing or empty ranges property for device tree node '%pOFn'\n", 975 mc_node); 976 return 0; 977 } 978 979 *paddr_cells = of_n_addr_cells(mc_node); 980 981 prop = of_get_property(mc_node, "#address-cells", NULL); 982 if (prop) 983 *mc_addr_cells = be32_to_cpup(prop); 984 else 985 *mc_addr_cells = *paddr_cells; 986 987 prop = of_get_property(mc_node, "#size-cells", NULL); 988 if (prop) 989 *mc_size_cells = be32_to_cpup(prop); 990 else 991 *mc_size_cells = of_n_size_cells(mc_node); 992 993 range_tuple_cell_count = *paddr_cells + *mc_addr_cells + 994 *mc_size_cells; 995 996 tuple_len = range_tuple_cell_count * sizeof(__be32); 997 if (ranges_len % tuple_len != 0) { 998 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); 999 return -EINVAL; 1000 } 1001 1002 return ranges_len / tuple_len; 1003 } 1004 1005 static int get_mc_addr_translation_ranges(struct device *dev, 1006 struct fsl_mc_addr_translation_range 1007 **ranges, 1008 u8 *num_ranges) 1009 { 1010 int ret; 1011 int paddr_cells; 1012 int mc_addr_cells; 1013 int mc_size_cells; 1014 int i; 1015 const __be32 *ranges_start; 1016 const __be32 *cell; 1017 1018 ret = parse_mc_ranges(dev, 1019 &paddr_cells, 1020 &mc_addr_cells, 1021 &mc_size_cells, 1022 &ranges_start); 1023 if (ret < 0) 1024 return ret; 1025 1026 *num_ranges = ret; 1027 if (!ret) { 1028 /* 1029 * Missing or empty ranges property ("ranges;") for the 1030 * 'fsl,qoriq-mc' node. In this case, identity mapping 1031 * will be used. 1032 */ 1033 *ranges = NULL; 1034 return 0; 1035 } 1036 1037 *ranges = devm_kcalloc(dev, *num_ranges, 1038 sizeof(struct fsl_mc_addr_translation_range), 1039 GFP_KERNEL); 1040 if (!(*ranges)) 1041 return -ENOMEM; 1042 1043 cell = ranges_start; 1044 for (i = 0; i < *num_ranges; ++i) { 1045 struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; 1046 1047 range->mc_region_type = of_read_number(cell, 1); 1048 range->start_mc_offset = of_read_number(cell + 1, 1049 mc_addr_cells - 1); 1050 cell += mc_addr_cells; 1051 range->start_phys_addr = of_read_number(cell, paddr_cells); 1052 cell += paddr_cells; 1053 range->end_mc_offset = range->start_mc_offset + 1054 of_read_number(cell, mc_size_cells); 1055 1056 cell += mc_size_cells; 1057 } 1058 1059 return 0; 1060 } 1061 1062 /* 1063 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1064 * added 1065 */ 1066 static int fsl_mc_bus_probe(struct platform_device *pdev) 1067 { 1068 struct fsl_mc_obj_desc obj_desc; 1069 int error; 1070 struct fsl_mc *mc; 1071 struct fsl_mc_device *mc_bus_dev = NULL; 1072 struct fsl_mc_io *mc_io = NULL; 1073 int container_id; 1074 phys_addr_t mc_portal_phys_addr; 1075 u32 mc_portal_size, mc_stream_id; 1076 struct resource *plat_res; 1077 1078 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1079 if (!mc) 1080 return -ENOMEM; 1081 1082 platform_set_drvdata(pdev, mc); 1083 1084 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1085 if (plat_res) { 1086 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1087 if (IS_ERR(mc->fsl_mc_regs)) 1088 return PTR_ERR(mc->fsl_mc_regs); 1089 } 1090 1091 if (mc->fsl_mc_regs) { 1092 /* 1093 * Some bootloaders pause the MC firmware before booting the 1094 * kernel so that MC will not cause faults as soon as the 1095 * SMMU probes due to the fact that there's no configuration 1096 * in place for MC. 1097 * At this point MC should have all its SMMU setup done so make 1098 * sure it is resumed. 1099 */ 1100 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & (~GCR1_P1_STOP), 1101 mc->fsl_mc_regs + FSL_MC_GCR1); 1102 1103 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1104 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1105 /* 1106 * HW ORs the PL and BMT bit, places the result in bit 1107 * 14 of the StreamID and ORs in the ICID. Calculate it 1108 * accordingly. 1109 */ 1110 mc_stream_id = (mc_stream_id & 0xffff) | 1111 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1112 BIT(14) : 0); 1113 error = acpi_dma_configure_id(&pdev->dev, 1114 DEV_DMA_COHERENT, 1115 &mc_stream_id); 1116 if (error) 1117 dev_warn(&pdev->dev, 1118 "failed to configure dma: %d.\n", 1119 error); 1120 } 1121 } 1122 1123 /* 1124 * Get physical address of MC portal for the root DPRC: 1125 */ 1126 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1127 mc_portal_phys_addr = plat_res->start; 1128 mc_portal_size = resource_size(plat_res); 1129 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1130 mc_portal_size, NULL, 1131 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1132 if (error < 0) 1133 return error; 1134 1135 error = mc_get_version(mc_io, 0, &mc_version); 1136 if (error != 0) { 1137 dev_err(&pdev->dev, 1138 "mc_get_version() failed with error %d\n", error); 1139 goto error_cleanup_mc_io; 1140 } 1141 1142 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1143 mc_version.major, mc_version.minor, mc_version.revision); 1144 1145 if (dev_of_node(&pdev->dev)) { 1146 error = get_mc_addr_translation_ranges(&pdev->dev, 1147 &mc->translation_ranges, 1148 &mc->num_translation_ranges); 1149 if (error < 0) 1150 goto error_cleanup_mc_io; 1151 } 1152 1153 error = dprc_get_container_id(mc_io, 0, &container_id); 1154 if (error < 0) { 1155 dev_err(&pdev->dev, 1156 "dprc_get_container_id() failed: %d\n", error); 1157 goto error_cleanup_mc_io; 1158 } 1159 1160 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1161 error = dprc_get_api_version(mc_io, 0, 1162 &obj_desc.ver_major, 1163 &obj_desc.ver_minor); 1164 if (error < 0) 1165 goto error_cleanup_mc_io; 1166 1167 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1168 strcpy(obj_desc.type, "dprc"); 1169 obj_desc.id = container_id; 1170 obj_desc.irq_count = 1; 1171 obj_desc.region_count = 0; 1172 1173 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1174 if (error < 0) 1175 goto error_cleanup_mc_io; 1176 1177 mc->root_mc_bus_dev = mc_bus_dev; 1178 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1179 return 0; 1180 1181 error_cleanup_mc_io: 1182 fsl_destroy_mc_io(mc_io); 1183 return error; 1184 } 1185 1186 /* 1187 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1188 * removed 1189 */ 1190 static int fsl_mc_bus_remove(struct platform_device *pdev) 1191 { 1192 struct fsl_mc *mc = platform_get_drvdata(pdev); 1193 1194 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1195 return -EINVAL; 1196 1197 fsl_mc_device_remove(mc->root_mc_bus_dev); 1198 1199 fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io); 1200 mc->root_mc_bus_dev->mc_io = NULL; 1201 1202 return 0; 1203 } 1204 1205 static const struct of_device_id fsl_mc_bus_match_table[] = { 1206 {.compatible = "fsl,qoriq-mc",}, 1207 {}, 1208 }; 1209 1210 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1211 1212 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1213 {"NXP0008", 0 }, 1214 { } 1215 }; 1216 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1217 1218 static struct platform_driver fsl_mc_bus_driver = { 1219 .driver = { 1220 .name = "fsl_mc_bus", 1221 .pm = NULL, 1222 .of_match_table = fsl_mc_bus_match_table, 1223 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1224 }, 1225 .probe = fsl_mc_bus_probe, 1226 .remove = fsl_mc_bus_remove, 1227 }; 1228 1229 static int __init fsl_mc_bus_driver_init(void) 1230 { 1231 int error; 1232 1233 error = bus_register(&fsl_mc_bus_type); 1234 if (error < 0) { 1235 pr_err("bus type registration failed: %d\n", error); 1236 goto error_cleanup_cache; 1237 } 1238 1239 error = platform_driver_register(&fsl_mc_bus_driver); 1240 if (error < 0) { 1241 pr_err("platform_driver_register() failed: %d\n", error); 1242 goto error_cleanup_bus; 1243 } 1244 1245 error = dprc_driver_init(); 1246 if (error < 0) 1247 goto error_cleanup_driver; 1248 1249 error = fsl_mc_allocator_driver_init(); 1250 if (error < 0) 1251 goto error_cleanup_dprc_driver; 1252 1253 return 0; 1254 1255 error_cleanup_dprc_driver: 1256 dprc_driver_exit(); 1257 1258 error_cleanup_driver: 1259 platform_driver_unregister(&fsl_mc_bus_driver); 1260 1261 error_cleanup_bus: 1262 bus_unregister(&fsl_mc_bus_type); 1263 1264 error_cleanup_cache: 1265 return error; 1266 } 1267 postcore_initcall(fsl_mc_bus_driver_init); 1268