1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Freescale Management Complex (MC) bus driver 4 * 5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 6 * Copyright 2019-2020 NXP 7 * Author: German Rivera <German.Rivera@freescale.com> 8 * 9 */ 10 11 #define pr_fmt(fmt) "fsl-mc: " fmt 12 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/of_address.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/limits.h> 19 #include <linux/bitops.h> 20 #include <linux/msi.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/acpi.h> 23 #include <linux/iommu.h> 24 #include <linux/dma-map-ops.h> 25 26 #include "fsl-mc-private.h" 27 28 /* 29 * Default DMA mask for devices on a fsl-mc bus 30 */ 31 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL) 32 33 static struct fsl_mc_version mc_version; 34 35 /** 36 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device 37 * @root_mc_bus_dev: fsl-mc device representing the root DPRC 38 * @num_translation_ranges: number of entries in addr_translation_ranges 39 * @translation_ranges: array of bus to system address translation ranges 40 * @fsl_mc_regs: base address of register bank 41 */ 42 struct fsl_mc { 43 struct fsl_mc_device *root_mc_bus_dev; 44 u8 num_translation_ranges; 45 struct fsl_mc_addr_translation_range *translation_ranges; 46 void __iomem *fsl_mc_regs; 47 }; 48 49 /** 50 * struct fsl_mc_addr_translation_range - bus to system address translation 51 * range 52 * @mc_region_type: Type of MC region for the range being translated 53 * @start_mc_offset: Start MC offset of the range being translated 54 * @end_mc_offset: MC offset of the first byte after the range (last MC 55 * offset of the range is end_mc_offset - 1) 56 * @start_phys_addr: system physical address corresponding to start_mc_addr 57 */ 58 struct fsl_mc_addr_translation_range { 59 enum dprc_region_type mc_region_type; 60 u64 start_mc_offset; 61 u64 end_mc_offset; 62 phys_addr_t start_phys_addr; 63 }; 64 65 #define FSL_MC_GCR1 0x0 66 #define GCR1_P1_STOP BIT(31) 67 #define GCR1_P2_STOP BIT(30) 68 69 #define FSL_MC_FAPR 0x28 70 #define MC_FAPR_PL BIT(18) 71 #define MC_FAPR_BMT BIT(17) 72 73 static phys_addr_t mc_portal_base_phys_addr; 74 75 /** 76 * fsl_mc_bus_match - device to driver matching callback 77 * @dev: the fsl-mc device to match against 78 * @drv: the device driver to search for matching fsl-mc object type 79 * structures 80 * 81 * Returns 1 on success, 0 otherwise. 82 */ 83 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv) 84 { 85 const struct fsl_mc_device_id *id; 86 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 87 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv); 88 bool found = false; 89 90 /* When driver_override is set, only bind to the matching driver */ 91 if (mc_dev->driver_override) { 92 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name); 93 goto out; 94 } 95 96 if (!mc_drv->match_id_table) 97 goto out; 98 99 /* 100 * If the object is not 'plugged' don't match. 101 * Only exception is the root DPRC, which is a special case. 102 */ 103 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 && 104 !fsl_mc_is_root_dprc(&mc_dev->dev)) 105 goto out; 106 107 /* 108 * Traverse the match_id table of the given driver, trying to find 109 * a matching for the given device. 110 */ 111 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) { 112 if (id->vendor == mc_dev->obj_desc.vendor && 113 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) { 114 found = true; 115 116 break; 117 } 118 } 119 120 out: 121 dev_dbg(dev, "%smatched\n", found ? "" : "not "); 122 return found; 123 } 124 125 /* 126 * fsl_mc_bus_uevent - callback invoked when a device is added 127 */ 128 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env) 129 { 130 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 131 132 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s", 133 mc_dev->obj_desc.vendor, 134 mc_dev->obj_desc.type)) 135 return -ENOMEM; 136 137 return 0; 138 } 139 140 static int fsl_mc_dma_configure(struct device *dev) 141 { 142 struct device *dma_dev = dev; 143 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 144 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 145 u32 input_id = mc_dev->icid; 146 int ret; 147 148 while (dev_is_fsl_mc(dma_dev)) 149 dma_dev = dma_dev->parent; 150 151 if (dev_of_node(dma_dev)) 152 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id); 153 else 154 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id); 155 156 if (!ret && !mc_drv->driver_managed_dma) { 157 ret = iommu_device_use_default_domain(dev); 158 if (ret) 159 arch_teardown_dma_ops(dev); 160 } 161 162 return ret; 163 } 164 165 static void fsl_mc_dma_cleanup(struct device *dev) 166 { 167 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 168 169 if (!mc_drv->driver_managed_dma) 170 iommu_device_unuse_default_domain(dev); 171 } 172 173 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 174 char *buf) 175 { 176 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 177 178 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor, 179 mc_dev->obj_desc.type); 180 } 181 static DEVICE_ATTR_RO(modalias); 182 183 static ssize_t driver_override_store(struct device *dev, 184 struct device_attribute *attr, 185 const char *buf, size_t count) 186 { 187 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 188 char *driver_override, *old = mc_dev->driver_override; 189 char *cp; 190 191 if (WARN_ON(dev->bus != &fsl_mc_bus_type)) 192 return -EINVAL; 193 194 if (count >= (PAGE_SIZE - 1)) 195 return -EINVAL; 196 197 driver_override = kstrndup(buf, count, GFP_KERNEL); 198 if (!driver_override) 199 return -ENOMEM; 200 201 cp = strchr(driver_override, '\n'); 202 if (cp) 203 *cp = '\0'; 204 205 if (strlen(driver_override)) { 206 mc_dev->driver_override = driver_override; 207 } else { 208 kfree(driver_override); 209 mc_dev->driver_override = NULL; 210 } 211 212 kfree(old); 213 214 return count; 215 } 216 217 static ssize_t driver_override_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 221 222 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override); 223 } 224 static DEVICE_ATTR_RW(driver_override); 225 226 static struct attribute *fsl_mc_dev_attrs[] = { 227 &dev_attr_modalias.attr, 228 &dev_attr_driver_override.attr, 229 NULL, 230 }; 231 232 ATTRIBUTE_GROUPS(fsl_mc_dev); 233 234 static int scan_fsl_mc_bus(struct device *dev, void *data) 235 { 236 struct fsl_mc_device *root_mc_dev; 237 struct fsl_mc_bus *root_mc_bus; 238 239 if (!fsl_mc_is_root_dprc(dev)) 240 goto exit; 241 242 root_mc_dev = to_fsl_mc_device(dev); 243 root_mc_bus = to_fsl_mc_bus(root_mc_dev); 244 mutex_lock(&root_mc_bus->scan_mutex); 245 dprc_scan_objects(root_mc_dev, false); 246 mutex_unlock(&root_mc_bus->scan_mutex); 247 248 exit: 249 return 0; 250 } 251 252 static ssize_t rescan_store(struct bus_type *bus, 253 const char *buf, size_t count) 254 { 255 unsigned long val; 256 257 if (kstrtoul(buf, 0, &val) < 0) 258 return -EINVAL; 259 260 if (val) 261 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus); 262 263 return count; 264 } 265 static BUS_ATTR_WO(rescan); 266 267 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data) 268 { 269 struct fsl_mc_device *root_mc_dev; 270 unsigned long val; 271 char *buf = data; 272 273 if (!fsl_mc_is_root_dprc(dev)) 274 goto exit; 275 276 root_mc_dev = to_fsl_mc_device(dev); 277 278 if (kstrtoul(buf, 0, &val) < 0) 279 return -EINVAL; 280 281 if (val) 282 enable_dprc_irq(root_mc_dev); 283 else 284 disable_dprc_irq(root_mc_dev); 285 286 exit: 287 return 0; 288 } 289 290 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data) 291 { 292 struct fsl_mc_device *root_mc_dev; 293 char *buf = data; 294 295 if (!fsl_mc_is_root_dprc(dev)) 296 goto exit; 297 298 root_mc_dev = to_fsl_mc_device(dev); 299 300 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev)); 301 exit: 302 return 0; 303 } 304 305 static ssize_t autorescan_store(struct bus_type *bus, 306 const char *buf, size_t count) 307 { 308 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan); 309 310 return count; 311 } 312 313 static ssize_t autorescan_show(struct bus_type *bus, char *buf) 314 { 315 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan); 316 return strlen(buf); 317 } 318 319 static BUS_ATTR_RW(autorescan); 320 321 static struct attribute *fsl_mc_bus_attrs[] = { 322 &bus_attr_rescan.attr, 323 &bus_attr_autorescan.attr, 324 NULL, 325 }; 326 327 ATTRIBUTE_GROUPS(fsl_mc_bus); 328 329 struct bus_type fsl_mc_bus_type = { 330 .name = "fsl-mc", 331 .match = fsl_mc_bus_match, 332 .uevent = fsl_mc_bus_uevent, 333 .dma_configure = fsl_mc_dma_configure, 334 .dma_cleanup = fsl_mc_dma_cleanup, 335 .dev_groups = fsl_mc_dev_groups, 336 .bus_groups = fsl_mc_bus_groups, 337 }; 338 EXPORT_SYMBOL_GPL(fsl_mc_bus_type); 339 340 struct device_type fsl_mc_bus_dprc_type = { 341 .name = "fsl_mc_bus_dprc" 342 }; 343 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type); 344 345 struct device_type fsl_mc_bus_dpni_type = { 346 .name = "fsl_mc_bus_dpni" 347 }; 348 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type); 349 350 struct device_type fsl_mc_bus_dpio_type = { 351 .name = "fsl_mc_bus_dpio" 352 }; 353 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type); 354 355 struct device_type fsl_mc_bus_dpsw_type = { 356 .name = "fsl_mc_bus_dpsw" 357 }; 358 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type); 359 360 struct device_type fsl_mc_bus_dpbp_type = { 361 .name = "fsl_mc_bus_dpbp" 362 }; 363 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type); 364 365 struct device_type fsl_mc_bus_dpcon_type = { 366 .name = "fsl_mc_bus_dpcon" 367 }; 368 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type); 369 370 struct device_type fsl_mc_bus_dpmcp_type = { 371 .name = "fsl_mc_bus_dpmcp" 372 }; 373 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type); 374 375 struct device_type fsl_mc_bus_dpmac_type = { 376 .name = "fsl_mc_bus_dpmac" 377 }; 378 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type); 379 380 struct device_type fsl_mc_bus_dprtc_type = { 381 .name = "fsl_mc_bus_dprtc" 382 }; 383 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type); 384 385 struct device_type fsl_mc_bus_dpseci_type = { 386 .name = "fsl_mc_bus_dpseci" 387 }; 388 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type); 389 390 struct device_type fsl_mc_bus_dpdmux_type = { 391 .name = "fsl_mc_bus_dpdmux" 392 }; 393 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type); 394 395 struct device_type fsl_mc_bus_dpdcei_type = { 396 .name = "fsl_mc_bus_dpdcei" 397 }; 398 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type); 399 400 struct device_type fsl_mc_bus_dpaiop_type = { 401 .name = "fsl_mc_bus_dpaiop" 402 }; 403 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type); 404 405 struct device_type fsl_mc_bus_dpci_type = { 406 .name = "fsl_mc_bus_dpci" 407 }; 408 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type); 409 410 struct device_type fsl_mc_bus_dpdmai_type = { 411 .name = "fsl_mc_bus_dpdmai" 412 }; 413 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type); 414 415 struct device_type fsl_mc_bus_dpdbg_type = { 416 .name = "fsl_mc_bus_dpdbg" 417 }; 418 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type); 419 420 static struct device_type *fsl_mc_get_device_type(const char *type) 421 { 422 static const struct { 423 struct device_type *dev_type; 424 const char *type; 425 } dev_types[] = { 426 { &fsl_mc_bus_dprc_type, "dprc" }, 427 { &fsl_mc_bus_dpni_type, "dpni" }, 428 { &fsl_mc_bus_dpio_type, "dpio" }, 429 { &fsl_mc_bus_dpsw_type, "dpsw" }, 430 { &fsl_mc_bus_dpbp_type, "dpbp" }, 431 { &fsl_mc_bus_dpcon_type, "dpcon" }, 432 { &fsl_mc_bus_dpmcp_type, "dpmcp" }, 433 { &fsl_mc_bus_dpmac_type, "dpmac" }, 434 { &fsl_mc_bus_dprtc_type, "dprtc" }, 435 { &fsl_mc_bus_dpseci_type, "dpseci" }, 436 { &fsl_mc_bus_dpdmux_type, "dpdmux" }, 437 { &fsl_mc_bus_dpdcei_type, "dpdcei" }, 438 { &fsl_mc_bus_dpaiop_type, "dpaiop" }, 439 { &fsl_mc_bus_dpci_type, "dpci" }, 440 { &fsl_mc_bus_dpdmai_type, "dpdmai" }, 441 { &fsl_mc_bus_dpdbg_type, "dpdbg" }, 442 { NULL, NULL } 443 }; 444 int i; 445 446 for (i = 0; dev_types[i].dev_type; i++) 447 if (!strcmp(dev_types[i].type, type)) 448 return dev_types[i].dev_type; 449 450 return NULL; 451 } 452 453 static int fsl_mc_driver_probe(struct device *dev) 454 { 455 struct fsl_mc_driver *mc_drv; 456 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 457 int error; 458 459 mc_drv = to_fsl_mc_driver(dev->driver); 460 461 error = mc_drv->probe(mc_dev); 462 if (error < 0) { 463 if (error != -EPROBE_DEFER) 464 dev_err(dev, "%s failed: %d\n", __func__, error); 465 return error; 466 } 467 468 return 0; 469 } 470 471 static int fsl_mc_driver_remove(struct device *dev) 472 { 473 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 474 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 475 int error; 476 477 error = mc_drv->remove(mc_dev); 478 if (error < 0) { 479 dev_err(dev, "%s failed: %d\n", __func__, error); 480 return error; 481 } 482 483 return 0; 484 } 485 486 static void fsl_mc_driver_shutdown(struct device *dev) 487 { 488 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver); 489 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 490 491 mc_drv->shutdown(mc_dev); 492 } 493 494 /* 495 * __fsl_mc_driver_register - registers a child device driver with the 496 * MC bus 497 * 498 * This function is implicitly invoked from the registration function of 499 * fsl_mc device drivers, which is generated by the 500 * module_fsl_mc_driver() macro. 501 */ 502 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver, 503 struct module *owner) 504 { 505 int error; 506 507 mc_driver->driver.owner = owner; 508 mc_driver->driver.bus = &fsl_mc_bus_type; 509 510 if (mc_driver->probe) 511 mc_driver->driver.probe = fsl_mc_driver_probe; 512 513 if (mc_driver->remove) 514 mc_driver->driver.remove = fsl_mc_driver_remove; 515 516 if (mc_driver->shutdown) 517 mc_driver->driver.shutdown = fsl_mc_driver_shutdown; 518 519 error = driver_register(&mc_driver->driver); 520 if (error < 0) { 521 pr_err("driver_register() failed for %s: %d\n", 522 mc_driver->driver.name, error); 523 return error; 524 } 525 526 return 0; 527 } 528 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register); 529 530 /* 531 * fsl_mc_driver_unregister - unregisters a device driver from the 532 * MC bus 533 */ 534 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver) 535 { 536 driver_unregister(&mc_driver->driver); 537 } 538 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister); 539 540 /** 541 * mc_get_version() - Retrieves the Management Complex firmware 542 * version information 543 * @mc_io: Pointer to opaque I/O object 544 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_' 545 * @mc_ver_info: Returned version information structure 546 * 547 * Return: '0' on Success; Error code otherwise. 548 */ 549 static int mc_get_version(struct fsl_mc_io *mc_io, 550 u32 cmd_flags, 551 struct fsl_mc_version *mc_ver_info) 552 { 553 struct fsl_mc_command cmd = { 0 }; 554 struct dpmng_rsp_get_version *rsp_params; 555 int err; 556 557 /* prepare command */ 558 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION, 559 cmd_flags, 560 0); 561 562 /* send command to mc*/ 563 err = mc_send_command(mc_io, &cmd); 564 if (err) 565 return err; 566 567 /* retrieve response parameters */ 568 rsp_params = (struct dpmng_rsp_get_version *)cmd.params; 569 mc_ver_info->revision = le32_to_cpu(rsp_params->revision); 570 mc_ver_info->major = le32_to_cpu(rsp_params->version_major); 571 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor); 572 573 return 0; 574 } 575 576 /** 577 * fsl_mc_get_version - function to retrieve the MC f/w version information 578 * 579 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise. 580 */ 581 struct fsl_mc_version *fsl_mc_get_version(void) 582 { 583 if (mc_version.major) 584 return &mc_version; 585 586 return NULL; 587 } 588 EXPORT_SYMBOL_GPL(fsl_mc_get_version); 589 590 /* 591 * fsl_mc_get_root_dprc - function to traverse to the root dprc 592 */ 593 void fsl_mc_get_root_dprc(struct device *dev, 594 struct device **root_dprc_dev) 595 { 596 if (!dev) { 597 *root_dprc_dev = NULL; 598 } else if (!dev_is_fsl_mc(dev)) { 599 *root_dprc_dev = NULL; 600 } else { 601 *root_dprc_dev = dev; 602 while (dev_is_fsl_mc((*root_dprc_dev)->parent)) 603 *root_dprc_dev = (*root_dprc_dev)->parent; 604 } 605 } 606 607 static int get_dprc_attr(struct fsl_mc_io *mc_io, 608 int container_id, struct dprc_attributes *attr) 609 { 610 u16 dprc_handle; 611 int error; 612 613 error = dprc_open(mc_io, 0, container_id, &dprc_handle); 614 if (error < 0) { 615 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error); 616 return error; 617 } 618 619 memset(attr, 0, sizeof(struct dprc_attributes)); 620 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr); 621 if (error < 0) { 622 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n", 623 error); 624 goto common_cleanup; 625 } 626 627 error = 0; 628 629 common_cleanup: 630 (void)dprc_close(mc_io, 0, dprc_handle); 631 return error; 632 } 633 634 static int get_dprc_icid(struct fsl_mc_io *mc_io, 635 int container_id, u32 *icid) 636 { 637 struct dprc_attributes attr; 638 int error; 639 640 error = get_dprc_attr(mc_io, container_id, &attr); 641 if (error == 0) 642 *icid = attr.icid; 643 644 return error; 645 } 646 647 static int translate_mc_addr(struct fsl_mc_device *mc_dev, 648 enum dprc_region_type mc_region_type, 649 u64 mc_offset, phys_addr_t *phys_addr) 650 { 651 int i; 652 struct device *root_dprc_dev; 653 struct fsl_mc *mc; 654 655 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev); 656 mc = dev_get_drvdata(root_dprc_dev->parent); 657 658 if (mc->num_translation_ranges == 0) { 659 /* 660 * Do identity mapping: 661 */ 662 *phys_addr = mc_offset; 663 return 0; 664 } 665 666 for (i = 0; i < mc->num_translation_ranges; i++) { 667 struct fsl_mc_addr_translation_range *range = 668 &mc->translation_ranges[i]; 669 670 if (mc_region_type == range->mc_region_type && 671 mc_offset >= range->start_mc_offset && 672 mc_offset < range->end_mc_offset) { 673 *phys_addr = range->start_phys_addr + 674 (mc_offset - range->start_mc_offset); 675 return 0; 676 } 677 } 678 679 return -EFAULT; 680 } 681 682 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev, 683 struct fsl_mc_device *mc_bus_dev) 684 { 685 int i; 686 int error; 687 struct resource *regions; 688 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc; 689 struct device *parent_dev = mc_dev->dev.parent; 690 enum dprc_region_type mc_region_type; 691 692 if (is_fsl_mc_bus_dprc(mc_dev) || 693 is_fsl_mc_bus_dpmcp(mc_dev)) { 694 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL; 695 } else if (is_fsl_mc_bus_dpio(mc_dev)) { 696 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL; 697 } else { 698 /* 699 * This function should not have been called for this MC object 700 * type, as this object type is not supposed to have MMIO 701 * regions 702 */ 703 return -EINVAL; 704 } 705 706 regions = kmalloc_array(obj_desc->region_count, 707 sizeof(regions[0]), GFP_KERNEL); 708 if (!regions) 709 return -ENOMEM; 710 711 for (i = 0; i < obj_desc->region_count; i++) { 712 struct dprc_region_desc region_desc; 713 714 error = dprc_get_obj_region(mc_bus_dev->mc_io, 715 0, 716 mc_bus_dev->mc_handle, 717 obj_desc->type, 718 obj_desc->id, i, ®ion_desc); 719 if (error < 0) { 720 dev_err(parent_dev, 721 "dprc_get_obj_region() failed: %d\n", error); 722 goto error_cleanup_regions; 723 } 724 /* 725 * Older MC only returned region offset and no base address 726 * If base address is in the region_desc use it otherwise 727 * revert to old mechanism 728 */ 729 if (region_desc.base_address) { 730 regions[i].start = region_desc.base_address + 731 region_desc.base_offset; 732 } else { 733 error = translate_mc_addr(mc_dev, mc_region_type, 734 region_desc.base_offset, 735 ®ions[i].start); 736 737 /* 738 * Some versions of the MC firmware wrongly report 739 * 0 for register base address of the DPMCP associated 740 * with child DPRC objects thus rendering them unusable. 741 * This is particularly troublesome in ACPI boot 742 * scenarios where the legacy way of extracting this 743 * base address from the device tree does not apply. 744 * Given that DPMCPs share the same base address, 745 * workaround this by using the base address extracted 746 * from the root DPRC container. 747 */ 748 if (is_fsl_mc_bus_dprc(mc_dev) && 749 regions[i].start == region_desc.base_offset) 750 regions[i].start += mc_portal_base_phys_addr; 751 } 752 753 if (error < 0) { 754 dev_err(parent_dev, 755 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n", 756 region_desc.base_offset, 757 obj_desc->type, obj_desc->id, i); 758 goto error_cleanup_regions; 759 } 760 761 regions[i].end = regions[i].start + region_desc.size - 1; 762 regions[i].name = "fsl-mc object MMIO region"; 763 regions[i].flags = region_desc.flags & IORESOURCE_BITS; 764 regions[i].flags |= IORESOURCE_MEM; 765 } 766 767 mc_dev->regions = regions; 768 return 0; 769 770 error_cleanup_regions: 771 kfree(regions); 772 return error; 773 } 774 775 /* 776 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc 777 */ 778 bool fsl_mc_is_root_dprc(struct device *dev) 779 { 780 struct device *root_dprc_dev; 781 782 fsl_mc_get_root_dprc(dev, &root_dprc_dev); 783 if (!root_dprc_dev) 784 return false; 785 return dev == root_dprc_dev; 786 } 787 788 static void fsl_mc_device_release(struct device *dev) 789 { 790 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); 791 792 kfree(mc_dev->regions); 793 794 if (is_fsl_mc_bus_dprc(mc_dev)) 795 kfree(to_fsl_mc_bus(mc_dev)); 796 else 797 kfree(mc_dev); 798 } 799 800 /* 801 * Add a newly discovered fsl-mc device to be visible in Linux 802 */ 803 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc, 804 struct fsl_mc_io *mc_io, 805 struct device *parent_dev, 806 struct fsl_mc_device **new_mc_dev) 807 { 808 int error; 809 struct fsl_mc_device *mc_dev = NULL; 810 struct fsl_mc_bus *mc_bus = NULL; 811 struct fsl_mc_device *parent_mc_dev; 812 813 if (dev_is_fsl_mc(parent_dev)) 814 parent_mc_dev = to_fsl_mc_device(parent_dev); 815 else 816 parent_mc_dev = NULL; 817 818 if (strcmp(obj_desc->type, "dprc") == 0) { 819 /* 820 * Allocate an MC bus device object: 821 */ 822 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL); 823 if (!mc_bus) 824 return -ENOMEM; 825 826 mutex_init(&mc_bus->scan_mutex); 827 mc_dev = &mc_bus->mc_dev; 828 } else { 829 /* 830 * Allocate a regular fsl_mc_device object: 831 */ 832 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL); 833 if (!mc_dev) 834 return -ENOMEM; 835 } 836 837 mc_dev->obj_desc = *obj_desc; 838 mc_dev->mc_io = mc_io; 839 device_initialize(&mc_dev->dev); 840 mc_dev->dev.parent = parent_dev; 841 mc_dev->dev.bus = &fsl_mc_bus_type; 842 mc_dev->dev.release = fsl_mc_device_release; 843 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type); 844 if (!mc_dev->dev.type) { 845 error = -ENODEV; 846 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type); 847 goto error_cleanup_dev; 848 } 849 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id); 850 851 if (strcmp(obj_desc->type, "dprc") == 0) { 852 struct fsl_mc_io *mc_io2; 853 854 mc_dev->flags |= FSL_MC_IS_DPRC; 855 856 /* 857 * To get the DPRC's ICID, we need to open the DPRC 858 * in get_dprc_icid(). For child DPRCs, we do so using the 859 * parent DPRC's MC portal instead of the child DPRC's MC 860 * portal, in case the child DPRC is already opened with 861 * its own portal (e.g., the DPRC used by AIOP). 862 * 863 * NOTE: There cannot be more than one active open for a 864 * given MC object, using the same MC portal. 865 */ 866 if (parent_mc_dev) { 867 /* 868 * device being added is a child DPRC device 869 */ 870 mc_io2 = parent_mc_dev->mc_io; 871 } else { 872 /* 873 * device being added is the root DPRC device 874 */ 875 if (!mc_io) { 876 error = -EINVAL; 877 goto error_cleanup_dev; 878 } 879 880 mc_io2 = mc_io; 881 } 882 883 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid); 884 if (error < 0) 885 goto error_cleanup_dev; 886 } else { 887 /* 888 * A non-DPRC object has to be a child of a DPRC, use the 889 * parent's ICID and interrupt domain. 890 */ 891 mc_dev->icid = parent_mc_dev->icid; 892 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK; 893 mc_dev->dev.dma_mask = &mc_dev->dma_mask; 894 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask; 895 dev_set_msi_domain(&mc_dev->dev, 896 dev_get_msi_domain(&parent_mc_dev->dev)); 897 } 898 899 /* 900 * Get MMIO regions for the device from the MC: 901 * 902 * NOTE: the root DPRC is a special case as its MMIO region is 903 * obtained from the device tree 904 */ 905 if (parent_mc_dev && obj_desc->region_count != 0) { 906 error = fsl_mc_device_get_mmio_regions(mc_dev, 907 parent_mc_dev); 908 if (error < 0) 909 goto error_cleanup_dev; 910 } 911 912 /* 913 * The device-specific probe callback will get invoked by device_add() 914 */ 915 error = device_add(&mc_dev->dev); 916 if (error < 0) { 917 dev_err(parent_dev, 918 "device_add() failed for device %s: %d\n", 919 dev_name(&mc_dev->dev), error); 920 goto error_cleanup_dev; 921 } 922 923 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev)); 924 925 *new_mc_dev = mc_dev; 926 return 0; 927 928 error_cleanup_dev: 929 kfree(mc_dev->regions); 930 kfree(mc_bus); 931 kfree(mc_dev); 932 933 return error; 934 } 935 EXPORT_SYMBOL_GPL(fsl_mc_device_add); 936 937 static struct notifier_block fsl_mc_nb; 938 939 /** 940 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to 941 * Linux 942 * 943 * @mc_dev: Pointer to an fsl-mc device 944 */ 945 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev) 946 { 947 kfree(mc_dev->driver_override); 948 mc_dev->driver_override = NULL; 949 950 /* 951 * The device-specific remove callback will get invoked by device_del() 952 */ 953 device_del(&mc_dev->dev); 954 put_device(&mc_dev->dev); 955 } 956 EXPORT_SYMBOL_GPL(fsl_mc_device_remove); 957 958 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev, 959 u16 if_id) 960 { 961 struct fsl_mc_device *mc_bus_dev, *endpoint; 962 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }}; 963 struct dprc_endpoint endpoint1 = {{ 0 }}; 964 struct dprc_endpoint endpoint2 = {{ 0 }}; 965 int state, err; 966 967 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent); 968 strcpy(endpoint1.type, mc_dev->obj_desc.type); 969 endpoint1.id = mc_dev->obj_desc.id; 970 endpoint1.if_id = if_id; 971 972 err = dprc_get_connection(mc_bus_dev->mc_io, 0, 973 mc_bus_dev->mc_handle, 974 &endpoint1, &endpoint2, 975 &state); 976 977 if (err == -ENOTCONN || state == -1) 978 return ERR_PTR(-ENOTCONN); 979 980 if (err < 0) { 981 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err); 982 return ERR_PTR(err); 983 } 984 985 strcpy(endpoint_desc.type, endpoint2.type); 986 endpoint_desc.id = endpoint2.id; 987 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 988 989 /* 990 * We know that the device has an endpoint because we verified by 991 * interrogating the firmware. This is the case when the device was not 992 * yet discovered by the fsl-mc bus, thus the lookup returned NULL. 993 * Force a rescan of the devices in this container and retry the lookup. 994 */ 995 if (!endpoint) { 996 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); 997 998 if (mutex_trylock(&mc_bus->scan_mutex)) { 999 err = dprc_scan_objects(mc_bus_dev, true); 1000 mutex_unlock(&mc_bus->scan_mutex); 1001 } 1002 1003 if (err < 0) 1004 return ERR_PTR(err); 1005 } 1006 1007 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev); 1008 /* 1009 * This means that the endpoint might reside in a different isolation 1010 * context (DPRC/container). Not much to do, so return a permssion 1011 * error. 1012 */ 1013 if (!endpoint) 1014 return ERR_PTR(-EPERM); 1015 1016 return endpoint; 1017 } 1018 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint); 1019 1020 static int parse_mc_ranges(struct device *dev, 1021 int *paddr_cells, 1022 int *mc_addr_cells, 1023 int *mc_size_cells, 1024 const __be32 **ranges_start) 1025 { 1026 const __be32 *prop; 1027 int range_tuple_cell_count; 1028 int ranges_len; 1029 int tuple_len; 1030 struct device_node *mc_node = dev->of_node; 1031 1032 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len); 1033 if (!(*ranges_start) || !ranges_len) { 1034 dev_warn(dev, 1035 "missing or empty ranges property for device tree node '%pOFn'\n", 1036 mc_node); 1037 return 0; 1038 } 1039 1040 *paddr_cells = of_n_addr_cells(mc_node); 1041 1042 prop = of_get_property(mc_node, "#address-cells", NULL); 1043 if (prop) 1044 *mc_addr_cells = be32_to_cpup(prop); 1045 else 1046 *mc_addr_cells = *paddr_cells; 1047 1048 prop = of_get_property(mc_node, "#size-cells", NULL); 1049 if (prop) 1050 *mc_size_cells = be32_to_cpup(prop); 1051 else 1052 *mc_size_cells = of_n_size_cells(mc_node); 1053 1054 range_tuple_cell_count = *paddr_cells + *mc_addr_cells + 1055 *mc_size_cells; 1056 1057 tuple_len = range_tuple_cell_count * sizeof(__be32); 1058 if (ranges_len % tuple_len != 0) { 1059 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node); 1060 return -EINVAL; 1061 } 1062 1063 return ranges_len / tuple_len; 1064 } 1065 1066 static int get_mc_addr_translation_ranges(struct device *dev, 1067 struct fsl_mc_addr_translation_range 1068 **ranges, 1069 u8 *num_ranges) 1070 { 1071 int ret; 1072 int paddr_cells; 1073 int mc_addr_cells; 1074 int mc_size_cells; 1075 int i; 1076 const __be32 *ranges_start; 1077 const __be32 *cell; 1078 1079 ret = parse_mc_ranges(dev, 1080 &paddr_cells, 1081 &mc_addr_cells, 1082 &mc_size_cells, 1083 &ranges_start); 1084 if (ret < 0) 1085 return ret; 1086 1087 *num_ranges = ret; 1088 if (!ret) { 1089 /* 1090 * Missing or empty ranges property ("ranges;") for the 1091 * 'fsl,qoriq-mc' node. In this case, identity mapping 1092 * will be used. 1093 */ 1094 *ranges = NULL; 1095 return 0; 1096 } 1097 1098 *ranges = devm_kcalloc(dev, *num_ranges, 1099 sizeof(struct fsl_mc_addr_translation_range), 1100 GFP_KERNEL); 1101 if (!(*ranges)) 1102 return -ENOMEM; 1103 1104 cell = ranges_start; 1105 for (i = 0; i < *num_ranges; ++i) { 1106 struct fsl_mc_addr_translation_range *range = &(*ranges)[i]; 1107 1108 range->mc_region_type = of_read_number(cell, 1); 1109 range->start_mc_offset = of_read_number(cell + 1, 1110 mc_addr_cells - 1); 1111 cell += mc_addr_cells; 1112 range->start_phys_addr = of_read_number(cell, paddr_cells); 1113 cell += paddr_cells; 1114 range->end_mc_offset = range->start_mc_offset + 1115 of_read_number(cell, mc_size_cells); 1116 1117 cell += mc_size_cells; 1118 } 1119 1120 return 0; 1121 } 1122 1123 /* 1124 * fsl_mc_bus_probe - callback invoked when the root MC bus is being 1125 * added 1126 */ 1127 static int fsl_mc_bus_probe(struct platform_device *pdev) 1128 { 1129 struct fsl_mc_obj_desc obj_desc; 1130 int error; 1131 struct fsl_mc *mc; 1132 struct fsl_mc_device *mc_bus_dev = NULL; 1133 struct fsl_mc_io *mc_io = NULL; 1134 int container_id; 1135 phys_addr_t mc_portal_phys_addr; 1136 u32 mc_portal_size, mc_stream_id; 1137 struct resource *plat_res; 1138 1139 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 1140 if (!mc) 1141 return -ENOMEM; 1142 1143 platform_set_drvdata(pdev, mc); 1144 1145 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1146 if (plat_res) { 1147 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res); 1148 if (IS_ERR(mc->fsl_mc_regs)) 1149 return PTR_ERR(mc->fsl_mc_regs); 1150 } 1151 1152 if (mc->fsl_mc_regs) { 1153 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) { 1154 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR); 1155 /* 1156 * HW ORs the PL and BMT bit, places the result in bit 1157 * 14 of the StreamID and ORs in the ICID. Calculate it 1158 * accordingly. 1159 */ 1160 mc_stream_id = (mc_stream_id & 0xffff) | 1161 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ? 1162 BIT(14) : 0); 1163 error = acpi_dma_configure_id(&pdev->dev, 1164 DEV_DMA_COHERENT, 1165 &mc_stream_id); 1166 if (error == -EPROBE_DEFER) 1167 return error; 1168 if (error) 1169 dev_warn(&pdev->dev, 1170 "failed to configure dma: %d.\n", 1171 error); 1172 } 1173 1174 /* 1175 * Some bootloaders pause the MC firmware before booting the 1176 * kernel so that MC will not cause faults as soon as the 1177 * SMMU probes due to the fact that there's no configuration 1178 * in place for MC. 1179 * At this point MC should have all its SMMU setup done so make 1180 * sure it is resumed. 1181 */ 1182 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) & 1183 (~(GCR1_P1_STOP | GCR1_P2_STOP)), 1184 mc->fsl_mc_regs + FSL_MC_GCR1); 1185 } 1186 1187 /* 1188 * Get physical address of MC portal for the root DPRC: 1189 */ 1190 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1191 mc_portal_phys_addr = plat_res->start; 1192 mc_portal_size = resource_size(plat_res); 1193 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff; 1194 1195 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr, 1196 mc_portal_size, NULL, 1197 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io); 1198 if (error < 0) 1199 return error; 1200 1201 error = mc_get_version(mc_io, 0, &mc_version); 1202 if (error != 0) { 1203 dev_err(&pdev->dev, 1204 "mc_get_version() failed with error %d\n", error); 1205 goto error_cleanup_mc_io; 1206 } 1207 1208 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n", 1209 mc_version.major, mc_version.minor, mc_version.revision); 1210 1211 if (dev_of_node(&pdev->dev)) { 1212 error = get_mc_addr_translation_ranges(&pdev->dev, 1213 &mc->translation_ranges, 1214 &mc->num_translation_ranges); 1215 if (error < 0) 1216 goto error_cleanup_mc_io; 1217 } 1218 1219 error = dprc_get_container_id(mc_io, 0, &container_id); 1220 if (error < 0) { 1221 dev_err(&pdev->dev, 1222 "dprc_get_container_id() failed: %d\n", error); 1223 goto error_cleanup_mc_io; 1224 } 1225 1226 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc)); 1227 error = dprc_get_api_version(mc_io, 0, 1228 &obj_desc.ver_major, 1229 &obj_desc.ver_minor); 1230 if (error < 0) 1231 goto error_cleanup_mc_io; 1232 1233 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE; 1234 strcpy(obj_desc.type, "dprc"); 1235 obj_desc.id = container_id; 1236 obj_desc.irq_count = 1; 1237 obj_desc.region_count = 0; 1238 1239 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev); 1240 if (error < 0) 1241 goto error_cleanup_mc_io; 1242 1243 mc->root_mc_bus_dev = mc_bus_dev; 1244 mc_bus_dev->dev.fwnode = pdev->dev.fwnode; 1245 return 0; 1246 1247 error_cleanup_mc_io: 1248 fsl_destroy_mc_io(mc_io); 1249 return error; 1250 } 1251 1252 /* 1253 * fsl_mc_bus_remove - callback invoked when the root MC bus is being 1254 * removed 1255 */ 1256 static int fsl_mc_bus_remove(struct platform_device *pdev) 1257 { 1258 struct fsl_mc *mc = platform_get_drvdata(pdev); 1259 1260 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev)) 1261 return -EINVAL; 1262 1263 fsl_mc_device_remove(mc->root_mc_bus_dev); 1264 1265 fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io); 1266 mc->root_mc_bus_dev->mc_io = NULL; 1267 1268 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb); 1269 1270 if (mc->fsl_mc_regs) { 1271 /* 1272 * Pause the MC firmware so that it doesn't crash in certain 1273 * scenarios, such as kexec. 1274 */ 1275 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) | 1276 (GCR1_P1_STOP | GCR1_P2_STOP), 1277 mc->fsl_mc_regs + FSL_MC_GCR1); 1278 } 1279 1280 return 0; 1281 } 1282 1283 static void fsl_mc_bus_shutdown(struct platform_device *pdev) 1284 { 1285 fsl_mc_bus_remove(pdev); 1286 } 1287 1288 static const struct of_device_id fsl_mc_bus_match_table[] = { 1289 {.compatible = "fsl,qoriq-mc",}, 1290 {}, 1291 }; 1292 1293 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table); 1294 1295 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = { 1296 {"NXP0008", 0 }, 1297 { } 1298 }; 1299 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table); 1300 1301 static struct platform_driver fsl_mc_bus_driver = { 1302 .driver = { 1303 .name = "fsl_mc_bus", 1304 .pm = NULL, 1305 .of_match_table = fsl_mc_bus_match_table, 1306 .acpi_match_table = fsl_mc_bus_acpi_match_table, 1307 }, 1308 .probe = fsl_mc_bus_probe, 1309 .remove = fsl_mc_bus_remove, 1310 .shutdown = fsl_mc_bus_shutdown, 1311 }; 1312 1313 static int fsl_mc_bus_notifier(struct notifier_block *nb, 1314 unsigned long action, void *data) 1315 { 1316 struct device *dev = data; 1317 struct resource *res; 1318 void __iomem *fsl_mc_regs; 1319 1320 if (action != BUS_NOTIFY_ADD_DEVICE) 1321 return 0; 1322 1323 if (!of_match_device(fsl_mc_bus_match_table, dev) && 1324 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev)) 1325 return 0; 1326 1327 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1); 1328 if (!res) 1329 return 0; 1330 1331 fsl_mc_regs = ioremap(res->start, resource_size(res)); 1332 if (!fsl_mc_regs) 1333 return 0; 1334 1335 /* 1336 * Make sure that the MC firmware is paused before the IOMMU setup for 1337 * it is done or otherwise the firmware will crash right after the SMMU 1338 * gets probed and enabled. 1339 */ 1340 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP), 1341 fsl_mc_regs + FSL_MC_GCR1); 1342 iounmap(fsl_mc_regs); 1343 1344 return 0; 1345 } 1346 1347 static struct notifier_block fsl_mc_nb = { 1348 .notifier_call = fsl_mc_bus_notifier, 1349 }; 1350 1351 static int __init fsl_mc_bus_driver_init(void) 1352 { 1353 int error; 1354 1355 error = bus_register(&fsl_mc_bus_type); 1356 if (error < 0) { 1357 pr_err("bus type registration failed: %d\n", error); 1358 goto error_cleanup_cache; 1359 } 1360 1361 error = platform_driver_register(&fsl_mc_bus_driver); 1362 if (error < 0) { 1363 pr_err("platform_driver_register() failed: %d\n", error); 1364 goto error_cleanup_bus; 1365 } 1366 1367 error = dprc_driver_init(); 1368 if (error < 0) 1369 goto error_cleanup_driver; 1370 1371 error = fsl_mc_allocator_driver_init(); 1372 if (error < 0) 1373 goto error_cleanup_dprc_driver; 1374 1375 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb); 1376 1377 error_cleanup_dprc_driver: 1378 dprc_driver_exit(); 1379 1380 error_cleanup_driver: 1381 platform_driver_unregister(&fsl_mc_bus_driver); 1382 1383 error_cleanup_bus: 1384 bus_unregister(&fsl_mc_bus_type); 1385 1386 error_cleanup_cache: 1387 return error; 1388 } 1389 postcore_initcall(fsl_mc_bus_driver_init); 1390