xref: /openbmc/linux/drivers/bus/fsl-mc/fsl-mc-bus.c (revision 173940b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Freescale Management Complex (MC) bus driver
4  *
5  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
6  * Copyright 2019-2020 NXP
7  * Author: German Rivera <German.Rivera@freescale.com>
8  *
9  */
10 
11 #define pr_fmt(fmt) "fsl-mc: " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/of_address.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/limits.h>
19 #include <linux/bitops.h>
20 #include <linux/msi.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/acpi.h>
23 #include <linux/iommu.h>
24 #include <linux/dma-map-ops.h>
25 
26 #include "fsl-mc-private.h"
27 
28 /*
29  * Default DMA mask for devices on a fsl-mc bus
30  */
31 #define FSL_MC_DEFAULT_DMA_MASK	(~0ULL)
32 
33 static struct fsl_mc_version mc_version;
34 
35 /**
36  * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
37  * @root_mc_bus_dev: fsl-mc device representing the root DPRC
38  * @num_translation_ranges: number of entries in addr_translation_ranges
39  * @translation_ranges: array of bus to system address translation ranges
40  * @fsl_mc_regs: base address of register bank
41  */
42 struct fsl_mc {
43 	struct fsl_mc_device *root_mc_bus_dev;
44 	u8 num_translation_ranges;
45 	struct fsl_mc_addr_translation_range *translation_ranges;
46 	void __iomem *fsl_mc_regs;
47 };
48 
49 /**
50  * struct fsl_mc_addr_translation_range - bus to system address translation
51  * range
52  * @mc_region_type: Type of MC region for the range being translated
53  * @start_mc_offset: Start MC offset of the range being translated
54  * @end_mc_offset: MC offset of the first byte after the range (last MC
55  * offset of the range is end_mc_offset - 1)
56  * @start_phys_addr: system physical address corresponding to start_mc_addr
57  */
58 struct fsl_mc_addr_translation_range {
59 	enum dprc_region_type mc_region_type;
60 	u64 start_mc_offset;
61 	u64 end_mc_offset;
62 	phys_addr_t start_phys_addr;
63 };
64 
65 #define FSL_MC_GCR1	0x0
66 #define GCR1_P1_STOP	BIT(31)
67 #define GCR1_P2_STOP	BIT(30)
68 
69 #define FSL_MC_FAPR	0x28
70 #define MC_FAPR_PL	BIT(18)
71 #define MC_FAPR_BMT	BIT(17)
72 
73 static phys_addr_t mc_portal_base_phys_addr;
74 
75 /**
76  * fsl_mc_bus_match - device to driver matching callback
77  * @dev: the fsl-mc device to match against
78  * @drv: the device driver to search for matching fsl-mc object type
79  * structures
80  *
81  * Returns 1 on success, 0 otherwise.
82  */
83 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
84 {
85 	const struct fsl_mc_device_id *id;
86 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
87 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
88 	bool found = false;
89 
90 	/* When driver_override is set, only bind to the matching driver */
91 	if (mc_dev->driver_override) {
92 		found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
93 		goto out;
94 	}
95 
96 	if (!mc_drv->match_id_table)
97 		goto out;
98 
99 	/*
100 	 * If the object is not 'plugged' don't match.
101 	 * Only exception is the root DPRC, which is a special case.
102 	 */
103 	if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
104 	    !fsl_mc_is_root_dprc(&mc_dev->dev))
105 		goto out;
106 
107 	/*
108 	 * Traverse the match_id table of the given driver, trying to find
109 	 * a matching for the given device.
110 	 */
111 	for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
112 		if (id->vendor == mc_dev->obj_desc.vendor &&
113 		    strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
114 			found = true;
115 
116 			break;
117 		}
118 	}
119 
120 out:
121 	dev_dbg(dev, "%smatched\n", found ? "" : "not ");
122 	return found;
123 }
124 
125 /*
126  * fsl_mc_bus_uevent - callback invoked when a device is added
127  */
128 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
129 {
130 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
131 
132 	if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
133 			   mc_dev->obj_desc.vendor,
134 			   mc_dev->obj_desc.type))
135 		return -ENOMEM;
136 
137 	return 0;
138 }
139 
140 static int fsl_mc_dma_configure(struct device *dev)
141 {
142 	struct device *dma_dev = dev;
143 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
144 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
145 	u32 input_id = mc_dev->icid;
146 	int ret;
147 
148 	while (dev_is_fsl_mc(dma_dev))
149 		dma_dev = dma_dev->parent;
150 
151 	if (dev_of_node(dma_dev))
152 		ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
153 	else
154 		ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
155 
156 	if (!ret && !mc_drv->driver_managed_dma) {
157 		ret = iommu_device_use_default_domain(dev);
158 		if (ret)
159 			arch_teardown_dma_ops(dev);
160 	}
161 
162 	return ret;
163 }
164 
165 static void fsl_mc_dma_cleanup(struct device *dev)
166 {
167 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
168 
169 	if (!mc_drv->driver_managed_dma)
170 		iommu_device_unuse_default_domain(dev);
171 }
172 
173 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
174 			     char *buf)
175 {
176 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
177 
178 	return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
179 		       mc_dev->obj_desc.type);
180 }
181 static DEVICE_ATTR_RO(modalias);
182 
183 static ssize_t driver_override_store(struct device *dev,
184 				     struct device_attribute *attr,
185 				     const char *buf, size_t count)
186 {
187 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
188 	int ret;
189 
190 	if (WARN_ON(dev->bus != &fsl_mc_bus_type))
191 		return -EINVAL;
192 
193 	ret = driver_set_override(dev, &mc_dev->driver_override, buf, count);
194 	if (ret)
195 		return ret;
196 
197 	return count;
198 }
199 
200 static ssize_t driver_override_show(struct device *dev,
201 				    struct device_attribute *attr, char *buf)
202 {
203 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
204 
205 	return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
206 }
207 static DEVICE_ATTR_RW(driver_override);
208 
209 static struct attribute *fsl_mc_dev_attrs[] = {
210 	&dev_attr_modalias.attr,
211 	&dev_attr_driver_override.attr,
212 	NULL,
213 };
214 
215 ATTRIBUTE_GROUPS(fsl_mc_dev);
216 
217 static int scan_fsl_mc_bus(struct device *dev, void *data)
218 {
219 	struct fsl_mc_device *root_mc_dev;
220 	struct fsl_mc_bus *root_mc_bus;
221 
222 	if (!fsl_mc_is_root_dprc(dev))
223 		goto exit;
224 
225 	root_mc_dev = to_fsl_mc_device(dev);
226 	root_mc_bus = to_fsl_mc_bus(root_mc_dev);
227 	mutex_lock(&root_mc_bus->scan_mutex);
228 	dprc_scan_objects(root_mc_dev, false);
229 	mutex_unlock(&root_mc_bus->scan_mutex);
230 
231 exit:
232 	return 0;
233 }
234 
235 static ssize_t rescan_store(struct bus_type *bus,
236 			    const char *buf, size_t count)
237 {
238 	unsigned long val;
239 
240 	if (kstrtoul(buf, 0, &val) < 0)
241 		return -EINVAL;
242 
243 	if (val)
244 		bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
245 
246 	return count;
247 }
248 static BUS_ATTR_WO(rescan);
249 
250 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
251 {
252 	struct fsl_mc_device *root_mc_dev;
253 	unsigned long val;
254 	char *buf = data;
255 
256 	if (!fsl_mc_is_root_dprc(dev))
257 		goto exit;
258 
259 	root_mc_dev = to_fsl_mc_device(dev);
260 
261 	if (kstrtoul(buf, 0, &val) < 0)
262 		return -EINVAL;
263 
264 	if (val)
265 		enable_dprc_irq(root_mc_dev);
266 	else
267 		disable_dprc_irq(root_mc_dev);
268 
269 exit:
270 	return 0;
271 }
272 
273 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
274 {
275 	struct fsl_mc_device *root_mc_dev;
276 	char *buf = data;
277 
278 	if (!fsl_mc_is_root_dprc(dev))
279 		goto exit;
280 
281 	root_mc_dev = to_fsl_mc_device(dev);
282 
283 	sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
284 exit:
285 	return 0;
286 }
287 
288 static ssize_t autorescan_store(struct bus_type *bus,
289 				const char *buf, size_t count)
290 {
291 	bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
292 
293 	return count;
294 }
295 
296 static ssize_t autorescan_show(struct bus_type *bus, char *buf)
297 {
298 	bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
299 	return strlen(buf);
300 }
301 
302 static BUS_ATTR_RW(autorescan);
303 
304 static struct attribute *fsl_mc_bus_attrs[] = {
305 	&bus_attr_rescan.attr,
306 	&bus_attr_autorescan.attr,
307 	NULL,
308 };
309 
310 ATTRIBUTE_GROUPS(fsl_mc_bus);
311 
312 struct bus_type fsl_mc_bus_type = {
313 	.name = "fsl-mc",
314 	.match = fsl_mc_bus_match,
315 	.uevent = fsl_mc_bus_uevent,
316 	.dma_configure  = fsl_mc_dma_configure,
317 	.dma_cleanup = fsl_mc_dma_cleanup,
318 	.dev_groups = fsl_mc_dev_groups,
319 	.bus_groups = fsl_mc_bus_groups,
320 };
321 EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
322 
323 struct device_type fsl_mc_bus_dprc_type = {
324 	.name = "fsl_mc_bus_dprc"
325 };
326 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
327 
328 struct device_type fsl_mc_bus_dpni_type = {
329 	.name = "fsl_mc_bus_dpni"
330 };
331 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
332 
333 struct device_type fsl_mc_bus_dpio_type = {
334 	.name = "fsl_mc_bus_dpio"
335 };
336 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
337 
338 struct device_type fsl_mc_bus_dpsw_type = {
339 	.name = "fsl_mc_bus_dpsw"
340 };
341 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
342 
343 struct device_type fsl_mc_bus_dpbp_type = {
344 	.name = "fsl_mc_bus_dpbp"
345 };
346 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
347 
348 struct device_type fsl_mc_bus_dpcon_type = {
349 	.name = "fsl_mc_bus_dpcon"
350 };
351 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
352 
353 struct device_type fsl_mc_bus_dpmcp_type = {
354 	.name = "fsl_mc_bus_dpmcp"
355 };
356 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
357 
358 struct device_type fsl_mc_bus_dpmac_type = {
359 	.name = "fsl_mc_bus_dpmac"
360 };
361 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
362 
363 struct device_type fsl_mc_bus_dprtc_type = {
364 	.name = "fsl_mc_bus_dprtc"
365 };
366 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
367 
368 struct device_type fsl_mc_bus_dpseci_type = {
369 	.name = "fsl_mc_bus_dpseci"
370 };
371 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
372 
373 struct device_type fsl_mc_bus_dpdmux_type = {
374 	.name = "fsl_mc_bus_dpdmux"
375 };
376 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
377 
378 struct device_type fsl_mc_bus_dpdcei_type = {
379 	.name = "fsl_mc_bus_dpdcei"
380 };
381 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
382 
383 struct device_type fsl_mc_bus_dpaiop_type = {
384 	.name = "fsl_mc_bus_dpaiop"
385 };
386 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
387 
388 struct device_type fsl_mc_bus_dpci_type = {
389 	.name = "fsl_mc_bus_dpci"
390 };
391 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
392 
393 struct device_type fsl_mc_bus_dpdmai_type = {
394 	.name = "fsl_mc_bus_dpdmai"
395 };
396 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
397 
398 struct device_type fsl_mc_bus_dpdbg_type = {
399 	.name = "fsl_mc_bus_dpdbg"
400 };
401 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
402 
403 static struct device_type *fsl_mc_get_device_type(const char *type)
404 {
405 	static const struct {
406 		struct device_type *dev_type;
407 		const char *type;
408 	} dev_types[] = {
409 		{ &fsl_mc_bus_dprc_type, "dprc" },
410 		{ &fsl_mc_bus_dpni_type, "dpni" },
411 		{ &fsl_mc_bus_dpio_type, "dpio" },
412 		{ &fsl_mc_bus_dpsw_type, "dpsw" },
413 		{ &fsl_mc_bus_dpbp_type, "dpbp" },
414 		{ &fsl_mc_bus_dpcon_type, "dpcon" },
415 		{ &fsl_mc_bus_dpmcp_type, "dpmcp" },
416 		{ &fsl_mc_bus_dpmac_type, "dpmac" },
417 		{ &fsl_mc_bus_dprtc_type, "dprtc" },
418 		{ &fsl_mc_bus_dpseci_type, "dpseci" },
419 		{ &fsl_mc_bus_dpdmux_type, "dpdmux" },
420 		{ &fsl_mc_bus_dpdcei_type, "dpdcei" },
421 		{ &fsl_mc_bus_dpaiop_type, "dpaiop" },
422 		{ &fsl_mc_bus_dpci_type, "dpci" },
423 		{ &fsl_mc_bus_dpdmai_type, "dpdmai" },
424 		{ &fsl_mc_bus_dpdbg_type, "dpdbg" },
425 		{ NULL, NULL }
426 	};
427 	int i;
428 
429 	for (i = 0; dev_types[i].dev_type; i++)
430 		if (!strcmp(dev_types[i].type, type))
431 			return dev_types[i].dev_type;
432 
433 	return NULL;
434 }
435 
436 static int fsl_mc_driver_probe(struct device *dev)
437 {
438 	struct fsl_mc_driver *mc_drv;
439 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
440 	int error;
441 
442 	mc_drv = to_fsl_mc_driver(dev->driver);
443 
444 	error = mc_drv->probe(mc_dev);
445 	if (error < 0) {
446 		if (error != -EPROBE_DEFER)
447 			dev_err(dev, "%s failed: %d\n", __func__, error);
448 		return error;
449 	}
450 
451 	return 0;
452 }
453 
454 static int fsl_mc_driver_remove(struct device *dev)
455 {
456 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
457 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
458 	int error;
459 
460 	error = mc_drv->remove(mc_dev);
461 	if (error < 0) {
462 		dev_err(dev, "%s failed: %d\n", __func__, error);
463 		return error;
464 	}
465 
466 	return 0;
467 }
468 
469 static void fsl_mc_driver_shutdown(struct device *dev)
470 {
471 	struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
472 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
473 
474 	mc_drv->shutdown(mc_dev);
475 }
476 
477 /*
478  * __fsl_mc_driver_register - registers a child device driver with the
479  * MC bus
480  *
481  * This function is implicitly invoked from the registration function of
482  * fsl_mc device drivers, which is generated by the
483  * module_fsl_mc_driver() macro.
484  */
485 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
486 			     struct module *owner)
487 {
488 	int error;
489 
490 	mc_driver->driver.owner = owner;
491 	mc_driver->driver.bus = &fsl_mc_bus_type;
492 
493 	if (mc_driver->probe)
494 		mc_driver->driver.probe = fsl_mc_driver_probe;
495 
496 	if (mc_driver->remove)
497 		mc_driver->driver.remove = fsl_mc_driver_remove;
498 
499 	if (mc_driver->shutdown)
500 		mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
501 
502 	error = driver_register(&mc_driver->driver);
503 	if (error < 0) {
504 		pr_err("driver_register() failed for %s: %d\n",
505 		       mc_driver->driver.name, error);
506 		return error;
507 	}
508 
509 	return 0;
510 }
511 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
512 
513 /*
514  * fsl_mc_driver_unregister - unregisters a device driver from the
515  * MC bus
516  */
517 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
518 {
519 	driver_unregister(&mc_driver->driver);
520 }
521 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
522 
523 /**
524  * mc_get_version() - Retrieves the Management Complex firmware
525  *			version information
526  * @mc_io:		Pointer to opaque I/O object
527  * @cmd_flags:		Command flags; one or more of 'MC_CMD_FLAG_'
528  * @mc_ver_info:	Returned version information structure
529  *
530  * Return:	'0' on Success; Error code otherwise.
531  */
532 static int mc_get_version(struct fsl_mc_io *mc_io,
533 			  u32 cmd_flags,
534 			  struct fsl_mc_version *mc_ver_info)
535 {
536 	struct fsl_mc_command cmd = { 0 };
537 	struct dpmng_rsp_get_version *rsp_params;
538 	int err;
539 
540 	/* prepare command */
541 	cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
542 					  cmd_flags,
543 					  0);
544 
545 	/* send command to mc*/
546 	err = mc_send_command(mc_io, &cmd);
547 	if (err)
548 		return err;
549 
550 	/* retrieve response parameters */
551 	rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
552 	mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
553 	mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
554 	mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
555 
556 	return 0;
557 }
558 
559 /**
560  * fsl_mc_get_version - function to retrieve the MC f/w version information
561  *
562  * Return:	mc version when called after fsl-mc-bus probe; NULL otherwise.
563  */
564 struct fsl_mc_version *fsl_mc_get_version(void)
565 {
566 	if (mc_version.major)
567 		return &mc_version;
568 
569 	return NULL;
570 }
571 EXPORT_SYMBOL_GPL(fsl_mc_get_version);
572 
573 /*
574  * fsl_mc_get_root_dprc - function to traverse to the root dprc
575  */
576 void fsl_mc_get_root_dprc(struct device *dev,
577 			 struct device **root_dprc_dev)
578 {
579 	if (!dev) {
580 		*root_dprc_dev = NULL;
581 	} else if (!dev_is_fsl_mc(dev)) {
582 		*root_dprc_dev = NULL;
583 	} else {
584 		*root_dprc_dev = dev;
585 		while (dev_is_fsl_mc((*root_dprc_dev)->parent))
586 			*root_dprc_dev = (*root_dprc_dev)->parent;
587 	}
588 }
589 
590 static int get_dprc_attr(struct fsl_mc_io *mc_io,
591 			 int container_id, struct dprc_attributes *attr)
592 {
593 	u16 dprc_handle;
594 	int error;
595 
596 	error = dprc_open(mc_io, 0, container_id, &dprc_handle);
597 	if (error < 0) {
598 		dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
599 		return error;
600 	}
601 
602 	memset(attr, 0, sizeof(struct dprc_attributes));
603 	error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
604 	if (error < 0) {
605 		dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
606 			error);
607 		goto common_cleanup;
608 	}
609 
610 	error = 0;
611 
612 common_cleanup:
613 	(void)dprc_close(mc_io, 0, dprc_handle);
614 	return error;
615 }
616 
617 static int get_dprc_icid(struct fsl_mc_io *mc_io,
618 			 int container_id, u32 *icid)
619 {
620 	struct dprc_attributes attr;
621 	int error;
622 
623 	error = get_dprc_attr(mc_io, container_id, &attr);
624 	if (error == 0)
625 		*icid = attr.icid;
626 
627 	return error;
628 }
629 
630 static int translate_mc_addr(struct fsl_mc_device *mc_dev,
631 			     enum dprc_region_type mc_region_type,
632 			     u64 mc_offset, phys_addr_t *phys_addr)
633 {
634 	int i;
635 	struct device *root_dprc_dev;
636 	struct fsl_mc *mc;
637 
638 	fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
639 	mc = dev_get_drvdata(root_dprc_dev->parent);
640 
641 	if (mc->num_translation_ranges == 0) {
642 		/*
643 		 * Do identity mapping:
644 		 */
645 		*phys_addr = mc_offset;
646 		return 0;
647 	}
648 
649 	for (i = 0; i < mc->num_translation_ranges; i++) {
650 		struct fsl_mc_addr_translation_range *range =
651 			&mc->translation_ranges[i];
652 
653 		if (mc_region_type == range->mc_region_type &&
654 		    mc_offset >= range->start_mc_offset &&
655 		    mc_offset < range->end_mc_offset) {
656 			*phys_addr = range->start_phys_addr +
657 				     (mc_offset - range->start_mc_offset);
658 			return 0;
659 		}
660 	}
661 
662 	return -EFAULT;
663 }
664 
665 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
666 					  struct fsl_mc_device *mc_bus_dev)
667 {
668 	int i;
669 	int error;
670 	struct resource *regions;
671 	struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
672 	struct device *parent_dev = mc_dev->dev.parent;
673 	enum dprc_region_type mc_region_type;
674 
675 	if (is_fsl_mc_bus_dprc(mc_dev) ||
676 	    is_fsl_mc_bus_dpmcp(mc_dev)) {
677 		mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
678 	} else if (is_fsl_mc_bus_dpio(mc_dev)) {
679 		mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
680 	} else {
681 		/*
682 		 * This function should not have been called for this MC object
683 		 * type, as this object type is not supposed to have MMIO
684 		 * regions
685 		 */
686 		return -EINVAL;
687 	}
688 
689 	regions = kmalloc_array(obj_desc->region_count,
690 				sizeof(regions[0]), GFP_KERNEL);
691 	if (!regions)
692 		return -ENOMEM;
693 
694 	for (i = 0; i < obj_desc->region_count; i++) {
695 		struct dprc_region_desc region_desc;
696 
697 		error = dprc_get_obj_region(mc_bus_dev->mc_io,
698 					    0,
699 					    mc_bus_dev->mc_handle,
700 					    obj_desc->type,
701 					    obj_desc->id, i, &region_desc);
702 		if (error < 0) {
703 			dev_err(parent_dev,
704 				"dprc_get_obj_region() failed: %d\n", error);
705 			goto error_cleanup_regions;
706 		}
707 		/*
708 		 * Older MC only returned region offset and no base address
709 		 * If base address is in the region_desc use it otherwise
710 		 * revert to old mechanism
711 		 */
712 		if (region_desc.base_address) {
713 			regions[i].start = region_desc.base_address +
714 						region_desc.base_offset;
715 		} else {
716 			error = translate_mc_addr(mc_dev, mc_region_type,
717 					  region_desc.base_offset,
718 					  &regions[i].start);
719 
720 			/*
721 			 * Some versions of the MC firmware wrongly report
722 			 * 0 for register base address of the DPMCP associated
723 			 * with child DPRC objects thus rendering them unusable.
724 			 * This is particularly troublesome in ACPI boot
725 			 * scenarios where the legacy way of extracting this
726 			 * base address from the device tree does not apply.
727 			 * Given that DPMCPs share the same base address,
728 			 * workaround this by using the base address extracted
729 			 * from the root DPRC container.
730 			 */
731 			if (is_fsl_mc_bus_dprc(mc_dev) &&
732 			    regions[i].start == region_desc.base_offset)
733 				regions[i].start += mc_portal_base_phys_addr;
734 		}
735 
736 		if (error < 0) {
737 			dev_err(parent_dev,
738 				"Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
739 				region_desc.base_offset,
740 				obj_desc->type, obj_desc->id, i);
741 			goto error_cleanup_regions;
742 		}
743 
744 		regions[i].end = regions[i].start + region_desc.size - 1;
745 		regions[i].name = "fsl-mc object MMIO region";
746 		regions[i].flags = region_desc.flags & IORESOURCE_BITS;
747 		regions[i].flags |= IORESOURCE_MEM;
748 	}
749 
750 	mc_dev->regions = regions;
751 	return 0;
752 
753 error_cleanup_regions:
754 	kfree(regions);
755 	return error;
756 }
757 
758 /*
759  * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
760  */
761 bool fsl_mc_is_root_dprc(struct device *dev)
762 {
763 	struct device *root_dprc_dev;
764 
765 	fsl_mc_get_root_dprc(dev, &root_dprc_dev);
766 	if (!root_dprc_dev)
767 		return false;
768 	return dev == root_dprc_dev;
769 }
770 
771 static void fsl_mc_device_release(struct device *dev)
772 {
773 	struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
774 
775 	kfree(mc_dev->regions);
776 
777 	if (is_fsl_mc_bus_dprc(mc_dev))
778 		kfree(to_fsl_mc_bus(mc_dev));
779 	else
780 		kfree(mc_dev);
781 }
782 
783 /*
784  * Add a newly discovered fsl-mc device to be visible in Linux
785  */
786 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
787 		      struct fsl_mc_io *mc_io,
788 		      struct device *parent_dev,
789 		      struct fsl_mc_device **new_mc_dev)
790 {
791 	int error;
792 	struct fsl_mc_device *mc_dev = NULL;
793 	struct fsl_mc_bus *mc_bus = NULL;
794 	struct fsl_mc_device *parent_mc_dev;
795 
796 	if (dev_is_fsl_mc(parent_dev))
797 		parent_mc_dev = to_fsl_mc_device(parent_dev);
798 	else
799 		parent_mc_dev = NULL;
800 
801 	if (strcmp(obj_desc->type, "dprc") == 0) {
802 		/*
803 		 * Allocate an MC bus device object:
804 		 */
805 		mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
806 		if (!mc_bus)
807 			return -ENOMEM;
808 
809 		mutex_init(&mc_bus->scan_mutex);
810 		mc_dev = &mc_bus->mc_dev;
811 	} else {
812 		/*
813 		 * Allocate a regular fsl_mc_device object:
814 		 */
815 		mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
816 		if (!mc_dev)
817 			return -ENOMEM;
818 	}
819 
820 	mc_dev->obj_desc = *obj_desc;
821 	mc_dev->mc_io = mc_io;
822 	device_initialize(&mc_dev->dev);
823 	mc_dev->dev.parent = parent_dev;
824 	mc_dev->dev.bus = &fsl_mc_bus_type;
825 	mc_dev->dev.release = fsl_mc_device_release;
826 	mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
827 	if (!mc_dev->dev.type) {
828 		error = -ENODEV;
829 		dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
830 		goto error_cleanup_dev;
831 	}
832 	dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
833 
834 	if (strcmp(obj_desc->type, "dprc") == 0) {
835 		struct fsl_mc_io *mc_io2;
836 
837 		mc_dev->flags |= FSL_MC_IS_DPRC;
838 
839 		/*
840 		 * To get the DPRC's ICID, we need to open the DPRC
841 		 * in get_dprc_icid(). For child DPRCs, we do so using the
842 		 * parent DPRC's MC portal instead of the child DPRC's MC
843 		 * portal, in case the child DPRC is already opened with
844 		 * its own portal (e.g., the DPRC used by AIOP).
845 		 *
846 		 * NOTE: There cannot be more than one active open for a
847 		 * given MC object, using the same MC portal.
848 		 */
849 		if (parent_mc_dev) {
850 			/*
851 			 * device being added is a child DPRC device
852 			 */
853 			mc_io2 = parent_mc_dev->mc_io;
854 		} else {
855 			/*
856 			 * device being added is the root DPRC device
857 			 */
858 			if (!mc_io) {
859 				error = -EINVAL;
860 				goto error_cleanup_dev;
861 			}
862 
863 			mc_io2 = mc_io;
864 		}
865 
866 		error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
867 		if (error < 0)
868 			goto error_cleanup_dev;
869 	} else {
870 		/*
871 		 * A non-DPRC object has to be a child of a DPRC, use the
872 		 * parent's ICID and interrupt domain.
873 		 */
874 		mc_dev->icid = parent_mc_dev->icid;
875 		mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
876 		mc_dev->dev.dma_mask = &mc_dev->dma_mask;
877 		mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
878 		dev_set_msi_domain(&mc_dev->dev,
879 				   dev_get_msi_domain(&parent_mc_dev->dev));
880 	}
881 
882 	/*
883 	 * Get MMIO regions for the device from the MC:
884 	 *
885 	 * NOTE: the root DPRC is a special case as its MMIO region is
886 	 * obtained from the device tree
887 	 */
888 	if (parent_mc_dev && obj_desc->region_count != 0) {
889 		error = fsl_mc_device_get_mmio_regions(mc_dev,
890 						       parent_mc_dev);
891 		if (error < 0)
892 			goto error_cleanup_dev;
893 	}
894 
895 	/*
896 	 * The device-specific probe callback will get invoked by device_add()
897 	 */
898 	error = device_add(&mc_dev->dev);
899 	if (error < 0) {
900 		dev_err(parent_dev,
901 			"device_add() failed for device %s: %d\n",
902 			dev_name(&mc_dev->dev), error);
903 		goto error_cleanup_dev;
904 	}
905 
906 	dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
907 
908 	*new_mc_dev = mc_dev;
909 	return 0;
910 
911 error_cleanup_dev:
912 	kfree(mc_dev->regions);
913 	kfree(mc_bus);
914 	kfree(mc_dev);
915 
916 	return error;
917 }
918 EXPORT_SYMBOL_GPL(fsl_mc_device_add);
919 
920 static struct notifier_block fsl_mc_nb;
921 
922 /**
923  * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
924  * Linux
925  *
926  * @mc_dev: Pointer to an fsl-mc device
927  */
928 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
929 {
930 	kfree(mc_dev->driver_override);
931 	mc_dev->driver_override = NULL;
932 
933 	/*
934 	 * The device-specific remove callback will get invoked by device_del()
935 	 */
936 	device_del(&mc_dev->dev);
937 	put_device(&mc_dev->dev);
938 }
939 EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
940 
941 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
942 					  u16 if_id)
943 {
944 	struct fsl_mc_device *mc_bus_dev, *endpoint;
945 	struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
946 	struct dprc_endpoint endpoint1 = {{ 0 }};
947 	struct dprc_endpoint endpoint2 = {{ 0 }};
948 	int state, err;
949 
950 	mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
951 	strcpy(endpoint1.type, mc_dev->obj_desc.type);
952 	endpoint1.id = mc_dev->obj_desc.id;
953 	endpoint1.if_id = if_id;
954 
955 	err = dprc_get_connection(mc_bus_dev->mc_io, 0,
956 				  mc_bus_dev->mc_handle,
957 				  &endpoint1, &endpoint2,
958 				  &state);
959 
960 	if (err == -ENOTCONN || state == -1)
961 		return ERR_PTR(-ENOTCONN);
962 
963 	if (err < 0) {
964 		dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
965 		return ERR_PTR(err);
966 	}
967 
968 	strcpy(endpoint_desc.type, endpoint2.type);
969 	endpoint_desc.id = endpoint2.id;
970 	endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
971 
972 	/*
973 	 * We know that the device has an endpoint because we verified by
974 	 * interrogating the firmware. This is the case when the device was not
975 	 * yet discovered by the fsl-mc bus, thus the lookup returned NULL.
976 	 * Force a rescan of the devices in this container and retry the lookup.
977 	 */
978 	if (!endpoint) {
979 		struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
980 
981 		if (mutex_trylock(&mc_bus->scan_mutex)) {
982 			err = dprc_scan_objects(mc_bus_dev, true);
983 			mutex_unlock(&mc_bus->scan_mutex);
984 		}
985 
986 		if (err < 0)
987 			return ERR_PTR(err);
988 	}
989 
990 	endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
991 	/*
992 	 * This means that the endpoint might reside in a different isolation
993 	 * context (DPRC/container). Not much to do, so return a permssion
994 	 * error.
995 	 */
996 	if (!endpoint)
997 		return ERR_PTR(-EPERM);
998 
999 	return endpoint;
1000 }
1001 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
1002 
1003 static int parse_mc_ranges(struct device *dev,
1004 			   int *paddr_cells,
1005 			   int *mc_addr_cells,
1006 			   int *mc_size_cells,
1007 			   const __be32 **ranges_start)
1008 {
1009 	const __be32 *prop;
1010 	int range_tuple_cell_count;
1011 	int ranges_len;
1012 	int tuple_len;
1013 	struct device_node *mc_node = dev->of_node;
1014 
1015 	*ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
1016 	if (!(*ranges_start) || !ranges_len) {
1017 		dev_warn(dev,
1018 			 "missing or empty ranges property for device tree node '%pOFn'\n",
1019 			 mc_node);
1020 		return 0;
1021 	}
1022 
1023 	*paddr_cells = of_n_addr_cells(mc_node);
1024 
1025 	prop = of_get_property(mc_node, "#address-cells", NULL);
1026 	if (prop)
1027 		*mc_addr_cells = be32_to_cpup(prop);
1028 	else
1029 		*mc_addr_cells = *paddr_cells;
1030 
1031 	prop = of_get_property(mc_node, "#size-cells", NULL);
1032 	if (prop)
1033 		*mc_size_cells = be32_to_cpup(prop);
1034 	else
1035 		*mc_size_cells = of_n_size_cells(mc_node);
1036 
1037 	range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
1038 				 *mc_size_cells;
1039 
1040 	tuple_len = range_tuple_cell_count * sizeof(__be32);
1041 	if (ranges_len % tuple_len != 0) {
1042 		dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
1043 		return -EINVAL;
1044 	}
1045 
1046 	return ranges_len / tuple_len;
1047 }
1048 
1049 static int get_mc_addr_translation_ranges(struct device *dev,
1050 					  struct fsl_mc_addr_translation_range
1051 						**ranges,
1052 					  u8 *num_ranges)
1053 {
1054 	int ret;
1055 	int paddr_cells;
1056 	int mc_addr_cells;
1057 	int mc_size_cells;
1058 	int i;
1059 	const __be32 *ranges_start;
1060 	const __be32 *cell;
1061 
1062 	ret = parse_mc_ranges(dev,
1063 			      &paddr_cells,
1064 			      &mc_addr_cells,
1065 			      &mc_size_cells,
1066 			      &ranges_start);
1067 	if (ret < 0)
1068 		return ret;
1069 
1070 	*num_ranges = ret;
1071 	if (!ret) {
1072 		/*
1073 		 * Missing or empty ranges property ("ranges;") for the
1074 		 * 'fsl,qoriq-mc' node. In this case, identity mapping
1075 		 * will be used.
1076 		 */
1077 		*ranges = NULL;
1078 		return 0;
1079 	}
1080 
1081 	*ranges = devm_kcalloc(dev, *num_ranges,
1082 			       sizeof(struct fsl_mc_addr_translation_range),
1083 			       GFP_KERNEL);
1084 	if (!(*ranges))
1085 		return -ENOMEM;
1086 
1087 	cell = ranges_start;
1088 	for (i = 0; i < *num_ranges; ++i) {
1089 		struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
1090 
1091 		range->mc_region_type = of_read_number(cell, 1);
1092 		range->start_mc_offset = of_read_number(cell + 1,
1093 							mc_addr_cells - 1);
1094 		cell += mc_addr_cells;
1095 		range->start_phys_addr = of_read_number(cell, paddr_cells);
1096 		cell += paddr_cells;
1097 		range->end_mc_offset = range->start_mc_offset +
1098 				     of_read_number(cell, mc_size_cells);
1099 
1100 		cell += mc_size_cells;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /*
1107  * fsl_mc_bus_probe - callback invoked when the root MC bus is being
1108  * added
1109  */
1110 static int fsl_mc_bus_probe(struct platform_device *pdev)
1111 {
1112 	struct fsl_mc_obj_desc obj_desc;
1113 	int error;
1114 	struct fsl_mc *mc;
1115 	struct fsl_mc_device *mc_bus_dev = NULL;
1116 	struct fsl_mc_io *mc_io = NULL;
1117 	int container_id;
1118 	phys_addr_t mc_portal_phys_addr;
1119 	u32 mc_portal_size, mc_stream_id;
1120 	struct resource *plat_res;
1121 
1122 	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1123 	if (!mc)
1124 		return -ENOMEM;
1125 
1126 	platform_set_drvdata(pdev, mc);
1127 
1128 	plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1129 	if (plat_res) {
1130 		mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1131 		if (IS_ERR(mc->fsl_mc_regs))
1132 			return PTR_ERR(mc->fsl_mc_regs);
1133 	}
1134 
1135 	if (mc->fsl_mc_regs) {
1136 		if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1137 			mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1138 			/*
1139 			 * HW ORs the PL and BMT bit, places the result in bit
1140 			 * 14 of the StreamID and ORs in the ICID. Calculate it
1141 			 * accordingly.
1142 			 */
1143 			mc_stream_id = (mc_stream_id & 0xffff) |
1144 				((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1145 					BIT(14) : 0);
1146 			error = acpi_dma_configure_id(&pdev->dev,
1147 						      DEV_DMA_COHERENT,
1148 						      &mc_stream_id);
1149 			if (error == -EPROBE_DEFER)
1150 				return error;
1151 			if (error)
1152 				dev_warn(&pdev->dev,
1153 					 "failed to configure dma: %d.\n",
1154 					 error);
1155 		}
1156 
1157 		/*
1158 		 * Some bootloaders pause the MC firmware before booting the
1159 		 * kernel so that MC will not cause faults as soon as the
1160 		 * SMMU probes due to the fact that there's no configuration
1161 		 * in place for MC.
1162 		 * At this point MC should have all its SMMU setup done so make
1163 		 * sure it is resumed.
1164 		 */
1165 		writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
1166 			     (~(GCR1_P1_STOP | GCR1_P2_STOP)),
1167 		       mc->fsl_mc_regs + FSL_MC_GCR1);
1168 	}
1169 
1170 	/*
1171 	 * Get physical address of MC portal for the root DPRC:
1172 	 */
1173 	plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1174 	mc_portal_phys_addr = plat_res->start;
1175 	mc_portal_size = resource_size(plat_res);
1176 	mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
1177 
1178 	error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1179 				 mc_portal_size, NULL,
1180 				 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1181 	if (error < 0)
1182 		return error;
1183 
1184 	error = mc_get_version(mc_io, 0, &mc_version);
1185 	if (error != 0) {
1186 		dev_err(&pdev->dev,
1187 			"mc_get_version() failed with error %d\n", error);
1188 		goto error_cleanup_mc_io;
1189 	}
1190 
1191 	dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1192 		 mc_version.major, mc_version.minor, mc_version.revision);
1193 
1194 	if (dev_of_node(&pdev->dev)) {
1195 		error = get_mc_addr_translation_ranges(&pdev->dev,
1196 						&mc->translation_ranges,
1197 						&mc->num_translation_ranges);
1198 		if (error < 0)
1199 			goto error_cleanup_mc_io;
1200 	}
1201 
1202 	error = dprc_get_container_id(mc_io, 0, &container_id);
1203 	if (error < 0) {
1204 		dev_err(&pdev->dev,
1205 			"dprc_get_container_id() failed: %d\n", error);
1206 		goto error_cleanup_mc_io;
1207 	}
1208 
1209 	memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1210 	error = dprc_get_api_version(mc_io, 0,
1211 				     &obj_desc.ver_major,
1212 				     &obj_desc.ver_minor);
1213 	if (error < 0)
1214 		goto error_cleanup_mc_io;
1215 
1216 	obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1217 	strcpy(obj_desc.type, "dprc");
1218 	obj_desc.id = container_id;
1219 	obj_desc.irq_count = 1;
1220 	obj_desc.region_count = 0;
1221 
1222 	error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1223 	if (error < 0)
1224 		goto error_cleanup_mc_io;
1225 
1226 	mc->root_mc_bus_dev = mc_bus_dev;
1227 	mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1228 	return 0;
1229 
1230 error_cleanup_mc_io:
1231 	fsl_destroy_mc_io(mc_io);
1232 	return error;
1233 }
1234 
1235 /*
1236  * fsl_mc_bus_remove - callback invoked when the root MC bus is being
1237  * removed
1238  */
1239 static int fsl_mc_bus_remove(struct platform_device *pdev)
1240 {
1241 	struct fsl_mc *mc = platform_get_drvdata(pdev);
1242 
1243 	if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
1244 		return -EINVAL;
1245 
1246 	fsl_mc_device_remove(mc->root_mc_bus_dev);
1247 
1248 	fsl_destroy_mc_io(mc->root_mc_bus_dev->mc_io);
1249 	mc->root_mc_bus_dev->mc_io = NULL;
1250 
1251 	bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
1252 
1253 	if (mc->fsl_mc_regs) {
1254 		/*
1255 		 * Pause the MC firmware so that it doesn't crash in certain
1256 		 * scenarios, such as kexec.
1257 		 */
1258 		writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
1259 		       (GCR1_P1_STOP | GCR1_P2_STOP),
1260 		       mc->fsl_mc_regs + FSL_MC_GCR1);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static void fsl_mc_bus_shutdown(struct platform_device *pdev)
1267 {
1268 	fsl_mc_bus_remove(pdev);
1269 }
1270 
1271 static const struct of_device_id fsl_mc_bus_match_table[] = {
1272 	{.compatible = "fsl,qoriq-mc",},
1273 	{},
1274 };
1275 
1276 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1277 
1278 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1279 	{"NXP0008", 0 },
1280 	{ }
1281 };
1282 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1283 
1284 static struct platform_driver fsl_mc_bus_driver = {
1285 	.driver = {
1286 		   .name = "fsl_mc_bus",
1287 		   .pm = NULL,
1288 		   .of_match_table = fsl_mc_bus_match_table,
1289 		   .acpi_match_table = fsl_mc_bus_acpi_match_table,
1290 		   },
1291 	.probe = fsl_mc_bus_probe,
1292 	.remove = fsl_mc_bus_remove,
1293 	.shutdown = fsl_mc_bus_shutdown,
1294 };
1295 
1296 static int fsl_mc_bus_notifier(struct notifier_block *nb,
1297 			       unsigned long action, void *data)
1298 {
1299 	struct device *dev = data;
1300 	struct resource *res;
1301 	void __iomem *fsl_mc_regs;
1302 
1303 	if (action != BUS_NOTIFY_ADD_DEVICE)
1304 		return 0;
1305 
1306 	if (!of_match_device(fsl_mc_bus_match_table, dev) &&
1307 	    !acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
1308 		return 0;
1309 
1310 	res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
1311 	if (!res)
1312 		return 0;
1313 
1314 	fsl_mc_regs = ioremap(res->start, resource_size(res));
1315 	if (!fsl_mc_regs)
1316 		return 0;
1317 
1318 	/*
1319 	 * Make sure that the MC firmware is paused before the IOMMU setup for
1320 	 * it is done or otherwise the firmware will crash right after the SMMU
1321 	 * gets probed and enabled.
1322 	 */
1323 	writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
1324 	       fsl_mc_regs + FSL_MC_GCR1);
1325 	iounmap(fsl_mc_regs);
1326 
1327 	return 0;
1328 }
1329 
1330 static struct notifier_block fsl_mc_nb = {
1331 	.notifier_call = fsl_mc_bus_notifier,
1332 };
1333 
1334 static int __init fsl_mc_bus_driver_init(void)
1335 {
1336 	int error;
1337 
1338 	error = bus_register(&fsl_mc_bus_type);
1339 	if (error < 0) {
1340 		pr_err("bus type registration failed: %d\n", error);
1341 		goto error_cleanup_cache;
1342 	}
1343 
1344 	error = platform_driver_register(&fsl_mc_bus_driver);
1345 	if (error < 0) {
1346 		pr_err("platform_driver_register() failed: %d\n", error);
1347 		goto error_cleanup_bus;
1348 	}
1349 
1350 	error = dprc_driver_init();
1351 	if (error < 0)
1352 		goto error_cleanup_driver;
1353 
1354 	error = fsl_mc_allocator_driver_init();
1355 	if (error < 0)
1356 		goto error_cleanup_dprc_driver;
1357 
1358 	return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
1359 
1360 error_cleanup_dprc_driver:
1361 	dprc_driver_exit();
1362 
1363 error_cleanup_driver:
1364 	platform_driver_unregister(&fsl_mc_bus_driver);
1365 
1366 error_cleanup_bus:
1367 	bus_unregister(&fsl_mc_bus_type);
1368 
1369 error_cleanup_cache:
1370 	return error;
1371 }
1372 postcore_initcall(fsl_mc_bus_driver_init);
1373