xref: /openbmc/linux/drivers/bus/arm-cci.c (revision e1f7c9ee)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include <asm/cacheflush.h>
28 #include <asm/irq_regs.h>
29 #include <asm/pmu.h>
30 #include <asm/smp_plat.h>
31 
32 #define DRIVER_NAME		"CCI-400"
33 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
34 
35 #define CCI_PORT_CTRL		0x0
36 #define CCI_CTRL_STATUS		0xc
37 
38 #define CCI_ENABLE_SNOOP_REQ	0x1
39 #define CCI_ENABLE_DVM_REQ	0x2
40 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
41 
42 struct cci_nb_ports {
43 	unsigned int nb_ace;
44 	unsigned int nb_ace_lite;
45 };
46 
47 enum cci_ace_port_type {
48 	ACE_INVALID_PORT = 0x0,
49 	ACE_PORT,
50 	ACE_LITE_PORT,
51 };
52 
53 struct cci_ace_port {
54 	void __iomem *base;
55 	unsigned long phys;
56 	enum cci_ace_port_type type;
57 	struct device_node *dn;
58 };
59 
60 static struct cci_ace_port *ports;
61 static unsigned int nb_cci_ports;
62 
63 static void __iomem *cci_ctrl_base;
64 static unsigned long cci_ctrl_phys;
65 
66 #ifdef CONFIG_HW_PERF_EVENTS
67 
68 #define CCI_PMCR		0x0100
69 #define CCI_PID2		0x0fe8
70 
71 #define CCI_PMCR_CEN		0x00000001
72 #define CCI_PMCR_NCNT_MASK	0x0000f800
73 #define CCI_PMCR_NCNT_SHIFT	11
74 
75 #define CCI_PID2_REV_MASK	0xf0
76 #define CCI_PID2_REV_SHIFT	4
77 
78 /* Port ids */
79 #define CCI_PORT_S0	0
80 #define CCI_PORT_S1	1
81 #define CCI_PORT_S2	2
82 #define CCI_PORT_S3	3
83 #define CCI_PORT_S4	4
84 #define CCI_PORT_M0	5
85 #define CCI_PORT_M1	6
86 #define CCI_PORT_M2	7
87 
88 #define CCI_REV_R0		0
89 #define CCI_REV_R1		1
90 #define CCI_REV_R1_PX		5
91 
92 #define CCI_PMU_EVT_SEL		0x000
93 #define CCI_PMU_CNTR		0x004
94 #define CCI_PMU_CNTR_CTRL	0x008
95 #define CCI_PMU_OVRFLW		0x00c
96 
97 #define CCI_PMU_OVRFLW_FLAG	1
98 
99 #define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)
100 
101 /*
102  * Instead of an event id to monitor CCI cycles, a dedicated counter is
103  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
104  * make use of this event in hardware.
105  */
106 enum cci400_perf_events {
107 	CCI_PMU_CYCLES = 0xff
108 };
109 
110 #define CCI_PMU_EVENT_MASK		0xff
111 #define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
112 #define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)
113 
114 #define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */
115 
116 #define CCI_PMU_CYCLE_CNTR_IDX		0
117 #define CCI_PMU_CNTR0_IDX		1
118 #define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
119 
120 /*
121  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
122  * ports and bits 4:0 are event codes. There are different event codes
123  * associated with each port type.
124  *
125  * Additionally, the range of events associated with the port types changed
126  * between Rev0 and Rev1.
127  *
128  * The constants below define the range of valid codes for each port type for
129  * the different revisions and are used to validate the event to be monitored.
130  */
131 
132 #define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
133 #define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
134 #define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
135 #define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a
136 
137 #define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
138 #define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
139 #define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
140 #define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11
141 
142 struct pmu_port_event_ranges {
143 	u8 slave_min;
144 	u8 slave_max;
145 	u8 master_min;
146 	u8 master_max;
147 };
148 
149 static struct pmu_port_event_ranges port_event_range[] = {
150 	[CCI_REV_R0] = {
151 		.slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
152 		.slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
153 		.master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
154 		.master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
155 	},
156 	[CCI_REV_R1] = {
157 		.slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
158 		.slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
159 		.master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
160 		.master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
161 	},
162 };
163 
164 /*
165  * Export different PMU names for the different revisions so userspace knows
166  * because the event ids are different
167  */
168 static char *const pmu_names[] = {
169 	[CCI_REV_R0] = "CCI_400",
170 	[CCI_REV_R1] = "CCI_400_r1",
171 };
172 
173 struct cci_pmu_drv_data {
174 	void __iomem *base;
175 	struct arm_pmu *cci_pmu;
176 	int nr_irqs;
177 	int irqs[CCI_PMU_MAX_HW_EVENTS];
178 	unsigned long active_irqs;
179 	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
180 	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
181 	struct pmu_port_event_ranges *port_ranges;
182 	struct pmu_hw_events hw_events;
183 };
184 static struct cci_pmu_drv_data *pmu;
185 
186 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
187 {
188 	int i;
189 
190 	for (i = 0; i < nr_irqs; i++)
191 		if (irq == irqs[i])
192 			return true;
193 
194 	return false;
195 }
196 
197 static int probe_cci_revision(void)
198 {
199 	int rev;
200 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
201 	rev >>= CCI_PID2_REV_SHIFT;
202 
203 	if (rev < CCI_REV_R1_PX)
204 		return CCI_REV_R0;
205 	else
206 		return CCI_REV_R1;
207 }
208 
209 static struct pmu_port_event_ranges *port_range_by_rev(void)
210 {
211 	int rev = probe_cci_revision();
212 
213 	return &port_event_range[rev];
214 }
215 
216 static int pmu_is_valid_slave_event(u8 ev_code)
217 {
218 	return pmu->port_ranges->slave_min <= ev_code &&
219 		ev_code <= pmu->port_ranges->slave_max;
220 }
221 
222 static int pmu_is_valid_master_event(u8 ev_code)
223 {
224 	return pmu->port_ranges->master_min <= ev_code &&
225 		ev_code <= pmu->port_ranges->master_max;
226 }
227 
228 static int pmu_validate_hw_event(u8 hw_event)
229 {
230 	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
231 	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
232 
233 	switch (ev_source) {
234 	case CCI_PORT_S0:
235 	case CCI_PORT_S1:
236 	case CCI_PORT_S2:
237 	case CCI_PORT_S3:
238 	case CCI_PORT_S4:
239 		/* Slave Interface */
240 		if (pmu_is_valid_slave_event(ev_code))
241 			return hw_event;
242 		break;
243 	case CCI_PORT_M0:
244 	case CCI_PORT_M1:
245 	case CCI_PORT_M2:
246 		/* Master Interface */
247 		if (pmu_is_valid_master_event(ev_code))
248 			return hw_event;
249 		break;
250 	}
251 
252 	return -ENOENT;
253 }
254 
255 static int pmu_is_valid_counter(struct arm_pmu *cci_pmu, int idx)
256 {
257 	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
258 		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
259 }
260 
261 static u32 pmu_read_register(int idx, unsigned int offset)
262 {
263 	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
264 }
265 
266 static void pmu_write_register(u32 value, int idx, unsigned int offset)
267 {
268 	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
269 }
270 
271 static void pmu_disable_counter(int idx)
272 {
273 	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
274 }
275 
276 static void pmu_enable_counter(int idx)
277 {
278 	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
279 }
280 
281 static void pmu_set_event(int idx, unsigned long event)
282 {
283 	event &= CCI_PMU_EVENT_MASK;
284 	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
285 }
286 
287 static u32 pmu_get_max_counters(void)
288 {
289 	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
290 		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
291 
292 	/* add 1 for cycle counter */
293 	return n_cnts + 1;
294 }
295 
296 static struct pmu_hw_events *pmu_get_hw_events(void)
297 {
298 	return &pmu->hw_events;
299 }
300 
301 static int pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event)
302 {
303 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
304 	struct hw_perf_event *hw_event = &event->hw;
305 	unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
306 	int idx;
307 
308 	if (cci_event == CCI_PMU_CYCLES) {
309 		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
310 			return -EAGAIN;
311 
312 		return CCI_PMU_CYCLE_CNTR_IDX;
313 	}
314 
315 	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
316 		if (!test_and_set_bit(idx, hw->used_mask))
317 			return idx;
318 
319 	/* No counters available */
320 	return -EAGAIN;
321 }
322 
323 static int pmu_map_event(struct perf_event *event)
324 {
325 	int mapping;
326 	u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
327 
328 	if (event->attr.type < PERF_TYPE_MAX)
329 		return -ENOENT;
330 
331 	if (config == CCI_PMU_CYCLES)
332 		mapping = config;
333 	else
334 		mapping = pmu_validate_hw_event(config);
335 
336 	return mapping;
337 }
338 
339 static int pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler)
340 {
341 	int i;
342 	struct platform_device *pmu_device = cci_pmu->plat_device;
343 
344 	if (unlikely(!pmu_device))
345 		return -ENODEV;
346 
347 	if (pmu->nr_irqs < 1) {
348 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
349 		return -ENODEV;
350 	}
351 
352 	/*
353 	 * Register all available CCI PMU interrupts. In the interrupt handler
354 	 * we iterate over the counters checking for interrupt source (the
355 	 * overflowing counter) and clear it.
356 	 *
357 	 * This should allow handling of non-unique interrupt for the counters.
358 	 */
359 	for (i = 0; i < pmu->nr_irqs; i++) {
360 		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
361 				"arm-cci-pmu", cci_pmu);
362 		if (err) {
363 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
364 				pmu->irqs[i]);
365 			return err;
366 		}
367 
368 		set_bit(i, &pmu->active_irqs);
369 	}
370 
371 	return 0;
372 }
373 
374 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
375 {
376 	unsigned long flags;
377 	struct arm_pmu *cci_pmu = (struct arm_pmu *)dev;
378 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
379 	struct perf_sample_data data;
380 	struct pt_regs *regs;
381 	int idx, handled = IRQ_NONE;
382 
383 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
384 	regs = get_irq_regs();
385 	/*
386 	 * Iterate over counters and update the corresponding perf events.
387 	 * This should work regardless of whether we have per-counter overflow
388 	 * interrupt or a combined overflow interrupt.
389 	 */
390 	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
391 		struct perf_event *event = events->events[idx];
392 		struct hw_perf_event *hw_counter;
393 
394 		if (!event)
395 			continue;
396 
397 		hw_counter = &event->hw;
398 
399 		/* Did this counter overflow? */
400 		if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
401 		      CCI_PMU_OVRFLW_FLAG))
402 			continue;
403 
404 		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
405 
406 		handled = IRQ_HANDLED;
407 
408 		armpmu_event_update(event);
409 		perf_sample_data_init(&data, 0, hw_counter->last_period);
410 		if (!armpmu_event_set_period(event))
411 			continue;
412 
413 		if (perf_event_overflow(event, &data, regs))
414 			cci_pmu->disable(event);
415 	}
416 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
417 
418 	return IRQ_RETVAL(handled);
419 }
420 
421 static void pmu_free_irq(struct arm_pmu *cci_pmu)
422 {
423 	int i;
424 
425 	for (i = 0; i < pmu->nr_irqs; i++) {
426 		if (!test_and_clear_bit(i, &pmu->active_irqs))
427 			continue;
428 
429 		free_irq(pmu->irqs[i], cci_pmu);
430 	}
431 }
432 
433 static void pmu_enable_event(struct perf_event *event)
434 {
435 	unsigned long flags;
436 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
437 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
438 	struct hw_perf_event *hw_counter = &event->hw;
439 	int idx = hw_counter->idx;
440 
441 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
442 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
443 		return;
444 	}
445 
446 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
447 
448 	/* Configure the event to count, unless you are counting cycles */
449 	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
450 		pmu_set_event(idx, hw_counter->config_base);
451 
452 	pmu_enable_counter(idx);
453 
454 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
455 }
456 
457 static void pmu_disable_event(struct perf_event *event)
458 {
459 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
460 	struct hw_perf_event *hw_counter = &event->hw;
461 	int idx = hw_counter->idx;
462 
463 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
464 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
465 		return;
466 	}
467 
468 	pmu_disable_counter(idx);
469 }
470 
471 static void pmu_start(struct arm_pmu *cci_pmu)
472 {
473 	u32 val;
474 	unsigned long flags;
475 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
476 
477 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
478 
479 	/* Enable all the PMU counters. */
480 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
481 	writel(val, cci_ctrl_base + CCI_PMCR);
482 
483 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
484 }
485 
486 static void pmu_stop(struct arm_pmu *cci_pmu)
487 {
488 	u32 val;
489 	unsigned long flags;
490 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
491 
492 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
493 
494 	/* Disable all the PMU counters. */
495 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
496 	writel(val, cci_ctrl_base + CCI_PMCR);
497 
498 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
499 }
500 
501 static u32 pmu_read_counter(struct perf_event *event)
502 {
503 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
504 	struct hw_perf_event *hw_counter = &event->hw;
505 	int idx = hw_counter->idx;
506 	u32 value;
507 
508 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
509 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
510 		return 0;
511 	}
512 	value = pmu_read_register(idx, CCI_PMU_CNTR);
513 
514 	return value;
515 }
516 
517 static void pmu_write_counter(struct perf_event *event, u32 value)
518 {
519 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
520 	struct hw_perf_event *hw_counter = &event->hw;
521 	int idx = hw_counter->idx;
522 
523 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
524 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
525 	else
526 		pmu_write_register(value, idx, CCI_PMU_CNTR);
527 }
528 
529 static int cci_pmu_init(struct arm_pmu *cci_pmu, struct platform_device *pdev)
530 {
531 	*cci_pmu = (struct arm_pmu){
532 		.name		  = pmu_names[probe_cci_revision()],
533 		.max_period       = (1LLU << 32) - 1,
534 		.get_hw_events    = pmu_get_hw_events,
535 		.get_event_idx    = pmu_get_event_idx,
536 		.map_event        = pmu_map_event,
537 		.request_irq      = pmu_request_irq,
538 		.handle_irq       = pmu_handle_irq,
539 		.free_irq         = pmu_free_irq,
540 		.enable           = pmu_enable_event,
541 		.disable          = pmu_disable_event,
542 		.start            = pmu_start,
543 		.stop             = pmu_stop,
544 		.read_counter     = pmu_read_counter,
545 		.write_counter    = pmu_write_counter,
546 	};
547 
548 	cci_pmu->plat_device = pdev;
549 	cci_pmu->num_events = pmu_get_max_counters();
550 
551 	return armpmu_register(cci_pmu, -1);
552 }
553 
554 static const struct of_device_id arm_cci_pmu_matches[] = {
555 	{
556 		.compatible = "arm,cci-400-pmu",
557 	},
558 	{},
559 };
560 
561 static int cci_pmu_probe(struct platform_device *pdev)
562 {
563 	struct resource *res;
564 	int i, ret, irq;
565 
566 	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
567 	if (!pmu)
568 		return -ENOMEM;
569 
570 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
571 	pmu->base = devm_ioremap_resource(&pdev->dev, res);
572 	if (IS_ERR(pmu->base))
573 		return -ENOMEM;
574 
575 	/*
576 	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
577 	 * together to a common interrupt.
578 	 */
579 	pmu->nr_irqs = 0;
580 	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
581 		irq = platform_get_irq(pdev, i);
582 		if (irq < 0)
583 			break;
584 
585 		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
586 			continue;
587 
588 		pmu->irqs[pmu->nr_irqs++] = irq;
589 	}
590 
591 	/*
592 	 * Ensure that the device tree has as many interrupts as the number
593 	 * of counters.
594 	 */
595 	if (i < CCI_PMU_MAX_HW_EVENTS) {
596 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
597 			i, CCI_PMU_MAX_HW_EVENTS);
598 		return -EINVAL;
599 	}
600 
601 	pmu->port_ranges = port_range_by_rev();
602 	if (!pmu->port_ranges) {
603 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
604 		return -EINVAL;
605 	}
606 
607 	pmu->cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*(pmu->cci_pmu)), GFP_KERNEL);
608 	if (!pmu->cci_pmu)
609 		return -ENOMEM;
610 
611 	pmu->hw_events.events = pmu->events;
612 	pmu->hw_events.used_mask = pmu->used_mask;
613 	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
614 
615 	ret = cci_pmu_init(pmu->cci_pmu, pdev);
616 	if (ret)
617 		return ret;
618 
619 	return 0;
620 }
621 
622 static int cci_platform_probe(struct platform_device *pdev)
623 {
624 	if (!cci_probed())
625 		return -ENODEV;
626 
627 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
628 }
629 
630 #endif /* CONFIG_HW_PERF_EVENTS */
631 
632 struct cpu_port {
633 	u64 mpidr;
634 	u32 port;
635 };
636 
637 /*
638  * Use the port MSB as valid flag, shift can be made dynamic
639  * by computing number of bits required for port indexes.
640  * Code disabling CCI cpu ports runs with D-cache invalidated
641  * and SCTLR bit clear so data accesses must be kept to a minimum
642  * to improve performance; for now shift is left static to
643  * avoid one more data access while disabling the CCI port.
644  */
645 #define PORT_VALID_SHIFT	31
646 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
647 
648 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
649 {
650 	port->port = PORT_VALID | index;
651 	port->mpidr = mpidr;
652 }
653 
654 static inline bool cpu_port_is_valid(struct cpu_port *port)
655 {
656 	return !!(port->port & PORT_VALID);
657 }
658 
659 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
660 {
661 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
662 }
663 
664 static struct cpu_port cpu_port[NR_CPUS];
665 
666 /**
667  * __cci_ace_get_port - Function to retrieve the port index connected to
668  *			a cpu or device.
669  *
670  * @dn: device node of the device to look-up
671  * @type: port type
672  *
673  * Return value:
674  *	- CCI port index if success
675  *	- -ENODEV if failure
676  */
677 static int __cci_ace_get_port(struct device_node *dn, int type)
678 {
679 	int i;
680 	bool ace_match;
681 	struct device_node *cci_portn;
682 
683 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
684 	for (i = 0; i < nb_cci_ports; i++) {
685 		ace_match = ports[i].type == type;
686 		if (ace_match && cci_portn == ports[i].dn)
687 			return i;
688 	}
689 	return -ENODEV;
690 }
691 
692 int cci_ace_get_port(struct device_node *dn)
693 {
694 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
695 }
696 EXPORT_SYMBOL_GPL(cci_ace_get_port);
697 
698 static void cci_ace_init_ports(void)
699 {
700 	int port, cpu;
701 	struct device_node *cpun;
702 
703 	/*
704 	 * Port index look-up speeds up the function disabling ports by CPU,
705 	 * since the logical to port index mapping is done once and does
706 	 * not change after system boot.
707 	 * The stashed index array is initialized for all possible CPUs
708 	 * at probe time.
709 	 */
710 	for_each_possible_cpu(cpu) {
711 		/* too early to use cpu->of_node */
712 		cpun = of_get_cpu_node(cpu, NULL);
713 
714 		if (WARN(!cpun, "Missing cpu device node\n"))
715 			continue;
716 
717 		port = __cci_ace_get_port(cpun, ACE_PORT);
718 		if (port < 0)
719 			continue;
720 
721 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
722 	}
723 
724 	for_each_possible_cpu(cpu) {
725 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
726 			"CPU %u does not have an associated CCI port\n",
727 			cpu);
728 	}
729 }
730 /*
731  * Functions to enable/disable a CCI interconnect slave port
732  *
733  * They are called by low-level power management code to disable slave
734  * interfaces snoops and DVM broadcast.
735  * Since they may execute with cache data allocation disabled and
736  * after the caches have been cleaned and invalidated the functions provide
737  * no explicit locking since they may run with D-cache disabled, so normal
738  * cacheable kernel locks based on ldrex/strex may not work.
739  * Locking has to be provided by BSP implementations to ensure proper
740  * operations.
741  */
742 
743 /**
744  * cci_port_control() - function to control a CCI port
745  *
746  * @port: index of the port to setup
747  * @enable: if true enables the port, if false disables it
748  */
749 static void notrace cci_port_control(unsigned int port, bool enable)
750 {
751 	void __iomem *base = ports[port].base;
752 
753 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
754 	/*
755 	 * This function is called from power down procedures
756 	 * and must not execute any instruction that might
757 	 * cause the processor to be put in a quiescent state
758 	 * (eg wfi). Hence, cpu_relax() can not be added to this
759 	 * read loop to optimize power, since it might hide possibly
760 	 * disruptive operations.
761 	 */
762 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
763 			;
764 }
765 
766 /**
767  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
768  *			       reference
769  *
770  * @mpidr: mpidr of the CPU whose CCI port should be disabled
771  *
772  * Disabling a CCI port for a CPU implies disabling the CCI port
773  * controlling that CPU cluster. Code disabling CPU CCI ports
774  * must make sure that the CPU running the code is the last active CPU
775  * in the cluster ie all other CPUs are quiescent in a low power state.
776  *
777  * Return:
778  *	0 on success
779  *	-ENODEV on port look-up failure
780  */
781 int notrace cci_disable_port_by_cpu(u64 mpidr)
782 {
783 	int cpu;
784 	bool is_valid;
785 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
786 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
787 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
788 			cci_port_control(cpu_port[cpu].port, false);
789 			return 0;
790 		}
791 	}
792 	return -ENODEV;
793 }
794 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
795 
796 /**
797  * cci_enable_port_for_self() - enable a CCI port for calling CPU
798  *
799  * Enabling a CCI port for the calling CPU implies enabling the CCI
800  * port controlling that CPU's cluster. Caller must make sure that the
801  * CPU running the code is the first active CPU in the cluster and all
802  * other CPUs are quiescent in a low power state  or waiting for this CPU
803  * to complete the CCI initialization.
804  *
805  * Because this is called when the MMU is still off and with no stack,
806  * the code must be position independent and ideally rely on callee
807  * clobbered registers only.  To achieve this we must code this function
808  * entirely in assembler.
809  *
810  * On success this returns with the proper CCI port enabled.  In case of
811  * any failure this never returns as the inability to enable the CCI is
812  * fatal and there is no possible recovery at this stage.
813  */
814 asmlinkage void __naked cci_enable_port_for_self(void)
815 {
816 	asm volatile ("\n"
817 "	.arch armv7-a\n"
818 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
819 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
820 "	adr	r1, 5f \n"
821 "	ldr	r2, [r1] \n"
822 "	add	r1, r1, r2		@ &cpu_port \n"
823 "	add	ip, r1, %[sizeof_cpu_port] \n"
824 
825 	/* Loop over the cpu_port array looking for a matching MPIDR */
826 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
827 "	cmp	r2, r0 			@ compare MPIDR \n"
828 "	bne	2f \n"
829 
830 	/* Found a match, now test port validity */
831 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
832 "	tst	r3, #"__stringify(PORT_VALID)" \n"
833 "	bne	3f \n"
834 
835 	/* no match, loop with the next cpu_port entry */
836 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
837 "	cmp	r1, ip			@ done? \n"
838 "	blo	1b \n"
839 
840 	/* CCI port not found -- cheaply try to stall this CPU */
841 "cci_port_not_found: \n"
842 "	wfi \n"
843 "	wfe \n"
844 "	b	cci_port_not_found \n"
845 
846 	/* Use matched port index to look up the corresponding ports entry */
847 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
848 "	adr	r0, 6f \n"
849 "	ldmia	r0, {r1, r2} \n"
850 "	sub	r1, r1, r0 		@ virt - phys \n"
851 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
852 "	mov	r2, %[sizeof_struct_ace_port] \n"
853 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
854 "	sub	r0, r0, r1		@ virt_to_phys() \n"
855 
856 	/* Enable the CCI port */
857 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
858 "	mov	r3, %[cci_enable_req]\n"
859 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
860 
861 	/* poll the status reg for completion */
862 "	adr	r1, 7f \n"
863 "	ldr	r0, [r1] \n"
864 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
865 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
866 "	tst	r1, %[cci_control_status_bits] \n"
867 "	bne	4b \n"
868 
869 "	mov	r0, #0 \n"
870 "	bx	lr \n"
871 
872 "	.align	2 \n"
873 "5:	.word	cpu_port - . \n"
874 "6:	.word	. \n"
875 "	.word	ports - 6b \n"
876 "7:	.word	cci_ctrl_phys - . \n"
877 	: :
878 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
879 	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
880 	[cci_control_status_bits] "i" cpu_to_le32(1),
881 #ifndef __ARMEB__
882 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
883 #else
884 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
885 #endif
886 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
887 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
888 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
889 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
890 
891 	unreachable();
892 }
893 
894 /**
895  * __cci_control_port_by_device() - function to control a CCI port by device
896  *				    reference
897  *
898  * @dn: device node pointer of the device whose CCI port should be
899  *      controlled
900  * @enable: if true enables the port, if false disables it
901  *
902  * Return:
903  *	0 on success
904  *	-ENODEV on port look-up failure
905  */
906 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
907 {
908 	int port;
909 
910 	if (!dn)
911 		return -ENODEV;
912 
913 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
914 	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
915 				dn->full_name))
916 		return -ENODEV;
917 	cci_port_control(port, enable);
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
921 
922 /**
923  * __cci_control_port_by_index() - function to control a CCI port by port index
924  *
925  * @port: port index previously retrieved with cci_ace_get_port()
926  * @enable: if true enables the port, if false disables it
927  *
928  * Return:
929  *	0 on success
930  *	-ENODEV on port index out of range
931  *	-EPERM if operation carried out on an ACE PORT
932  */
933 int notrace __cci_control_port_by_index(u32 port, bool enable)
934 {
935 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
936 		return -ENODEV;
937 	/*
938 	 * CCI control for ports connected to CPUS is extremely fragile
939 	 * and must be made to go through a specific and controlled
940 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
941 	 * indexing is therefore disabled for ACE ports.
942 	 */
943 	if (ports[port].type == ACE_PORT)
944 		return -EPERM;
945 
946 	cci_port_control(port, enable);
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
950 
951 static const struct cci_nb_ports cci400_ports = {
952 	.nb_ace = 2,
953 	.nb_ace_lite = 3
954 };
955 
956 static const struct of_device_id arm_cci_matches[] = {
957 	{.compatible = "arm,cci-400", .data = &cci400_ports },
958 	{},
959 };
960 
961 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
962 	{.compatible = "arm,cci-400-ctrl-if", },
963 	{},
964 };
965 
966 static int cci_probe(void)
967 {
968 	struct cci_nb_ports const *cci_config;
969 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
970 	struct device_node *np, *cp;
971 	struct resource res;
972 	const char *match_str;
973 	bool is_ace;
974 
975 	np = of_find_matching_node(NULL, arm_cci_matches);
976 	if (!np)
977 		return -ENODEV;
978 
979 	cci_config = of_match_node(arm_cci_matches, np)->data;
980 	if (!cci_config)
981 		return -ENODEV;
982 
983 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
984 
985 	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
986 	if (!ports)
987 		return -ENOMEM;
988 
989 	ret = of_address_to_resource(np, 0, &res);
990 	if (!ret) {
991 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
992 		cci_ctrl_phys =	res.start;
993 	}
994 	if (ret || !cci_ctrl_base) {
995 		WARN(1, "unable to ioremap CCI ctrl\n");
996 		ret = -ENXIO;
997 		goto memalloc_err;
998 	}
999 
1000 	for_each_child_of_node(np, cp) {
1001 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1002 			continue;
1003 
1004 		i = nb_ace + nb_ace_lite;
1005 
1006 		if (i >= nb_cci_ports)
1007 			break;
1008 
1009 		if (of_property_read_string(cp, "interface-type",
1010 					&match_str)) {
1011 			WARN(1, "node %s missing interface-type property\n",
1012 				  cp->full_name);
1013 			continue;
1014 		}
1015 		is_ace = strcmp(match_str, "ace") == 0;
1016 		if (!is_ace && strcmp(match_str, "ace-lite")) {
1017 			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1018 					cp->full_name);
1019 			continue;
1020 		}
1021 
1022 		ret = of_address_to_resource(cp, 0, &res);
1023 		if (!ret) {
1024 			ports[i].base = ioremap(res.start, resource_size(&res));
1025 			ports[i].phys = res.start;
1026 		}
1027 		if (ret || !ports[i].base) {
1028 			WARN(1, "unable to ioremap CCI port %d\n", i);
1029 			continue;
1030 		}
1031 
1032 		if (is_ace) {
1033 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
1034 				continue;
1035 			ports[i].type = ACE_PORT;
1036 			++nb_ace;
1037 		} else {
1038 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1039 				continue;
1040 			ports[i].type = ACE_LITE_PORT;
1041 			++nb_ace_lite;
1042 		}
1043 		ports[i].dn = cp;
1044 	}
1045 
1046 	 /* initialize a stashed array of ACE ports to speed-up look-up */
1047 	cci_ace_init_ports();
1048 
1049 	/*
1050 	 * Multi-cluster systems may need this data when non-coherent, during
1051 	 * cluster power-up/power-down. Make sure it reaches main memory.
1052 	 */
1053 	sync_cache_w(&cci_ctrl_base);
1054 	sync_cache_w(&cci_ctrl_phys);
1055 	sync_cache_w(&ports);
1056 	sync_cache_w(&cpu_port);
1057 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1058 	pr_info("ARM CCI driver probed\n");
1059 	return 0;
1060 
1061 memalloc_err:
1062 
1063 	kfree(ports);
1064 	return ret;
1065 }
1066 
1067 static int cci_init_status = -EAGAIN;
1068 static DEFINE_MUTEX(cci_probing);
1069 
1070 static int cci_init(void)
1071 {
1072 	if (cci_init_status != -EAGAIN)
1073 		return cci_init_status;
1074 
1075 	mutex_lock(&cci_probing);
1076 	if (cci_init_status == -EAGAIN)
1077 		cci_init_status = cci_probe();
1078 	mutex_unlock(&cci_probing);
1079 	return cci_init_status;
1080 }
1081 
1082 #ifdef CONFIG_HW_PERF_EVENTS
1083 static struct platform_driver cci_pmu_driver = {
1084 	.driver = {
1085 		   .name = DRIVER_NAME_PMU,
1086 		   .of_match_table = arm_cci_pmu_matches,
1087 		  },
1088 	.probe = cci_pmu_probe,
1089 };
1090 
1091 static struct platform_driver cci_platform_driver = {
1092 	.driver = {
1093 		   .name = DRIVER_NAME,
1094 		   .of_match_table = arm_cci_matches,
1095 		  },
1096 	.probe = cci_platform_probe,
1097 };
1098 
1099 static int __init cci_platform_init(void)
1100 {
1101 	int ret;
1102 
1103 	ret = platform_driver_register(&cci_pmu_driver);
1104 	if (ret)
1105 		return ret;
1106 
1107 	return platform_driver_register(&cci_platform_driver);
1108 }
1109 
1110 #else
1111 
1112 static int __init cci_platform_init(void)
1113 {
1114 	return 0;
1115 }
1116 
1117 #endif
1118 /*
1119  * To sort out early init calls ordering a helper function is provided to
1120  * check if the CCI driver has beed initialized. Function check if the driver
1121  * has been initialized, if not it calls the init function that probes
1122  * the driver and updates the return value.
1123  */
1124 bool cci_probed(void)
1125 {
1126 	return cci_init() == 0;
1127 }
1128 EXPORT_SYMBOL_GPL(cci_probed);
1129 
1130 early_initcall(cci_init);
1131 core_initcall(cci_platform_init);
1132 MODULE_LICENSE("GPL");
1133 MODULE_DESCRIPTION("ARM CCI support");
1134