1 /* 2 * CCI cache coherent interconnect driver 3 * 4 * Copyright (C) 2013 ARM Ltd. 5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 #include <linux/arm-cci.h> 18 #include <linux/io.h> 19 #include <linux/interrupt.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_platform.h> 24 #include <linux/perf_event.h> 25 #include <linux/platform_device.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/smp_plat.h> 31 32 static void __iomem *cci_ctrl_base; 33 static unsigned long cci_ctrl_phys; 34 35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL 36 struct cci_nb_ports { 37 unsigned int nb_ace; 38 unsigned int nb_ace_lite; 39 }; 40 41 static const struct cci_nb_ports cci400_ports = { 42 .nb_ace = 2, 43 .nb_ace_lite = 3 44 }; 45 46 #define CCI400_PORTS_DATA (&cci400_ports) 47 #else 48 #define CCI400_PORTS_DATA (NULL) 49 #endif 50 51 static const struct of_device_id arm_cci_matches[] = { 52 #ifdef CONFIG_ARM_CCI400_COMMON 53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA }, 54 #endif 55 {}, 56 }; 57 58 #ifdef CONFIG_ARM_CCI400_PMU 59 60 #define DRIVER_NAME "CCI-400" 61 #define DRIVER_NAME_PMU DRIVER_NAME " PMU" 62 63 #define CCI_PMCR 0x0100 64 #define CCI_PID2 0x0fe8 65 66 #define CCI_PMCR_CEN 0x00000001 67 #define CCI_PMCR_NCNT_MASK 0x0000f800 68 #define CCI_PMCR_NCNT_SHIFT 11 69 70 #define CCI_PID2_REV_MASK 0xf0 71 #define CCI_PID2_REV_SHIFT 4 72 73 #define CCI_PMU_EVT_SEL 0x000 74 #define CCI_PMU_CNTR 0x004 75 #define CCI_PMU_CNTR_CTRL 0x008 76 #define CCI_PMU_OVRFLW 0x00c 77 78 #define CCI_PMU_OVRFLW_FLAG 1 79 80 #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K) 81 82 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) 83 84 #define CCI_PMU_EVENT_MASK 0xffUL 85 #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) 86 #define CCI_PMU_EVENT_CODE(event) (event & 0x1f) 87 88 #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */ 89 90 /* Types of interfaces that can generate events */ 91 enum { 92 CCI_IF_SLAVE, 93 CCI_IF_MASTER, 94 CCI_IF_MAX, 95 }; 96 97 struct event_range { 98 u32 min; 99 u32 max; 100 }; 101 102 struct cci_pmu_hw_events { 103 struct perf_event *events[CCI_PMU_MAX_HW_EVENTS]; 104 unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)]; 105 raw_spinlock_t pmu_lock; 106 }; 107 108 struct cci_pmu_model { 109 char *name; 110 struct event_range event_ranges[CCI_IF_MAX]; 111 }; 112 113 static struct cci_pmu_model cci_pmu_models[]; 114 115 struct cci_pmu { 116 void __iomem *base; 117 struct pmu pmu; 118 int nr_irqs; 119 int irqs[CCI_PMU_MAX_HW_EVENTS]; 120 unsigned long active_irqs; 121 const struct cci_pmu_model *model; 122 struct cci_pmu_hw_events hw_events; 123 struct platform_device *plat_device; 124 int num_events; 125 atomic_t active_events; 126 struct mutex reserve_mutex; 127 cpumask_t cpus; 128 }; 129 static struct cci_pmu *pmu; 130 131 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) 132 133 /* Port ids */ 134 #define CCI_PORT_S0 0 135 #define CCI_PORT_S1 1 136 #define CCI_PORT_S2 2 137 #define CCI_PORT_S3 3 138 #define CCI_PORT_S4 4 139 #define CCI_PORT_M0 5 140 #define CCI_PORT_M1 6 141 #define CCI_PORT_M2 7 142 143 #define CCI_REV_R0 0 144 #define CCI_REV_R1 1 145 #define CCI_REV_R1_PX 5 146 147 /* 148 * Instead of an event id to monitor CCI cycles, a dedicated counter is 149 * provided. Use 0xff to represent CCI cycles and hope that no future revisions 150 * make use of this event in hardware. 151 */ 152 enum cci400_perf_events { 153 CCI_PMU_CYCLES = 0xff 154 }; 155 156 #define CCI_PMU_CYCLE_CNTR_IDX 0 157 #define CCI_PMU_CNTR0_IDX 1 158 #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1) 159 160 /* 161 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 162 * ports and bits 4:0 are event codes. There are different event codes 163 * associated with each port type. 164 * 165 * Additionally, the range of events associated with the port types changed 166 * between Rev0 and Rev1. 167 * 168 * The constants below define the range of valid codes for each port type for 169 * the different revisions and are used to validate the event to be monitored. 170 */ 171 172 #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00 173 #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13 174 #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14 175 #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a 176 177 #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00 178 #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14 179 #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00 180 #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11 181 182 static int pmu_validate_hw_event(unsigned long hw_event) 183 { 184 u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event); 185 u8 ev_code = CCI_PMU_EVENT_CODE(hw_event); 186 int if_type; 187 188 if (hw_event & ~CCI_PMU_EVENT_MASK) 189 return -ENOENT; 190 191 switch (ev_source) { 192 case CCI_PORT_S0: 193 case CCI_PORT_S1: 194 case CCI_PORT_S2: 195 case CCI_PORT_S3: 196 case CCI_PORT_S4: 197 /* Slave Interface */ 198 if_type = CCI_IF_SLAVE; 199 break; 200 case CCI_PORT_M0: 201 case CCI_PORT_M1: 202 case CCI_PORT_M2: 203 /* Master Interface */ 204 if_type = CCI_IF_MASTER; 205 break; 206 default: 207 return -ENOENT; 208 } 209 210 if (ev_code >= pmu->model->event_ranges[if_type].min && 211 ev_code <= pmu->model->event_ranges[if_type].max) 212 return hw_event; 213 214 return -ENOENT; 215 } 216 217 static int probe_cci_revision(void) 218 { 219 int rev; 220 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; 221 rev >>= CCI_PID2_REV_SHIFT; 222 223 if (rev < CCI_REV_R1_PX) 224 return CCI_REV_R0; 225 else 226 return CCI_REV_R1; 227 } 228 229 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) 230 { 231 if (platform_has_secure_cci_access()) 232 return &cci_pmu_models[probe_cci_revision()]; 233 return NULL; 234 } 235 236 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) 237 { 238 return CCI_PMU_CYCLE_CNTR_IDX <= idx && 239 idx <= CCI_PMU_CNTR_LAST(cci_pmu); 240 } 241 242 static u32 pmu_read_register(int idx, unsigned int offset) 243 { 244 return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); 245 } 246 247 static void pmu_write_register(u32 value, int idx, unsigned int offset) 248 { 249 return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); 250 } 251 252 static void pmu_disable_counter(int idx) 253 { 254 pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL); 255 } 256 257 static void pmu_enable_counter(int idx) 258 { 259 pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL); 260 } 261 262 static void pmu_set_event(int idx, unsigned long event) 263 { 264 pmu_write_register(event, idx, CCI_PMU_EVT_SEL); 265 } 266 267 static u32 pmu_get_max_counters(void) 268 { 269 u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) & 270 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; 271 272 /* add 1 for cycle counter */ 273 return n_cnts + 1; 274 } 275 276 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) 277 { 278 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 279 struct hw_perf_event *hw_event = &event->hw; 280 unsigned long cci_event = hw_event->config_base; 281 int idx; 282 283 if (cci_event == CCI_PMU_CYCLES) { 284 if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask)) 285 return -EAGAIN; 286 287 return CCI_PMU_CYCLE_CNTR_IDX; 288 } 289 290 for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) 291 if (!test_and_set_bit(idx, hw->used_mask)) 292 return idx; 293 294 /* No counters available */ 295 return -EAGAIN; 296 } 297 298 static int pmu_map_event(struct perf_event *event) 299 { 300 int mapping; 301 unsigned long config = event->attr.config; 302 303 if (event->attr.type < PERF_TYPE_MAX) 304 return -ENOENT; 305 306 if (config == CCI_PMU_CYCLES) 307 mapping = config; 308 else 309 mapping = pmu_validate_hw_event(config); 310 311 return mapping; 312 } 313 314 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) 315 { 316 int i; 317 struct platform_device *pmu_device = cci_pmu->plat_device; 318 319 if (unlikely(!pmu_device)) 320 return -ENODEV; 321 322 if (pmu->nr_irqs < 1) { 323 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); 324 return -ENODEV; 325 } 326 327 /* 328 * Register all available CCI PMU interrupts. In the interrupt handler 329 * we iterate over the counters checking for interrupt source (the 330 * overflowing counter) and clear it. 331 * 332 * This should allow handling of non-unique interrupt for the counters. 333 */ 334 for (i = 0; i < pmu->nr_irqs; i++) { 335 int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED, 336 "arm-cci-pmu", cci_pmu); 337 if (err) { 338 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", 339 pmu->irqs[i]); 340 return err; 341 } 342 343 set_bit(i, &pmu->active_irqs); 344 } 345 346 return 0; 347 } 348 349 static void pmu_free_irq(struct cci_pmu *cci_pmu) 350 { 351 int i; 352 353 for (i = 0; i < pmu->nr_irqs; i++) { 354 if (!test_and_clear_bit(i, &pmu->active_irqs)) 355 continue; 356 357 free_irq(pmu->irqs[i], cci_pmu); 358 } 359 } 360 361 static u32 pmu_read_counter(struct perf_event *event) 362 { 363 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 364 struct hw_perf_event *hw_counter = &event->hw; 365 int idx = hw_counter->idx; 366 u32 value; 367 368 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 369 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 370 return 0; 371 } 372 value = pmu_read_register(idx, CCI_PMU_CNTR); 373 374 return value; 375 } 376 377 static void pmu_write_counter(struct perf_event *event, u32 value) 378 { 379 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 380 struct hw_perf_event *hw_counter = &event->hw; 381 int idx = hw_counter->idx; 382 383 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) 384 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 385 else 386 pmu_write_register(value, idx, CCI_PMU_CNTR); 387 } 388 389 static u64 pmu_event_update(struct perf_event *event) 390 { 391 struct hw_perf_event *hwc = &event->hw; 392 u64 delta, prev_raw_count, new_raw_count; 393 394 do { 395 prev_raw_count = local64_read(&hwc->prev_count); 396 new_raw_count = pmu_read_counter(event); 397 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 398 new_raw_count) != prev_raw_count); 399 400 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; 401 402 local64_add(delta, &event->count); 403 404 return new_raw_count; 405 } 406 407 static void pmu_read(struct perf_event *event) 408 { 409 pmu_event_update(event); 410 } 411 412 void pmu_event_set_period(struct perf_event *event) 413 { 414 struct hw_perf_event *hwc = &event->hw; 415 /* 416 * The CCI PMU counters have a period of 2^32. To account for the 417 * possiblity of extreme interrupt latency we program for a period of 418 * half that. Hopefully we can handle the interrupt before another 2^31 419 * events occur and the counter overtakes its previous value. 420 */ 421 u64 val = 1ULL << 31; 422 local64_set(&hwc->prev_count, val); 423 pmu_write_counter(event, val); 424 } 425 426 static irqreturn_t pmu_handle_irq(int irq_num, void *dev) 427 { 428 unsigned long flags; 429 struct cci_pmu *cci_pmu = dev; 430 struct cci_pmu_hw_events *events = &pmu->hw_events; 431 int idx, handled = IRQ_NONE; 432 433 raw_spin_lock_irqsave(&events->pmu_lock, flags); 434 /* 435 * Iterate over counters and update the corresponding perf events. 436 * This should work regardless of whether we have per-counter overflow 437 * interrupt or a combined overflow interrupt. 438 */ 439 for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { 440 struct perf_event *event = events->events[idx]; 441 struct hw_perf_event *hw_counter; 442 443 if (!event) 444 continue; 445 446 hw_counter = &event->hw; 447 448 /* Did this counter overflow? */ 449 if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) & 450 CCI_PMU_OVRFLW_FLAG)) 451 continue; 452 453 pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); 454 455 pmu_event_update(event); 456 pmu_event_set_period(event); 457 handled = IRQ_HANDLED; 458 } 459 raw_spin_unlock_irqrestore(&events->pmu_lock, flags); 460 461 return IRQ_RETVAL(handled); 462 } 463 464 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) 465 { 466 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); 467 if (ret) { 468 pmu_free_irq(cci_pmu); 469 return ret; 470 } 471 return 0; 472 } 473 474 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) 475 { 476 pmu_free_irq(cci_pmu); 477 } 478 479 static void hw_perf_event_destroy(struct perf_event *event) 480 { 481 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 482 atomic_t *active_events = &cci_pmu->active_events; 483 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; 484 485 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { 486 cci_pmu_put_hw(cci_pmu); 487 mutex_unlock(reserve_mutex); 488 } 489 } 490 491 static void cci_pmu_enable(struct pmu *pmu) 492 { 493 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 494 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 495 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events); 496 unsigned long flags; 497 u32 val; 498 499 if (!enabled) 500 return; 501 502 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 503 504 /* Enable all the PMU counters. */ 505 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; 506 writel(val, cci_ctrl_base + CCI_PMCR); 507 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 508 509 } 510 511 static void cci_pmu_disable(struct pmu *pmu) 512 { 513 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 514 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 515 unsigned long flags; 516 u32 val; 517 518 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 519 520 /* Disable all the PMU counters. */ 521 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; 522 writel(val, cci_ctrl_base + CCI_PMCR); 523 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 524 } 525 526 static void cci_pmu_start(struct perf_event *event, int pmu_flags) 527 { 528 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 529 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 530 struct hw_perf_event *hwc = &event->hw; 531 int idx = hwc->idx; 532 unsigned long flags; 533 534 /* 535 * To handle interrupt latency, we always reprogram the period 536 * regardlesss of PERF_EF_RELOAD. 537 */ 538 if (pmu_flags & PERF_EF_RELOAD) 539 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 540 541 hwc->state = 0; 542 543 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 544 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 545 return; 546 } 547 548 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 549 550 /* Configure the event to count, unless you are counting cycles */ 551 if (idx != CCI_PMU_CYCLE_CNTR_IDX) 552 pmu_set_event(idx, hwc->config_base); 553 554 pmu_event_set_period(event); 555 pmu_enable_counter(idx); 556 557 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 558 } 559 560 static void cci_pmu_stop(struct perf_event *event, int pmu_flags) 561 { 562 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 563 struct hw_perf_event *hwc = &event->hw; 564 int idx = hwc->idx; 565 566 if (hwc->state & PERF_HES_STOPPED) 567 return; 568 569 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 570 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 571 return; 572 } 573 574 /* 575 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See 576 * cci_pmu_start() 577 */ 578 pmu_disable_counter(idx); 579 pmu_event_update(event); 580 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 581 } 582 583 static int cci_pmu_add(struct perf_event *event, int flags) 584 { 585 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 586 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 587 struct hw_perf_event *hwc = &event->hw; 588 int idx; 589 int err = 0; 590 591 perf_pmu_disable(event->pmu); 592 593 /* If we don't have a space for the counter then finish early. */ 594 idx = pmu_get_event_idx(hw_events, event); 595 if (idx < 0) { 596 err = idx; 597 goto out; 598 } 599 600 event->hw.idx = idx; 601 hw_events->events[idx] = event; 602 603 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 604 if (flags & PERF_EF_START) 605 cci_pmu_start(event, PERF_EF_RELOAD); 606 607 /* Propagate our changes to the userspace mapping. */ 608 perf_event_update_userpage(event); 609 610 out: 611 perf_pmu_enable(event->pmu); 612 return err; 613 } 614 615 static void cci_pmu_del(struct perf_event *event, int flags) 616 { 617 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 618 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 619 struct hw_perf_event *hwc = &event->hw; 620 int idx = hwc->idx; 621 622 cci_pmu_stop(event, PERF_EF_UPDATE); 623 hw_events->events[idx] = NULL; 624 clear_bit(idx, hw_events->used_mask); 625 626 perf_event_update_userpage(event); 627 } 628 629 static int 630 validate_event(struct pmu *cci_pmu, 631 struct cci_pmu_hw_events *hw_events, 632 struct perf_event *event) 633 { 634 if (is_software_event(event)) 635 return 1; 636 637 /* 638 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 639 * core perf code won't check that the pmu->ctx == leader->ctx 640 * until after pmu->event_init(event). 641 */ 642 if (event->pmu != cci_pmu) 643 return 0; 644 645 if (event->state < PERF_EVENT_STATE_OFF) 646 return 1; 647 648 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 649 return 1; 650 651 return pmu_get_event_idx(hw_events, event) >= 0; 652 } 653 654 static int 655 validate_group(struct perf_event *event) 656 { 657 struct perf_event *sibling, *leader = event->group_leader; 658 struct cci_pmu_hw_events fake_pmu = { 659 /* 660 * Initialise the fake PMU. We only need to populate the 661 * used_mask for the purposes of validation. 662 */ 663 .used_mask = CPU_BITS_NONE, 664 }; 665 666 if (!validate_event(event->pmu, &fake_pmu, leader)) 667 return -EINVAL; 668 669 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 670 if (!validate_event(event->pmu, &fake_pmu, sibling)) 671 return -EINVAL; 672 } 673 674 if (!validate_event(event->pmu, &fake_pmu, event)) 675 return -EINVAL; 676 677 return 0; 678 } 679 680 static int 681 __hw_perf_event_init(struct perf_event *event) 682 { 683 struct hw_perf_event *hwc = &event->hw; 684 int mapping; 685 686 mapping = pmu_map_event(event); 687 688 if (mapping < 0) { 689 pr_debug("event %x:%llx not supported\n", event->attr.type, 690 event->attr.config); 691 return mapping; 692 } 693 694 /* 695 * We don't assign an index until we actually place the event onto 696 * hardware. Use -1 to signify that we haven't decided where to put it 697 * yet. 698 */ 699 hwc->idx = -1; 700 hwc->config_base = 0; 701 hwc->config = 0; 702 hwc->event_base = 0; 703 704 /* 705 * Store the event encoding into the config_base field. 706 */ 707 hwc->config_base |= (unsigned long)mapping; 708 709 /* 710 * Limit the sample_period to half of the counter width. That way, the 711 * new counter value is far less likely to overtake the previous one 712 * unless you have some serious IRQ latency issues. 713 */ 714 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; 715 hwc->last_period = hwc->sample_period; 716 local64_set(&hwc->period_left, hwc->sample_period); 717 718 if (event->group_leader != event) { 719 if (validate_group(event) != 0) 720 return -EINVAL; 721 } 722 723 return 0; 724 } 725 726 static int cci_pmu_event_init(struct perf_event *event) 727 { 728 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 729 atomic_t *active_events = &cci_pmu->active_events; 730 int err = 0; 731 int cpu; 732 733 if (event->attr.type != event->pmu->type) 734 return -ENOENT; 735 736 /* Shared by all CPUs, no meaningful state to sample */ 737 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 738 return -EOPNOTSUPP; 739 740 /* We have no filtering of any kind */ 741 if (event->attr.exclude_user || 742 event->attr.exclude_kernel || 743 event->attr.exclude_hv || 744 event->attr.exclude_idle || 745 event->attr.exclude_host || 746 event->attr.exclude_guest) 747 return -EINVAL; 748 749 /* 750 * Following the example set by other "uncore" PMUs, we accept any CPU 751 * and rewrite its affinity dynamically rather than having perf core 752 * handle cpu == -1 and pid == -1 for this case. 753 * 754 * The perf core will pin online CPUs for the duration of this call and 755 * the event being installed into its context, so the PMU's CPU can't 756 * change under our feet. 757 */ 758 cpu = cpumask_first(&cci_pmu->cpus); 759 if (event->cpu < 0 || cpu < 0) 760 return -EINVAL; 761 event->cpu = cpu; 762 763 event->destroy = hw_perf_event_destroy; 764 if (!atomic_inc_not_zero(active_events)) { 765 mutex_lock(&cci_pmu->reserve_mutex); 766 if (atomic_read(active_events) == 0) 767 err = cci_pmu_get_hw(cci_pmu); 768 if (!err) 769 atomic_inc(active_events); 770 mutex_unlock(&cci_pmu->reserve_mutex); 771 } 772 if (err) 773 return err; 774 775 err = __hw_perf_event_init(event); 776 if (err) 777 hw_perf_event_destroy(event); 778 779 return err; 780 } 781 782 static ssize_t pmu_attr_cpumask_show(struct device *dev, 783 struct device_attribute *attr, char *buf) 784 { 785 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", 786 cpumask_pr_args(&pmu->cpus)); 787 buf[n++] = '\n'; 788 buf[n] = '\0'; 789 return n; 790 } 791 792 static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL); 793 794 static struct attribute *pmu_attrs[] = { 795 &dev_attr_cpumask.attr, 796 NULL, 797 }; 798 799 static struct attribute_group pmu_attr_group = { 800 .attrs = pmu_attrs, 801 }; 802 803 static const struct attribute_group *pmu_attr_groups[] = { 804 &pmu_attr_group, 805 NULL 806 }; 807 808 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) 809 { 810 char *name = cci_pmu->model->name; 811 cci_pmu->pmu = (struct pmu) { 812 .name = cci_pmu->model->name, 813 .task_ctx_nr = perf_invalid_context, 814 .pmu_enable = cci_pmu_enable, 815 .pmu_disable = cci_pmu_disable, 816 .event_init = cci_pmu_event_init, 817 .add = cci_pmu_add, 818 .del = cci_pmu_del, 819 .start = cci_pmu_start, 820 .stop = cci_pmu_stop, 821 .read = pmu_read, 822 .attr_groups = pmu_attr_groups, 823 }; 824 825 cci_pmu->plat_device = pdev; 826 cci_pmu->num_events = pmu_get_max_counters(); 827 828 return perf_pmu_register(&cci_pmu->pmu, name, -1); 829 } 830 831 static int cci_pmu_cpu_notifier(struct notifier_block *self, 832 unsigned long action, void *hcpu) 833 { 834 unsigned int cpu = (long)hcpu; 835 unsigned int target; 836 837 switch (action & ~CPU_TASKS_FROZEN) { 838 case CPU_DOWN_PREPARE: 839 if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus)) 840 break; 841 target = cpumask_any_but(cpu_online_mask, cpu); 842 if (target < 0) // UP, last CPU 843 break; 844 /* 845 * TODO: migrate context once core races on event->ctx have 846 * been fixed. 847 */ 848 cpumask_set_cpu(target, &pmu->cpus); 849 default: 850 break; 851 } 852 853 return NOTIFY_OK; 854 } 855 856 static struct notifier_block cci_pmu_cpu_nb = { 857 .notifier_call = cci_pmu_cpu_notifier, 858 /* 859 * to migrate uncore events, our notifier should be executed 860 * before perf core's notifier. 861 */ 862 .priority = CPU_PRI_PERF + 1, 863 }; 864 865 static struct cci_pmu_model cci_pmu_models[] = { 866 [CCI_REV_R0] = { 867 .name = "CCI_400", 868 .event_ranges = { 869 [CCI_IF_SLAVE] = { 870 CCI_REV_R0_SLAVE_PORT_MIN_EV, 871 CCI_REV_R0_SLAVE_PORT_MAX_EV, 872 }, 873 [CCI_IF_MASTER] = { 874 CCI_REV_R0_MASTER_PORT_MIN_EV, 875 CCI_REV_R0_MASTER_PORT_MAX_EV, 876 }, 877 }, 878 }, 879 [CCI_REV_R1] = { 880 .name = "CCI_400_r1", 881 .event_ranges = { 882 [CCI_IF_SLAVE] = { 883 CCI_REV_R1_SLAVE_PORT_MIN_EV, 884 CCI_REV_R1_SLAVE_PORT_MAX_EV, 885 }, 886 [CCI_IF_MASTER] = { 887 CCI_REV_R1_MASTER_PORT_MIN_EV, 888 CCI_REV_R1_MASTER_PORT_MAX_EV, 889 }, 890 }, 891 }, 892 }; 893 894 static const struct of_device_id arm_cci_pmu_matches[] = { 895 { 896 .compatible = "arm,cci-400-pmu", 897 .data = NULL, 898 }, 899 { 900 .compatible = "arm,cci-400-pmu,r0", 901 .data = &cci_pmu_models[CCI_REV_R0], 902 }, 903 { 904 .compatible = "arm,cci-400-pmu,r1", 905 .data = &cci_pmu_models[CCI_REV_R1], 906 }, 907 {}, 908 }; 909 910 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev) 911 { 912 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches, 913 pdev->dev.of_node); 914 if (!match) 915 return NULL; 916 if (match->data) 917 return match->data; 918 919 dev_warn(&pdev->dev, "DEPRECATED compatible property," 920 "requires secure access to CCI registers"); 921 return probe_cci_model(pdev); 922 } 923 924 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) 925 { 926 int i; 927 928 for (i = 0; i < nr_irqs; i++) 929 if (irq == irqs[i]) 930 return true; 931 932 return false; 933 } 934 935 static int cci_pmu_probe(struct platform_device *pdev) 936 { 937 struct resource *res; 938 int i, ret, irq; 939 const struct cci_pmu_model *model; 940 941 model = get_cci_model(pdev); 942 if (!model) { 943 dev_warn(&pdev->dev, "CCI PMU version not supported\n"); 944 return -ENODEV; 945 } 946 947 pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); 948 if (!pmu) 949 return -ENOMEM; 950 951 pmu->model = model; 952 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 953 pmu->base = devm_ioremap_resource(&pdev->dev, res); 954 if (IS_ERR(pmu->base)) 955 return -ENOMEM; 956 957 /* 958 * CCI PMU has 5 overflow signals - one per counter; but some may be tied 959 * together to a common interrupt. 960 */ 961 pmu->nr_irqs = 0; 962 for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) { 963 irq = platform_get_irq(pdev, i); 964 if (irq < 0) 965 break; 966 967 if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs)) 968 continue; 969 970 pmu->irqs[pmu->nr_irqs++] = irq; 971 } 972 973 /* 974 * Ensure that the device tree has as many interrupts as the number 975 * of counters. 976 */ 977 if (i < CCI_PMU_MAX_HW_EVENTS) { 978 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", 979 i, CCI_PMU_MAX_HW_EVENTS); 980 return -EINVAL; 981 } 982 983 raw_spin_lock_init(&pmu->hw_events.pmu_lock); 984 mutex_init(&pmu->reserve_mutex); 985 atomic_set(&pmu->active_events, 0); 986 cpumask_set_cpu(smp_processor_id(), &pmu->cpus); 987 988 ret = register_cpu_notifier(&cci_pmu_cpu_nb); 989 if (ret) 990 return ret; 991 992 ret = cci_pmu_init(pmu, pdev); 993 if (ret) 994 return ret; 995 996 pr_info("ARM %s PMU driver probed", pmu->model->name); 997 return 0; 998 } 999 1000 static int cci_platform_probe(struct platform_device *pdev) 1001 { 1002 if (!cci_probed()) 1003 return -ENODEV; 1004 1005 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); 1006 } 1007 1008 static struct platform_driver cci_pmu_driver = { 1009 .driver = { 1010 .name = DRIVER_NAME_PMU, 1011 .of_match_table = arm_cci_pmu_matches, 1012 }, 1013 .probe = cci_pmu_probe, 1014 }; 1015 1016 static struct platform_driver cci_platform_driver = { 1017 .driver = { 1018 .name = DRIVER_NAME, 1019 .of_match_table = arm_cci_matches, 1020 }, 1021 .probe = cci_platform_probe, 1022 }; 1023 1024 static int __init cci_platform_init(void) 1025 { 1026 int ret; 1027 1028 ret = platform_driver_register(&cci_pmu_driver); 1029 if (ret) 1030 return ret; 1031 1032 return platform_driver_register(&cci_platform_driver); 1033 } 1034 1035 #else /* !CONFIG_ARM_CCI400_PMU */ 1036 1037 static int __init cci_platform_init(void) 1038 { 1039 return 0; 1040 } 1041 1042 #endif /* CONFIG_ARM_CCI400_PMU */ 1043 1044 #ifdef CONFIG_ARM_CCI400_PORT_CTRL 1045 1046 #define CCI_PORT_CTRL 0x0 1047 #define CCI_CTRL_STATUS 0xc 1048 1049 #define CCI_ENABLE_SNOOP_REQ 0x1 1050 #define CCI_ENABLE_DVM_REQ 0x2 1051 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) 1052 1053 enum cci_ace_port_type { 1054 ACE_INVALID_PORT = 0x0, 1055 ACE_PORT, 1056 ACE_LITE_PORT, 1057 }; 1058 1059 struct cci_ace_port { 1060 void __iomem *base; 1061 unsigned long phys; 1062 enum cci_ace_port_type type; 1063 struct device_node *dn; 1064 }; 1065 1066 static struct cci_ace_port *ports; 1067 static unsigned int nb_cci_ports; 1068 1069 struct cpu_port { 1070 u64 mpidr; 1071 u32 port; 1072 }; 1073 1074 /* 1075 * Use the port MSB as valid flag, shift can be made dynamic 1076 * by computing number of bits required for port indexes. 1077 * Code disabling CCI cpu ports runs with D-cache invalidated 1078 * and SCTLR bit clear so data accesses must be kept to a minimum 1079 * to improve performance; for now shift is left static to 1080 * avoid one more data access while disabling the CCI port. 1081 */ 1082 #define PORT_VALID_SHIFT 31 1083 #define PORT_VALID (0x1 << PORT_VALID_SHIFT) 1084 1085 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) 1086 { 1087 port->port = PORT_VALID | index; 1088 port->mpidr = mpidr; 1089 } 1090 1091 static inline bool cpu_port_is_valid(struct cpu_port *port) 1092 { 1093 return !!(port->port & PORT_VALID); 1094 } 1095 1096 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) 1097 { 1098 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); 1099 } 1100 1101 static struct cpu_port cpu_port[NR_CPUS]; 1102 1103 /** 1104 * __cci_ace_get_port - Function to retrieve the port index connected to 1105 * a cpu or device. 1106 * 1107 * @dn: device node of the device to look-up 1108 * @type: port type 1109 * 1110 * Return value: 1111 * - CCI port index if success 1112 * - -ENODEV if failure 1113 */ 1114 static int __cci_ace_get_port(struct device_node *dn, int type) 1115 { 1116 int i; 1117 bool ace_match; 1118 struct device_node *cci_portn; 1119 1120 cci_portn = of_parse_phandle(dn, "cci-control-port", 0); 1121 for (i = 0; i < nb_cci_ports; i++) { 1122 ace_match = ports[i].type == type; 1123 if (ace_match && cci_portn == ports[i].dn) 1124 return i; 1125 } 1126 return -ENODEV; 1127 } 1128 1129 int cci_ace_get_port(struct device_node *dn) 1130 { 1131 return __cci_ace_get_port(dn, ACE_LITE_PORT); 1132 } 1133 EXPORT_SYMBOL_GPL(cci_ace_get_port); 1134 1135 static void cci_ace_init_ports(void) 1136 { 1137 int port, cpu; 1138 struct device_node *cpun; 1139 1140 /* 1141 * Port index look-up speeds up the function disabling ports by CPU, 1142 * since the logical to port index mapping is done once and does 1143 * not change after system boot. 1144 * The stashed index array is initialized for all possible CPUs 1145 * at probe time. 1146 */ 1147 for_each_possible_cpu(cpu) { 1148 /* too early to use cpu->of_node */ 1149 cpun = of_get_cpu_node(cpu, NULL); 1150 1151 if (WARN(!cpun, "Missing cpu device node\n")) 1152 continue; 1153 1154 port = __cci_ace_get_port(cpun, ACE_PORT); 1155 if (port < 0) 1156 continue; 1157 1158 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); 1159 } 1160 1161 for_each_possible_cpu(cpu) { 1162 WARN(!cpu_port_is_valid(&cpu_port[cpu]), 1163 "CPU %u does not have an associated CCI port\n", 1164 cpu); 1165 } 1166 } 1167 /* 1168 * Functions to enable/disable a CCI interconnect slave port 1169 * 1170 * They are called by low-level power management code to disable slave 1171 * interfaces snoops and DVM broadcast. 1172 * Since they may execute with cache data allocation disabled and 1173 * after the caches have been cleaned and invalidated the functions provide 1174 * no explicit locking since they may run with D-cache disabled, so normal 1175 * cacheable kernel locks based on ldrex/strex may not work. 1176 * Locking has to be provided by BSP implementations to ensure proper 1177 * operations. 1178 */ 1179 1180 /** 1181 * cci_port_control() - function to control a CCI port 1182 * 1183 * @port: index of the port to setup 1184 * @enable: if true enables the port, if false disables it 1185 */ 1186 static void notrace cci_port_control(unsigned int port, bool enable) 1187 { 1188 void __iomem *base = ports[port].base; 1189 1190 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); 1191 /* 1192 * This function is called from power down procedures 1193 * and must not execute any instruction that might 1194 * cause the processor to be put in a quiescent state 1195 * (eg wfi). Hence, cpu_relax() can not be added to this 1196 * read loop to optimize power, since it might hide possibly 1197 * disruptive operations. 1198 */ 1199 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) 1200 ; 1201 } 1202 1203 /** 1204 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU 1205 * reference 1206 * 1207 * @mpidr: mpidr of the CPU whose CCI port should be disabled 1208 * 1209 * Disabling a CCI port for a CPU implies disabling the CCI port 1210 * controlling that CPU cluster. Code disabling CPU CCI ports 1211 * must make sure that the CPU running the code is the last active CPU 1212 * in the cluster ie all other CPUs are quiescent in a low power state. 1213 * 1214 * Return: 1215 * 0 on success 1216 * -ENODEV on port look-up failure 1217 */ 1218 int notrace cci_disable_port_by_cpu(u64 mpidr) 1219 { 1220 int cpu; 1221 bool is_valid; 1222 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1223 is_valid = cpu_port_is_valid(&cpu_port[cpu]); 1224 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { 1225 cci_port_control(cpu_port[cpu].port, false); 1226 return 0; 1227 } 1228 } 1229 return -ENODEV; 1230 } 1231 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); 1232 1233 /** 1234 * cci_enable_port_for_self() - enable a CCI port for calling CPU 1235 * 1236 * Enabling a CCI port for the calling CPU implies enabling the CCI 1237 * port controlling that CPU's cluster. Caller must make sure that the 1238 * CPU running the code is the first active CPU in the cluster and all 1239 * other CPUs are quiescent in a low power state or waiting for this CPU 1240 * to complete the CCI initialization. 1241 * 1242 * Because this is called when the MMU is still off and with no stack, 1243 * the code must be position independent and ideally rely on callee 1244 * clobbered registers only. To achieve this we must code this function 1245 * entirely in assembler. 1246 * 1247 * On success this returns with the proper CCI port enabled. In case of 1248 * any failure this never returns as the inability to enable the CCI is 1249 * fatal and there is no possible recovery at this stage. 1250 */ 1251 asmlinkage void __naked cci_enable_port_for_self(void) 1252 { 1253 asm volatile ("\n" 1254 " .arch armv7-a\n" 1255 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" 1256 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" 1257 " adr r1, 5f \n" 1258 " ldr r2, [r1] \n" 1259 " add r1, r1, r2 @ &cpu_port \n" 1260 " add ip, r1, %[sizeof_cpu_port] \n" 1261 1262 /* Loop over the cpu_port array looking for a matching MPIDR */ 1263 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" 1264 " cmp r2, r0 @ compare MPIDR \n" 1265 " bne 2f \n" 1266 1267 /* Found a match, now test port validity */ 1268 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" 1269 " tst r3, #"__stringify(PORT_VALID)" \n" 1270 " bne 3f \n" 1271 1272 /* no match, loop with the next cpu_port entry */ 1273 "2: add r1, r1, %[sizeof_struct_cpu_port] \n" 1274 " cmp r1, ip @ done? \n" 1275 " blo 1b \n" 1276 1277 /* CCI port not found -- cheaply try to stall this CPU */ 1278 "cci_port_not_found: \n" 1279 " wfi \n" 1280 " wfe \n" 1281 " b cci_port_not_found \n" 1282 1283 /* Use matched port index to look up the corresponding ports entry */ 1284 "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" 1285 " adr r0, 6f \n" 1286 " ldmia r0, {r1, r2} \n" 1287 " sub r1, r1, r0 @ virt - phys \n" 1288 " ldr r0, [r0, r2] @ *(&ports) \n" 1289 " mov r2, %[sizeof_struct_ace_port] \n" 1290 " mla r0, r2, r3, r0 @ &ports[index] \n" 1291 " sub r0, r0, r1 @ virt_to_phys() \n" 1292 1293 /* Enable the CCI port */ 1294 " ldr r0, [r0, %[offsetof_port_phys]] \n" 1295 " mov r3, %[cci_enable_req]\n" 1296 " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" 1297 1298 /* poll the status reg for completion */ 1299 " adr r1, 7f \n" 1300 " ldr r0, [r1] \n" 1301 " ldr r0, [r0, r1] @ cci_ctrl_base \n" 1302 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" 1303 " tst r1, %[cci_control_status_bits] \n" 1304 " bne 4b \n" 1305 1306 " mov r0, #0 \n" 1307 " bx lr \n" 1308 1309 " .align 2 \n" 1310 "5: .word cpu_port - . \n" 1311 "6: .word . \n" 1312 " .word ports - 6b \n" 1313 "7: .word cci_ctrl_phys - . \n" 1314 : : 1315 [sizeof_cpu_port] "i" (sizeof(cpu_port)), 1316 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), 1317 [cci_control_status_bits] "i" cpu_to_le32(1), 1318 #ifndef __ARMEB__ 1319 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), 1320 #else 1321 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), 1322 #endif 1323 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), 1324 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), 1325 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), 1326 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); 1327 1328 unreachable(); 1329 } 1330 1331 /** 1332 * __cci_control_port_by_device() - function to control a CCI port by device 1333 * reference 1334 * 1335 * @dn: device node pointer of the device whose CCI port should be 1336 * controlled 1337 * @enable: if true enables the port, if false disables it 1338 * 1339 * Return: 1340 * 0 on success 1341 * -ENODEV on port look-up failure 1342 */ 1343 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) 1344 { 1345 int port; 1346 1347 if (!dn) 1348 return -ENODEV; 1349 1350 port = __cci_ace_get_port(dn, ACE_LITE_PORT); 1351 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", 1352 dn->full_name)) 1353 return -ENODEV; 1354 cci_port_control(port, enable); 1355 return 0; 1356 } 1357 EXPORT_SYMBOL_GPL(__cci_control_port_by_device); 1358 1359 /** 1360 * __cci_control_port_by_index() - function to control a CCI port by port index 1361 * 1362 * @port: port index previously retrieved with cci_ace_get_port() 1363 * @enable: if true enables the port, if false disables it 1364 * 1365 * Return: 1366 * 0 on success 1367 * -ENODEV on port index out of range 1368 * -EPERM if operation carried out on an ACE PORT 1369 */ 1370 int notrace __cci_control_port_by_index(u32 port, bool enable) 1371 { 1372 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) 1373 return -ENODEV; 1374 /* 1375 * CCI control for ports connected to CPUS is extremely fragile 1376 * and must be made to go through a specific and controlled 1377 * interface (ie cci_disable_port_by_cpu(); control by general purpose 1378 * indexing is therefore disabled for ACE ports. 1379 */ 1380 if (ports[port].type == ACE_PORT) 1381 return -EPERM; 1382 1383 cci_port_control(port, enable); 1384 return 0; 1385 } 1386 EXPORT_SYMBOL_GPL(__cci_control_port_by_index); 1387 1388 static const struct of_device_id arm_cci_ctrl_if_matches[] = { 1389 {.compatible = "arm,cci-400-ctrl-if", }, 1390 {}, 1391 }; 1392 1393 static int cci_probe_ports(struct device_node *np) 1394 { 1395 struct cci_nb_ports const *cci_config; 1396 int ret, i, nb_ace = 0, nb_ace_lite = 0; 1397 struct device_node *cp; 1398 struct resource res; 1399 const char *match_str; 1400 bool is_ace; 1401 1402 1403 cci_config = of_match_node(arm_cci_matches, np)->data; 1404 if (!cci_config) 1405 return -ENODEV; 1406 1407 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; 1408 1409 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL); 1410 if (!ports) 1411 return -ENOMEM; 1412 1413 for_each_child_of_node(np, cp) { 1414 if (!of_match_node(arm_cci_ctrl_if_matches, cp)) 1415 continue; 1416 1417 i = nb_ace + nb_ace_lite; 1418 1419 if (i >= nb_cci_ports) 1420 break; 1421 1422 if (of_property_read_string(cp, "interface-type", 1423 &match_str)) { 1424 WARN(1, "node %s missing interface-type property\n", 1425 cp->full_name); 1426 continue; 1427 } 1428 is_ace = strcmp(match_str, "ace") == 0; 1429 if (!is_ace && strcmp(match_str, "ace-lite")) { 1430 WARN(1, "node %s containing invalid interface-type property, skipping it\n", 1431 cp->full_name); 1432 continue; 1433 } 1434 1435 ret = of_address_to_resource(cp, 0, &res); 1436 if (!ret) { 1437 ports[i].base = ioremap(res.start, resource_size(&res)); 1438 ports[i].phys = res.start; 1439 } 1440 if (ret || !ports[i].base) { 1441 WARN(1, "unable to ioremap CCI port %d\n", i); 1442 continue; 1443 } 1444 1445 if (is_ace) { 1446 if (WARN_ON(nb_ace >= cci_config->nb_ace)) 1447 continue; 1448 ports[i].type = ACE_PORT; 1449 ++nb_ace; 1450 } else { 1451 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) 1452 continue; 1453 ports[i].type = ACE_LITE_PORT; 1454 ++nb_ace_lite; 1455 } 1456 ports[i].dn = cp; 1457 } 1458 1459 /* initialize a stashed array of ACE ports to speed-up look-up */ 1460 cci_ace_init_ports(); 1461 1462 /* 1463 * Multi-cluster systems may need this data when non-coherent, during 1464 * cluster power-up/power-down. Make sure it reaches main memory. 1465 */ 1466 sync_cache_w(&cci_ctrl_base); 1467 sync_cache_w(&cci_ctrl_phys); 1468 sync_cache_w(&ports); 1469 sync_cache_w(&cpu_port); 1470 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); 1471 pr_info("ARM CCI driver probed\n"); 1472 1473 return 0; 1474 } 1475 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */ 1476 static inline int cci_probe_ports(struct device_node *np) 1477 { 1478 return 0; 1479 } 1480 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */ 1481 1482 static int cci_probe(void) 1483 { 1484 int ret; 1485 struct device_node *np; 1486 struct resource res; 1487 1488 np = of_find_matching_node(NULL, arm_cci_matches); 1489 if(!np || !of_device_is_available(np)) 1490 return -ENODEV; 1491 1492 ret = of_address_to_resource(np, 0, &res); 1493 if (!ret) { 1494 cci_ctrl_base = ioremap(res.start, resource_size(&res)); 1495 cci_ctrl_phys = res.start; 1496 } 1497 if (ret || !cci_ctrl_base) { 1498 WARN(1, "unable to ioremap CCI ctrl\n"); 1499 return -ENXIO; 1500 } 1501 1502 return cci_probe_ports(np); 1503 } 1504 1505 static int cci_init_status = -EAGAIN; 1506 static DEFINE_MUTEX(cci_probing); 1507 1508 static int cci_init(void) 1509 { 1510 if (cci_init_status != -EAGAIN) 1511 return cci_init_status; 1512 1513 mutex_lock(&cci_probing); 1514 if (cci_init_status == -EAGAIN) 1515 cci_init_status = cci_probe(); 1516 mutex_unlock(&cci_probing); 1517 return cci_init_status; 1518 } 1519 1520 /* 1521 * To sort out early init calls ordering a helper function is provided to 1522 * check if the CCI driver has beed initialized. Function check if the driver 1523 * has been initialized, if not it calls the init function that probes 1524 * the driver and updates the return value. 1525 */ 1526 bool cci_probed(void) 1527 { 1528 return cci_init() == 0; 1529 } 1530 EXPORT_SYMBOL_GPL(cci_probed); 1531 1532 early_initcall(cci_init); 1533 core_initcall(cci_platform_init); 1534 MODULE_LICENSE("GPL"); 1535 MODULE_DESCRIPTION("ARM CCI support"); 1536