xref: /openbmc/linux/drivers/bus/arm-cci.c (revision 6c7c3245)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
31 
32 static void __iomem *cci_ctrl_base;
33 static unsigned long cci_ctrl_phys;
34 
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
36 struct cci_nb_ports {
37 	unsigned int nb_ace;
38 	unsigned int nb_ace_lite;
39 };
40 
41 static const struct cci_nb_ports cci400_ports = {
42 	.nb_ace = 2,
43 	.nb_ace_lite = 3
44 };
45 
46 #define CCI400_PORTS_DATA	(&cci400_ports)
47 #else
48 #define CCI400_PORTS_DATA	(NULL)
49 #endif
50 
51 static const struct of_device_id arm_cci_matches[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54 #endif
55 #ifdef CONFIG_ARM_CCI5xx_PMU
56 	{ .compatible = "arm,cci-500", },
57 	{ .compatible = "arm,cci-550", },
58 #endif
59 	{},
60 };
61 
62 #ifdef CONFIG_ARM_CCI_PMU
63 
64 #define DRIVER_NAME		"ARM-CCI"
65 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
66 
67 #define CCI_PMCR		0x0100
68 #define CCI_PID2		0x0fe8
69 
70 #define CCI_PMCR_CEN		0x00000001
71 #define CCI_PMCR_NCNT_MASK	0x0000f800
72 #define CCI_PMCR_NCNT_SHIFT	11
73 
74 #define CCI_PID2_REV_MASK	0xf0
75 #define CCI_PID2_REV_SHIFT	4
76 
77 #define CCI_PMU_EVT_SEL		0x000
78 #define CCI_PMU_CNTR		0x004
79 #define CCI_PMU_CNTR_CTRL	0x008
80 #define CCI_PMU_OVRFLW		0x00c
81 
82 #define CCI_PMU_OVRFLW_FLAG	1
83 
84 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
85 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
86 #define CCI_PMU_CNTR_MASK		((1ULL << 32) -1)
87 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
88 
89 #define CCI_PMU_MAX_HW_CNTRS(model) \
90 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
91 
92 /* Types of interfaces that can generate events */
93 enum {
94 	CCI_IF_SLAVE,
95 	CCI_IF_MASTER,
96 #ifdef CONFIG_ARM_CCI5xx_PMU
97 	CCI_IF_GLOBAL,
98 #endif
99 	CCI_IF_MAX,
100 };
101 
102 struct event_range {
103 	u32 min;
104 	u32 max;
105 };
106 
107 struct cci_pmu_hw_events {
108 	struct perf_event **events;
109 	unsigned long *used_mask;
110 	raw_spinlock_t pmu_lock;
111 };
112 
113 struct cci_pmu;
114 /*
115  * struct cci_pmu_model:
116  * @fixed_hw_cntrs - Number of fixed event counters
117  * @num_hw_cntrs - Maximum number of programmable event counters
118  * @cntr_size - Size of an event counter mapping
119  */
120 struct cci_pmu_model {
121 	char *name;
122 	u32 fixed_hw_cntrs;
123 	u32 num_hw_cntrs;
124 	u32 cntr_size;
125 	struct attribute **format_attrs;
126 	struct attribute **event_attrs;
127 	struct event_range event_ranges[CCI_IF_MAX];
128 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
129 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
130 	void (*write_counters)(struct cci_pmu *, unsigned long *);
131 };
132 
133 static struct cci_pmu_model cci_pmu_models[];
134 
135 struct cci_pmu {
136 	void __iomem *base;
137 	struct pmu pmu;
138 	int nr_irqs;
139 	int *irqs;
140 	unsigned long active_irqs;
141 	const struct cci_pmu_model *model;
142 	struct cci_pmu_hw_events hw_events;
143 	struct platform_device *plat_device;
144 	int num_cntrs;
145 	atomic_t active_events;
146 	struct mutex reserve_mutex;
147 	struct list_head entry;
148 	cpumask_t cpus;
149 };
150 
151 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
152 
153 static DEFINE_MUTEX(cci_pmu_mutex);
154 static LIST_HEAD(cci_pmu_list);
155 
156 enum cci_models {
157 #ifdef CONFIG_ARM_CCI400_PMU
158 	CCI400_R0,
159 	CCI400_R1,
160 #endif
161 #ifdef CONFIG_ARM_CCI5xx_PMU
162 	CCI500_R0,
163 	CCI550_R0,
164 #endif
165 	CCI_MODEL_MAX
166 };
167 
168 static void pmu_write_counters(struct cci_pmu *cci_pmu,
169 				 unsigned long *mask);
170 static ssize_t cci_pmu_format_show(struct device *dev,
171 			struct device_attribute *attr, char *buf);
172 static ssize_t cci_pmu_event_show(struct device *dev,
173 			struct device_attribute *attr, char *buf);
174 
175 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
176 	&((struct dev_ext_attribute[]) {					\
177 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
178 	})[0].attr.attr
179 
180 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
181 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
182 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
183 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
184 
185 /* CCI400 PMU Specific definitions */
186 
187 #ifdef CONFIG_ARM_CCI400_PMU
188 
189 /* Port ids */
190 #define CCI400_PORT_S0		0
191 #define CCI400_PORT_S1		1
192 #define CCI400_PORT_S2		2
193 #define CCI400_PORT_S3		3
194 #define CCI400_PORT_S4		4
195 #define CCI400_PORT_M0		5
196 #define CCI400_PORT_M1		6
197 #define CCI400_PORT_M2		7
198 
199 #define CCI400_R1_PX		5
200 
201 /*
202  * Instead of an event id to monitor CCI cycles, a dedicated counter is
203  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
204  * make use of this event in hardware.
205  */
206 enum cci400_perf_events {
207 	CCI400_PMU_CYCLES = 0xff
208 };
209 
210 #define CCI400_PMU_CYCLE_CNTR_IDX	0
211 #define CCI400_PMU_CNTR0_IDX		1
212 
213 /*
214  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
215  * ports and bits 4:0 are event codes. There are different event codes
216  * associated with each port type.
217  *
218  * Additionally, the range of events associated with the port types changed
219  * between Rev0 and Rev1.
220  *
221  * The constants below define the range of valid codes for each port type for
222  * the different revisions and are used to validate the event to be monitored.
223  */
224 
225 #define CCI400_PMU_EVENT_MASK		0xffUL
226 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
227 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
228 #define CCI400_PMU_EVENT_CODE_SHIFT	0
229 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
230 #define CCI400_PMU_EVENT_SOURCE(event) \
231 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
232 			CCI400_PMU_EVENT_SOURCE_MASK)
233 #define CCI400_PMU_EVENT_CODE(event) \
234 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
235 
236 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
237 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
238 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
239 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
240 
241 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
242 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
243 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
244 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
245 
246 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
247 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
248 					(unsigned long)_config)
249 
250 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
251 			struct device_attribute *attr, char *buf);
252 
253 static struct attribute *cci400_pmu_format_attrs[] = {
254 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
255 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
256 	NULL
257 };
258 
259 static struct attribute *cci400_r0_pmu_event_attrs[] = {
260 	/* Slave events */
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
272 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
273 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
274 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
275 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
276 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
277 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
278 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
279 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
280 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
281 	/* Master events */
282 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
283 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
284 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
285 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
286 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
287 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
288 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
289 	/* Special event for cycles counter */
290 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
291 	NULL
292 };
293 
294 static struct attribute *cci400_r1_pmu_event_attrs[] = {
295 	/* Slave events */
296 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
297 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
298 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
299 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
300 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
301 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
302 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
303 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
304 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
305 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
306 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
307 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
308 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
309 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
310 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
311 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
312 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
313 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
314 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
315 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
316 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
317 	/* Master events */
318 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
319 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
320 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
321 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
322 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
323 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
324 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
325 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
326 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
327 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
328 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
329 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
330 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
331 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
332 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
333 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
334 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
335 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
336 	/* Special event for cycles counter */
337 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
338 	NULL
339 };
340 
341 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
342 			struct device_attribute *attr, char *buf)
343 {
344 	struct dev_ext_attribute *eattr = container_of(attr,
345 				struct dev_ext_attribute, attr);
346 	return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
347 }
348 
349 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
350 				struct cci_pmu_hw_events *hw,
351 				unsigned long cci_event)
352 {
353 	int idx;
354 
355 	/* cycles event idx is fixed */
356 	if (cci_event == CCI400_PMU_CYCLES) {
357 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
358 			return -EAGAIN;
359 
360 		return CCI400_PMU_CYCLE_CNTR_IDX;
361 	}
362 
363 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
364 		if (!test_and_set_bit(idx, hw->used_mask))
365 			return idx;
366 
367 	/* No counters available */
368 	return -EAGAIN;
369 }
370 
371 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
372 {
373 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
374 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
375 	int if_type;
376 
377 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
378 		return -ENOENT;
379 
380 	if (hw_event == CCI400_PMU_CYCLES)
381 		return hw_event;
382 
383 	switch (ev_source) {
384 	case CCI400_PORT_S0:
385 	case CCI400_PORT_S1:
386 	case CCI400_PORT_S2:
387 	case CCI400_PORT_S3:
388 	case CCI400_PORT_S4:
389 		/* Slave Interface */
390 		if_type = CCI_IF_SLAVE;
391 		break;
392 	case CCI400_PORT_M0:
393 	case CCI400_PORT_M1:
394 	case CCI400_PORT_M2:
395 		/* Master Interface */
396 		if_type = CCI_IF_MASTER;
397 		break;
398 	default:
399 		return -ENOENT;
400 	}
401 
402 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
403 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
404 		return hw_event;
405 
406 	return -ENOENT;
407 }
408 
409 static int probe_cci400_revision(void)
410 {
411 	int rev;
412 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
413 	rev >>= CCI_PID2_REV_SHIFT;
414 
415 	if (rev < CCI400_R1_PX)
416 		return CCI400_R0;
417 	else
418 		return CCI400_R1;
419 }
420 
421 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
422 {
423 	if (platform_has_secure_cci_access())
424 		return &cci_pmu_models[probe_cci400_revision()];
425 	return NULL;
426 }
427 #else	/* !CONFIG_ARM_CCI400_PMU */
428 static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
429 {
430 	return NULL;
431 }
432 #endif	/* CONFIG_ARM_CCI400_PMU */
433 
434 #ifdef CONFIG_ARM_CCI5xx_PMU
435 
436 /*
437  * CCI5xx PMU event id is an 9-bit value made of two parts.
438  *	 bits [8:5] - Source for the event
439  *	 bits [4:0] - Event code (specific to type of interface)
440  *
441  *
442  */
443 
444 /* Port ids */
445 #define CCI5xx_PORT_S0			0x0
446 #define CCI5xx_PORT_S1			0x1
447 #define CCI5xx_PORT_S2			0x2
448 #define CCI5xx_PORT_S3			0x3
449 #define CCI5xx_PORT_S4			0x4
450 #define CCI5xx_PORT_S5			0x5
451 #define CCI5xx_PORT_S6			0x6
452 
453 #define CCI5xx_PORT_M0			0x8
454 #define CCI5xx_PORT_M1			0x9
455 #define CCI5xx_PORT_M2			0xa
456 #define CCI5xx_PORT_M3			0xb
457 #define CCI5xx_PORT_M4			0xc
458 #define CCI5xx_PORT_M5			0xd
459 #define CCI5xx_PORT_M6			0xe
460 
461 #define CCI5xx_PORT_GLOBAL		0xf
462 
463 #define CCI5xx_PMU_EVENT_MASK		0x1ffUL
464 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
465 #define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
466 #define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
467 #define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
468 
469 #define CCI5xx_PMU_EVENT_SOURCE(event)	\
470 	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
471 #define CCI5xx_PMU_EVENT_CODE(event)	\
472 	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
473 
474 #define CCI5xx_SLAVE_PORT_MIN_EV	0x00
475 #define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
476 #define CCI5xx_MASTER_PORT_MIN_EV	0x00
477 #define CCI5xx_MASTER_PORT_MAX_EV	0x06
478 #define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
479 #define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
480 
481 
482 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
483 	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
484 					(unsigned long) _config)
485 
486 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
487 				struct device_attribute *attr, char *buf);
488 
489 static struct attribute *cci5xx_pmu_format_attrs[] = {
490 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
491 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
492 	NULL,
493 };
494 
495 static struct attribute *cci5xx_pmu_event_attrs[] = {
496 	/* Slave events */
497 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
498 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
499 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
500 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
501 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
502 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
503 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
504 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
505 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
506 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
507 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
508 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
509 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
510 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
511 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
512 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
513 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
514 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
515 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
516 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
517 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
518 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
519 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
520 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
521 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
522 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
523 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
524 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
525 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
526 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
527 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
528 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
529 
530 	/* Master events */
531 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
532 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
533 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
534 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
535 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
536 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
537 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
538 
539 	/* Global events */
540 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
541 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
542 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
543 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
544 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
545 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
546 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
547 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
548 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
549 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
550 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
551 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
552 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
553 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
554 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
555 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
556 	NULL
557 };
558 
559 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
560 				struct device_attribute *attr, char *buf)
561 {
562 	struct dev_ext_attribute *eattr = container_of(attr,
563 					struct dev_ext_attribute, attr);
564 	/* Global events have single fixed source code */
565 	return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
566 				(unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
567 }
568 
569 /*
570  * CCI500 provides 8 independent event counters that can count
571  * any of the events available.
572  * CCI500 PMU event source ids
573  *	0x0-0x6 - Slave interfaces
574  *	0x8-0xD - Master interfaces
575  *	0xf     - Global Events
576  *	0x7,0xe - Reserved
577  */
578 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
579 					unsigned long hw_event)
580 {
581 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
582 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
583 	int if_type;
584 
585 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
586 		return -ENOENT;
587 
588 	switch (ev_source) {
589 	case CCI5xx_PORT_S0:
590 	case CCI5xx_PORT_S1:
591 	case CCI5xx_PORT_S2:
592 	case CCI5xx_PORT_S3:
593 	case CCI5xx_PORT_S4:
594 	case CCI5xx_PORT_S5:
595 	case CCI5xx_PORT_S6:
596 		if_type = CCI_IF_SLAVE;
597 		break;
598 	case CCI5xx_PORT_M0:
599 	case CCI5xx_PORT_M1:
600 	case CCI5xx_PORT_M2:
601 	case CCI5xx_PORT_M3:
602 	case CCI5xx_PORT_M4:
603 	case CCI5xx_PORT_M5:
604 		if_type = CCI_IF_MASTER;
605 		break;
606 	case CCI5xx_PORT_GLOBAL:
607 		if_type = CCI_IF_GLOBAL;
608 		break;
609 	default:
610 		return -ENOENT;
611 	}
612 
613 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
614 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
615 		return hw_event;
616 
617 	return -ENOENT;
618 }
619 
620 /*
621  * CCI550 provides 8 independent event counters that can count
622  * any of the events available.
623  * CCI550 PMU event source ids
624  *	0x0-0x6 - Slave interfaces
625  *	0x8-0xe - Master interfaces
626  *	0xf     - Global Events
627  *	0x7	- Reserved
628  */
629 static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
630 					unsigned long hw_event)
631 {
632 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
633 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
634 	int if_type;
635 
636 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
637 		return -ENOENT;
638 
639 	switch (ev_source) {
640 	case CCI5xx_PORT_S0:
641 	case CCI5xx_PORT_S1:
642 	case CCI5xx_PORT_S2:
643 	case CCI5xx_PORT_S3:
644 	case CCI5xx_PORT_S4:
645 	case CCI5xx_PORT_S5:
646 	case CCI5xx_PORT_S6:
647 		if_type = CCI_IF_SLAVE;
648 		break;
649 	case CCI5xx_PORT_M0:
650 	case CCI5xx_PORT_M1:
651 	case CCI5xx_PORT_M2:
652 	case CCI5xx_PORT_M3:
653 	case CCI5xx_PORT_M4:
654 	case CCI5xx_PORT_M5:
655 	case CCI5xx_PORT_M6:
656 		if_type = CCI_IF_MASTER;
657 		break;
658 	case CCI5xx_PORT_GLOBAL:
659 		if_type = CCI_IF_GLOBAL;
660 		break;
661 	default:
662 		return -ENOENT;
663 	}
664 
665 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
666 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
667 		return hw_event;
668 
669 	return -ENOENT;
670 }
671 
672 #endif	/* CONFIG_ARM_CCI5xx_PMU */
673 
674 /*
675  * Program the CCI PMU counters which have PERF_HES_ARCH set
676  * with the event period and mark them ready before we enable
677  * PMU.
678  */
679 static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
680 {
681 	int i;
682 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
683 
684 	DECLARE_BITMAP(mask, cci_pmu->num_cntrs);
685 
686 	bitmap_zero(mask, cci_pmu->num_cntrs);
687 	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
688 		struct perf_event *event = cci_hw->events[i];
689 
690 		if (WARN_ON(!event))
691 			continue;
692 
693 		/* Leave the events which are not counting */
694 		if (event->hw.state & PERF_HES_STOPPED)
695 			continue;
696 		if (event->hw.state & PERF_HES_ARCH) {
697 			set_bit(i, mask);
698 			event->hw.state &= ~PERF_HES_ARCH;
699 		}
700 	}
701 
702 	pmu_write_counters(cci_pmu, mask);
703 }
704 
705 /* Should be called with cci_pmu->hw_events->pmu_lock held */
706 static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
707 {
708 	u32 val;
709 
710 	/* Enable all the PMU counters. */
711 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
712 	writel(val, cci_ctrl_base + CCI_PMCR);
713 }
714 
715 /* Should be called with cci_pmu->hw_events->pmu_lock held */
716 static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
717 {
718 	cci_pmu_sync_counters(cci_pmu);
719 	__cci_pmu_enable_nosync(cci_pmu);
720 }
721 
722 /* Should be called with cci_pmu->hw_events->pmu_lock held */
723 static void __cci_pmu_disable(void)
724 {
725 	u32 val;
726 
727 	/* Disable all the PMU counters. */
728 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
729 	writel(val, cci_ctrl_base + CCI_PMCR);
730 }
731 
732 static ssize_t cci_pmu_format_show(struct device *dev,
733 			struct device_attribute *attr, char *buf)
734 {
735 	struct dev_ext_attribute *eattr = container_of(attr,
736 				struct dev_ext_attribute, attr);
737 	return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
738 }
739 
740 static ssize_t cci_pmu_event_show(struct device *dev,
741 			struct device_attribute *attr, char *buf)
742 {
743 	struct dev_ext_attribute *eattr = container_of(attr,
744 				struct dev_ext_attribute, attr);
745 	/* source parameter is mandatory for normal PMU events */
746 	return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
747 					 (unsigned long)eattr->var);
748 }
749 
750 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
751 {
752 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
753 }
754 
755 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
756 {
757 	return readl_relaxed(cci_pmu->base +
758 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
759 }
760 
761 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
762 			       int idx, unsigned int offset)
763 {
764 	writel_relaxed(value, cci_pmu->base +
765 		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
766 }
767 
768 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
769 {
770 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
771 }
772 
773 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
774 {
775 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
776 }
777 
778 static bool __maybe_unused
779 pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
780 {
781 	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
782 }
783 
784 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
785 {
786 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
787 }
788 
789 /*
790  * For all counters on the CCI-PMU, disable any 'enabled' counters,
791  * saving the changed counters in the mask, so that we can restore
792  * it later using pmu_restore_counters. The mask is private to the
793  * caller. We cannot rely on the used_mask maintained by the CCI_PMU
794  * as it only tells us if the counter is assigned to perf_event or not.
795  * The state of the perf_event cannot be locked by the PMU layer, hence
796  * we check the individual counter status (which can be locked by
797  * cci_pm->hw_events->pmu_lock).
798  *
799  * @mask should be initialised to empty by the caller.
800  */
801 static void __maybe_unused
802 pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
803 {
804 	int i;
805 
806 	for (i = 0; i < cci_pmu->num_cntrs; i++) {
807 		if (pmu_counter_is_enabled(cci_pmu, i)) {
808 			set_bit(i, mask);
809 			pmu_disable_counter(cci_pmu, i);
810 		}
811 	}
812 }
813 
814 /*
815  * Restore the status of the counters. Reversal of the pmu_save_counters().
816  * For each counter set in the mask, enable the counter back.
817  */
818 static void __maybe_unused
819 pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
820 {
821 	int i;
822 
823 	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
824 		pmu_enable_counter(cci_pmu, i);
825 }
826 
827 /*
828  * Returns the number of programmable counters actually implemented
829  * by the cci
830  */
831 static u32 pmu_get_max_counters(void)
832 {
833 	return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
834 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
835 }
836 
837 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
838 {
839 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
840 	unsigned long cci_event = event->hw.config_base;
841 	int idx;
842 
843 	if (cci_pmu->model->get_event_idx)
844 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
845 
846 	/* Generic code to find an unused idx from the mask */
847 	for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
848 		if (!test_and_set_bit(idx, hw->used_mask))
849 			return idx;
850 
851 	/* No counters available */
852 	return -EAGAIN;
853 }
854 
855 static int pmu_map_event(struct perf_event *event)
856 {
857 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
858 
859 	if (event->attr.type < PERF_TYPE_MAX ||
860 			!cci_pmu->model->validate_hw_event)
861 		return -ENOENT;
862 
863 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
864 }
865 
866 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
867 {
868 	int i;
869 	struct platform_device *pmu_device = cci_pmu->plat_device;
870 
871 	if (unlikely(!pmu_device))
872 		return -ENODEV;
873 
874 	if (cci_pmu->nr_irqs < 1) {
875 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
876 		return -ENODEV;
877 	}
878 
879 	/*
880 	 * Register all available CCI PMU interrupts. In the interrupt handler
881 	 * we iterate over the counters checking for interrupt source (the
882 	 * overflowing counter) and clear it.
883 	 *
884 	 * This should allow handling of non-unique interrupt for the counters.
885 	 */
886 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
887 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
888 				"arm-cci-pmu", cci_pmu);
889 		if (err) {
890 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
891 				cci_pmu->irqs[i]);
892 			return err;
893 		}
894 
895 		set_bit(i, &cci_pmu->active_irqs);
896 	}
897 
898 	return 0;
899 }
900 
901 static void pmu_free_irq(struct cci_pmu *cci_pmu)
902 {
903 	int i;
904 
905 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
906 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
907 			continue;
908 
909 		free_irq(cci_pmu->irqs[i], cci_pmu);
910 	}
911 }
912 
913 static u32 pmu_read_counter(struct perf_event *event)
914 {
915 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
916 	struct hw_perf_event *hw_counter = &event->hw;
917 	int idx = hw_counter->idx;
918 	u32 value;
919 
920 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
921 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
922 		return 0;
923 	}
924 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
925 
926 	return value;
927 }
928 
929 static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
930 {
931 	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
932 }
933 
934 static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
935 {
936 	int i;
937 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
938 
939 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
940 		struct perf_event *event = cci_hw->events[i];
941 
942 		if (WARN_ON(!event))
943 			continue;
944 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
945 	}
946 }
947 
948 static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
949 {
950 	if (cci_pmu->model->write_counters)
951 		cci_pmu->model->write_counters(cci_pmu, mask);
952 	else
953 		__pmu_write_counters(cci_pmu, mask);
954 }
955 
956 #ifdef CONFIG_ARM_CCI5xx_PMU
957 
958 /*
959  * CCI-500/CCI-550 has advanced power saving policies, which could gate the
960  * clocks to the PMU counters, which makes the writes to them ineffective.
961  * The only way to write to those counters is when the global counters
962  * are enabled and the particular counter is enabled.
963  *
964  * So we do the following :
965  *
966  * 1) Disable all the PMU counters, saving their current state
967  * 2) Enable the global PMU profiling, now that all counters are
968  *    disabled.
969  *
970  * For each counter to be programmed, repeat steps 3-7:
971  *
972  * 3) Write an invalid event code to the event control register for the
973       counter, so that the counters are not modified.
974  * 4) Enable the counter control for the counter.
975  * 5) Set the counter value
976  * 6) Disable the counter
977  * 7) Restore the event in the target counter
978  *
979  * 8) Disable the global PMU.
980  * 9) Restore the status of the rest of the counters.
981  *
982  * We choose an event which for CCI-5xx is guaranteed not to count.
983  * We use the highest possible event code (0x1f) for the master interface 0.
984  */
985 #define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
986 				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
987 static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
988 {
989 	int i;
990 	DECLARE_BITMAP(saved_mask, cci_pmu->num_cntrs);
991 
992 	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
993 	pmu_save_counters(cci_pmu, saved_mask);
994 
995 	/*
996 	 * Now that all the counters are disabled, we can safely turn the PMU on,
997 	 * without syncing the status of the counters
998 	 */
999 	__cci_pmu_enable_nosync(cci_pmu);
1000 
1001 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
1002 		struct perf_event *event = cci_pmu->hw_events.events[i];
1003 
1004 		if (WARN_ON(!event))
1005 			continue;
1006 
1007 		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
1008 		pmu_enable_counter(cci_pmu, i);
1009 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
1010 		pmu_disable_counter(cci_pmu, i);
1011 		pmu_set_event(cci_pmu, i, event->hw.config_base);
1012 	}
1013 
1014 	__cci_pmu_disable();
1015 
1016 	pmu_restore_counters(cci_pmu, saved_mask);
1017 }
1018 
1019 #endif	/* CONFIG_ARM_CCI5xx_PMU */
1020 
1021 static u64 pmu_event_update(struct perf_event *event)
1022 {
1023 	struct hw_perf_event *hwc = &event->hw;
1024 	u64 delta, prev_raw_count, new_raw_count;
1025 
1026 	do {
1027 		prev_raw_count = local64_read(&hwc->prev_count);
1028 		new_raw_count = pmu_read_counter(event);
1029 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1030 		 new_raw_count) != prev_raw_count);
1031 
1032 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
1033 
1034 	local64_add(delta, &event->count);
1035 
1036 	return new_raw_count;
1037 }
1038 
1039 static void pmu_read(struct perf_event *event)
1040 {
1041 	pmu_event_update(event);
1042 }
1043 
1044 static void pmu_event_set_period(struct perf_event *event)
1045 {
1046 	struct hw_perf_event *hwc = &event->hw;
1047 	/*
1048 	 * The CCI PMU counters have a period of 2^32. To account for the
1049 	 * possiblity of extreme interrupt latency we program for a period of
1050 	 * half that. Hopefully we can handle the interrupt before another 2^31
1051 	 * events occur and the counter overtakes its previous value.
1052 	 */
1053 	u64 val = 1ULL << 31;
1054 	local64_set(&hwc->prev_count, val);
1055 
1056 	/*
1057 	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1058 	 * values needs to be sync-ed with the s/w state before the PMU is
1059 	 * enabled.
1060 	 * Mark this counter for sync.
1061 	 */
1062 	hwc->state |= PERF_HES_ARCH;
1063 }
1064 
1065 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1066 {
1067 	unsigned long flags;
1068 	struct cci_pmu *cci_pmu = dev;
1069 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1070 	int idx, handled = IRQ_NONE;
1071 
1072 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1073 
1074 	/* Disable the PMU while we walk through the counters */
1075 	__cci_pmu_disable();
1076 	/*
1077 	 * Iterate over counters and update the corresponding perf events.
1078 	 * This should work regardless of whether we have per-counter overflow
1079 	 * interrupt or a combined overflow interrupt.
1080 	 */
1081 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1082 		struct perf_event *event = events->events[idx];
1083 
1084 		if (!event)
1085 			continue;
1086 
1087 		/* Did this counter overflow? */
1088 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1089 		      CCI_PMU_OVRFLW_FLAG))
1090 			continue;
1091 
1092 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1093 							CCI_PMU_OVRFLW);
1094 
1095 		pmu_event_update(event);
1096 		pmu_event_set_period(event);
1097 		handled = IRQ_HANDLED;
1098 	}
1099 
1100 	/* Enable the PMU and sync possibly overflowed counters */
1101 	__cci_pmu_enable_sync(cci_pmu);
1102 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1103 
1104 	return IRQ_RETVAL(handled);
1105 }
1106 
1107 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1108 {
1109 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1110 	if (ret) {
1111 		pmu_free_irq(cci_pmu);
1112 		return ret;
1113 	}
1114 	return 0;
1115 }
1116 
1117 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1118 {
1119 	pmu_free_irq(cci_pmu);
1120 }
1121 
1122 static void hw_perf_event_destroy(struct perf_event *event)
1123 {
1124 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1125 	atomic_t *active_events = &cci_pmu->active_events;
1126 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1127 
1128 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1129 		cci_pmu_put_hw(cci_pmu);
1130 		mutex_unlock(reserve_mutex);
1131 	}
1132 }
1133 
1134 static void cci_pmu_enable(struct pmu *pmu)
1135 {
1136 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1137 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1138 	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
1139 	unsigned long flags;
1140 
1141 	if (!enabled)
1142 		return;
1143 
1144 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1145 	__cci_pmu_enable_sync(cci_pmu);
1146 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1147 
1148 }
1149 
1150 static void cci_pmu_disable(struct pmu *pmu)
1151 {
1152 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1153 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1154 	unsigned long flags;
1155 
1156 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1157 	__cci_pmu_disable();
1158 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1159 }
1160 
1161 /*
1162  * Check if the idx represents a non-programmable counter.
1163  * All the fixed event counters are mapped before the programmable
1164  * counters.
1165  */
1166 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1167 {
1168 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1169 }
1170 
1171 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1172 {
1173 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1174 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1175 	struct hw_perf_event *hwc = &event->hw;
1176 	int idx = hwc->idx;
1177 	unsigned long flags;
1178 
1179 	/*
1180 	 * To handle interrupt latency, we always reprogram the period
1181 	 * regardlesss of PERF_EF_RELOAD.
1182 	 */
1183 	if (pmu_flags & PERF_EF_RELOAD)
1184 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1185 
1186 	hwc->state = 0;
1187 
1188 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1189 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1190 		return;
1191 	}
1192 
1193 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1194 
1195 	/* Configure the counter unless you are counting a fixed event */
1196 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1197 		pmu_set_event(cci_pmu, idx, hwc->config_base);
1198 
1199 	pmu_event_set_period(event);
1200 	pmu_enable_counter(cci_pmu, idx);
1201 
1202 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1203 }
1204 
1205 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1206 {
1207 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1208 	struct hw_perf_event *hwc = &event->hw;
1209 	int idx = hwc->idx;
1210 
1211 	if (hwc->state & PERF_HES_STOPPED)
1212 		return;
1213 
1214 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1215 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1221 	 * cci_pmu_start()
1222 	 */
1223 	pmu_disable_counter(cci_pmu, idx);
1224 	pmu_event_update(event);
1225 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1226 }
1227 
1228 static int cci_pmu_add(struct perf_event *event, int flags)
1229 {
1230 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1231 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1232 	struct hw_perf_event *hwc = &event->hw;
1233 	int idx;
1234 	int err = 0;
1235 
1236 	perf_pmu_disable(event->pmu);
1237 
1238 	/* If we don't have a space for the counter then finish early. */
1239 	idx = pmu_get_event_idx(hw_events, event);
1240 	if (idx < 0) {
1241 		err = idx;
1242 		goto out;
1243 	}
1244 
1245 	event->hw.idx = idx;
1246 	hw_events->events[idx] = event;
1247 
1248 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1249 	if (flags & PERF_EF_START)
1250 		cci_pmu_start(event, PERF_EF_RELOAD);
1251 
1252 	/* Propagate our changes to the userspace mapping. */
1253 	perf_event_update_userpage(event);
1254 
1255 out:
1256 	perf_pmu_enable(event->pmu);
1257 	return err;
1258 }
1259 
1260 static void cci_pmu_del(struct perf_event *event, int flags)
1261 {
1262 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1263 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1264 	struct hw_perf_event *hwc = &event->hw;
1265 	int idx = hwc->idx;
1266 
1267 	cci_pmu_stop(event, PERF_EF_UPDATE);
1268 	hw_events->events[idx] = NULL;
1269 	clear_bit(idx, hw_events->used_mask);
1270 
1271 	perf_event_update_userpage(event);
1272 }
1273 
1274 static int
1275 validate_event(struct pmu *cci_pmu,
1276                struct cci_pmu_hw_events *hw_events,
1277                struct perf_event *event)
1278 {
1279 	if (is_software_event(event))
1280 		return 1;
1281 
1282 	/*
1283 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1284 	 * core perf code won't check that the pmu->ctx == leader->ctx
1285 	 * until after pmu->event_init(event).
1286 	 */
1287 	if (event->pmu != cci_pmu)
1288 		return 0;
1289 
1290 	if (event->state < PERF_EVENT_STATE_OFF)
1291 		return 1;
1292 
1293 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1294 		return 1;
1295 
1296 	return pmu_get_event_idx(hw_events, event) >= 0;
1297 }
1298 
1299 static int
1300 validate_group(struct perf_event *event)
1301 {
1302 	struct perf_event *sibling, *leader = event->group_leader;
1303 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1304 	unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
1305 	struct cci_pmu_hw_events fake_pmu = {
1306 		/*
1307 		 * Initialise the fake PMU. We only need to populate the
1308 		 * used_mask for the purposes of validation.
1309 		 */
1310 		.used_mask = mask,
1311 	};
1312 	memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1313 
1314 	if (!validate_event(event->pmu, &fake_pmu, leader))
1315 		return -EINVAL;
1316 
1317 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
1318 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1319 			return -EINVAL;
1320 	}
1321 
1322 	if (!validate_event(event->pmu, &fake_pmu, event))
1323 		return -EINVAL;
1324 
1325 	return 0;
1326 }
1327 
1328 static int
1329 __hw_perf_event_init(struct perf_event *event)
1330 {
1331 	struct hw_perf_event *hwc = &event->hw;
1332 	int mapping;
1333 
1334 	mapping = pmu_map_event(event);
1335 
1336 	if (mapping < 0) {
1337 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1338 			 event->attr.config);
1339 		return mapping;
1340 	}
1341 
1342 	/*
1343 	 * We don't assign an index until we actually place the event onto
1344 	 * hardware. Use -1 to signify that we haven't decided where to put it
1345 	 * yet.
1346 	 */
1347 	hwc->idx		= -1;
1348 	hwc->config_base	= 0;
1349 	hwc->config		= 0;
1350 	hwc->event_base		= 0;
1351 
1352 	/*
1353 	 * Store the event encoding into the config_base field.
1354 	 */
1355 	hwc->config_base	    |= (unsigned long)mapping;
1356 
1357 	/*
1358 	 * Limit the sample_period to half of the counter width. That way, the
1359 	 * new counter value is far less likely to overtake the previous one
1360 	 * unless you have some serious IRQ latency issues.
1361 	 */
1362 	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
1363 	hwc->last_period    = hwc->sample_period;
1364 	local64_set(&hwc->period_left, hwc->sample_period);
1365 
1366 	if (event->group_leader != event) {
1367 		if (validate_group(event) != 0)
1368 			return -EINVAL;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int cci_pmu_event_init(struct perf_event *event)
1375 {
1376 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1377 	atomic_t *active_events = &cci_pmu->active_events;
1378 	int err = 0;
1379 	int cpu;
1380 
1381 	if (event->attr.type != event->pmu->type)
1382 		return -ENOENT;
1383 
1384 	/* Shared by all CPUs, no meaningful state to sample */
1385 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1386 		return -EOPNOTSUPP;
1387 
1388 	/* We have no filtering of any kind */
1389 	if (event->attr.exclude_user	||
1390 	    event->attr.exclude_kernel	||
1391 	    event->attr.exclude_hv	||
1392 	    event->attr.exclude_idle	||
1393 	    event->attr.exclude_host	||
1394 	    event->attr.exclude_guest)
1395 		return -EINVAL;
1396 
1397 	/*
1398 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1399 	 * and rewrite its affinity dynamically rather than having perf core
1400 	 * handle cpu == -1 and pid == -1 for this case.
1401 	 *
1402 	 * The perf core will pin online CPUs for the duration of this call and
1403 	 * the event being installed into its context, so the PMU's CPU can't
1404 	 * change under our feet.
1405 	 */
1406 	cpu = cpumask_first(&cci_pmu->cpus);
1407 	if (event->cpu < 0 || cpu < 0)
1408 		return -EINVAL;
1409 	event->cpu = cpu;
1410 
1411 	event->destroy = hw_perf_event_destroy;
1412 	if (!atomic_inc_not_zero(active_events)) {
1413 		mutex_lock(&cci_pmu->reserve_mutex);
1414 		if (atomic_read(active_events) == 0)
1415 			err = cci_pmu_get_hw(cci_pmu);
1416 		if (!err)
1417 			atomic_inc(active_events);
1418 		mutex_unlock(&cci_pmu->reserve_mutex);
1419 	}
1420 	if (err)
1421 		return err;
1422 
1423 	err = __hw_perf_event_init(event);
1424 	if (err)
1425 		hw_perf_event_destroy(event);
1426 
1427 	return err;
1428 }
1429 
1430 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1431 				     struct device_attribute *attr, char *buf)
1432 {
1433 	struct pmu *pmu = dev_get_drvdata(dev);
1434 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1435 
1436 	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
1437 			  cpumask_pr_args(&cci_pmu->cpus));
1438 	buf[n++] = '\n';
1439 	buf[n] = '\0';
1440 	return n;
1441 }
1442 
1443 static struct device_attribute pmu_cpumask_attr =
1444 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1445 
1446 static struct attribute *pmu_attrs[] = {
1447 	&pmu_cpumask_attr.attr,
1448 	NULL,
1449 };
1450 
1451 static struct attribute_group pmu_attr_group = {
1452 	.attrs = pmu_attrs,
1453 };
1454 
1455 static struct attribute_group pmu_format_attr_group = {
1456 	.name = "format",
1457 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1458 };
1459 
1460 static struct attribute_group pmu_event_attr_group = {
1461 	.name = "events",
1462 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1463 };
1464 
1465 static const struct attribute_group *pmu_attr_groups[] = {
1466 	&pmu_attr_group,
1467 	&pmu_format_attr_group,
1468 	&pmu_event_attr_group,
1469 	NULL
1470 };
1471 
1472 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1473 {
1474 	const struct cci_pmu_model *model = cci_pmu->model;
1475 	char *name = model->name;
1476 	u32 num_cntrs;
1477 
1478 	pmu_event_attr_group.attrs = model->event_attrs;
1479 	pmu_format_attr_group.attrs = model->format_attrs;
1480 
1481 	cci_pmu->pmu = (struct pmu) {
1482 		.name		= cci_pmu->model->name,
1483 		.task_ctx_nr	= perf_invalid_context,
1484 		.pmu_enable	= cci_pmu_enable,
1485 		.pmu_disable	= cci_pmu_disable,
1486 		.event_init	= cci_pmu_event_init,
1487 		.add		= cci_pmu_add,
1488 		.del		= cci_pmu_del,
1489 		.start		= cci_pmu_start,
1490 		.stop		= cci_pmu_stop,
1491 		.read		= pmu_read,
1492 		.attr_groups	= pmu_attr_groups,
1493 	};
1494 
1495 	cci_pmu->plat_device = pdev;
1496 	num_cntrs = pmu_get_max_counters();
1497 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1498 		dev_warn(&pdev->dev,
1499 			"PMU implements more counters(%d) than supported by"
1500 			" the model(%d), truncated.",
1501 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1502 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1503 	}
1504 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1505 
1506 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1507 }
1508 
1509 static int cci_pmu_offline_cpu(unsigned int cpu)
1510 {
1511 	struct cci_pmu *cci_pmu;
1512 	unsigned int target;
1513 
1514 	mutex_lock(&cci_pmu_mutex);
1515 	list_for_each_entry(cci_pmu, &cci_pmu_list, entry) {
1516 		if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
1517 			continue;
1518 		target = cpumask_any_but(cpu_online_mask, cpu);
1519 		if (target >= nr_cpu_ids)
1520 			continue;
1521 		/*
1522 		 * TODO: migrate context once core races on event->ctx have
1523 		 * been fixed.
1524 		 */
1525 		cpumask_set_cpu(target, &cci_pmu->cpus);
1526 	}
1527 	mutex_unlock(&cci_pmu_mutex);
1528 	return 0;
1529 }
1530 
1531 static struct cci_pmu_model cci_pmu_models[] = {
1532 #ifdef CONFIG_ARM_CCI400_PMU
1533 	[CCI400_R0] = {
1534 		.name = "CCI_400",
1535 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1536 		.num_hw_cntrs = 4,
1537 		.cntr_size = SZ_4K,
1538 		.format_attrs = cci400_pmu_format_attrs,
1539 		.event_attrs = cci400_r0_pmu_event_attrs,
1540 		.event_ranges = {
1541 			[CCI_IF_SLAVE] = {
1542 				CCI400_R0_SLAVE_PORT_MIN_EV,
1543 				CCI400_R0_SLAVE_PORT_MAX_EV,
1544 			},
1545 			[CCI_IF_MASTER] = {
1546 				CCI400_R0_MASTER_PORT_MIN_EV,
1547 				CCI400_R0_MASTER_PORT_MAX_EV,
1548 			},
1549 		},
1550 		.validate_hw_event = cci400_validate_hw_event,
1551 		.get_event_idx = cci400_get_event_idx,
1552 	},
1553 	[CCI400_R1] = {
1554 		.name = "CCI_400_r1",
1555 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1556 		.num_hw_cntrs = 4,
1557 		.cntr_size = SZ_4K,
1558 		.format_attrs = cci400_pmu_format_attrs,
1559 		.event_attrs = cci400_r1_pmu_event_attrs,
1560 		.event_ranges = {
1561 			[CCI_IF_SLAVE] = {
1562 				CCI400_R1_SLAVE_PORT_MIN_EV,
1563 				CCI400_R1_SLAVE_PORT_MAX_EV,
1564 			},
1565 			[CCI_IF_MASTER] = {
1566 				CCI400_R1_MASTER_PORT_MIN_EV,
1567 				CCI400_R1_MASTER_PORT_MAX_EV,
1568 			},
1569 		},
1570 		.validate_hw_event = cci400_validate_hw_event,
1571 		.get_event_idx = cci400_get_event_idx,
1572 	},
1573 #endif
1574 #ifdef CONFIG_ARM_CCI5xx_PMU
1575 	[CCI500_R0] = {
1576 		.name = "CCI_500",
1577 		.fixed_hw_cntrs = 0,
1578 		.num_hw_cntrs = 8,
1579 		.cntr_size = SZ_64K,
1580 		.format_attrs = cci5xx_pmu_format_attrs,
1581 		.event_attrs = cci5xx_pmu_event_attrs,
1582 		.event_ranges = {
1583 			[CCI_IF_SLAVE] = {
1584 				CCI5xx_SLAVE_PORT_MIN_EV,
1585 				CCI5xx_SLAVE_PORT_MAX_EV,
1586 			},
1587 			[CCI_IF_MASTER] = {
1588 				CCI5xx_MASTER_PORT_MIN_EV,
1589 				CCI5xx_MASTER_PORT_MAX_EV,
1590 			},
1591 			[CCI_IF_GLOBAL] = {
1592 				CCI5xx_GLOBAL_PORT_MIN_EV,
1593 				CCI5xx_GLOBAL_PORT_MAX_EV,
1594 			},
1595 		},
1596 		.validate_hw_event = cci500_validate_hw_event,
1597 		.write_counters	= cci5xx_pmu_write_counters,
1598 	},
1599 	[CCI550_R0] = {
1600 		.name = "CCI_550",
1601 		.fixed_hw_cntrs = 0,
1602 		.num_hw_cntrs = 8,
1603 		.cntr_size = SZ_64K,
1604 		.format_attrs = cci5xx_pmu_format_attrs,
1605 		.event_attrs = cci5xx_pmu_event_attrs,
1606 		.event_ranges = {
1607 			[CCI_IF_SLAVE] = {
1608 				CCI5xx_SLAVE_PORT_MIN_EV,
1609 				CCI5xx_SLAVE_PORT_MAX_EV,
1610 			},
1611 			[CCI_IF_MASTER] = {
1612 				CCI5xx_MASTER_PORT_MIN_EV,
1613 				CCI5xx_MASTER_PORT_MAX_EV,
1614 			},
1615 			[CCI_IF_GLOBAL] = {
1616 				CCI5xx_GLOBAL_PORT_MIN_EV,
1617 				CCI5xx_GLOBAL_PORT_MAX_EV,
1618 			},
1619 		},
1620 		.validate_hw_event = cci550_validate_hw_event,
1621 		.write_counters	= cci5xx_pmu_write_counters,
1622 	},
1623 #endif
1624 };
1625 
1626 static const struct of_device_id arm_cci_pmu_matches[] = {
1627 #ifdef CONFIG_ARM_CCI400_PMU
1628 	{
1629 		.compatible = "arm,cci-400-pmu",
1630 		.data	= NULL,
1631 	},
1632 	{
1633 		.compatible = "arm,cci-400-pmu,r0",
1634 		.data	= &cci_pmu_models[CCI400_R0],
1635 	},
1636 	{
1637 		.compatible = "arm,cci-400-pmu,r1",
1638 		.data	= &cci_pmu_models[CCI400_R1],
1639 	},
1640 #endif
1641 #ifdef CONFIG_ARM_CCI5xx_PMU
1642 	{
1643 		.compatible = "arm,cci-500-pmu,r0",
1644 		.data = &cci_pmu_models[CCI500_R0],
1645 	},
1646 	{
1647 		.compatible = "arm,cci-550-pmu,r0",
1648 		.data = &cci_pmu_models[CCI550_R0],
1649 	},
1650 #endif
1651 	{},
1652 };
1653 
1654 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1655 {
1656 	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1657 							pdev->dev.of_node);
1658 	if (!match)
1659 		return NULL;
1660 	if (match->data)
1661 		return match->data;
1662 
1663 	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1664 			 "requires secure access to CCI registers");
1665 	return probe_cci_model(pdev);
1666 }
1667 
1668 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1669 {
1670 	int i;
1671 
1672 	for (i = 0; i < nr_irqs; i++)
1673 		if (irq == irqs[i])
1674 			return true;
1675 
1676 	return false;
1677 }
1678 
1679 static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
1680 {
1681 	struct cci_pmu *cci_pmu;
1682 	const struct cci_pmu_model *model;
1683 
1684 	/*
1685 	 * All allocations are devm_* hence we don't have to free
1686 	 * them explicitly on an error, as it would end up in driver
1687 	 * detach.
1688 	 */
1689 	model = get_cci_model(pdev);
1690 	if (!model) {
1691 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
1692 		return ERR_PTR(-ENODEV);
1693 	}
1694 
1695 	cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1696 	if (!cci_pmu)
1697 		return ERR_PTR(-ENOMEM);
1698 
1699 	cci_pmu->model = model;
1700 	cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1701 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1702 	if (!cci_pmu->irqs)
1703 		return ERR_PTR(-ENOMEM);
1704 	cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1705 					     CCI_PMU_MAX_HW_CNTRS(model),
1706 					     sizeof(*cci_pmu->hw_events.events),
1707 					     GFP_KERNEL);
1708 	if (!cci_pmu->hw_events.events)
1709 		return ERR_PTR(-ENOMEM);
1710 	cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1711 						BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1712 						sizeof(*cci_pmu->hw_events.used_mask),
1713 						GFP_KERNEL);
1714 	if (!cci_pmu->hw_events.used_mask)
1715 		return ERR_PTR(-ENOMEM);
1716 
1717 	return cci_pmu;
1718 }
1719 
1720 
1721 static int cci_pmu_probe(struct platform_device *pdev)
1722 {
1723 	struct resource *res;
1724 	struct cci_pmu *cci_pmu;
1725 	int i, ret, irq;
1726 
1727 	cci_pmu = cci_pmu_alloc(pdev);
1728 	if (IS_ERR(cci_pmu))
1729 		return PTR_ERR(cci_pmu);
1730 
1731 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1732 	cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1733 	if (IS_ERR(cci_pmu->base))
1734 		return -ENOMEM;
1735 
1736 	/*
1737 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1738 	 * together to a common interrupt.
1739 	 */
1740 	cci_pmu->nr_irqs = 0;
1741 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1742 		irq = platform_get_irq(pdev, i);
1743 		if (irq < 0)
1744 			break;
1745 
1746 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1747 			continue;
1748 
1749 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1750 	}
1751 
1752 	/*
1753 	 * Ensure that the device tree has as many interrupts as the number
1754 	 * of counters.
1755 	 */
1756 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1757 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1758 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1759 		return -EINVAL;
1760 	}
1761 
1762 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1763 	mutex_init(&cci_pmu->reserve_mutex);
1764 	atomic_set(&cci_pmu->active_events, 0);
1765 	cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
1766 
1767 	ret = cci_pmu_init(cci_pmu, pdev);
1768 	if (ret)
1769 		return ret;
1770 
1771 	mutex_lock(&cci_pmu_mutex);
1772 	list_add(&cci_pmu->entry, &cci_pmu_list);
1773 	mutex_unlock(&cci_pmu_mutex);
1774 
1775 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1776 	return 0;
1777 }
1778 
1779 static int cci_platform_probe(struct platform_device *pdev)
1780 {
1781 	if (!cci_probed())
1782 		return -ENODEV;
1783 
1784 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1785 }
1786 
1787 static struct platform_driver cci_pmu_driver = {
1788 	.driver = {
1789 		   .name = DRIVER_NAME_PMU,
1790 		   .of_match_table = arm_cci_pmu_matches,
1791 		  },
1792 	.probe = cci_pmu_probe,
1793 };
1794 
1795 static struct platform_driver cci_platform_driver = {
1796 	.driver = {
1797 		   .name = DRIVER_NAME,
1798 		   .of_match_table = arm_cci_matches,
1799 		  },
1800 	.probe = cci_platform_probe,
1801 };
1802 
1803 static int __init cci_platform_init(void)
1804 {
1805 	int ret;
1806 
1807 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1808 					"AP_PERF_ARM_CCI_ONLINE", NULL,
1809 					cci_pmu_offline_cpu);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ret = platform_driver_register(&cci_pmu_driver);
1814 	if (ret)
1815 		return ret;
1816 
1817 	return platform_driver_register(&cci_platform_driver);
1818 }
1819 
1820 #else /* !CONFIG_ARM_CCI_PMU */
1821 
1822 static int __init cci_platform_init(void)
1823 {
1824 	return 0;
1825 }
1826 
1827 #endif /* CONFIG_ARM_CCI_PMU */
1828 
1829 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1830 
1831 #define CCI_PORT_CTRL		0x0
1832 #define CCI_CTRL_STATUS		0xc
1833 
1834 #define CCI_ENABLE_SNOOP_REQ	0x1
1835 #define CCI_ENABLE_DVM_REQ	0x2
1836 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1837 
1838 enum cci_ace_port_type {
1839 	ACE_INVALID_PORT = 0x0,
1840 	ACE_PORT,
1841 	ACE_LITE_PORT,
1842 };
1843 
1844 struct cci_ace_port {
1845 	void __iomem *base;
1846 	unsigned long phys;
1847 	enum cci_ace_port_type type;
1848 	struct device_node *dn;
1849 };
1850 
1851 static struct cci_ace_port *ports;
1852 static unsigned int nb_cci_ports;
1853 
1854 struct cpu_port {
1855 	u64 mpidr;
1856 	u32 port;
1857 };
1858 
1859 /*
1860  * Use the port MSB as valid flag, shift can be made dynamic
1861  * by computing number of bits required for port indexes.
1862  * Code disabling CCI cpu ports runs with D-cache invalidated
1863  * and SCTLR bit clear so data accesses must be kept to a minimum
1864  * to improve performance; for now shift is left static to
1865  * avoid one more data access while disabling the CCI port.
1866  */
1867 #define PORT_VALID_SHIFT	31
1868 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
1869 
1870 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1871 {
1872 	port->port = PORT_VALID | index;
1873 	port->mpidr = mpidr;
1874 }
1875 
1876 static inline bool cpu_port_is_valid(struct cpu_port *port)
1877 {
1878 	return !!(port->port & PORT_VALID);
1879 }
1880 
1881 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1882 {
1883 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1884 }
1885 
1886 static struct cpu_port cpu_port[NR_CPUS];
1887 
1888 /**
1889  * __cci_ace_get_port - Function to retrieve the port index connected to
1890  *			a cpu or device.
1891  *
1892  * @dn: device node of the device to look-up
1893  * @type: port type
1894  *
1895  * Return value:
1896  *	- CCI port index if success
1897  *	- -ENODEV if failure
1898  */
1899 static int __cci_ace_get_port(struct device_node *dn, int type)
1900 {
1901 	int i;
1902 	bool ace_match;
1903 	struct device_node *cci_portn;
1904 
1905 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1906 	for (i = 0; i < nb_cci_ports; i++) {
1907 		ace_match = ports[i].type == type;
1908 		if (ace_match && cci_portn == ports[i].dn)
1909 			return i;
1910 	}
1911 	return -ENODEV;
1912 }
1913 
1914 int cci_ace_get_port(struct device_node *dn)
1915 {
1916 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1917 }
1918 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1919 
1920 static void cci_ace_init_ports(void)
1921 {
1922 	int port, cpu;
1923 	struct device_node *cpun;
1924 
1925 	/*
1926 	 * Port index look-up speeds up the function disabling ports by CPU,
1927 	 * since the logical to port index mapping is done once and does
1928 	 * not change after system boot.
1929 	 * The stashed index array is initialized for all possible CPUs
1930 	 * at probe time.
1931 	 */
1932 	for_each_possible_cpu(cpu) {
1933 		/* too early to use cpu->of_node */
1934 		cpun = of_get_cpu_node(cpu, NULL);
1935 
1936 		if (WARN(!cpun, "Missing cpu device node\n"))
1937 			continue;
1938 
1939 		port = __cci_ace_get_port(cpun, ACE_PORT);
1940 		if (port < 0)
1941 			continue;
1942 
1943 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1944 	}
1945 
1946 	for_each_possible_cpu(cpu) {
1947 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1948 			"CPU %u does not have an associated CCI port\n",
1949 			cpu);
1950 	}
1951 }
1952 /*
1953  * Functions to enable/disable a CCI interconnect slave port
1954  *
1955  * They are called by low-level power management code to disable slave
1956  * interfaces snoops and DVM broadcast.
1957  * Since they may execute with cache data allocation disabled and
1958  * after the caches have been cleaned and invalidated the functions provide
1959  * no explicit locking since they may run with D-cache disabled, so normal
1960  * cacheable kernel locks based on ldrex/strex may not work.
1961  * Locking has to be provided by BSP implementations to ensure proper
1962  * operations.
1963  */
1964 
1965 /**
1966  * cci_port_control() - function to control a CCI port
1967  *
1968  * @port: index of the port to setup
1969  * @enable: if true enables the port, if false disables it
1970  */
1971 static void notrace cci_port_control(unsigned int port, bool enable)
1972 {
1973 	void __iomem *base = ports[port].base;
1974 
1975 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1976 	/*
1977 	 * This function is called from power down procedures
1978 	 * and must not execute any instruction that might
1979 	 * cause the processor to be put in a quiescent state
1980 	 * (eg wfi). Hence, cpu_relax() can not be added to this
1981 	 * read loop to optimize power, since it might hide possibly
1982 	 * disruptive operations.
1983 	 */
1984 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1985 			;
1986 }
1987 
1988 /**
1989  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1990  *			       reference
1991  *
1992  * @mpidr: mpidr of the CPU whose CCI port should be disabled
1993  *
1994  * Disabling a CCI port for a CPU implies disabling the CCI port
1995  * controlling that CPU cluster. Code disabling CPU CCI ports
1996  * must make sure that the CPU running the code is the last active CPU
1997  * in the cluster ie all other CPUs are quiescent in a low power state.
1998  *
1999  * Return:
2000  *	0 on success
2001  *	-ENODEV on port look-up failure
2002  */
2003 int notrace cci_disable_port_by_cpu(u64 mpidr)
2004 {
2005 	int cpu;
2006 	bool is_valid;
2007 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2008 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
2009 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
2010 			cci_port_control(cpu_port[cpu].port, false);
2011 			return 0;
2012 		}
2013 	}
2014 	return -ENODEV;
2015 }
2016 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
2017 
2018 /**
2019  * cci_enable_port_for_self() - enable a CCI port for calling CPU
2020  *
2021  * Enabling a CCI port for the calling CPU implies enabling the CCI
2022  * port controlling that CPU's cluster. Caller must make sure that the
2023  * CPU running the code is the first active CPU in the cluster and all
2024  * other CPUs are quiescent in a low power state  or waiting for this CPU
2025  * to complete the CCI initialization.
2026  *
2027  * Because this is called when the MMU is still off and with no stack,
2028  * the code must be position independent and ideally rely on callee
2029  * clobbered registers only.  To achieve this we must code this function
2030  * entirely in assembler.
2031  *
2032  * On success this returns with the proper CCI port enabled.  In case of
2033  * any failure this never returns as the inability to enable the CCI is
2034  * fatal and there is no possible recovery at this stage.
2035  */
2036 asmlinkage void __naked cci_enable_port_for_self(void)
2037 {
2038 	asm volatile ("\n"
2039 "	.arch armv7-a\n"
2040 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
2041 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
2042 "	adr	r1, 5f \n"
2043 "	ldr	r2, [r1] \n"
2044 "	add	r1, r1, r2		@ &cpu_port \n"
2045 "	add	ip, r1, %[sizeof_cpu_port] \n"
2046 
2047 	/* Loop over the cpu_port array looking for a matching MPIDR */
2048 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
2049 "	cmp	r2, r0 			@ compare MPIDR \n"
2050 "	bne	2f \n"
2051 
2052 	/* Found a match, now test port validity */
2053 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
2054 "	tst	r3, #"__stringify(PORT_VALID)" \n"
2055 "	bne	3f \n"
2056 
2057 	/* no match, loop with the next cpu_port entry */
2058 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
2059 "	cmp	r1, ip			@ done? \n"
2060 "	blo	1b \n"
2061 
2062 	/* CCI port not found -- cheaply try to stall this CPU */
2063 "cci_port_not_found: \n"
2064 "	wfi \n"
2065 "	wfe \n"
2066 "	b	cci_port_not_found \n"
2067 
2068 	/* Use matched port index to look up the corresponding ports entry */
2069 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
2070 "	adr	r0, 6f \n"
2071 "	ldmia	r0, {r1, r2} \n"
2072 "	sub	r1, r1, r0 		@ virt - phys \n"
2073 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
2074 "	mov	r2, %[sizeof_struct_ace_port] \n"
2075 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
2076 "	sub	r0, r0, r1		@ virt_to_phys() \n"
2077 
2078 	/* Enable the CCI port */
2079 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
2080 "	mov	r3, %[cci_enable_req]\n"
2081 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
2082 
2083 	/* poll the status reg for completion */
2084 "	adr	r1, 7f \n"
2085 "	ldr	r0, [r1] \n"
2086 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
2087 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
2088 "	tst	r1, %[cci_control_status_bits] \n"
2089 "	bne	4b \n"
2090 
2091 "	mov	r0, #0 \n"
2092 "	bx	lr \n"
2093 
2094 "	.align	2 \n"
2095 "5:	.word	cpu_port - . \n"
2096 "6:	.word	. \n"
2097 "	.word	ports - 6b \n"
2098 "7:	.word	cci_ctrl_phys - . \n"
2099 	: :
2100 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
2101 	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
2102 	[cci_control_status_bits] "i" cpu_to_le32(1),
2103 #ifndef __ARMEB__
2104 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
2105 #else
2106 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
2107 #endif
2108 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
2109 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
2110 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
2111 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
2112 
2113 	unreachable();
2114 }
2115 
2116 /**
2117  * __cci_control_port_by_device() - function to control a CCI port by device
2118  *				    reference
2119  *
2120  * @dn: device node pointer of the device whose CCI port should be
2121  *      controlled
2122  * @enable: if true enables the port, if false disables it
2123  *
2124  * Return:
2125  *	0 on success
2126  *	-ENODEV on port look-up failure
2127  */
2128 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
2129 {
2130 	int port;
2131 
2132 	if (!dn)
2133 		return -ENODEV;
2134 
2135 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
2136 	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
2137 				dn->full_name))
2138 		return -ENODEV;
2139 	cci_port_control(port, enable);
2140 	return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
2143 
2144 /**
2145  * __cci_control_port_by_index() - function to control a CCI port by port index
2146  *
2147  * @port: port index previously retrieved with cci_ace_get_port()
2148  * @enable: if true enables the port, if false disables it
2149  *
2150  * Return:
2151  *	0 on success
2152  *	-ENODEV on port index out of range
2153  *	-EPERM if operation carried out on an ACE PORT
2154  */
2155 int notrace __cci_control_port_by_index(u32 port, bool enable)
2156 {
2157 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
2158 		return -ENODEV;
2159 	/*
2160 	 * CCI control for ports connected to CPUS is extremely fragile
2161 	 * and must be made to go through a specific and controlled
2162 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
2163 	 * indexing is therefore disabled for ACE ports.
2164 	 */
2165 	if (ports[port].type == ACE_PORT)
2166 		return -EPERM;
2167 
2168 	cci_port_control(port, enable);
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
2172 
2173 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
2174 	{.compatible = "arm,cci-400-ctrl-if", },
2175 	{},
2176 };
2177 
2178 static int cci_probe_ports(struct device_node *np)
2179 {
2180 	struct cci_nb_ports const *cci_config;
2181 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
2182 	struct device_node *cp;
2183 	struct resource res;
2184 	const char *match_str;
2185 	bool is_ace;
2186 
2187 
2188 	cci_config = of_match_node(arm_cci_matches, np)->data;
2189 	if (!cci_config)
2190 		return -ENODEV;
2191 
2192 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
2193 
2194 	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
2195 	if (!ports)
2196 		return -ENOMEM;
2197 
2198 	for_each_child_of_node(np, cp) {
2199 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
2200 			continue;
2201 
2202 		i = nb_ace + nb_ace_lite;
2203 
2204 		if (i >= nb_cci_ports)
2205 			break;
2206 
2207 		if (of_property_read_string(cp, "interface-type",
2208 					&match_str)) {
2209 			WARN(1, "node %s missing interface-type property\n",
2210 				  cp->full_name);
2211 			continue;
2212 		}
2213 		is_ace = strcmp(match_str, "ace") == 0;
2214 		if (!is_ace && strcmp(match_str, "ace-lite")) {
2215 			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
2216 					cp->full_name);
2217 			continue;
2218 		}
2219 
2220 		ret = of_address_to_resource(cp, 0, &res);
2221 		if (!ret) {
2222 			ports[i].base = ioremap(res.start, resource_size(&res));
2223 			ports[i].phys = res.start;
2224 		}
2225 		if (ret || !ports[i].base) {
2226 			WARN(1, "unable to ioremap CCI port %d\n", i);
2227 			continue;
2228 		}
2229 
2230 		if (is_ace) {
2231 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
2232 				continue;
2233 			ports[i].type = ACE_PORT;
2234 			++nb_ace;
2235 		} else {
2236 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2237 				continue;
2238 			ports[i].type = ACE_LITE_PORT;
2239 			++nb_ace_lite;
2240 		}
2241 		ports[i].dn = cp;
2242 	}
2243 
2244 	 /* initialize a stashed array of ACE ports to speed-up look-up */
2245 	cci_ace_init_ports();
2246 
2247 	/*
2248 	 * Multi-cluster systems may need this data when non-coherent, during
2249 	 * cluster power-up/power-down. Make sure it reaches main memory.
2250 	 */
2251 	sync_cache_w(&cci_ctrl_base);
2252 	sync_cache_w(&cci_ctrl_phys);
2253 	sync_cache_w(&ports);
2254 	sync_cache_w(&cpu_port);
2255 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2256 	pr_info("ARM CCI driver probed\n");
2257 
2258 	return 0;
2259 }
2260 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2261 static inline int cci_probe_ports(struct device_node *np)
2262 {
2263 	return 0;
2264 }
2265 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2266 
2267 static int cci_probe(void)
2268 {
2269 	int ret;
2270 	struct device_node *np;
2271 	struct resource res;
2272 
2273 	np = of_find_matching_node(NULL, arm_cci_matches);
2274 	if(!np || !of_device_is_available(np))
2275 		return -ENODEV;
2276 
2277 	ret = of_address_to_resource(np, 0, &res);
2278 	if (!ret) {
2279 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
2280 		cci_ctrl_phys =	res.start;
2281 	}
2282 	if (ret || !cci_ctrl_base) {
2283 		WARN(1, "unable to ioremap CCI ctrl\n");
2284 		return -ENXIO;
2285 	}
2286 
2287 	return cci_probe_ports(np);
2288 }
2289 
2290 static int cci_init_status = -EAGAIN;
2291 static DEFINE_MUTEX(cci_probing);
2292 
2293 static int cci_init(void)
2294 {
2295 	if (cci_init_status != -EAGAIN)
2296 		return cci_init_status;
2297 
2298 	mutex_lock(&cci_probing);
2299 	if (cci_init_status == -EAGAIN)
2300 		cci_init_status = cci_probe();
2301 	mutex_unlock(&cci_probing);
2302 	return cci_init_status;
2303 }
2304 
2305 /*
2306  * To sort out early init calls ordering a helper function is provided to
2307  * check if the CCI driver has beed initialized. Function check if the driver
2308  * has been initialized, if not it calls the init function that probes
2309  * the driver and updates the return value.
2310  */
2311 bool cci_probed(void)
2312 {
2313 	return cci_init() == 0;
2314 }
2315 EXPORT_SYMBOL_GPL(cci_probed);
2316 
2317 early_initcall(cci_init);
2318 core_initcall(cci_platform_init);
2319 MODULE_LICENSE("GPL");
2320 MODULE_DESCRIPTION("ARM CCI support");
2321