xref: /openbmc/linux/drivers/bus/arm-cci.c (revision 161f4089)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include <asm/cacheflush.h>
28 #include <asm/irq_regs.h>
29 #include <asm/pmu.h>
30 #include <asm/smp_plat.h>
31 
32 #define DRIVER_NAME		"CCI-400"
33 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
34 #define PMU_NAME		"CCI_400"
35 
36 #define CCI_PORT_CTRL		0x0
37 #define CCI_CTRL_STATUS		0xc
38 
39 #define CCI_ENABLE_SNOOP_REQ	0x1
40 #define CCI_ENABLE_DVM_REQ	0x2
41 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
42 
43 struct cci_nb_ports {
44 	unsigned int nb_ace;
45 	unsigned int nb_ace_lite;
46 };
47 
48 enum cci_ace_port_type {
49 	ACE_INVALID_PORT = 0x0,
50 	ACE_PORT,
51 	ACE_LITE_PORT,
52 };
53 
54 struct cci_ace_port {
55 	void __iomem *base;
56 	unsigned long phys;
57 	enum cci_ace_port_type type;
58 	struct device_node *dn;
59 };
60 
61 static struct cci_ace_port *ports;
62 static unsigned int nb_cci_ports;
63 
64 static void __iomem *cci_ctrl_base;
65 static unsigned long cci_ctrl_phys;
66 
67 #ifdef CONFIG_HW_PERF_EVENTS
68 
69 #define CCI_PMCR		0x0100
70 #define CCI_PID2		0x0fe8
71 
72 #define CCI_PMCR_CEN		0x00000001
73 #define CCI_PMCR_NCNT_MASK	0x0000f800
74 #define CCI_PMCR_NCNT_SHIFT	11
75 
76 #define CCI_PID2_REV_MASK	0xf0
77 #define CCI_PID2_REV_SHIFT	4
78 
79 /* Port ids */
80 #define CCI_PORT_S0	0
81 #define CCI_PORT_S1	1
82 #define CCI_PORT_S2	2
83 #define CCI_PORT_S3	3
84 #define CCI_PORT_S4	4
85 #define CCI_PORT_M0	5
86 #define CCI_PORT_M1	6
87 #define CCI_PORT_M2	7
88 
89 #define CCI_REV_R0		0
90 #define CCI_REV_R1		1
91 #define CCI_REV_R0_P4		4
92 #define CCI_REV_R1_P2		6
93 
94 #define CCI_PMU_EVT_SEL		0x000
95 #define CCI_PMU_CNTR		0x004
96 #define CCI_PMU_CNTR_CTRL	0x008
97 #define CCI_PMU_OVRFLW		0x00c
98 
99 #define CCI_PMU_OVRFLW_FLAG	1
100 
101 #define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)
102 
103 /*
104  * Instead of an event id to monitor CCI cycles, a dedicated counter is
105  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
106  * make use of this event in hardware.
107  */
108 enum cci400_perf_events {
109 	CCI_PMU_CYCLES = 0xff
110 };
111 
112 #define CCI_PMU_EVENT_MASK		0xff
113 #define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
114 #define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)
115 
116 #define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */
117 
118 #define CCI_PMU_CYCLE_CNTR_IDX		0
119 #define CCI_PMU_CNTR0_IDX		1
120 #define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
121 
122 /*
123  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
124  * ports and bits 4:0 are event codes. There are different event codes
125  * associated with each port type.
126  *
127  * Additionally, the range of events associated with the port types changed
128  * between Rev0 and Rev1.
129  *
130  * The constants below define the range of valid codes for each port type for
131  * the different revisions and are used to validate the event to be monitored.
132  */
133 
134 #define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
135 #define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
136 #define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
137 #define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a
138 
139 #define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
140 #define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
141 #define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
142 #define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11
143 
144 struct pmu_port_event_ranges {
145 	u8 slave_min;
146 	u8 slave_max;
147 	u8 master_min;
148 	u8 master_max;
149 };
150 
151 static struct pmu_port_event_ranges port_event_range[] = {
152 	[CCI_REV_R0] = {
153 		.slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
154 		.slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
155 		.master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
156 		.master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
157 	},
158 	[CCI_REV_R1] = {
159 		.slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
160 		.slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
161 		.master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
162 		.master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
163 	},
164 };
165 
166 struct cci_pmu_drv_data {
167 	void __iomem *base;
168 	struct arm_pmu *cci_pmu;
169 	int nr_irqs;
170 	int irqs[CCI_PMU_MAX_HW_EVENTS];
171 	unsigned long active_irqs;
172 	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
173 	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
174 	struct pmu_port_event_ranges *port_ranges;
175 	struct pmu_hw_events hw_events;
176 };
177 static struct cci_pmu_drv_data *pmu;
178 
179 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
180 {
181 	int i;
182 
183 	for (i = 0; i < nr_irqs; i++)
184 		if (irq == irqs[i])
185 			return true;
186 
187 	return false;
188 }
189 
190 static int probe_cci_revision(void)
191 {
192 	int rev;
193 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
194 	rev >>= CCI_PID2_REV_SHIFT;
195 
196 	if (rev <= CCI_REV_R0_P4)
197 		return CCI_REV_R0;
198 	else if (rev <= CCI_REV_R1_P2)
199 		return CCI_REV_R1;
200 
201 	return -ENOENT;
202 }
203 
204 static struct pmu_port_event_ranges *port_range_by_rev(void)
205 {
206 	int rev = probe_cci_revision();
207 
208 	if (rev < 0)
209 		return NULL;
210 
211 	return &port_event_range[rev];
212 }
213 
214 static int pmu_is_valid_slave_event(u8 ev_code)
215 {
216 	return pmu->port_ranges->slave_min <= ev_code &&
217 		ev_code <= pmu->port_ranges->slave_max;
218 }
219 
220 static int pmu_is_valid_master_event(u8 ev_code)
221 {
222 	return pmu->port_ranges->master_min <= ev_code &&
223 		ev_code <= pmu->port_ranges->master_max;
224 }
225 
226 static int pmu_validate_hw_event(u8 hw_event)
227 {
228 	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
229 	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
230 
231 	switch (ev_source) {
232 	case CCI_PORT_S0:
233 	case CCI_PORT_S1:
234 	case CCI_PORT_S2:
235 	case CCI_PORT_S3:
236 	case CCI_PORT_S4:
237 		/* Slave Interface */
238 		if (pmu_is_valid_slave_event(ev_code))
239 			return hw_event;
240 		break;
241 	case CCI_PORT_M0:
242 	case CCI_PORT_M1:
243 	case CCI_PORT_M2:
244 		/* Master Interface */
245 		if (pmu_is_valid_master_event(ev_code))
246 			return hw_event;
247 		break;
248 	}
249 
250 	return -ENOENT;
251 }
252 
253 static int pmu_is_valid_counter(struct arm_pmu *cci_pmu, int idx)
254 {
255 	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
256 		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
257 }
258 
259 static u32 pmu_read_register(int idx, unsigned int offset)
260 {
261 	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
262 }
263 
264 static void pmu_write_register(u32 value, int idx, unsigned int offset)
265 {
266 	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
267 }
268 
269 static void pmu_disable_counter(int idx)
270 {
271 	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
272 }
273 
274 static void pmu_enable_counter(int idx)
275 {
276 	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
277 }
278 
279 static void pmu_set_event(int idx, unsigned long event)
280 {
281 	event &= CCI_PMU_EVENT_MASK;
282 	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
283 }
284 
285 static u32 pmu_get_max_counters(void)
286 {
287 	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
288 		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
289 
290 	/* add 1 for cycle counter */
291 	return n_cnts + 1;
292 }
293 
294 static struct pmu_hw_events *pmu_get_hw_events(void)
295 {
296 	return &pmu->hw_events;
297 }
298 
299 static int pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event)
300 {
301 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
302 	struct hw_perf_event *hw_event = &event->hw;
303 	unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
304 	int idx;
305 
306 	if (cci_event == CCI_PMU_CYCLES) {
307 		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
308 			return -EAGAIN;
309 
310 		return CCI_PMU_CYCLE_CNTR_IDX;
311 	}
312 
313 	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
314 		if (!test_and_set_bit(idx, hw->used_mask))
315 			return idx;
316 
317 	/* No counters available */
318 	return -EAGAIN;
319 }
320 
321 static int pmu_map_event(struct perf_event *event)
322 {
323 	int mapping;
324 	u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
325 
326 	if (event->attr.type < PERF_TYPE_MAX)
327 		return -ENOENT;
328 
329 	if (config == CCI_PMU_CYCLES)
330 		mapping = config;
331 	else
332 		mapping = pmu_validate_hw_event(config);
333 
334 	return mapping;
335 }
336 
337 static int pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler)
338 {
339 	int i;
340 	struct platform_device *pmu_device = cci_pmu->plat_device;
341 
342 	if (unlikely(!pmu_device))
343 		return -ENODEV;
344 
345 	if (pmu->nr_irqs < 1) {
346 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
347 		return -ENODEV;
348 	}
349 
350 	/*
351 	 * Register all available CCI PMU interrupts. In the interrupt handler
352 	 * we iterate over the counters checking for interrupt source (the
353 	 * overflowing counter) and clear it.
354 	 *
355 	 * This should allow handling of non-unique interrupt for the counters.
356 	 */
357 	for (i = 0; i < pmu->nr_irqs; i++) {
358 		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
359 				"arm-cci-pmu", cci_pmu);
360 		if (err) {
361 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
362 				pmu->irqs[i]);
363 			return err;
364 		}
365 
366 		set_bit(i, &pmu->active_irqs);
367 	}
368 
369 	return 0;
370 }
371 
372 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
373 {
374 	unsigned long flags;
375 	struct arm_pmu *cci_pmu = (struct arm_pmu *)dev;
376 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
377 	struct perf_sample_data data;
378 	struct pt_regs *regs;
379 	int idx, handled = IRQ_NONE;
380 
381 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
382 	regs = get_irq_regs();
383 	/*
384 	 * Iterate over counters and update the corresponding perf events.
385 	 * This should work regardless of whether we have per-counter overflow
386 	 * interrupt or a combined overflow interrupt.
387 	 */
388 	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
389 		struct perf_event *event = events->events[idx];
390 		struct hw_perf_event *hw_counter;
391 
392 		if (!event)
393 			continue;
394 
395 		hw_counter = &event->hw;
396 
397 		/* Did this counter overflow? */
398 		if (!pmu_read_register(idx, CCI_PMU_OVRFLW) & CCI_PMU_OVRFLW_FLAG)
399 			continue;
400 
401 		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
402 
403 		handled = IRQ_HANDLED;
404 
405 		armpmu_event_update(event);
406 		perf_sample_data_init(&data, 0, hw_counter->last_period);
407 		if (!armpmu_event_set_period(event))
408 			continue;
409 
410 		if (perf_event_overflow(event, &data, regs))
411 			cci_pmu->disable(event);
412 	}
413 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
414 
415 	return IRQ_RETVAL(handled);
416 }
417 
418 static void pmu_free_irq(struct arm_pmu *cci_pmu)
419 {
420 	int i;
421 
422 	for (i = 0; i < pmu->nr_irqs; i++) {
423 		if (!test_and_clear_bit(i, &pmu->active_irqs))
424 			continue;
425 
426 		free_irq(pmu->irqs[i], cci_pmu);
427 	}
428 }
429 
430 static void pmu_enable_event(struct perf_event *event)
431 {
432 	unsigned long flags;
433 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
434 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
435 	struct hw_perf_event *hw_counter = &event->hw;
436 	int idx = hw_counter->idx;
437 
438 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
439 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
440 		return;
441 	}
442 
443 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
444 
445 	/* Configure the event to count, unless you are counting cycles */
446 	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
447 		pmu_set_event(idx, hw_counter->config_base);
448 
449 	pmu_enable_counter(idx);
450 
451 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
452 }
453 
454 static void pmu_disable_event(struct perf_event *event)
455 {
456 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
457 	struct hw_perf_event *hw_counter = &event->hw;
458 	int idx = hw_counter->idx;
459 
460 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
461 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
462 		return;
463 	}
464 
465 	pmu_disable_counter(idx);
466 }
467 
468 static void pmu_start(struct arm_pmu *cci_pmu)
469 {
470 	u32 val;
471 	unsigned long flags;
472 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
473 
474 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
475 
476 	/* Enable all the PMU counters. */
477 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
478 	writel(val, cci_ctrl_base + CCI_PMCR);
479 
480 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
481 }
482 
483 static void pmu_stop(struct arm_pmu *cci_pmu)
484 {
485 	u32 val;
486 	unsigned long flags;
487 	struct pmu_hw_events *events = cci_pmu->get_hw_events();
488 
489 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
490 
491 	/* Disable all the PMU counters. */
492 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
493 	writel(val, cci_ctrl_base + CCI_PMCR);
494 
495 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
496 }
497 
498 static u32 pmu_read_counter(struct perf_event *event)
499 {
500 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
501 	struct hw_perf_event *hw_counter = &event->hw;
502 	int idx = hw_counter->idx;
503 	u32 value;
504 
505 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
506 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
507 		return 0;
508 	}
509 	value = pmu_read_register(idx, CCI_PMU_CNTR);
510 
511 	return value;
512 }
513 
514 static void pmu_write_counter(struct perf_event *event, u32 value)
515 {
516 	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
517 	struct hw_perf_event *hw_counter = &event->hw;
518 	int idx = hw_counter->idx;
519 
520 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
521 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
522 	else
523 		pmu_write_register(value, idx, CCI_PMU_CNTR);
524 }
525 
526 static int cci_pmu_init(struct arm_pmu *cci_pmu, struct platform_device *pdev)
527 {
528 	*cci_pmu = (struct arm_pmu){
529 		.name             = PMU_NAME,
530 		.max_period       = (1LLU << 32) - 1,
531 		.get_hw_events    = pmu_get_hw_events,
532 		.get_event_idx    = pmu_get_event_idx,
533 		.map_event        = pmu_map_event,
534 		.request_irq      = pmu_request_irq,
535 		.handle_irq       = pmu_handle_irq,
536 		.free_irq         = pmu_free_irq,
537 		.enable           = pmu_enable_event,
538 		.disable          = pmu_disable_event,
539 		.start            = pmu_start,
540 		.stop             = pmu_stop,
541 		.read_counter     = pmu_read_counter,
542 		.write_counter    = pmu_write_counter,
543 	};
544 
545 	cci_pmu->plat_device = pdev;
546 	cci_pmu->num_events = pmu_get_max_counters();
547 
548 	return armpmu_register(cci_pmu, -1);
549 }
550 
551 static const struct of_device_id arm_cci_pmu_matches[] = {
552 	{
553 		.compatible = "arm,cci-400-pmu",
554 	},
555 	{},
556 };
557 
558 static int cci_pmu_probe(struct platform_device *pdev)
559 {
560 	struct resource *res;
561 	int i, ret, irq;
562 
563 	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
564 	if (!pmu)
565 		return -ENOMEM;
566 
567 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
568 	pmu->base = devm_ioremap_resource(&pdev->dev, res);
569 	if (IS_ERR(pmu->base))
570 		return -ENOMEM;
571 
572 	/*
573 	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
574 	 * together to a common interrupt.
575 	 */
576 	pmu->nr_irqs = 0;
577 	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
578 		irq = platform_get_irq(pdev, i);
579 		if (irq < 0)
580 			break;
581 
582 		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
583 			continue;
584 
585 		pmu->irqs[pmu->nr_irqs++] = irq;
586 	}
587 
588 	/*
589 	 * Ensure that the device tree has as many interrupts as the number
590 	 * of counters.
591 	 */
592 	if (i < CCI_PMU_MAX_HW_EVENTS) {
593 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
594 			i, CCI_PMU_MAX_HW_EVENTS);
595 		return -EINVAL;
596 	}
597 
598 	pmu->port_ranges = port_range_by_rev();
599 	if (!pmu->port_ranges) {
600 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
601 		return -EINVAL;
602 	}
603 
604 	pmu->cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*(pmu->cci_pmu)), GFP_KERNEL);
605 	if (!pmu->cci_pmu)
606 		return -ENOMEM;
607 
608 	pmu->hw_events.events = pmu->events;
609 	pmu->hw_events.used_mask = pmu->used_mask;
610 	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
611 
612 	ret = cci_pmu_init(pmu->cci_pmu, pdev);
613 	if (ret)
614 		return ret;
615 
616 	return 0;
617 }
618 
619 static int cci_platform_probe(struct platform_device *pdev)
620 {
621 	if (!cci_probed())
622 		return -ENODEV;
623 
624 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
625 }
626 
627 #endif /* CONFIG_HW_PERF_EVENTS */
628 
629 struct cpu_port {
630 	u64 mpidr;
631 	u32 port;
632 };
633 
634 /*
635  * Use the port MSB as valid flag, shift can be made dynamic
636  * by computing number of bits required for port indexes.
637  * Code disabling CCI cpu ports runs with D-cache invalidated
638  * and SCTLR bit clear so data accesses must be kept to a minimum
639  * to improve performance; for now shift is left static to
640  * avoid one more data access while disabling the CCI port.
641  */
642 #define PORT_VALID_SHIFT	31
643 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
644 
645 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
646 {
647 	port->port = PORT_VALID | index;
648 	port->mpidr = mpidr;
649 }
650 
651 static inline bool cpu_port_is_valid(struct cpu_port *port)
652 {
653 	return !!(port->port & PORT_VALID);
654 }
655 
656 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
657 {
658 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
659 }
660 
661 static struct cpu_port cpu_port[NR_CPUS];
662 
663 /**
664  * __cci_ace_get_port - Function to retrieve the port index connected to
665  *			a cpu or device.
666  *
667  * @dn: device node of the device to look-up
668  * @type: port type
669  *
670  * Return value:
671  *	- CCI port index if success
672  *	- -ENODEV if failure
673  */
674 static int __cci_ace_get_port(struct device_node *dn, int type)
675 {
676 	int i;
677 	bool ace_match;
678 	struct device_node *cci_portn;
679 
680 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
681 	for (i = 0; i < nb_cci_ports; i++) {
682 		ace_match = ports[i].type == type;
683 		if (ace_match && cci_portn == ports[i].dn)
684 			return i;
685 	}
686 	return -ENODEV;
687 }
688 
689 int cci_ace_get_port(struct device_node *dn)
690 {
691 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
692 }
693 EXPORT_SYMBOL_GPL(cci_ace_get_port);
694 
695 static void cci_ace_init_ports(void)
696 {
697 	int port, cpu;
698 	struct device_node *cpun;
699 
700 	/*
701 	 * Port index look-up speeds up the function disabling ports by CPU,
702 	 * since the logical to port index mapping is done once and does
703 	 * not change after system boot.
704 	 * The stashed index array is initialized for all possible CPUs
705 	 * at probe time.
706 	 */
707 	for_each_possible_cpu(cpu) {
708 		/* too early to use cpu->of_node */
709 		cpun = of_get_cpu_node(cpu, NULL);
710 
711 		if (WARN(!cpun, "Missing cpu device node\n"))
712 			continue;
713 
714 		port = __cci_ace_get_port(cpun, ACE_PORT);
715 		if (port < 0)
716 			continue;
717 
718 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
719 	}
720 
721 	for_each_possible_cpu(cpu) {
722 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
723 			"CPU %u does not have an associated CCI port\n",
724 			cpu);
725 	}
726 }
727 /*
728  * Functions to enable/disable a CCI interconnect slave port
729  *
730  * They are called by low-level power management code to disable slave
731  * interfaces snoops and DVM broadcast.
732  * Since they may execute with cache data allocation disabled and
733  * after the caches have been cleaned and invalidated the functions provide
734  * no explicit locking since they may run with D-cache disabled, so normal
735  * cacheable kernel locks based on ldrex/strex may not work.
736  * Locking has to be provided by BSP implementations to ensure proper
737  * operations.
738  */
739 
740 /**
741  * cci_port_control() - function to control a CCI port
742  *
743  * @port: index of the port to setup
744  * @enable: if true enables the port, if false disables it
745  */
746 static void notrace cci_port_control(unsigned int port, bool enable)
747 {
748 	void __iomem *base = ports[port].base;
749 
750 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
751 	/*
752 	 * This function is called from power down procedures
753 	 * and must not execute any instruction that might
754 	 * cause the processor to be put in a quiescent state
755 	 * (eg wfi). Hence, cpu_relax() can not be added to this
756 	 * read loop to optimize power, since it might hide possibly
757 	 * disruptive operations.
758 	 */
759 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
760 			;
761 }
762 
763 /**
764  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
765  *			       reference
766  *
767  * @mpidr: mpidr of the CPU whose CCI port should be disabled
768  *
769  * Disabling a CCI port for a CPU implies disabling the CCI port
770  * controlling that CPU cluster. Code disabling CPU CCI ports
771  * must make sure that the CPU running the code is the last active CPU
772  * in the cluster ie all other CPUs are quiescent in a low power state.
773  *
774  * Return:
775  *	0 on success
776  *	-ENODEV on port look-up failure
777  */
778 int notrace cci_disable_port_by_cpu(u64 mpidr)
779 {
780 	int cpu;
781 	bool is_valid;
782 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
783 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
784 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
785 			cci_port_control(cpu_port[cpu].port, false);
786 			return 0;
787 		}
788 	}
789 	return -ENODEV;
790 }
791 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
792 
793 /**
794  * cci_enable_port_for_self() - enable a CCI port for calling CPU
795  *
796  * Enabling a CCI port for the calling CPU implies enabling the CCI
797  * port controlling that CPU's cluster. Caller must make sure that the
798  * CPU running the code is the first active CPU in the cluster and all
799  * other CPUs are quiescent in a low power state  or waiting for this CPU
800  * to complete the CCI initialization.
801  *
802  * Because this is called when the MMU is still off and with no stack,
803  * the code must be position independent and ideally rely on callee
804  * clobbered registers only.  To achieve this we must code this function
805  * entirely in assembler.
806  *
807  * On success this returns with the proper CCI port enabled.  In case of
808  * any failure this never returns as the inability to enable the CCI is
809  * fatal and there is no possible recovery at this stage.
810  */
811 asmlinkage void __naked cci_enable_port_for_self(void)
812 {
813 	asm volatile ("\n"
814 "	.arch armv7-a\n"
815 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
816 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
817 "	adr	r1, 5f \n"
818 "	ldr	r2, [r1] \n"
819 "	add	r1, r1, r2		@ &cpu_port \n"
820 "	add	ip, r1, %[sizeof_cpu_port] \n"
821 
822 	/* Loop over the cpu_port array looking for a matching MPIDR */
823 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
824 "	cmp	r2, r0 			@ compare MPIDR \n"
825 "	bne	2f \n"
826 
827 	/* Found a match, now test port validity */
828 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
829 "	tst	r3, #"__stringify(PORT_VALID)" \n"
830 "	bne	3f \n"
831 
832 	/* no match, loop with the next cpu_port entry */
833 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
834 "	cmp	r1, ip			@ done? \n"
835 "	blo	1b \n"
836 
837 	/* CCI port not found -- cheaply try to stall this CPU */
838 "cci_port_not_found: \n"
839 "	wfi \n"
840 "	wfe \n"
841 "	b	cci_port_not_found \n"
842 
843 	/* Use matched port index to look up the corresponding ports entry */
844 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
845 "	adr	r0, 6f \n"
846 "	ldmia	r0, {r1, r2} \n"
847 "	sub	r1, r1, r0 		@ virt - phys \n"
848 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
849 "	mov	r2, %[sizeof_struct_ace_port] \n"
850 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
851 "	sub	r0, r0, r1		@ virt_to_phys() \n"
852 
853 	/* Enable the CCI port */
854 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
855 "	mov	r3, #"__stringify(CCI_ENABLE_REQ)" \n"
856 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
857 
858 	/* poll the status reg for completion */
859 "	adr	r1, 7f \n"
860 "	ldr	r0, [r1] \n"
861 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
862 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
863 "	tst	r1, #1 \n"
864 "	bne	4b \n"
865 
866 "	mov	r0, #0 \n"
867 "	bx	lr \n"
868 
869 "	.align	2 \n"
870 "5:	.word	cpu_port - . \n"
871 "6:	.word	. \n"
872 "	.word	ports - 6b \n"
873 "7:	.word	cci_ctrl_phys - . \n"
874 	: :
875 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
876 #ifndef __ARMEB__
877 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
878 #else
879 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
880 #endif
881 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
882 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
883 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
884 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
885 
886 	unreachable();
887 }
888 
889 /**
890  * __cci_control_port_by_device() - function to control a CCI port by device
891  *				    reference
892  *
893  * @dn: device node pointer of the device whose CCI port should be
894  *      controlled
895  * @enable: if true enables the port, if false disables it
896  *
897  * Return:
898  *	0 on success
899  *	-ENODEV on port look-up failure
900  */
901 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
902 {
903 	int port;
904 
905 	if (!dn)
906 		return -ENODEV;
907 
908 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
909 	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
910 				dn->full_name))
911 		return -ENODEV;
912 	cci_port_control(port, enable);
913 	return 0;
914 }
915 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
916 
917 /**
918  * __cci_control_port_by_index() - function to control a CCI port by port index
919  *
920  * @port: port index previously retrieved with cci_ace_get_port()
921  * @enable: if true enables the port, if false disables it
922  *
923  * Return:
924  *	0 on success
925  *	-ENODEV on port index out of range
926  *	-EPERM if operation carried out on an ACE PORT
927  */
928 int notrace __cci_control_port_by_index(u32 port, bool enable)
929 {
930 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
931 		return -ENODEV;
932 	/*
933 	 * CCI control for ports connected to CPUS is extremely fragile
934 	 * and must be made to go through a specific and controlled
935 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
936 	 * indexing is therefore disabled for ACE ports.
937 	 */
938 	if (ports[port].type == ACE_PORT)
939 		return -EPERM;
940 
941 	cci_port_control(port, enable);
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
945 
946 static const struct cci_nb_ports cci400_ports = {
947 	.nb_ace = 2,
948 	.nb_ace_lite = 3
949 };
950 
951 static const struct of_device_id arm_cci_matches[] = {
952 	{.compatible = "arm,cci-400", .data = &cci400_ports },
953 	{},
954 };
955 
956 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
957 	{.compatible = "arm,cci-400-ctrl-if", },
958 	{},
959 };
960 
961 static int cci_probe(void)
962 {
963 	struct cci_nb_ports const *cci_config;
964 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
965 	struct device_node *np, *cp;
966 	struct resource res;
967 	const char *match_str;
968 	bool is_ace;
969 
970 	np = of_find_matching_node(NULL, arm_cci_matches);
971 	if (!np)
972 		return -ENODEV;
973 
974 	cci_config = of_match_node(arm_cci_matches, np)->data;
975 	if (!cci_config)
976 		return -ENODEV;
977 
978 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
979 
980 	ports = kcalloc(sizeof(*ports), nb_cci_ports, GFP_KERNEL);
981 	if (!ports)
982 		return -ENOMEM;
983 
984 	ret = of_address_to_resource(np, 0, &res);
985 	if (!ret) {
986 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
987 		cci_ctrl_phys =	res.start;
988 	}
989 	if (ret || !cci_ctrl_base) {
990 		WARN(1, "unable to ioremap CCI ctrl\n");
991 		ret = -ENXIO;
992 		goto memalloc_err;
993 	}
994 
995 	for_each_child_of_node(np, cp) {
996 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
997 			continue;
998 
999 		i = nb_ace + nb_ace_lite;
1000 
1001 		if (i >= nb_cci_ports)
1002 			break;
1003 
1004 		if (of_property_read_string(cp, "interface-type",
1005 					&match_str)) {
1006 			WARN(1, "node %s missing interface-type property\n",
1007 				  cp->full_name);
1008 			continue;
1009 		}
1010 		is_ace = strcmp(match_str, "ace") == 0;
1011 		if (!is_ace && strcmp(match_str, "ace-lite")) {
1012 			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1013 					cp->full_name);
1014 			continue;
1015 		}
1016 
1017 		ret = of_address_to_resource(cp, 0, &res);
1018 		if (!ret) {
1019 			ports[i].base = ioremap(res.start, resource_size(&res));
1020 			ports[i].phys = res.start;
1021 		}
1022 		if (ret || !ports[i].base) {
1023 			WARN(1, "unable to ioremap CCI port %d\n", i);
1024 			continue;
1025 		}
1026 
1027 		if (is_ace) {
1028 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
1029 				continue;
1030 			ports[i].type = ACE_PORT;
1031 			++nb_ace;
1032 		} else {
1033 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1034 				continue;
1035 			ports[i].type = ACE_LITE_PORT;
1036 			++nb_ace_lite;
1037 		}
1038 		ports[i].dn = cp;
1039 	}
1040 
1041 	 /* initialize a stashed array of ACE ports to speed-up look-up */
1042 	cci_ace_init_ports();
1043 
1044 	/*
1045 	 * Multi-cluster systems may need this data when non-coherent, during
1046 	 * cluster power-up/power-down. Make sure it reaches main memory.
1047 	 */
1048 	sync_cache_w(&cci_ctrl_base);
1049 	sync_cache_w(&cci_ctrl_phys);
1050 	sync_cache_w(&ports);
1051 	sync_cache_w(&cpu_port);
1052 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1053 	pr_info("ARM CCI driver probed\n");
1054 	return 0;
1055 
1056 memalloc_err:
1057 
1058 	kfree(ports);
1059 	return ret;
1060 }
1061 
1062 static int cci_init_status = -EAGAIN;
1063 static DEFINE_MUTEX(cci_probing);
1064 
1065 static int cci_init(void)
1066 {
1067 	if (cci_init_status != -EAGAIN)
1068 		return cci_init_status;
1069 
1070 	mutex_lock(&cci_probing);
1071 	if (cci_init_status == -EAGAIN)
1072 		cci_init_status = cci_probe();
1073 	mutex_unlock(&cci_probing);
1074 	return cci_init_status;
1075 }
1076 
1077 #ifdef CONFIG_HW_PERF_EVENTS
1078 static struct platform_driver cci_pmu_driver = {
1079 	.driver = {
1080 		   .name = DRIVER_NAME_PMU,
1081 		   .of_match_table = arm_cci_pmu_matches,
1082 		  },
1083 	.probe = cci_pmu_probe,
1084 };
1085 
1086 static struct platform_driver cci_platform_driver = {
1087 	.driver = {
1088 		   .name = DRIVER_NAME,
1089 		   .of_match_table = arm_cci_matches,
1090 		  },
1091 	.probe = cci_platform_probe,
1092 };
1093 
1094 static int __init cci_platform_init(void)
1095 {
1096 	int ret;
1097 
1098 	ret = platform_driver_register(&cci_pmu_driver);
1099 	if (ret)
1100 		return ret;
1101 
1102 	return platform_driver_register(&cci_platform_driver);
1103 }
1104 
1105 #else
1106 
1107 static int __init cci_platform_init(void)
1108 {
1109 	return 0;
1110 }
1111 
1112 #endif
1113 /*
1114  * To sort out early init calls ordering a helper function is provided to
1115  * check if the CCI driver has beed initialized. Function check if the driver
1116  * has been initialized, if not it calls the init function that probes
1117  * the driver and updates the return value.
1118  */
1119 bool cci_probed(void)
1120 {
1121 	return cci_init() == 0;
1122 }
1123 EXPORT_SYMBOL_GPL(cci_probed);
1124 
1125 early_initcall(cci_init);
1126 core_initcall(cci_platform_init);
1127 MODULE_LICENSE("GPL");
1128 MODULE_DESCRIPTION("ARM CCI support");
1129