xref: /openbmc/linux/drivers/bluetooth/hci_ldisc.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver
5  *
6  *  Copyright (C) 2000-2001  Qualcomm Incorporated
7  *  Copyright (C) 2002-2003  Maxim Krasnyansky <maxk@qualcomm.com>
8  *  Copyright (C) 2004-2005  Marcel Holtmann <marcel@holtmann.org>
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/poll.h>
20 
21 #include <linux/slab.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/signal.h>
26 #include <linux/ioctl.h>
27 #include <linux/skbuff.h>
28 #include <linux/firmware.h>
29 #include <linux/serdev.h>
30 
31 #include <net/bluetooth/bluetooth.h>
32 #include <net/bluetooth/hci_core.h>
33 
34 #include "btintel.h"
35 #include "btbcm.h"
36 #include "hci_uart.h"
37 
38 #define VERSION "2.3"
39 
40 static const struct hci_uart_proto *hup[HCI_UART_MAX_PROTO];
41 
42 int hci_uart_register_proto(const struct hci_uart_proto *p)
43 {
44 	if (p->id >= HCI_UART_MAX_PROTO)
45 		return -EINVAL;
46 
47 	if (hup[p->id])
48 		return -EEXIST;
49 
50 	hup[p->id] = p;
51 
52 	BT_INFO("HCI UART protocol %s registered", p->name);
53 
54 	return 0;
55 }
56 
57 int hci_uart_unregister_proto(const struct hci_uart_proto *p)
58 {
59 	if (p->id >= HCI_UART_MAX_PROTO)
60 		return -EINVAL;
61 
62 	if (!hup[p->id])
63 		return -EINVAL;
64 
65 	hup[p->id] = NULL;
66 
67 	return 0;
68 }
69 
70 static const struct hci_uart_proto *hci_uart_get_proto(unsigned int id)
71 {
72 	if (id >= HCI_UART_MAX_PROTO)
73 		return NULL;
74 
75 	return hup[id];
76 }
77 
78 static inline void hci_uart_tx_complete(struct hci_uart *hu, int pkt_type)
79 {
80 	struct hci_dev *hdev = hu->hdev;
81 
82 	/* Update HCI stat counters */
83 	switch (pkt_type) {
84 	case HCI_COMMAND_PKT:
85 		hdev->stat.cmd_tx++;
86 		break;
87 
88 	case HCI_ACLDATA_PKT:
89 		hdev->stat.acl_tx++;
90 		break;
91 
92 	case HCI_SCODATA_PKT:
93 		hdev->stat.sco_tx++;
94 		break;
95 	}
96 }
97 
98 static inline struct sk_buff *hci_uart_dequeue(struct hci_uart *hu)
99 {
100 	struct sk_buff *skb = hu->tx_skb;
101 
102 	if (!skb) {
103 		percpu_down_read(&hu->proto_lock);
104 
105 		if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
106 			skb = hu->proto->dequeue(hu);
107 
108 		percpu_up_read(&hu->proto_lock);
109 	} else {
110 		hu->tx_skb = NULL;
111 	}
112 
113 	return skb;
114 }
115 
116 int hci_uart_tx_wakeup(struct hci_uart *hu)
117 {
118 	/* This may be called in an IRQ context, so we can't sleep. Therefore
119 	 * we try to acquire the lock only, and if that fails we assume the
120 	 * tty is being closed because that is the only time the write lock is
121 	 * acquired. If, however, at some point in the future the write lock
122 	 * is also acquired in other situations, then this must be revisited.
123 	 */
124 	if (!percpu_down_read_trylock(&hu->proto_lock))
125 		return 0;
126 
127 	if (!test_bit(HCI_UART_PROTO_READY, &hu->flags))
128 		goto no_schedule;
129 
130 	set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
131 	if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state))
132 		goto no_schedule;
133 
134 	BT_DBG("");
135 
136 	schedule_work(&hu->write_work);
137 
138 no_schedule:
139 	percpu_up_read(&hu->proto_lock);
140 
141 	return 0;
142 }
143 EXPORT_SYMBOL_GPL(hci_uart_tx_wakeup);
144 
145 static void hci_uart_write_work(struct work_struct *work)
146 {
147 	struct hci_uart *hu = container_of(work, struct hci_uart, write_work);
148 	struct tty_struct *tty = hu->tty;
149 	struct hci_dev *hdev = hu->hdev;
150 	struct sk_buff *skb;
151 
152 	/* REVISIT: should we cope with bad skbs or ->write() returning
153 	 * and error value ?
154 	 */
155 
156 restart:
157 	clear_bit(HCI_UART_TX_WAKEUP, &hu->tx_state);
158 
159 	while ((skb = hci_uart_dequeue(hu))) {
160 		int len;
161 
162 		set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
163 		len = tty->ops->write(tty, skb->data, skb->len);
164 		hdev->stat.byte_tx += len;
165 
166 		skb_pull(skb, len);
167 		if (skb->len) {
168 			hu->tx_skb = skb;
169 			break;
170 		}
171 
172 		hci_uart_tx_complete(hu, hci_skb_pkt_type(skb));
173 		kfree_skb(skb);
174 	}
175 
176 	clear_bit(HCI_UART_SENDING, &hu->tx_state);
177 	if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state))
178 		goto restart;
179 
180 	wake_up_bit(&hu->tx_state, HCI_UART_SENDING);
181 }
182 
183 void hci_uart_init_work(struct work_struct *work)
184 {
185 	struct hci_uart *hu = container_of(work, struct hci_uart, init_ready);
186 	int err;
187 	struct hci_dev *hdev;
188 
189 	if (!test_and_clear_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
190 		return;
191 
192 	err = hci_register_dev(hu->hdev);
193 	if (err < 0) {
194 		BT_ERR("Can't register HCI device");
195 		clear_bit(HCI_UART_PROTO_READY, &hu->flags);
196 		hu->proto->close(hu);
197 		hdev = hu->hdev;
198 		hu->hdev = NULL;
199 		hci_free_dev(hdev);
200 		return;
201 	}
202 
203 	set_bit(HCI_UART_REGISTERED, &hu->flags);
204 }
205 
206 int hci_uart_init_ready(struct hci_uart *hu)
207 {
208 	if (!test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
209 		return -EALREADY;
210 
211 	schedule_work(&hu->init_ready);
212 
213 	return 0;
214 }
215 
216 int hci_uart_wait_until_sent(struct hci_uart *hu)
217 {
218 	return wait_on_bit_timeout(&hu->tx_state, HCI_UART_SENDING,
219 				   TASK_INTERRUPTIBLE,
220 				   msecs_to_jiffies(2000));
221 }
222 
223 /* ------- Interface to HCI layer ------ */
224 /* Reset device */
225 static int hci_uart_flush(struct hci_dev *hdev)
226 {
227 	struct hci_uart *hu  = hci_get_drvdata(hdev);
228 	struct tty_struct *tty = hu->tty;
229 
230 	BT_DBG("hdev %p tty %p", hdev, tty);
231 
232 	if (hu->tx_skb) {
233 		kfree_skb(hu->tx_skb); hu->tx_skb = NULL;
234 	}
235 
236 	/* Flush any pending characters in the driver and discipline. */
237 	tty_ldisc_flush(tty);
238 	tty_driver_flush_buffer(tty);
239 
240 	percpu_down_read(&hu->proto_lock);
241 
242 	if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
243 		hu->proto->flush(hu);
244 
245 	percpu_up_read(&hu->proto_lock);
246 
247 	return 0;
248 }
249 
250 /* Initialize device */
251 static int hci_uart_open(struct hci_dev *hdev)
252 {
253 	BT_DBG("%s %p", hdev->name, hdev);
254 
255 	/* Undo clearing this from hci_uart_close() */
256 	hdev->flush = hci_uart_flush;
257 
258 	return 0;
259 }
260 
261 /* Close device */
262 static int hci_uart_close(struct hci_dev *hdev)
263 {
264 	BT_DBG("hdev %p", hdev);
265 
266 	hci_uart_flush(hdev);
267 	hdev->flush = NULL;
268 	return 0;
269 }
270 
271 /* Send frames from HCI layer */
272 static int hci_uart_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
273 {
274 	struct hci_uart *hu = hci_get_drvdata(hdev);
275 
276 	BT_DBG("%s: type %d len %d", hdev->name, hci_skb_pkt_type(skb),
277 	       skb->len);
278 
279 	percpu_down_read(&hu->proto_lock);
280 
281 	if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
282 		percpu_up_read(&hu->proto_lock);
283 		return -EUNATCH;
284 	}
285 
286 	hu->proto->enqueue(hu, skb);
287 	percpu_up_read(&hu->proto_lock);
288 
289 	hci_uart_tx_wakeup(hu);
290 
291 	return 0;
292 }
293 
294 /* Check the underlying device or tty has flow control support */
295 bool hci_uart_has_flow_control(struct hci_uart *hu)
296 {
297 	/* serdev nodes check if the needed operations are present */
298 	if (hu->serdev)
299 		return true;
300 
301 	if (hu->tty->driver->ops->tiocmget && hu->tty->driver->ops->tiocmset)
302 		return true;
303 
304 	return false;
305 }
306 
307 /* Flow control or un-flow control the device */
308 void hci_uart_set_flow_control(struct hci_uart *hu, bool enable)
309 {
310 	struct tty_struct *tty = hu->tty;
311 	struct ktermios ktermios;
312 	int status;
313 	unsigned int set = 0;
314 	unsigned int clear = 0;
315 
316 	if (hu->serdev) {
317 		serdev_device_set_flow_control(hu->serdev, !enable);
318 		serdev_device_set_rts(hu->serdev, !enable);
319 		return;
320 	}
321 
322 	if (enable) {
323 		/* Disable hardware flow control */
324 		ktermios = tty->termios;
325 		ktermios.c_cflag &= ~CRTSCTS;
326 		status = tty_set_termios(tty, &ktermios);
327 		BT_DBG("Disabling hardware flow control: %s",
328 		       status ? "failed" : "success");
329 
330 		/* Clear RTS to prevent the device from sending */
331 		/* Most UARTs need OUT2 to enable interrupts */
332 		status = tty->driver->ops->tiocmget(tty);
333 		BT_DBG("Current tiocm 0x%x", status);
334 
335 		set &= ~(TIOCM_OUT2 | TIOCM_RTS);
336 		clear = ~set;
337 		set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
338 		       TIOCM_OUT2 | TIOCM_LOOP;
339 		clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
340 			 TIOCM_OUT2 | TIOCM_LOOP;
341 		status = tty->driver->ops->tiocmset(tty, set, clear);
342 		BT_DBG("Clearing RTS: %s", status ? "failed" : "success");
343 	} else {
344 		/* Set RTS to allow the device to send again */
345 		status = tty->driver->ops->tiocmget(tty);
346 		BT_DBG("Current tiocm 0x%x", status);
347 
348 		set |= (TIOCM_OUT2 | TIOCM_RTS);
349 		clear = ~set;
350 		set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
351 		       TIOCM_OUT2 | TIOCM_LOOP;
352 		clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 |
353 			 TIOCM_OUT2 | TIOCM_LOOP;
354 		status = tty->driver->ops->tiocmset(tty, set, clear);
355 		BT_DBG("Setting RTS: %s", status ? "failed" : "success");
356 
357 		/* Re-enable hardware flow control */
358 		ktermios = tty->termios;
359 		ktermios.c_cflag |= CRTSCTS;
360 		status = tty_set_termios(tty, &ktermios);
361 		BT_DBG("Enabling hardware flow control: %s",
362 		       status ? "failed" : "success");
363 	}
364 }
365 
366 void hci_uart_set_speeds(struct hci_uart *hu, unsigned int init_speed,
367 			 unsigned int oper_speed)
368 {
369 	hu->init_speed = init_speed;
370 	hu->oper_speed = oper_speed;
371 }
372 
373 void hci_uart_set_baudrate(struct hci_uart *hu, unsigned int speed)
374 {
375 	struct tty_struct *tty = hu->tty;
376 	struct ktermios ktermios;
377 
378 	ktermios = tty->termios;
379 	ktermios.c_cflag &= ~CBAUD;
380 	tty_termios_encode_baud_rate(&ktermios, speed, speed);
381 
382 	/* tty_set_termios() return not checked as it is always 0 */
383 	tty_set_termios(tty, &ktermios);
384 
385 	BT_DBG("%s: New tty speeds: %d/%d", hu->hdev->name,
386 	       tty->termios.c_ispeed, tty->termios.c_ospeed);
387 }
388 
389 static int hci_uart_setup(struct hci_dev *hdev)
390 {
391 	struct hci_uart *hu = hci_get_drvdata(hdev);
392 	struct hci_rp_read_local_version *ver;
393 	struct sk_buff *skb;
394 	unsigned int speed;
395 	int err;
396 
397 	/* Init speed if any */
398 	if (hu->init_speed)
399 		speed = hu->init_speed;
400 	else if (hu->proto->init_speed)
401 		speed = hu->proto->init_speed;
402 	else
403 		speed = 0;
404 
405 	if (speed)
406 		hci_uart_set_baudrate(hu, speed);
407 
408 	/* Operational speed if any */
409 	if (hu->oper_speed)
410 		speed = hu->oper_speed;
411 	else if (hu->proto->oper_speed)
412 		speed = hu->proto->oper_speed;
413 	else
414 		speed = 0;
415 
416 	if (hu->proto->set_baudrate && speed) {
417 		err = hu->proto->set_baudrate(hu, speed);
418 		if (!err)
419 			hci_uart_set_baudrate(hu, speed);
420 	}
421 
422 	if (hu->proto->setup)
423 		return hu->proto->setup(hu);
424 
425 	if (!test_bit(HCI_UART_VND_DETECT, &hu->hdev_flags))
426 		return 0;
427 
428 	skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
429 			     HCI_INIT_TIMEOUT);
430 	if (IS_ERR(skb)) {
431 		BT_ERR("%s: Reading local version information failed (%ld)",
432 		       hdev->name, PTR_ERR(skb));
433 		return 0;
434 	}
435 
436 	if (skb->len != sizeof(*ver)) {
437 		BT_ERR("%s: Event length mismatch for version information",
438 		       hdev->name);
439 		goto done;
440 	}
441 
442 	ver = (struct hci_rp_read_local_version *)skb->data;
443 
444 	switch (le16_to_cpu(ver->manufacturer)) {
445 #ifdef CONFIG_BT_HCIUART_INTEL
446 	case 2:
447 		hdev->set_bdaddr = btintel_set_bdaddr;
448 		btintel_check_bdaddr(hdev);
449 		break;
450 #endif
451 #ifdef CONFIG_BT_HCIUART_BCM
452 	case 15:
453 		hdev->set_bdaddr = btbcm_set_bdaddr;
454 		btbcm_check_bdaddr(hdev);
455 		break;
456 #endif
457 	default:
458 		break;
459 	}
460 
461 done:
462 	kfree_skb(skb);
463 	return 0;
464 }
465 
466 /* ------ LDISC part ------ */
467 /* hci_uart_tty_open
468  *
469  *     Called when line discipline changed to HCI_UART.
470  *
471  * Arguments:
472  *     tty    pointer to tty info structure
473  * Return Value:
474  *     0 if success, otherwise error code
475  */
476 static int hci_uart_tty_open(struct tty_struct *tty)
477 {
478 	struct hci_uart *hu;
479 
480 	BT_DBG("tty %p", tty);
481 
482 	/* Error if the tty has no write op instead of leaving an exploitable
483 	 * hole
484 	 */
485 	if (tty->ops->write == NULL)
486 		return -EOPNOTSUPP;
487 
488 	hu = kzalloc(sizeof(struct hci_uart), GFP_KERNEL);
489 	if (!hu) {
490 		BT_ERR("Can't allocate control structure");
491 		return -ENFILE;
492 	}
493 
494 	tty->disc_data = hu;
495 	hu->tty = tty;
496 	tty->receive_room = 65536;
497 
498 	/* disable alignment support by default */
499 	hu->alignment = 1;
500 	hu->padding = 0;
501 
502 	INIT_WORK(&hu->init_ready, hci_uart_init_work);
503 	INIT_WORK(&hu->write_work, hci_uart_write_work);
504 
505 	percpu_init_rwsem(&hu->proto_lock);
506 
507 	/* Flush any pending characters in the driver */
508 	tty_driver_flush_buffer(tty);
509 
510 	return 0;
511 }
512 
513 /* hci_uart_tty_close()
514  *
515  *    Called when the line discipline is changed to something
516  *    else, the tty is closed, or the tty detects a hangup.
517  */
518 static void hci_uart_tty_close(struct tty_struct *tty)
519 {
520 	struct hci_uart *hu = tty->disc_data;
521 	struct hci_dev *hdev;
522 
523 	BT_DBG("tty %p", tty);
524 
525 	/* Detach from the tty */
526 	tty->disc_data = NULL;
527 
528 	if (!hu)
529 		return;
530 
531 	hdev = hu->hdev;
532 	if (hdev)
533 		hci_uart_close(hdev);
534 
535 	if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
536 		percpu_down_write(&hu->proto_lock);
537 		clear_bit(HCI_UART_PROTO_READY, &hu->flags);
538 		percpu_up_write(&hu->proto_lock);
539 
540 		cancel_work_sync(&hu->init_ready);
541 		cancel_work_sync(&hu->write_work);
542 
543 		if (hdev) {
544 			if (test_bit(HCI_UART_REGISTERED, &hu->flags))
545 				hci_unregister_dev(hdev);
546 			hci_free_dev(hdev);
547 		}
548 		hu->proto->close(hu);
549 	}
550 	clear_bit(HCI_UART_PROTO_SET, &hu->flags);
551 
552 	percpu_free_rwsem(&hu->proto_lock);
553 
554 	kfree(hu);
555 }
556 
557 /* hci_uart_tty_wakeup()
558  *
559  *    Callback for transmit wakeup. Called when low level
560  *    device driver can accept more send data.
561  *
562  * Arguments:        tty    pointer to associated tty instance data
563  * Return Value:    None
564  */
565 static void hci_uart_tty_wakeup(struct tty_struct *tty)
566 {
567 	struct hci_uart *hu = tty->disc_data;
568 
569 	BT_DBG("");
570 
571 	if (!hu)
572 		return;
573 
574 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
575 
576 	if (tty != hu->tty)
577 		return;
578 
579 	if (test_bit(HCI_UART_PROTO_READY, &hu->flags))
580 		hci_uart_tx_wakeup(hu);
581 }
582 
583 /* hci_uart_tty_receive()
584  *
585  *     Called by tty low level driver when receive data is
586  *     available.
587  *
588  * Arguments:  tty          pointer to tty isntance data
589  *             data         pointer to received data
590  *             flags        pointer to flags for data
591  *             count        count of received data in bytes
592  *
593  * Return Value:    None
594  */
595 static void hci_uart_tty_receive(struct tty_struct *tty, const u8 *data,
596 				 const char *flags, int count)
597 {
598 	struct hci_uart *hu = tty->disc_data;
599 
600 	if (!hu || tty != hu->tty)
601 		return;
602 
603 	percpu_down_read(&hu->proto_lock);
604 
605 	if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) {
606 		percpu_up_read(&hu->proto_lock);
607 		return;
608 	}
609 
610 	/* It does not need a lock here as it is already protected by a mutex in
611 	 * tty caller
612 	 */
613 	hu->proto->recv(hu, data, count);
614 	percpu_up_read(&hu->proto_lock);
615 
616 	if (hu->hdev)
617 		hu->hdev->stat.byte_rx += count;
618 
619 	tty_unthrottle(tty);
620 }
621 
622 static int hci_uart_register_dev(struct hci_uart *hu)
623 {
624 	struct hci_dev *hdev;
625 	int err;
626 
627 	BT_DBG("");
628 
629 	/* Initialize and register HCI device */
630 	hdev = hci_alloc_dev();
631 	if (!hdev) {
632 		BT_ERR("Can't allocate HCI device");
633 		return -ENOMEM;
634 	}
635 
636 	hu->hdev = hdev;
637 
638 	hdev->bus = HCI_UART;
639 	hci_set_drvdata(hdev, hu);
640 
641 	/* Only when vendor specific setup callback is provided, consider
642 	 * the manufacturer information valid. This avoids filling in the
643 	 * value for Ericsson when nothing is specified.
644 	 */
645 	if (hu->proto->setup)
646 		hdev->manufacturer = hu->proto->manufacturer;
647 
648 	hdev->open  = hci_uart_open;
649 	hdev->close = hci_uart_close;
650 	hdev->flush = hci_uart_flush;
651 	hdev->send  = hci_uart_send_frame;
652 	hdev->setup = hci_uart_setup;
653 	SET_HCIDEV_DEV(hdev, hu->tty->dev);
654 
655 	if (test_bit(HCI_UART_RAW_DEVICE, &hu->hdev_flags))
656 		set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
657 
658 	if (test_bit(HCI_UART_EXT_CONFIG, &hu->hdev_flags))
659 		set_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks);
660 
661 	if (!test_bit(HCI_UART_RESET_ON_INIT, &hu->hdev_flags))
662 		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
663 
664 	if (test_bit(HCI_UART_CREATE_AMP, &hu->hdev_flags))
665 		hdev->dev_type = HCI_AMP;
666 	else
667 		hdev->dev_type = HCI_PRIMARY;
668 
669 	/* Only call open() for the protocol after hdev is fully initialized as
670 	 * open() (or a timer/workqueue it starts) may attempt to reference it.
671 	 */
672 	err = hu->proto->open(hu);
673 	if (err) {
674 		hu->hdev = NULL;
675 		hci_free_dev(hdev);
676 		return err;
677 	}
678 
679 	if (test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags))
680 		return 0;
681 
682 	if (hci_register_dev(hdev) < 0) {
683 		BT_ERR("Can't register HCI device");
684 		hu->proto->close(hu);
685 		hu->hdev = NULL;
686 		hci_free_dev(hdev);
687 		return -ENODEV;
688 	}
689 
690 	set_bit(HCI_UART_REGISTERED, &hu->flags);
691 
692 	return 0;
693 }
694 
695 static int hci_uart_set_proto(struct hci_uart *hu, int id)
696 {
697 	const struct hci_uart_proto *p;
698 	int err;
699 
700 	p = hci_uart_get_proto(id);
701 	if (!p)
702 		return -EPROTONOSUPPORT;
703 
704 	hu->proto = p;
705 
706 	err = hci_uart_register_dev(hu);
707 	if (err) {
708 		return err;
709 	}
710 
711 	set_bit(HCI_UART_PROTO_READY, &hu->flags);
712 	return 0;
713 }
714 
715 static int hci_uart_set_flags(struct hci_uart *hu, unsigned long flags)
716 {
717 	unsigned long valid_flags = BIT(HCI_UART_RAW_DEVICE) |
718 				    BIT(HCI_UART_RESET_ON_INIT) |
719 				    BIT(HCI_UART_CREATE_AMP) |
720 				    BIT(HCI_UART_INIT_PENDING) |
721 				    BIT(HCI_UART_EXT_CONFIG) |
722 				    BIT(HCI_UART_VND_DETECT);
723 
724 	if (flags & ~valid_flags)
725 		return -EINVAL;
726 
727 	hu->hdev_flags = flags;
728 
729 	return 0;
730 }
731 
732 /* hci_uart_tty_ioctl()
733  *
734  *    Process IOCTL system call for the tty device.
735  *
736  * Arguments:
737  *
738  *    tty        pointer to tty instance data
739  *    file       pointer to open file object for device
740  *    cmd        IOCTL command code
741  *    arg        argument for IOCTL call (cmd dependent)
742  *
743  * Return Value:    Command dependent
744  */
745 static int hci_uart_tty_ioctl(struct tty_struct *tty, struct file *file,
746 			      unsigned int cmd, unsigned long arg)
747 {
748 	struct hci_uart *hu = tty->disc_data;
749 	int err = 0;
750 
751 	BT_DBG("");
752 
753 	/* Verify the status of the device */
754 	if (!hu)
755 		return -EBADF;
756 
757 	switch (cmd) {
758 	case HCIUARTSETPROTO:
759 		if (!test_and_set_bit(HCI_UART_PROTO_SET, &hu->flags)) {
760 			err = hci_uart_set_proto(hu, arg);
761 			if (err)
762 				clear_bit(HCI_UART_PROTO_SET, &hu->flags);
763 		} else
764 			err = -EBUSY;
765 		break;
766 
767 	case HCIUARTGETPROTO:
768 		if (test_bit(HCI_UART_PROTO_SET, &hu->flags))
769 			err = hu->proto->id;
770 		else
771 			err = -EUNATCH;
772 		break;
773 
774 	case HCIUARTGETDEVICE:
775 		if (test_bit(HCI_UART_REGISTERED, &hu->flags))
776 			err = hu->hdev->id;
777 		else
778 			err = -EUNATCH;
779 		break;
780 
781 	case HCIUARTSETFLAGS:
782 		if (test_bit(HCI_UART_PROTO_SET, &hu->flags))
783 			err = -EBUSY;
784 		else
785 			err = hci_uart_set_flags(hu, arg);
786 		break;
787 
788 	case HCIUARTGETFLAGS:
789 		err = hu->hdev_flags;
790 		break;
791 
792 	default:
793 		err = n_tty_ioctl_helper(tty, file, cmd, arg);
794 		break;
795 	}
796 
797 	return err;
798 }
799 
800 /*
801  * We don't provide read/write/poll interface for user space.
802  */
803 static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file,
804 				 unsigned char *buf, size_t nr,
805 				 void **cookie, unsigned long offset)
806 {
807 	return 0;
808 }
809 
810 static ssize_t hci_uart_tty_write(struct tty_struct *tty, struct file *file,
811 				  const unsigned char *data, size_t count)
812 {
813 	return 0;
814 }
815 
816 static __poll_t hci_uart_tty_poll(struct tty_struct *tty,
817 				      struct file *filp, poll_table *wait)
818 {
819 	return 0;
820 }
821 
822 static struct tty_ldisc_ops hci_uart_ldisc = {
823 	.owner		= THIS_MODULE,
824 	.num		= N_HCI,
825 	.name		= "n_hci",
826 	.open		= hci_uart_tty_open,
827 	.close		= hci_uart_tty_close,
828 	.read		= hci_uart_tty_read,
829 	.write		= hci_uart_tty_write,
830 	.ioctl		= hci_uart_tty_ioctl,
831 	.compat_ioctl	= hci_uart_tty_ioctl,
832 	.poll		= hci_uart_tty_poll,
833 	.receive_buf	= hci_uart_tty_receive,
834 	.write_wakeup	= hci_uart_tty_wakeup,
835 };
836 
837 static int __init hci_uart_init(void)
838 {
839 	int err;
840 
841 	BT_INFO("HCI UART driver ver %s", VERSION);
842 
843 	/* Register the tty discipline */
844 	err = tty_register_ldisc(&hci_uart_ldisc);
845 	if (err) {
846 		BT_ERR("HCI line discipline registration failed. (%d)", err);
847 		return err;
848 	}
849 
850 #ifdef CONFIG_BT_HCIUART_H4
851 	h4_init();
852 #endif
853 #ifdef CONFIG_BT_HCIUART_BCSP
854 	bcsp_init();
855 #endif
856 #ifdef CONFIG_BT_HCIUART_LL
857 	ll_init();
858 #endif
859 #ifdef CONFIG_BT_HCIUART_ATH3K
860 	ath_init();
861 #endif
862 #ifdef CONFIG_BT_HCIUART_3WIRE
863 	h5_init();
864 #endif
865 #ifdef CONFIG_BT_HCIUART_INTEL
866 	intel_init();
867 #endif
868 #ifdef CONFIG_BT_HCIUART_BCM
869 	bcm_init();
870 #endif
871 #ifdef CONFIG_BT_HCIUART_QCA
872 	qca_init();
873 #endif
874 #ifdef CONFIG_BT_HCIUART_AG6XX
875 	ag6xx_init();
876 #endif
877 #ifdef CONFIG_BT_HCIUART_MRVL
878 	mrvl_init();
879 #endif
880 
881 	return 0;
882 }
883 
884 static void __exit hci_uart_exit(void)
885 {
886 #ifdef CONFIG_BT_HCIUART_H4
887 	h4_deinit();
888 #endif
889 #ifdef CONFIG_BT_HCIUART_BCSP
890 	bcsp_deinit();
891 #endif
892 #ifdef CONFIG_BT_HCIUART_LL
893 	ll_deinit();
894 #endif
895 #ifdef CONFIG_BT_HCIUART_ATH3K
896 	ath_deinit();
897 #endif
898 #ifdef CONFIG_BT_HCIUART_3WIRE
899 	h5_deinit();
900 #endif
901 #ifdef CONFIG_BT_HCIUART_INTEL
902 	intel_deinit();
903 #endif
904 #ifdef CONFIG_BT_HCIUART_BCM
905 	bcm_deinit();
906 #endif
907 #ifdef CONFIG_BT_HCIUART_QCA
908 	qca_deinit();
909 #endif
910 #ifdef CONFIG_BT_HCIUART_AG6XX
911 	ag6xx_deinit();
912 #endif
913 #ifdef CONFIG_BT_HCIUART_MRVL
914 	mrvl_deinit();
915 #endif
916 
917 	tty_unregister_ldisc(&hci_uart_ldisc);
918 }
919 
920 module_init(hci_uart_init);
921 module_exit(hci_uart_exit);
922 
923 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
924 MODULE_DESCRIPTION("Bluetooth HCI UART driver ver " VERSION);
925 MODULE_VERSION(VERSION);
926 MODULE_LICENSE("GPL");
927 MODULE_ALIAS_LDISC(N_HCI);
928