xref: /openbmc/linux/drivers/bluetooth/hci_intel.c (revision a8da474e)
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == 1) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == 1) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189 	bt_cb(skb)->pkt_type = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274 	       sizeof(lpm_resume_ack));
275 	bt_cb(skb)->pkt_type = HCI_LPM_PKT;
276 
277 	/* LPM flow is a priority, enqueue packet at list head */
278 	skb_queue_head(&intel->txq, skb);
279 	hci_uart_tx_wakeup(hu);
280 
281 	bt_dev_dbg(hu->hdev, "Resumed by controller");
282 
283 	return 0;
284 }
285 
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288 	struct intel_device *idev = dev_id;
289 
290 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
291 
292 	mutex_lock(&idev->hu_lock);
293 	if (idev->hu)
294 		intel_lpm_host_wake(idev->hu);
295 	mutex_unlock(&idev->hu_lock);
296 
297 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298 	pm_runtime_get(&idev->pdev->dev);
299 	pm_runtime_mark_last_busy(&idev->pdev->dev);
300 	pm_runtime_put_autosuspend(&idev->pdev->dev);
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307 	struct list_head *p;
308 	int err = -ENODEV;
309 
310 	mutex_lock(&intel_device_list_lock);
311 
312 	list_for_each(p, &intel_device_list) {
313 		struct intel_device *idev = list_entry(p, struct intel_device,
314 						       list);
315 
316 		/* tty device and pdev device should share the same parent
317 		 * which is the UART port.
318 		 */
319 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
320 			continue;
321 
322 		if (!idev->reset) {
323 			err = -ENOTSUPP;
324 			break;
325 		}
326 
327 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328 			hu, dev_name(&idev->pdev->dev), powered);
329 
330 		gpiod_set_value(idev->reset, powered);
331 
332 		/* Provide to idev a hu reference which is used to run LPM
333 		 * transactions (lpm suspend/resume) from PM callbacks.
334 		 * hu needs to be protected against concurrent removing during
335 		 * these PM ops.
336 		 */
337 		mutex_lock(&idev->hu_lock);
338 		idev->hu = powered ? hu : NULL;
339 		mutex_unlock(&idev->hu_lock);
340 
341 		if (idev->irq < 0)
342 			break;
343 
344 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
345 			err = devm_request_threaded_irq(&idev->pdev->dev,
346 							idev->irq, NULL,
347 							intel_irq,
348 							IRQF_ONESHOT,
349 							"bt-host-wake", idev);
350 			if (err) {
351 				BT_ERR("hu %p, unable to allocate irq-%d",
352 				       hu, idev->irq);
353 				break;
354 			}
355 
356 			device_wakeup_enable(&idev->pdev->dev);
357 
358 			pm_runtime_set_active(&idev->pdev->dev);
359 			pm_runtime_use_autosuspend(&idev->pdev->dev);
360 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361 							 LPM_SUSPEND_DELAY_MS);
362 			pm_runtime_enable(&idev->pdev->dev);
363 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365 			device_wakeup_disable(&idev->pdev->dev);
366 
367 			pm_runtime_disable(&idev->pdev->dev);
368 		}
369 	}
370 
371 	mutex_unlock(&intel_device_list_lock);
372 
373 	return err;
374 }
375 
376 static void intel_busy_work(struct work_struct *work)
377 {
378 	struct list_head *p;
379 	struct intel_data *intel = container_of(work, struct intel_data,
380 						busy_work);
381 
382 	/* Link is busy, delay the suspend */
383 	mutex_lock(&intel_device_list_lock);
384 	list_for_each(p, &intel_device_list) {
385 		struct intel_device *idev = list_entry(p, struct intel_device,
386 						       list);
387 
388 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389 			pm_runtime_get(&idev->pdev->dev);
390 			pm_runtime_mark_last_busy(&idev->pdev->dev);
391 			pm_runtime_put_autosuspend(&idev->pdev->dev);
392 			break;
393 		}
394 	}
395 	mutex_unlock(&intel_device_list_lock);
396 }
397 
398 static int intel_open(struct hci_uart *hu)
399 {
400 	struct intel_data *intel;
401 
402 	BT_DBG("hu %p", hu);
403 
404 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405 	if (!intel)
406 		return -ENOMEM;
407 
408 	skb_queue_head_init(&intel->txq);
409 	INIT_WORK(&intel->busy_work, intel_busy_work);
410 
411 	intel->hu = hu;
412 
413 	hu->priv = intel;
414 
415 	if (!intel_set_power(hu, true))
416 		set_bit(STATE_BOOTING, &intel->flags);
417 
418 	return 0;
419 }
420 
421 static int intel_close(struct hci_uart *hu)
422 {
423 	struct intel_data *intel = hu->priv;
424 
425 	BT_DBG("hu %p", hu);
426 
427 	cancel_work_sync(&intel->busy_work);
428 
429 	intel_set_power(hu, false);
430 
431 	skb_queue_purge(&intel->txq);
432 	kfree_skb(intel->rx_skb);
433 	kfree(intel);
434 
435 	hu->priv = NULL;
436 	return 0;
437 }
438 
439 static int intel_flush(struct hci_uart *hu)
440 {
441 	struct intel_data *intel = hu->priv;
442 
443 	BT_DBG("hu %p", hu);
444 
445 	skb_queue_purge(&intel->txq);
446 
447 	return 0;
448 }
449 
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452 	struct sk_buff *skb;
453 	struct hci_event_hdr *hdr;
454 	struct hci_ev_cmd_complete *evt;
455 
456 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457 	if (!skb)
458 		return -ENOMEM;
459 
460 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461 	hdr->evt = HCI_EV_CMD_COMPLETE;
462 	hdr->plen = sizeof(*evt) + 1;
463 
464 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465 	evt->ncmd = 0x01;
466 	evt->opcode = cpu_to_le16(opcode);
467 
468 	*skb_put(skb, 1) = 0x00;
469 
470 	bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
471 
472 	return hci_recv_frame(hdev, skb);
473 }
474 
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477 	struct intel_data *intel = hu->priv;
478 	struct hci_dev *hdev = hu->hdev;
479 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480 	struct sk_buff *skb;
481 	int err;
482 
483 	/* This can be the first command sent to the chip, check
484 	 * that the controller is ready.
485 	 */
486 	err = intel_wait_booting(hu);
487 
488 	clear_bit(STATE_BOOTING, &intel->flags);
489 
490 	/* In case of timeout, try to continue anyway */
491 	if (err && err != ETIMEDOUT)
492 		return err;
493 
494 	bt_dev_info(hdev, "Change controller speed to %d", speed);
495 
496 	speed_cmd[3] = intel_convert_speed(speed);
497 	if (speed_cmd[3] == 0xff) {
498 		bt_dev_err(hdev, "Unsupported speed");
499 		return -EINVAL;
500 	}
501 
502 	/* Device will not accept speed change if Intel version has not been
503 	 * previously requested.
504 	 */
505 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
506 	if (IS_ERR(skb)) {
507 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508 			   PTR_ERR(skb));
509 		return PTR_ERR(skb);
510 	}
511 	kfree_skb(skb);
512 
513 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514 	if (!skb) {
515 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 		return -ENOMEM;
517 	}
518 
519 	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520 	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
521 
522 	hci_uart_set_flow_control(hu, true);
523 
524 	skb_queue_tail(&intel->txq, skb);
525 	hci_uart_tx_wakeup(hu);
526 
527 	/* wait 100ms to change baudrate on controller side */
528 	msleep(100);
529 
530 	hci_uart_set_baudrate(hu, speed);
531 	hci_uart_set_flow_control(hu, false);
532 
533 	return 0;
534 }
535 
536 static int intel_setup(struct hci_uart *hu)
537 {
538 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539 					  0x00, 0x08, 0x04, 0x00 };
540 	static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541 	struct intel_data *intel = hu->priv;
542 	struct intel_device *idev = NULL;
543 	struct hci_dev *hdev = hu->hdev;
544 	struct sk_buff *skb;
545 	struct intel_version *ver;
546 	struct intel_boot_params *params;
547 	struct list_head *p;
548 	const struct firmware *fw;
549 	const u8 *fw_ptr;
550 	char fwname[64];
551 	u32 frag_len;
552 	ktime_t calltime, delta, rettime;
553 	unsigned long long duration;
554 	unsigned int init_speed, oper_speed;
555 	int speed_change = 0;
556 	int err;
557 
558 	bt_dev_dbg(hdev, "start intel_setup");
559 
560 	hu->hdev->set_diag = btintel_set_diag;
561 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
562 
563 	calltime = ktime_get();
564 
565 	if (hu->init_speed)
566 		init_speed = hu->init_speed;
567 	else
568 		init_speed = hu->proto->init_speed;
569 
570 	if (hu->oper_speed)
571 		oper_speed = hu->oper_speed;
572 	else
573 		oper_speed = hu->proto->oper_speed;
574 
575 	if (oper_speed && init_speed && oper_speed != init_speed)
576 		speed_change = 1;
577 
578 	/* Check that the controller is ready */
579 	err = intel_wait_booting(hu);
580 
581 	clear_bit(STATE_BOOTING, &intel->flags);
582 
583 	/* In case of timeout, try to continue anyway */
584 	if (err && err != ETIMEDOUT)
585 		return err;
586 
587 	set_bit(STATE_BOOTLOADER, &intel->flags);
588 
589 	/* Read the Intel version information to determine if the device
590 	 * is in bootloader mode or if it already has operational firmware
591 	 * loaded.
592 	 */
593 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
594 	if (IS_ERR(skb)) {
595 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
596 			   PTR_ERR(skb));
597 		return PTR_ERR(skb);
598 	}
599 
600 	if (skb->len != sizeof(*ver)) {
601 		bt_dev_err(hdev, "Intel version event size mismatch");
602 		kfree_skb(skb);
603 		return -EILSEQ;
604 	}
605 
606 	ver = (struct intel_version *)skb->data;
607 	if (ver->status) {
608 		bt_dev_err(hdev, "Intel version command failure (%02x)",
609 			   ver->status);
610 		err = -bt_to_errno(ver->status);
611 		kfree_skb(skb);
612 		return err;
613 	}
614 
615 	/* The hardware platform number has a fixed value of 0x37 and
616 	 * for now only accept this single value.
617 	 */
618 	if (ver->hw_platform != 0x37) {
619 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
620 			   ver->hw_platform);
621 		kfree_skb(skb);
622 		return -EINVAL;
623 	}
624 
625 	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
626 	 * supported by this firmware loading method. This check has been
627 	 * put in place to ensure correct forward compatibility options
628 	 * when newer hardware variants come along.
629 	 */
630 	if (ver->hw_variant != 0x0b) {
631 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
632 			   ver->hw_variant);
633 		kfree_skb(skb);
634 		return -EINVAL;
635 	}
636 
637 	btintel_version_info(hdev, ver);
638 
639 	/* The firmware variant determines if the device is in bootloader
640 	 * mode or is running operational firmware. The value 0x06 identifies
641 	 * the bootloader and the value 0x23 identifies the operational
642 	 * firmware.
643 	 *
644 	 * When the operational firmware is already present, then only
645 	 * the check for valid Bluetooth device address is needed. This
646 	 * determines if the device will be added as configured or
647 	 * unconfigured controller.
648 	 *
649 	 * It is not possible to use the Secure Boot Parameters in this
650 	 * case since that command is only available in bootloader mode.
651 	 */
652 	if (ver->fw_variant == 0x23) {
653 		kfree_skb(skb);
654 		clear_bit(STATE_BOOTLOADER, &intel->flags);
655 		btintel_check_bdaddr(hdev);
656 		return 0;
657 	}
658 
659 	/* If the device is not in bootloader mode, then the only possible
660 	 * choice is to return an error and abort the device initialization.
661 	 */
662 	if (ver->fw_variant != 0x06) {
663 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
664 			   ver->fw_variant);
665 		kfree_skb(skb);
666 		return -ENODEV;
667 	}
668 
669 	kfree_skb(skb);
670 
671 	/* Read the secure boot parameters to identify the operating
672 	 * details of the bootloader.
673 	 */
674 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
675 	if (IS_ERR(skb)) {
676 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
677 			   PTR_ERR(skb));
678 		return PTR_ERR(skb);
679 	}
680 
681 	if (skb->len != sizeof(*params)) {
682 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
683 		kfree_skb(skb);
684 		return -EILSEQ;
685 	}
686 
687 	params = (struct intel_boot_params *)skb->data;
688 	if (params->status) {
689 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
690 			   params->status);
691 		err = -bt_to_errno(params->status);
692 		kfree_skb(skb);
693 		return err;
694 	}
695 
696 	bt_dev_info(hdev, "Device revision is %u",
697 		    le16_to_cpu(params->dev_revid));
698 
699 	bt_dev_info(hdev, "Secure boot is %s",
700 		    params->secure_boot ? "enabled" : "disabled");
701 
702 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
703 		params->min_fw_build_nn, params->min_fw_build_cw,
704 		2000 + params->min_fw_build_yy);
705 
706 	/* It is required that every single firmware fragment is acknowledged
707 	 * with a command complete event. If the boot parameters indicate
708 	 * that this bootloader does not send them, then abort the setup.
709 	 */
710 	if (params->limited_cce != 0x00) {
711 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
712 			   params->limited_cce);
713 		kfree_skb(skb);
714 		return -EINVAL;
715 	}
716 
717 	/* If the OTP has no valid Bluetooth device address, then there will
718 	 * also be no valid address for the operational firmware.
719 	 */
720 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
721 		bt_dev_info(hdev, "No device address configured");
722 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
723 	}
724 
725 	/* With this Intel bootloader only the hardware variant and device
726 	 * revision information are used to select the right firmware.
727 	 *
728 	 * Currently this bootloader support is limited to hardware variant
729 	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
730 	 */
731 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
732 		 le16_to_cpu(params->dev_revid));
733 
734 	err = request_firmware(&fw, fwname, &hdev->dev);
735 	if (err < 0) {
736 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
737 			   err);
738 		kfree_skb(skb);
739 		return err;
740 	}
741 
742 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
743 
744 	/* Save the DDC file name for later */
745 	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
746 		 le16_to_cpu(params->dev_revid));
747 
748 	kfree_skb(skb);
749 
750 	if (fw->size < 644) {
751 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
752 			   fw->size);
753 		err = -EBADF;
754 		goto done;
755 	}
756 
757 	set_bit(STATE_DOWNLOADING, &intel->flags);
758 
759 	/* Start the firmware download transaction with the Init fragment
760 	 * represented by the 128 bytes of CSS header.
761 	 */
762 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
763 	if (err < 0) {
764 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
765 		goto done;
766 	}
767 
768 	/* Send the 256 bytes of public key information from the firmware
769 	 * as the PKey fragment.
770 	 */
771 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
772 	if (err < 0) {
773 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
774 			   err);
775 		goto done;
776 	}
777 
778 	/* Send the 256 bytes of signature information from the firmware
779 	 * as the Sign fragment.
780 	 */
781 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
782 	if (err < 0) {
783 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
784 			   err);
785 		goto done;
786 	}
787 
788 	fw_ptr = fw->data + 644;
789 	frag_len = 0;
790 
791 	while (fw_ptr - fw->data < fw->size) {
792 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
793 
794 		frag_len += sizeof(*cmd) + cmd->plen;
795 
796 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
797 			   fw->size);
798 
799 		/* The parameter length of the secure send command requires
800 		 * a 4 byte alignment. It happens so that the firmware file
801 		 * contains proper Intel_NOP commands to align the fragments
802 		 * as needed.
803 		 *
804 		 * Send set of commands with 4 byte alignment from the
805 		 * firmware data buffer as a single Data fragement.
806 		 */
807 		if (frag_len % 4)
808 			continue;
809 
810 		/* Send each command from the firmware data buffer as
811 		 * a single Data fragment.
812 		 */
813 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
814 		if (err < 0) {
815 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
816 				   err);
817 			goto done;
818 		}
819 
820 		fw_ptr += frag_len;
821 		frag_len = 0;
822 	}
823 
824 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
825 
826 	bt_dev_info(hdev, "Waiting for firmware download to complete");
827 
828 	/* Before switching the device into operational mode and with that
829 	 * booting the loaded firmware, wait for the bootloader notification
830 	 * that all fragments have been successfully received.
831 	 *
832 	 * When the event processing receives the notification, then the
833 	 * STATE_DOWNLOADING flag will be cleared.
834 	 *
835 	 * The firmware loading should not take longer than 5 seconds
836 	 * and thus just timeout if that happens and fail the setup
837 	 * of this device.
838 	 */
839 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
840 				  TASK_INTERRUPTIBLE,
841 				  msecs_to_jiffies(5000));
842 	if (err == 1) {
843 		bt_dev_err(hdev, "Firmware loading interrupted");
844 		err = -EINTR;
845 		goto done;
846 	}
847 
848 	if (err) {
849 		bt_dev_err(hdev, "Firmware loading timeout");
850 		err = -ETIMEDOUT;
851 		goto done;
852 	}
853 
854 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
855 		bt_dev_err(hdev, "Firmware loading failed");
856 		err = -ENOEXEC;
857 		goto done;
858 	}
859 
860 	rettime = ktime_get();
861 	delta = ktime_sub(rettime, calltime);
862 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
863 
864 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
865 
866 done:
867 	release_firmware(fw);
868 
869 	if (err < 0)
870 		return err;
871 
872 	/* We need to restore the default speed before Intel reset */
873 	if (speed_change) {
874 		err = intel_set_baudrate(hu, init_speed);
875 		if (err)
876 			return err;
877 	}
878 
879 	calltime = ktime_get();
880 
881 	set_bit(STATE_BOOTING, &intel->flags);
882 
883 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
884 			     HCI_INIT_TIMEOUT);
885 	if (IS_ERR(skb))
886 		return PTR_ERR(skb);
887 
888 	kfree_skb(skb);
889 
890 	/* The bootloader will not indicate when the device is ready. This
891 	 * is done by the operational firmware sending bootup notification.
892 	 *
893 	 * Booting into operational firmware should not take longer than
894 	 * 1 second. However if that happens, then just fail the setup
895 	 * since something went wrong.
896 	 */
897 	bt_dev_info(hdev, "Waiting for device to boot");
898 
899 	err = intel_wait_booting(hu);
900 	if (err)
901 		return err;
902 
903 	clear_bit(STATE_BOOTING, &intel->flags);
904 
905 	rettime = ktime_get();
906 	delta = ktime_sub(rettime, calltime);
907 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
908 
909 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
910 
911 	/* Enable LPM if matching pdev with wakeup enabled */
912 	mutex_lock(&intel_device_list_lock);
913 	list_for_each(p, &intel_device_list) {
914 		struct intel_device *dev = list_entry(p, struct intel_device,
915 						      list);
916 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
917 			if (device_may_wakeup(&dev->pdev->dev))
918 				idev = dev;
919 			break;
920 		}
921 	}
922 	mutex_unlock(&intel_device_list_lock);
923 
924 	if (!idev)
925 		goto no_lpm;
926 
927 	bt_dev_info(hdev, "Enabling LPM");
928 
929 	skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
930 			     HCI_CMD_TIMEOUT);
931 	if (IS_ERR(skb)) {
932 		bt_dev_err(hdev, "Failed to enable LPM");
933 		goto no_lpm;
934 	}
935 	kfree_skb(skb);
936 
937 	set_bit(STATE_LPM_ENABLED, &intel->flags);
938 
939 no_lpm:
940 	/* Ignore errors, device can work without DDC parameters */
941 	btintel_load_ddc_config(hdev, fwname);
942 
943 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
944 	if (IS_ERR(skb))
945 		return PTR_ERR(skb);
946 	kfree_skb(skb);
947 
948 	if (speed_change) {
949 		err = intel_set_baudrate(hu, oper_speed);
950 		if (err)
951 			return err;
952 	}
953 
954 	bt_dev_info(hdev, "Setup complete");
955 
956 	clear_bit(STATE_BOOTLOADER, &intel->flags);
957 
958 	return 0;
959 }
960 
961 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
962 {
963 	struct hci_uart *hu = hci_get_drvdata(hdev);
964 	struct intel_data *intel = hu->priv;
965 	struct hci_event_hdr *hdr;
966 
967 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
968 	    !test_bit(STATE_BOOTING, &intel->flags))
969 		goto recv;
970 
971 	hdr = (void *)skb->data;
972 
973 	/* When the firmware loading completes the device sends
974 	 * out a vendor specific event indicating the result of
975 	 * the firmware loading.
976 	 */
977 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
978 	    skb->data[2] == 0x06) {
979 		if (skb->data[3] != 0x00)
980 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
981 
982 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
983 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
984 			smp_mb__after_atomic();
985 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
986 		}
987 
988 	/* When switching to the operational firmware the device
989 	 * sends a vendor specific event indicating that the bootup
990 	 * completed.
991 	 */
992 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
993 		   skb->data[2] == 0x02) {
994 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
995 			smp_mb__after_atomic();
996 			wake_up_bit(&intel->flags, STATE_BOOTING);
997 		}
998 	}
999 recv:
1000 	return hci_recv_frame(hdev, skb);
1001 }
1002 
1003 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
1004 {
1005 	struct hci_uart *hu = hci_get_drvdata(hdev);
1006 	struct intel_data *intel = hu->priv;
1007 
1008 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
1009 
1010 	if (value) {
1011 		set_bit(STATE_TX_ACTIVE, &intel->flags);
1012 		schedule_work(&intel->busy_work);
1013 	} else {
1014 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
1015 	}
1016 }
1017 
1018 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
1019 {
1020 	struct hci_lpm_pkt *lpm = (void *)skb->data;
1021 	struct hci_uart *hu = hci_get_drvdata(hdev);
1022 	struct intel_data *intel = hu->priv;
1023 
1024 	switch (lpm->opcode) {
1025 	case LPM_OP_TX_NOTIFY:
1026 		if (lpm->dlen < 1) {
1027 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1028 			break;
1029 		}
1030 		intel_recv_lpm_notify(hdev, lpm->data[0]);
1031 		break;
1032 	case LPM_OP_SUSPEND_ACK:
1033 		set_bit(STATE_SUSPENDED, &intel->flags);
1034 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1035 			smp_mb__after_atomic();
1036 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1037 		}
1038 		break;
1039 	case LPM_OP_RESUME_ACK:
1040 		clear_bit(STATE_SUSPENDED, &intel->flags);
1041 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1042 			smp_mb__after_atomic();
1043 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1044 		}
1045 		break;
1046 	default:
1047 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1048 		break;
1049 	}
1050 
1051 	kfree_skb(skb);
1052 
1053 	return 0;
1054 }
1055 
1056 #define INTEL_RECV_LPM \
1057 	.type = HCI_LPM_PKT, \
1058 	.hlen = HCI_LPM_HDR_SIZE, \
1059 	.loff = 1, \
1060 	.lsize = 1, \
1061 	.maxlen = HCI_LPM_MAX_SIZE
1062 
1063 static const struct h4_recv_pkt intel_recv_pkts[] = {
1064 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1065 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1066 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1067 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1068 };
1069 
1070 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1071 {
1072 	struct intel_data *intel = hu->priv;
1073 
1074 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1075 		return -EUNATCH;
1076 
1077 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1078 				    intel_recv_pkts,
1079 				    ARRAY_SIZE(intel_recv_pkts));
1080 	if (IS_ERR(intel->rx_skb)) {
1081 		int err = PTR_ERR(intel->rx_skb);
1082 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1083 		intel->rx_skb = NULL;
1084 		return err;
1085 	}
1086 
1087 	return count;
1088 }
1089 
1090 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1091 {
1092 	struct intel_data *intel = hu->priv;
1093 	struct list_head *p;
1094 
1095 	BT_DBG("hu %p skb %p", hu, skb);
1096 
1097 	/* Be sure our controller is resumed and potential LPM transaction
1098 	 * completed before enqueuing any packet.
1099 	 */
1100 	mutex_lock(&intel_device_list_lock);
1101 	list_for_each(p, &intel_device_list) {
1102 		struct intel_device *idev = list_entry(p, struct intel_device,
1103 						       list);
1104 
1105 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1106 			pm_runtime_get_sync(&idev->pdev->dev);
1107 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1108 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1109 			break;
1110 		}
1111 	}
1112 	mutex_unlock(&intel_device_list_lock);
1113 
1114 	skb_queue_tail(&intel->txq, skb);
1115 
1116 	return 0;
1117 }
1118 
1119 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1120 {
1121 	struct intel_data *intel = hu->priv;
1122 	struct sk_buff *skb;
1123 
1124 	skb = skb_dequeue(&intel->txq);
1125 	if (!skb)
1126 		return skb;
1127 
1128 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1129 	    (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
1130 		struct hci_command_hdr *cmd = (void *)skb->data;
1131 		__u16 opcode = le16_to_cpu(cmd->opcode);
1132 
1133 		/* When the 0xfc01 command is issued to boot into
1134 		 * the operational firmware, it will actually not
1135 		 * send a command complete event. To keep the flow
1136 		 * control working inject that event here.
1137 		 */
1138 		if (opcode == 0xfc01)
1139 			inject_cmd_complete(hu->hdev, opcode);
1140 	}
1141 
1142 	/* Prepend skb with frame type */
1143 	memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
1144 
1145 	return skb;
1146 }
1147 
1148 static const struct hci_uart_proto intel_proto = {
1149 	.id		= HCI_UART_INTEL,
1150 	.name		= "Intel",
1151 	.manufacturer	= 2,
1152 	.init_speed	= 115200,
1153 	.oper_speed	= 3000000,
1154 	.open		= intel_open,
1155 	.close		= intel_close,
1156 	.flush		= intel_flush,
1157 	.setup		= intel_setup,
1158 	.set_baudrate	= intel_set_baudrate,
1159 	.recv		= intel_recv,
1160 	.enqueue	= intel_enqueue,
1161 	.dequeue	= intel_dequeue,
1162 };
1163 
1164 #ifdef CONFIG_ACPI
1165 static const struct acpi_device_id intel_acpi_match[] = {
1166 	{ "INT33E1", 0 },
1167 	{ },
1168 };
1169 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1170 #endif
1171 
1172 #ifdef CONFIG_PM
1173 static int intel_suspend_device(struct device *dev)
1174 {
1175 	struct intel_device *idev = dev_get_drvdata(dev);
1176 
1177 	mutex_lock(&idev->hu_lock);
1178 	if (idev->hu)
1179 		intel_lpm_suspend(idev->hu);
1180 	mutex_unlock(&idev->hu_lock);
1181 
1182 	return 0;
1183 }
1184 
1185 static int intel_resume_device(struct device *dev)
1186 {
1187 	struct intel_device *idev = dev_get_drvdata(dev);
1188 
1189 	mutex_lock(&idev->hu_lock);
1190 	if (idev->hu)
1191 		intel_lpm_resume(idev->hu);
1192 	mutex_unlock(&idev->hu_lock);
1193 
1194 	return 0;
1195 }
1196 #endif
1197 
1198 #ifdef CONFIG_PM_SLEEP
1199 static int intel_suspend(struct device *dev)
1200 {
1201 	struct intel_device *idev = dev_get_drvdata(dev);
1202 
1203 	if (device_may_wakeup(dev))
1204 		enable_irq_wake(idev->irq);
1205 
1206 	return intel_suspend_device(dev);
1207 }
1208 
1209 static int intel_resume(struct device *dev)
1210 {
1211 	struct intel_device *idev = dev_get_drvdata(dev);
1212 
1213 	if (device_may_wakeup(dev))
1214 		disable_irq_wake(idev->irq);
1215 
1216 	return intel_resume_device(dev);
1217 }
1218 #endif
1219 
1220 static const struct dev_pm_ops intel_pm_ops = {
1221 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1222 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1223 };
1224 
1225 static int intel_probe(struct platform_device *pdev)
1226 {
1227 	struct intel_device *idev;
1228 
1229 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1230 	if (!idev)
1231 		return -ENOMEM;
1232 
1233 	mutex_init(&idev->hu_lock);
1234 
1235 	idev->pdev = pdev;
1236 
1237 	idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
1238 					      GPIOD_OUT_LOW);
1239 	if (IS_ERR(idev->reset)) {
1240 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1241 		return PTR_ERR(idev->reset);
1242 	}
1243 
1244 	idev->irq = platform_get_irq(pdev, 0);
1245 	if (idev->irq < 0) {
1246 		struct gpio_desc *host_wake;
1247 
1248 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1249 
1250 		host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
1251 						    GPIOD_IN);
1252 		if (IS_ERR(host_wake)) {
1253 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1254 			goto no_irq;
1255 		}
1256 
1257 		idev->irq = gpiod_to_irq(host_wake);
1258 		if (idev->irq < 0) {
1259 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1260 			goto no_irq;
1261 		}
1262 	}
1263 
1264 	/* Only enable wake-up/irq when controller is powered */
1265 	device_set_wakeup_capable(&pdev->dev, true);
1266 	device_wakeup_disable(&pdev->dev);
1267 
1268 no_irq:
1269 	platform_set_drvdata(pdev, idev);
1270 
1271 	/* Place this instance on the device list */
1272 	mutex_lock(&intel_device_list_lock);
1273 	list_add_tail(&idev->list, &intel_device_list);
1274 	mutex_unlock(&intel_device_list_lock);
1275 
1276 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1277 		 desc_to_gpio(idev->reset), idev->irq);
1278 
1279 	return 0;
1280 }
1281 
1282 static int intel_remove(struct platform_device *pdev)
1283 {
1284 	struct intel_device *idev = platform_get_drvdata(pdev);
1285 
1286 	device_wakeup_disable(&pdev->dev);
1287 
1288 	mutex_lock(&intel_device_list_lock);
1289 	list_del(&idev->list);
1290 	mutex_unlock(&intel_device_list_lock);
1291 
1292 	dev_info(&pdev->dev, "unregistered.\n");
1293 
1294 	return 0;
1295 }
1296 
1297 static struct platform_driver intel_driver = {
1298 	.probe = intel_probe,
1299 	.remove = intel_remove,
1300 	.driver = {
1301 		.name = "hci_intel",
1302 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1303 		.pm = &intel_pm_ops,
1304 	},
1305 };
1306 
1307 int __init intel_init(void)
1308 {
1309 	platform_driver_register(&intel_driver);
1310 
1311 	return hci_uart_register_proto(&intel_proto);
1312 }
1313 
1314 int __exit intel_deinit(void)
1315 {
1316 	platform_driver_unregister(&intel_driver);
1317 
1318 	return hci_uart_unregister_proto(&intel_proto);
1319 }
1320