1 /* 2 * 3 * Bluetooth HCI UART driver for Intel devices 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/errno.h> 26 #include <linux/skbuff.h> 27 #include <linux/firmware.h> 28 #include <linux/module.h> 29 #include <linux/wait.h> 30 #include <linux/tty.h> 31 #include <linux/platform_device.h> 32 #include <linux/gpio/consumer.h> 33 #include <linux/acpi.h> 34 #include <linux/interrupt.h> 35 #include <linux/pm_runtime.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 40 #include "hci_uart.h" 41 #include "btintel.h" 42 43 #define STATE_BOOTLOADER 0 44 #define STATE_DOWNLOADING 1 45 #define STATE_FIRMWARE_LOADED 2 46 #define STATE_FIRMWARE_FAILED 3 47 #define STATE_BOOTING 4 48 #define STATE_LPM_ENABLED 5 49 #define STATE_TX_ACTIVE 6 50 #define STATE_SUSPENDED 7 51 #define STATE_LPM_TRANSACTION 8 52 53 #define HCI_LPM_WAKE_PKT 0xf0 54 #define HCI_LPM_PKT 0xf1 55 #define HCI_LPM_MAX_SIZE 10 56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE 57 58 #define LPM_OP_TX_NOTIFY 0x00 59 #define LPM_OP_SUSPEND_ACK 0x02 60 #define LPM_OP_RESUME_ACK 0x03 61 62 #define LPM_SUSPEND_DELAY_MS 1000 63 64 struct hci_lpm_pkt { 65 __u8 opcode; 66 __u8 dlen; 67 __u8 data[0]; 68 } __packed; 69 70 struct intel_device { 71 struct list_head list; 72 struct platform_device *pdev; 73 struct gpio_desc *reset; 74 struct hci_uart *hu; 75 struct mutex hu_lock; 76 int irq; 77 }; 78 79 static LIST_HEAD(intel_device_list); 80 static DEFINE_MUTEX(intel_device_list_lock); 81 82 struct intel_data { 83 struct sk_buff *rx_skb; 84 struct sk_buff_head txq; 85 struct work_struct busy_work; 86 struct hci_uart *hu; 87 unsigned long flags; 88 }; 89 90 static u8 intel_convert_speed(unsigned int speed) 91 { 92 switch (speed) { 93 case 9600: 94 return 0x00; 95 case 19200: 96 return 0x01; 97 case 38400: 98 return 0x02; 99 case 57600: 100 return 0x03; 101 case 115200: 102 return 0x04; 103 case 230400: 104 return 0x05; 105 case 460800: 106 return 0x06; 107 case 921600: 108 return 0x07; 109 case 1843200: 110 return 0x08; 111 case 3250000: 112 return 0x09; 113 case 2000000: 114 return 0x0a; 115 case 3000000: 116 return 0x0b; 117 default: 118 return 0xff; 119 } 120 } 121 122 static int intel_wait_booting(struct hci_uart *hu) 123 { 124 struct intel_data *intel = hu->priv; 125 int err; 126 127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, 128 TASK_INTERRUPTIBLE, 129 msecs_to_jiffies(1000)); 130 131 if (err == -EINTR) { 132 bt_dev_err(hu->hdev, "Device boot interrupted"); 133 return -EINTR; 134 } 135 136 if (err) { 137 bt_dev_err(hu->hdev, "Device boot timeout"); 138 return -ETIMEDOUT; 139 } 140 141 return err; 142 } 143 144 #ifdef CONFIG_PM 145 static int intel_wait_lpm_transaction(struct hci_uart *hu) 146 { 147 struct intel_data *intel = hu->priv; 148 int err; 149 150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, 151 TASK_INTERRUPTIBLE, 152 msecs_to_jiffies(1000)); 153 154 if (err == -EINTR) { 155 bt_dev_err(hu->hdev, "LPM transaction interrupted"); 156 return -EINTR; 157 } 158 159 if (err) { 160 bt_dev_err(hu->hdev, "LPM transaction timeout"); 161 return -ETIMEDOUT; 162 } 163 164 return err; 165 } 166 167 static int intel_lpm_suspend(struct hci_uart *hu) 168 { 169 static const u8 suspend[] = { 0x01, 0x01, 0x01 }; 170 struct intel_data *intel = hu->priv; 171 struct sk_buff *skb; 172 173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 174 test_bit(STATE_SUSPENDED, &intel->flags)) 175 return 0; 176 177 if (test_bit(STATE_TX_ACTIVE, &intel->flags)) 178 return -EAGAIN; 179 180 bt_dev_dbg(hu->hdev, "Suspending"); 181 182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); 183 if (!skb) { 184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 185 return -ENOMEM; 186 } 187 188 skb_put_data(skb, suspend, sizeof(suspend)); 189 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 190 191 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 192 193 /* LPM flow is a priority, enqueue packet at list head */ 194 skb_queue_head(&intel->txq, skb); 195 hci_uart_tx_wakeup(hu); 196 197 intel_wait_lpm_transaction(hu); 198 /* Even in case of failure, continue and test the suspended flag */ 199 200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 201 202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) { 203 bt_dev_err(hu->hdev, "Device suspend error"); 204 return -EINVAL; 205 } 206 207 bt_dev_dbg(hu->hdev, "Suspended"); 208 209 hci_uart_set_flow_control(hu, true); 210 211 return 0; 212 } 213 214 static int intel_lpm_resume(struct hci_uart *hu) 215 { 216 struct intel_data *intel = hu->priv; 217 struct sk_buff *skb; 218 219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || 220 !test_bit(STATE_SUSPENDED, &intel->flags)) 221 return 0; 222 223 bt_dev_dbg(hu->hdev, "Resuming"); 224 225 hci_uart_set_flow_control(hu, false); 226 227 skb = bt_skb_alloc(0, GFP_KERNEL); 228 if (!skb) { 229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 230 return -ENOMEM; 231 } 232 233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT; 234 235 set_bit(STATE_LPM_TRANSACTION, &intel->flags); 236 237 /* LPM flow is a priority, enqueue packet at list head */ 238 skb_queue_head(&intel->txq, skb); 239 hci_uart_tx_wakeup(hu); 240 241 intel_wait_lpm_transaction(hu); 242 /* Even in case of failure, continue and test the suspended flag */ 243 244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags); 245 246 if (test_bit(STATE_SUSPENDED, &intel->flags)) { 247 bt_dev_err(hu->hdev, "Device resume error"); 248 return -EINVAL; 249 } 250 251 bt_dev_dbg(hu->hdev, "Resumed"); 252 253 return 0; 254 } 255 #endif /* CONFIG_PM */ 256 257 static int intel_lpm_host_wake(struct hci_uart *hu) 258 { 259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; 260 struct intel_data *intel = hu->priv; 261 struct sk_buff *skb; 262 263 hci_uart_set_flow_control(hu, false); 264 265 clear_bit(STATE_SUSPENDED, &intel->flags); 266 267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); 268 if (!skb) { 269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); 270 return -ENOMEM; 271 } 272 273 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack)); 274 hci_skb_pkt_type(skb) = HCI_LPM_PKT; 275 276 /* LPM flow is a priority, enqueue packet at list head */ 277 skb_queue_head(&intel->txq, skb); 278 hci_uart_tx_wakeup(hu); 279 280 bt_dev_dbg(hu->hdev, "Resumed by controller"); 281 282 return 0; 283 } 284 285 static irqreturn_t intel_irq(int irq, void *dev_id) 286 { 287 struct intel_device *idev = dev_id; 288 289 dev_info(&idev->pdev->dev, "hci_intel irq\n"); 290 291 mutex_lock(&idev->hu_lock); 292 if (idev->hu) 293 intel_lpm_host_wake(idev->hu); 294 mutex_unlock(&idev->hu_lock); 295 296 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */ 297 pm_runtime_get(&idev->pdev->dev); 298 pm_runtime_mark_last_busy(&idev->pdev->dev); 299 pm_runtime_put_autosuspend(&idev->pdev->dev); 300 301 return IRQ_HANDLED; 302 } 303 304 static int intel_set_power(struct hci_uart *hu, bool powered) 305 { 306 struct list_head *p; 307 int err = -ENODEV; 308 309 if (!hu->tty->dev) 310 return err; 311 312 mutex_lock(&intel_device_list_lock); 313 314 list_for_each(p, &intel_device_list) { 315 struct intel_device *idev = list_entry(p, struct intel_device, 316 list); 317 318 /* tty device and pdev device should share the same parent 319 * which is the UART port. 320 */ 321 if (hu->tty->dev->parent != idev->pdev->dev.parent) 322 continue; 323 324 if (!idev->reset) { 325 err = -ENOTSUPP; 326 break; 327 } 328 329 BT_INFO("hu %p, Switching compatible pm device (%s) to %u", 330 hu, dev_name(&idev->pdev->dev), powered); 331 332 gpiod_set_value(idev->reset, powered); 333 334 /* Provide to idev a hu reference which is used to run LPM 335 * transactions (lpm suspend/resume) from PM callbacks. 336 * hu needs to be protected against concurrent removing during 337 * these PM ops. 338 */ 339 mutex_lock(&idev->hu_lock); 340 idev->hu = powered ? hu : NULL; 341 mutex_unlock(&idev->hu_lock); 342 343 if (idev->irq < 0) 344 break; 345 346 if (powered && device_can_wakeup(&idev->pdev->dev)) { 347 err = devm_request_threaded_irq(&idev->pdev->dev, 348 idev->irq, NULL, 349 intel_irq, 350 IRQF_ONESHOT, 351 "bt-host-wake", idev); 352 if (err) { 353 BT_ERR("hu %p, unable to allocate irq-%d", 354 hu, idev->irq); 355 break; 356 } 357 358 device_wakeup_enable(&idev->pdev->dev); 359 360 pm_runtime_set_active(&idev->pdev->dev); 361 pm_runtime_use_autosuspend(&idev->pdev->dev); 362 pm_runtime_set_autosuspend_delay(&idev->pdev->dev, 363 LPM_SUSPEND_DELAY_MS); 364 pm_runtime_enable(&idev->pdev->dev); 365 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { 366 devm_free_irq(&idev->pdev->dev, idev->irq, idev); 367 device_wakeup_disable(&idev->pdev->dev); 368 369 pm_runtime_disable(&idev->pdev->dev); 370 } 371 } 372 373 mutex_unlock(&intel_device_list_lock); 374 375 return err; 376 } 377 378 static void intel_busy_work(struct work_struct *work) 379 { 380 struct list_head *p; 381 struct intel_data *intel = container_of(work, struct intel_data, 382 busy_work); 383 384 if (!intel->hu->tty->dev) 385 return; 386 387 /* Link is busy, delay the suspend */ 388 mutex_lock(&intel_device_list_lock); 389 list_for_each(p, &intel_device_list) { 390 struct intel_device *idev = list_entry(p, struct intel_device, 391 list); 392 393 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) { 394 pm_runtime_get(&idev->pdev->dev); 395 pm_runtime_mark_last_busy(&idev->pdev->dev); 396 pm_runtime_put_autosuspend(&idev->pdev->dev); 397 break; 398 } 399 } 400 mutex_unlock(&intel_device_list_lock); 401 } 402 403 static int intel_open(struct hci_uart *hu) 404 { 405 struct intel_data *intel; 406 407 BT_DBG("hu %p", hu); 408 409 intel = kzalloc(sizeof(*intel), GFP_KERNEL); 410 if (!intel) 411 return -ENOMEM; 412 413 skb_queue_head_init(&intel->txq); 414 INIT_WORK(&intel->busy_work, intel_busy_work); 415 416 intel->hu = hu; 417 418 hu->priv = intel; 419 420 if (!intel_set_power(hu, true)) 421 set_bit(STATE_BOOTING, &intel->flags); 422 423 return 0; 424 } 425 426 static int intel_close(struct hci_uart *hu) 427 { 428 struct intel_data *intel = hu->priv; 429 430 BT_DBG("hu %p", hu); 431 432 cancel_work_sync(&intel->busy_work); 433 434 intel_set_power(hu, false); 435 436 skb_queue_purge(&intel->txq); 437 kfree_skb(intel->rx_skb); 438 kfree(intel); 439 440 hu->priv = NULL; 441 return 0; 442 } 443 444 static int intel_flush(struct hci_uart *hu) 445 { 446 struct intel_data *intel = hu->priv; 447 448 BT_DBG("hu %p", hu); 449 450 skb_queue_purge(&intel->txq); 451 452 return 0; 453 } 454 455 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) 456 { 457 struct sk_buff *skb; 458 struct hci_event_hdr *hdr; 459 struct hci_ev_cmd_complete *evt; 460 461 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); 462 if (!skb) 463 return -ENOMEM; 464 465 hdr = skb_put(skb, sizeof(*hdr)); 466 hdr->evt = HCI_EV_CMD_COMPLETE; 467 hdr->plen = sizeof(*evt) + 1; 468 469 evt = skb_put(skb, sizeof(*evt)); 470 evt->ncmd = 0x01; 471 evt->opcode = cpu_to_le16(opcode); 472 473 skb_put_u8(skb, 0x00); 474 475 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 476 477 return hci_recv_frame(hdev, skb); 478 } 479 480 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) 481 { 482 struct intel_data *intel = hu->priv; 483 struct hci_dev *hdev = hu->hdev; 484 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; 485 struct sk_buff *skb; 486 int err; 487 488 /* This can be the first command sent to the chip, check 489 * that the controller is ready. 490 */ 491 err = intel_wait_booting(hu); 492 493 clear_bit(STATE_BOOTING, &intel->flags); 494 495 /* In case of timeout, try to continue anyway */ 496 if (err && err != -ETIMEDOUT) 497 return err; 498 499 bt_dev_info(hdev, "Change controller speed to %d", speed); 500 501 speed_cmd[3] = intel_convert_speed(speed); 502 if (speed_cmd[3] == 0xff) { 503 bt_dev_err(hdev, "Unsupported speed"); 504 return -EINVAL; 505 } 506 507 /* Device will not accept speed change if Intel version has not been 508 * previously requested. 509 */ 510 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); 511 if (IS_ERR(skb)) { 512 bt_dev_err(hdev, "Reading Intel version information failed (%ld)", 513 PTR_ERR(skb)); 514 return PTR_ERR(skb); 515 } 516 kfree_skb(skb); 517 518 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); 519 if (!skb) { 520 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); 521 return -ENOMEM; 522 } 523 524 skb_put_data(skb, speed_cmd, sizeof(speed_cmd)); 525 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 526 527 hci_uart_set_flow_control(hu, true); 528 529 skb_queue_tail(&intel->txq, skb); 530 hci_uart_tx_wakeup(hu); 531 532 /* wait 100ms to change baudrate on controller side */ 533 msleep(100); 534 535 hci_uart_set_baudrate(hu, speed); 536 hci_uart_set_flow_control(hu, false); 537 538 return 0; 539 } 540 541 static int intel_setup(struct hci_uart *hu) 542 { 543 struct intel_data *intel = hu->priv; 544 struct hci_dev *hdev = hu->hdev; 545 struct sk_buff *skb; 546 struct intel_version ver; 547 struct intel_boot_params params; 548 struct list_head *p; 549 const struct firmware *fw; 550 char fwname[64]; 551 u32 boot_param; 552 ktime_t calltime, delta, rettime; 553 unsigned long long duration; 554 unsigned int init_speed, oper_speed; 555 int speed_change = 0; 556 int err; 557 558 bt_dev_dbg(hdev, "start intel_setup"); 559 560 hu->hdev->set_diag = btintel_set_diag; 561 hu->hdev->set_bdaddr = btintel_set_bdaddr; 562 563 /* Set the default boot parameter to 0x0 and it is updated to 564 * SKU specific boot parameter after reading Intel_Write_Boot_Params 565 * command while downloading the firmware. 566 */ 567 boot_param = 0x00000000; 568 569 calltime = ktime_get(); 570 571 if (hu->init_speed) 572 init_speed = hu->init_speed; 573 else 574 init_speed = hu->proto->init_speed; 575 576 if (hu->oper_speed) 577 oper_speed = hu->oper_speed; 578 else 579 oper_speed = hu->proto->oper_speed; 580 581 if (oper_speed && init_speed && oper_speed != init_speed) 582 speed_change = 1; 583 584 /* Check that the controller is ready */ 585 err = intel_wait_booting(hu); 586 587 clear_bit(STATE_BOOTING, &intel->flags); 588 589 /* In case of timeout, try to continue anyway */ 590 if (err && err != -ETIMEDOUT) 591 return err; 592 593 set_bit(STATE_BOOTLOADER, &intel->flags); 594 595 /* Read the Intel version information to determine if the device 596 * is in bootloader mode or if it already has operational firmware 597 * loaded. 598 */ 599 err = btintel_read_version(hdev, &ver); 600 if (err) 601 return err; 602 603 /* The hardware platform number has a fixed value of 0x37 and 604 * for now only accept this single value. 605 */ 606 if (ver.hw_platform != 0x37) { 607 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", 608 ver.hw_platform); 609 return -EINVAL; 610 } 611 612 /* Check for supported iBT hardware variants of this firmware 613 * loading method. 614 * 615 * This check has been put in place to ensure correct forward 616 * compatibility options when newer hardware variants come along. 617 */ 618 switch (ver.hw_variant) { 619 case 0x0b: /* LnP */ 620 case 0x0c: /* WsP */ 621 case 0x12: /* ThP */ 622 break; 623 default: 624 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 625 ver.hw_variant); 626 return -EINVAL; 627 } 628 629 btintel_version_info(hdev, &ver); 630 631 /* The firmware variant determines if the device is in bootloader 632 * mode or is running operational firmware. The value 0x06 identifies 633 * the bootloader and the value 0x23 identifies the operational 634 * firmware. 635 * 636 * When the operational firmware is already present, then only 637 * the check for valid Bluetooth device address is needed. This 638 * determines if the device will be added as configured or 639 * unconfigured controller. 640 * 641 * It is not possible to use the Secure Boot Parameters in this 642 * case since that command is only available in bootloader mode. 643 */ 644 if (ver.fw_variant == 0x23) { 645 clear_bit(STATE_BOOTLOADER, &intel->flags); 646 btintel_check_bdaddr(hdev); 647 return 0; 648 } 649 650 /* If the device is not in bootloader mode, then the only possible 651 * choice is to return an error and abort the device initialization. 652 */ 653 if (ver.fw_variant != 0x06) { 654 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", 655 ver.fw_variant); 656 return -ENODEV; 657 } 658 659 /* Read the secure boot parameters to identify the operating 660 * details of the bootloader. 661 */ 662 err = btintel_read_boot_params(hdev, ¶ms); 663 if (err) 664 return err; 665 666 /* It is required that every single firmware fragment is acknowledged 667 * with a command complete event. If the boot parameters indicate 668 * that this bootloader does not send them, then abort the setup. 669 */ 670 if (params.limited_cce != 0x00) { 671 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", 672 params.limited_cce); 673 return -EINVAL; 674 } 675 676 /* If the OTP has no valid Bluetooth device address, then there will 677 * also be no valid address for the operational firmware. 678 */ 679 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) { 680 bt_dev_info(hdev, "No device address configured"); 681 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 682 } 683 684 /* With this Intel bootloader only the hardware variant and device 685 * revision information are used to select the right firmware for SfP 686 * and WsP. 687 * 688 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. 689 * 690 * Currently the supported hardware variants are: 691 * 11 (0x0b) for iBT 3.0 (LnP/SfP) 692 * 12 (0x0c) for iBT 3.5 (WsP) 693 * 694 * For ThP/JfP and for future SKU's, the FW name varies based on HW 695 * variant, HW revision and FW revision, as these are dependent on CNVi 696 * and RF Combination. 697 * 698 * 18 (0x12) for iBT3.5 (ThP/JfP) 699 * 700 * The firmware file name for these will be 701 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. 702 * 703 */ 704 switch (ver.hw_variant) { 705 case 0x0b: /* SfP */ 706 case 0x0c: /* WsP */ 707 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi", 708 le16_to_cpu(ver.hw_variant), 709 le16_to_cpu(params.dev_revid)); 710 break; 711 case 0x12: /* ThP */ 712 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi", 713 le16_to_cpu(ver.hw_variant), 714 le16_to_cpu(ver.hw_revision), 715 le16_to_cpu(ver.fw_revision)); 716 break; 717 default: 718 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 719 ver.hw_variant); 720 return -EINVAL; 721 } 722 723 err = request_firmware(&fw, fwname, &hdev->dev); 724 if (err < 0) { 725 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", 726 err); 727 return err; 728 } 729 730 bt_dev_info(hdev, "Found device firmware: %s", fwname); 731 732 /* Save the DDC file name for later */ 733 switch (ver.hw_variant) { 734 case 0x0b: /* SfP */ 735 case 0x0c: /* WsP */ 736 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc", 737 le16_to_cpu(ver.hw_variant), 738 le16_to_cpu(params.dev_revid)); 739 break; 740 case 0x12: /* ThP */ 741 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc", 742 le16_to_cpu(ver.hw_variant), 743 le16_to_cpu(ver.hw_revision), 744 le16_to_cpu(ver.fw_revision)); 745 break; 746 default: 747 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", 748 ver.hw_variant); 749 return -EINVAL; 750 } 751 752 if (fw->size < 644) { 753 bt_dev_err(hdev, "Invalid size of firmware file (%zu)", 754 fw->size); 755 err = -EBADF; 756 goto done; 757 } 758 759 set_bit(STATE_DOWNLOADING, &intel->flags); 760 761 /* Start firmware downloading and get boot parameter */ 762 err = btintel_download_firmware(hdev, fw, &boot_param); 763 if (err < 0) 764 goto done; 765 766 set_bit(STATE_FIRMWARE_LOADED, &intel->flags); 767 768 bt_dev_info(hdev, "Waiting for firmware download to complete"); 769 770 /* Before switching the device into operational mode and with that 771 * booting the loaded firmware, wait for the bootloader notification 772 * that all fragments have been successfully received. 773 * 774 * When the event processing receives the notification, then the 775 * STATE_DOWNLOADING flag will be cleared. 776 * 777 * The firmware loading should not take longer than 5 seconds 778 * and thus just timeout if that happens and fail the setup 779 * of this device. 780 */ 781 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, 782 TASK_INTERRUPTIBLE, 783 msecs_to_jiffies(5000)); 784 if (err == -EINTR) { 785 bt_dev_err(hdev, "Firmware loading interrupted"); 786 err = -EINTR; 787 goto done; 788 } 789 790 if (err) { 791 bt_dev_err(hdev, "Firmware loading timeout"); 792 err = -ETIMEDOUT; 793 goto done; 794 } 795 796 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { 797 bt_dev_err(hdev, "Firmware loading failed"); 798 err = -ENOEXEC; 799 goto done; 800 } 801 802 rettime = ktime_get(); 803 delta = ktime_sub(rettime, calltime); 804 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 805 806 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); 807 808 done: 809 release_firmware(fw); 810 811 if (err < 0) 812 return err; 813 814 /* We need to restore the default speed before Intel reset */ 815 if (speed_change) { 816 err = intel_set_baudrate(hu, init_speed); 817 if (err) 818 return err; 819 } 820 821 calltime = ktime_get(); 822 823 set_bit(STATE_BOOTING, &intel->flags); 824 825 err = btintel_send_intel_reset(hdev, boot_param); 826 if (err) 827 return err; 828 829 /* The bootloader will not indicate when the device is ready. This 830 * is done by the operational firmware sending bootup notification. 831 * 832 * Booting into operational firmware should not take longer than 833 * 1 second. However if that happens, then just fail the setup 834 * since something went wrong. 835 */ 836 bt_dev_info(hdev, "Waiting for device to boot"); 837 838 err = intel_wait_booting(hu); 839 if (err) 840 return err; 841 842 clear_bit(STATE_BOOTING, &intel->flags); 843 844 rettime = ktime_get(); 845 delta = ktime_sub(rettime, calltime); 846 duration = (unsigned long long) ktime_to_ns(delta) >> 10; 847 848 bt_dev_info(hdev, "Device booted in %llu usecs", duration); 849 850 /* Enable LPM if matching pdev with wakeup enabled, set TX active 851 * until further LPM TX notification. 852 */ 853 mutex_lock(&intel_device_list_lock); 854 list_for_each(p, &intel_device_list) { 855 struct intel_device *dev = list_entry(p, struct intel_device, 856 list); 857 if (!hu->tty->dev) 858 break; 859 if (hu->tty->dev->parent == dev->pdev->dev.parent) { 860 if (device_may_wakeup(&dev->pdev->dev)) { 861 set_bit(STATE_LPM_ENABLED, &intel->flags); 862 set_bit(STATE_TX_ACTIVE, &intel->flags); 863 } 864 break; 865 } 866 } 867 mutex_unlock(&intel_device_list_lock); 868 869 /* Ignore errors, device can work without DDC parameters */ 870 btintel_load_ddc_config(hdev, fwname); 871 872 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); 873 if (IS_ERR(skb)) 874 return PTR_ERR(skb); 875 kfree_skb(skb); 876 877 if (speed_change) { 878 err = intel_set_baudrate(hu, oper_speed); 879 if (err) 880 return err; 881 } 882 883 bt_dev_info(hdev, "Setup complete"); 884 885 clear_bit(STATE_BOOTLOADER, &intel->flags); 886 887 return 0; 888 } 889 890 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 891 { 892 struct hci_uart *hu = hci_get_drvdata(hdev); 893 struct intel_data *intel = hu->priv; 894 struct hci_event_hdr *hdr; 895 896 if (!test_bit(STATE_BOOTLOADER, &intel->flags) && 897 !test_bit(STATE_BOOTING, &intel->flags)) 898 goto recv; 899 900 hdr = (void *)skb->data; 901 902 /* When the firmware loading completes the device sends 903 * out a vendor specific event indicating the result of 904 * the firmware loading. 905 */ 906 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && 907 skb->data[2] == 0x06) { 908 if (skb->data[3] != 0x00) 909 set_bit(STATE_FIRMWARE_FAILED, &intel->flags); 910 911 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && 912 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) 913 wake_up_bit(&intel->flags, STATE_DOWNLOADING); 914 915 /* When switching to the operational firmware the device 916 * sends a vendor specific event indicating that the bootup 917 * completed. 918 */ 919 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && 920 skb->data[2] == 0x02) { 921 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) 922 wake_up_bit(&intel->flags, STATE_BOOTING); 923 } 924 recv: 925 return hci_recv_frame(hdev, skb); 926 } 927 928 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) 929 { 930 struct hci_uart *hu = hci_get_drvdata(hdev); 931 struct intel_data *intel = hu->priv; 932 933 bt_dev_dbg(hdev, "TX idle notification (%d)", value); 934 935 if (value) { 936 set_bit(STATE_TX_ACTIVE, &intel->flags); 937 schedule_work(&intel->busy_work); 938 } else { 939 clear_bit(STATE_TX_ACTIVE, &intel->flags); 940 } 941 } 942 943 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) 944 { 945 struct hci_lpm_pkt *lpm = (void *)skb->data; 946 struct hci_uart *hu = hci_get_drvdata(hdev); 947 struct intel_data *intel = hu->priv; 948 949 switch (lpm->opcode) { 950 case LPM_OP_TX_NOTIFY: 951 if (lpm->dlen < 1) { 952 bt_dev_err(hu->hdev, "Invalid LPM notification packet"); 953 break; 954 } 955 intel_recv_lpm_notify(hdev, lpm->data[0]); 956 break; 957 case LPM_OP_SUSPEND_ACK: 958 set_bit(STATE_SUSPENDED, &intel->flags); 959 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) 960 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 961 break; 962 case LPM_OP_RESUME_ACK: 963 clear_bit(STATE_SUSPENDED, &intel->flags); 964 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) 965 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); 966 break; 967 default: 968 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); 969 break; 970 } 971 972 kfree_skb(skb); 973 974 return 0; 975 } 976 977 #define INTEL_RECV_LPM \ 978 .type = HCI_LPM_PKT, \ 979 .hlen = HCI_LPM_HDR_SIZE, \ 980 .loff = 1, \ 981 .lsize = 1, \ 982 .maxlen = HCI_LPM_MAX_SIZE 983 984 static const struct h4_recv_pkt intel_recv_pkts[] = { 985 { H4_RECV_ACL, .recv = hci_recv_frame }, 986 { H4_RECV_SCO, .recv = hci_recv_frame }, 987 { H4_RECV_EVENT, .recv = intel_recv_event }, 988 { INTEL_RECV_LPM, .recv = intel_recv_lpm }, 989 }; 990 991 static int intel_recv(struct hci_uart *hu, const void *data, int count) 992 { 993 struct intel_data *intel = hu->priv; 994 995 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 996 return -EUNATCH; 997 998 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, 999 intel_recv_pkts, 1000 ARRAY_SIZE(intel_recv_pkts)); 1001 if (IS_ERR(intel->rx_skb)) { 1002 int err = PTR_ERR(intel->rx_skb); 1003 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1004 intel->rx_skb = NULL; 1005 return err; 1006 } 1007 1008 return count; 1009 } 1010 1011 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) 1012 { 1013 struct intel_data *intel = hu->priv; 1014 struct list_head *p; 1015 1016 BT_DBG("hu %p skb %p", hu, skb); 1017 1018 if (!hu->tty->dev) 1019 goto out_enqueue; 1020 1021 /* Be sure our controller is resumed and potential LPM transaction 1022 * completed before enqueuing any packet. 1023 */ 1024 mutex_lock(&intel_device_list_lock); 1025 list_for_each(p, &intel_device_list) { 1026 struct intel_device *idev = list_entry(p, struct intel_device, 1027 list); 1028 1029 if (hu->tty->dev->parent == idev->pdev->dev.parent) { 1030 pm_runtime_get_sync(&idev->pdev->dev); 1031 pm_runtime_mark_last_busy(&idev->pdev->dev); 1032 pm_runtime_put_autosuspend(&idev->pdev->dev); 1033 break; 1034 } 1035 } 1036 mutex_unlock(&intel_device_list_lock); 1037 out_enqueue: 1038 skb_queue_tail(&intel->txq, skb); 1039 1040 return 0; 1041 } 1042 1043 static struct sk_buff *intel_dequeue(struct hci_uart *hu) 1044 { 1045 struct intel_data *intel = hu->priv; 1046 struct sk_buff *skb; 1047 1048 skb = skb_dequeue(&intel->txq); 1049 if (!skb) 1050 return skb; 1051 1052 if (test_bit(STATE_BOOTLOADER, &intel->flags) && 1053 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) { 1054 struct hci_command_hdr *cmd = (void *)skb->data; 1055 __u16 opcode = le16_to_cpu(cmd->opcode); 1056 1057 /* When the 0xfc01 command is issued to boot into 1058 * the operational firmware, it will actually not 1059 * send a command complete event. To keep the flow 1060 * control working inject that event here. 1061 */ 1062 if (opcode == 0xfc01) 1063 inject_cmd_complete(hu->hdev, opcode); 1064 } 1065 1066 /* Prepend skb with frame type */ 1067 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 1068 1069 return skb; 1070 } 1071 1072 static const struct hci_uart_proto intel_proto = { 1073 .id = HCI_UART_INTEL, 1074 .name = "Intel", 1075 .manufacturer = 2, 1076 .init_speed = 115200, 1077 .oper_speed = 3000000, 1078 .open = intel_open, 1079 .close = intel_close, 1080 .flush = intel_flush, 1081 .setup = intel_setup, 1082 .set_baudrate = intel_set_baudrate, 1083 .recv = intel_recv, 1084 .enqueue = intel_enqueue, 1085 .dequeue = intel_dequeue, 1086 }; 1087 1088 #ifdef CONFIG_ACPI 1089 static const struct acpi_device_id intel_acpi_match[] = { 1090 { "INT33E1", 0 }, 1091 { }, 1092 }; 1093 MODULE_DEVICE_TABLE(acpi, intel_acpi_match); 1094 #endif 1095 1096 #ifdef CONFIG_PM 1097 static int intel_suspend_device(struct device *dev) 1098 { 1099 struct intel_device *idev = dev_get_drvdata(dev); 1100 1101 mutex_lock(&idev->hu_lock); 1102 if (idev->hu) 1103 intel_lpm_suspend(idev->hu); 1104 mutex_unlock(&idev->hu_lock); 1105 1106 return 0; 1107 } 1108 1109 static int intel_resume_device(struct device *dev) 1110 { 1111 struct intel_device *idev = dev_get_drvdata(dev); 1112 1113 mutex_lock(&idev->hu_lock); 1114 if (idev->hu) 1115 intel_lpm_resume(idev->hu); 1116 mutex_unlock(&idev->hu_lock); 1117 1118 return 0; 1119 } 1120 #endif 1121 1122 #ifdef CONFIG_PM_SLEEP 1123 static int intel_suspend(struct device *dev) 1124 { 1125 struct intel_device *idev = dev_get_drvdata(dev); 1126 1127 if (device_may_wakeup(dev)) 1128 enable_irq_wake(idev->irq); 1129 1130 return intel_suspend_device(dev); 1131 } 1132 1133 static int intel_resume(struct device *dev) 1134 { 1135 struct intel_device *idev = dev_get_drvdata(dev); 1136 1137 if (device_may_wakeup(dev)) 1138 disable_irq_wake(idev->irq); 1139 1140 return intel_resume_device(dev); 1141 } 1142 #endif 1143 1144 static const struct dev_pm_ops intel_pm_ops = { 1145 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 1146 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL) 1147 }; 1148 1149 static const struct acpi_gpio_params reset_gpios = { 0, 0, false }; 1150 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false }; 1151 1152 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = { 1153 { "reset-gpios", &reset_gpios, 1 }, 1154 { "host-wake-gpios", &host_wake_gpios, 1 }, 1155 { }, 1156 }; 1157 1158 static int intel_probe(struct platform_device *pdev) 1159 { 1160 struct intel_device *idev; 1161 int ret; 1162 1163 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); 1164 if (!idev) 1165 return -ENOMEM; 1166 1167 mutex_init(&idev->hu_lock); 1168 1169 idev->pdev = pdev; 1170 1171 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios); 1172 if (ret) 1173 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n"); 1174 1175 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW); 1176 if (IS_ERR(idev->reset)) { 1177 dev_err(&pdev->dev, "Unable to retrieve gpio\n"); 1178 return PTR_ERR(idev->reset); 1179 } 1180 1181 idev->irq = platform_get_irq(pdev, 0); 1182 if (idev->irq < 0) { 1183 struct gpio_desc *host_wake; 1184 1185 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); 1186 1187 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN); 1188 if (IS_ERR(host_wake)) { 1189 dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); 1190 goto no_irq; 1191 } 1192 1193 idev->irq = gpiod_to_irq(host_wake); 1194 if (idev->irq < 0) { 1195 dev_err(&pdev->dev, "No corresponding irq for gpio\n"); 1196 goto no_irq; 1197 } 1198 } 1199 1200 /* Only enable wake-up/irq when controller is powered */ 1201 device_set_wakeup_capable(&pdev->dev, true); 1202 device_wakeup_disable(&pdev->dev); 1203 1204 no_irq: 1205 platform_set_drvdata(pdev, idev); 1206 1207 /* Place this instance on the device list */ 1208 mutex_lock(&intel_device_list_lock); 1209 list_add_tail(&idev->list, &intel_device_list); 1210 mutex_unlock(&intel_device_list_lock); 1211 1212 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", 1213 desc_to_gpio(idev->reset), idev->irq); 1214 1215 return 0; 1216 } 1217 1218 static int intel_remove(struct platform_device *pdev) 1219 { 1220 struct intel_device *idev = platform_get_drvdata(pdev); 1221 1222 device_wakeup_disable(&pdev->dev); 1223 1224 mutex_lock(&intel_device_list_lock); 1225 list_del(&idev->list); 1226 mutex_unlock(&intel_device_list_lock); 1227 1228 dev_info(&pdev->dev, "unregistered.\n"); 1229 1230 return 0; 1231 } 1232 1233 static struct platform_driver intel_driver = { 1234 .probe = intel_probe, 1235 .remove = intel_remove, 1236 .driver = { 1237 .name = "hci_intel", 1238 .acpi_match_table = ACPI_PTR(intel_acpi_match), 1239 .pm = &intel_pm_ops, 1240 }, 1241 }; 1242 1243 int __init intel_init(void) 1244 { 1245 platform_driver_register(&intel_driver); 1246 1247 return hci_uart_register_proto(&intel_proto); 1248 } 1249 1250 int __exit intel_deinit(void) 1251 { 1252 platform_driver_unregister(&intel_driver); 1253 1254 return hci_uart_unregister_proto(&intel_proto); 1255 } 1256