xref: /openbmc/linux/drivers/bluetooth/hci_intel.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21 
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24 
25 #include "hci_uart.h"
26 #include "btintel.h"
27 
28 #define STATE_BOOTLOADER	0
29 #define STATE_DOWNLOADING	1
30 #define STATE_FIRMWARE_LOADED	2
31 #define STATE_FIRMWARE_FAILED	3
32 #define STATE_BOOTING		4
33 #define STATE_LPM_ENABLED	5
34 #define STATE_TX_ACTIVE		6
35 #define STATE_SUSPENDED		7
36 #define STATE_LPM_TRANSACTION	8
37 
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42 
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46 
47 #define LPM_SUSPEND_DELAY_MS 1000
48 
49 struct hci_lpm_pkt {
50 	__u8 opcode;
51 	__u8 dlen;
52 	__u8 data[0];
53 } __packed;
54 
55 struct intel_device {
56 	struct list_head list;
57 	struct platform_device *pdev;
58 	struct gpio_desc *reset;
59 	struct hci_uart *hu;
60 	struct mutex hu_lock;
61 	int irq;
62 };
63 
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66 
67 struct intel_data {
68 	struct sk_buff *rx_skb;
69 	struct sk_buff_head txq;
70 	struct work_struct busy_work;
71 	struct hci_uart *hu;
72 	unsigned long flags;
73 };
74 
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 	switch (speed) {
78 	case 9600:
79 		return 0x00;
80 	case 19200:
81 		return 0x01;
82 	case 38400:
83 		return 0x02;
84 	case 57600:
85 		return 0x03;
86 	case 115200:
87 		return 0x04;
88 	case 230400:
89 		return 0x05;
90 	case 460800:
91 		return 0x06;
92 	case 921600:
93 		return 0x07;
94 	case 1843200:
95 		return 0x08;
96 	case 3250000:
97 		return 0x09;
98 	case 2000000:
99 		return 0x0a;
100 	case 3000000:
101 		return 0x0b;
102 	default:
103 		return 0xff;
104 	}
105 }
106 
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 	struct intel_data *intel = hu->priv;
110 	int err;
111 
112 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 				  TASK_INTERRUPTIBLE,
114 				  msecs_to_jiffies(1000));
115 
116 	if (err == -EINTR) {
117 		bt_dev_err(hu->hdev, "Device boot interrupted");
118 		return -EINTR;
119 	}
120 
121 	if (err) {
122 		bt_dev_err(hu->hdev, "Device boot timeout");
123 		return -ETIMEDOUT;
124 	}
125 
126 	return err;
127 }
128 
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 	struct intel_data *intel = hu->priv;
133 	int err;
134 
135 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 				  TASK_INTERRUPTIBLE,
137 				  msecs_to_jiffies(1000));
138 
139 	if (err == -EINTR) {
140 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 		return -EINTR;
142 	}
143 
144 	if (err) {
145 		bt_dev_err(hu->hdev, "LPM transaction timeout");
146 		return -ETIMEDOUT;
147 	}
148 
149 	return err;
150 }
151 
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 	struct intel_data *intel = hu->priv;
156 	struct sk_buff *skb;
157 
158 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 	    test_bit(STATE_SUSPENDED, &intel->flags))
160 		return 0;
161 
162 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 		return -EAGAIN;
164 
165 	bt_dev_dbg(hu->hdev, "Suspending");
166 
167 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 	if (!skb) {
169 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 		return -ENOMEM;
171 	}
172 
173 	skb_put_data(skb, suspend, sizeof(suspend));
174 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175 
176 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177 
178 	/* LPM flow is a priority, enqueue packet at list head */
179 	skb_queue_head(&intel->txq, skb);
180 	hci_uart_tx_wakeup(hu);
181 
182 	intel_wait_lpm_transaction(hu);
183 	/* Even in case of failure, continue and test the suspended flag */
184 
185 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186 
187 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 		bt_dev_err(hu->hdev, "Device suspend error");
189 		return -EINVAL;
190 	}
191 
192 	bt_dev_dbg(hu->hdev, "Suspended");
193 
194 	hci_uart_set_flow_control(hu, true);
195 
196 	return 0;
197 }
198 
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 	struct intel_data *intel = hu->priv;
202 	struct sk_buff *skb;
203 
204 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 	    !test_bit(STATE_SUSPENDED, &intel->flags))
206 		return 0;
207 
208 	bt_dev_dbg(hu->hdev, "Resuming");
209 
210 	hci_uart_set_flow_control(hu, false);
211 
212 	skb = bt_skb_alloc(0, GFP_KERNEL);
213 	if (!skb) {
214 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 		return -ENOMEM;
216 	}
217 
218 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219 
220 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221 
222 	/* LPM flow is a priority, enqueue packet at list head */
223 	skb_queue_head(&intel->txq, skb);
224 	hci_uart_tx_wakeup(hu);
225 
226 	intel_wait_lpm_transaction(hu);
227 	/* Even in case of failure, continue and test the suspended flag */
228 
229 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230 
231 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 		bt_dev_err(hu->hdev, "Device resume error");
233 		return -EINVAL;
234 	}
235 
236 	bt_dev_dbg(hu->hdev, "Resumed");
237 
238 	return 0;
239 }
240 #endif /* CONFIG_PM */
241 
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 	struct intel_data *intel = hu->priv;
246 	struct sk_buff *skb;
247 
248 	hci_uart_set_flow_control(hu, false);
249 
250 	clear_bit(STATE_SUSPENDED, &intel->flags);
251 
252 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 	if (!skb) {
254 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 		return -ENOMEM;
256 	}
257 
258 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260 
261 	/* LPM flow is a priority, enqueue packet at list head */
262 	skb_queue_head(&intel->txq, skb);
263 	hci_uart_tx_wakeup(hu);
264 
265 	bt_dev_dbg(hu->hdev, "Resumed by controller");
266 
267 	return 0;
268 }
269 
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 	struct intel_device *idev = dev_id;
273 
274 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
275 
276 	mutex_lock(&idev->hu_lock);
277 	if (idev->hu)
278 		intel_lpm_host_wake(idev->hu);
279 	mutex_unlock(&idev->hu_lock);
280 
281 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 	pm_runtime_get(&idev->pdev->dev);
283 	pm_runtime_mark_last_busy(&idev->pdev->dev);
284 	pm_runtime_put_autosuspend(&idev->pdev->dev);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291 	struct list_head *p;
292 	int err = -ENODEV;
293 
294 	if (!hu->tty->dev)
295 		return err;
296 
297 	mutex_lock(&intel_device_list_lock);
298 
299 	list_for_each(p, &intel_device_list) {
300 		struct intel_device *idev = list_entry(p, struct intel_device,
301 						       list);
302 
303 		/* tty device and pdev device should share the same parent
304 		 * which is the UART port.
305 		 */
306 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
307 			continue;
308 
309 		if (!idev->reset) {
310 			err = -ENOTSUPP;
311 			break;
312 		}
313 
314 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
315 			hu, dev_name(&idev->pdev->dev), powered);
316 
317 		gpiod_set_value(idev->reset, powered);
318 
319 		/* Provide to idev a hu reference which is used to run LPM
320 		 * transactions (lpm suspend/resume) from PM callbacks.
321 		 * hu needs to be protected against concurrent removing during
322 		 * these PM ops.
323 		 */
324 		mutex_lock(&idev->hu_lock);
325 		idev->hu = powered ? hu : NULL;
326 		mutex_unlock(&idev->hu_lock);
327 
328 		if (idev->irq < 0)
329 			break;
330 
331 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
332 			err = devm_request_threaded_irq(&idev->pdev->dev,
333 							idev->irq, NULL,
334 							intel_irq,
335 							IRQF_ONESHOT,
336 							"bt-host-wake", idev);
337 			if (err) {
338 				BT_ERR("hu %p, unable to allocate irq-%d",
339 				       hu, idev->irq);
340 				break;
341 			}
342 
343 			device_wakeup_enable(&idev->pdev->dev);
344 
345 			pm_runtime_set_active(&idev->pdev->dev);
346 			pm_runtime_use_autosuspend(&idev->pdev->dev);
347 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
348 							 LPM_SUSPEND_DELAY_MS);
349 			pm_runtime_enable(&idev->pdev->dev);
350 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
351 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
352 			device_wakeup_disable(&idev->pdev->dev);
353 
354 			pm_runtime_disable(&idev->pdev->dev);
355 		}
356 	}
357 
358 	mutex_unlock(&intel_device_list_lock);
359 
360 	return err;
361 }
362 
363 static void intel_busy_work(struct work_struct *work)
364 {
365 	struct list_head *p;
366 	struct intel_data *intel = container_of(work, struct intel_data,
367 						busy_work);
368 
369 	if (!intel->hu->tty->dev)
370 		return;
371 
372 	/* Link is busy, delay the suspend */
373 	mutex_lock(&intel_device_list_lock);
374 	list_for_each(p, &intel_device_list) {
375 		struct intel_device *idev = list_entry(p, struct intel_device,
376 						       list);
377 
378 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
379 			pm_runtime_get(&idev->pdev->dev);
380 			pm_runtime_mark_last_busy(&idev->pdev->dev);
381 			pm_runtime_put_autosuspend(&idev->pdev->dev);
382 			break;
383 		}
384 	}
385 	mutex_unlock(&intel_device_list_lock);
386 }
387 
388 static int intel_open(struct hci_uart *hu)
389 {
390 	struct intel_data *intel;
391 
392 	BT_DBG("hu %p", hu);
393 
394 	if (!hci_uart_has_flow_control(hu))
395 		return -EOPNOTSUPP;
396 
397 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
398 	if (!intel)
399 		return -ENOMEM;
400 
401 	skb_queue_head_init(&intel->txq);
402 	INIT_WORK(&intel->busy_work, intel_busy_work);
403 
404 	intel->hu = hu;
405 
406 	hu->priv = intel;
407 
408 	if (!intel_set_power(hu, true))
409 		set_bit(STATE_BOOTING, &intel->flags);
410 
411 	return 0;
412 }
413 
414 static int intel_close(struct hci_uart *hu)
415 {
416 	struct intel_data *intel = hu->priv;
417 
418 	BT_DBG("hu %p", hu);
419 
420 	cancel_work_sync(&intel->busy_work);
421 
422 	intel_set_power(hu, false);
423 
424 	skb_queue_purge(&intel->txq);
425 	kfree_skb(intel->rx_skb);
426 	kfree(intel);
427 
428 	hu->priv = NULL;
429 	return 0;
430 }
431 
432 static int intel_flush(struct hci_uart *hu)
433 {
434 	struct intel_data *intel = hu->priv;
435 
436 	BT_DBG("hu %p", hu);
437 
438 	skb_queue_purge(&intel->txq);
439 
440 	return 0;
441 }
442 
443 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
444 {
445 	struct sk_buff *skb;
446 	struct hci_event_hdr *hdr;
447 	struct hci_ev_cmd_complete *evt;
448 
449 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
450 	if (!skb)
451 		return -ENOMEM;
452 
453 	hdr = skb_put(skb, sizeof(*hdr));
454 	hdr->evt = HCI_EV_CMD_COMPLETE;
455 	hdr->plen = sizeof(*evt) + 1;
456 
457 	evt = skb_put(skb, sizeof(*evt));
458 	evt->ncmd = 0x01;
459 	evt->opcode = cpu_to_le16(opcode);
460 
461 	skb_put_u8(skb, 0x00);
462 
463 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
464 
465 	return hci_recv_frame(hdev, skb);
466 }
467 
468 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
469 {
470 	struct intel_data *intel = hu->priv;
471 	struct hci_dev *hdev = hu->hdev;
472 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
473 	struct sk_buff *skb;
474 	int err;
475 
476 	/* This can be the first command sent to the chip, check
477 	 * that the controller is ready.
478 	 */
479 	err = intel_wait_booting(hu);
480 
481 	clear_bit(STATE_BOOTING, &intel->flags);
482 
483 	/* In case of timeout, try to continue anyway */
484 	if (err && err != -ETIMEDOUT)
485 		return err;
486 
487 	bt_dev_info(hdev, "Change controller speed to %d", speed);
488 
489 	speed_cmd[3] = intel_convert_speed(speed);
490 	if (speed_cmd[3] == 0xff) {
491 		bt_dev_err(hdev, "Unsupported speed");
492 		return -EINVAL;
493 	}
494 
495 	/* Device will not accept speed change if Intel version has not been
496 	 * previously requested.
497 	 */
498 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
499 	if (IS_ERR(skb)) {
500 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
501 			   PTR_ERR(skb));
502 		return PTR_ERR(skb);
503 	}
504 	kfree_skb(skb);
505 
506 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
507 	if (!skb) {
508 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
509 		return -ENOMEM;
510 	}
511 
512 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
513 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
514 
515 	hci_uart_set_flow_control(hu, true);
516 
517 	skb_queue_tail(&intel->txq, skb);
518 	hci_uart_tx_wakeup(hu);
519 
520 	/* wait 100ms to change baudrate on controller side */
521 	msleep(100);
522 
523 	hci_uart_set_baudrate(hu, speed);
524 	hci_uart_set_flow_control(hu, false);
525 
526 	return 0;
527 }
528 
529 static int intel_setup(struct hci_uart *hu)
530 {
531 	struct intel_data *intel = hu->priv;
532 	struct hci_dev *hdev = hu->hdev;
533 	struct sk_buff *skb;
534 	struct intel_version ver;
535 	struct intel_boot_params params;
536 	struct list_head *p;
537 	const struct firmware *fw;
538 	char fwname[64];
539 	u32 boot_param;
540 	ktime_t calltime, delta, rettime;
541 	unsigned long long duration;
542 	unsigned int init_speed, oper_speed;
543 	int speed_change = 0;
544 	int err;
545 
546 	bt_dev_dbg(hdev, "start intel_setup");
547 
548 	hu->hdev->set_diag = btintel_set_diag;
549 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
550 
551 	/* Set the default boot parameter to 0x0 and it is updated to
552 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
553 	 * command while downloading the firmware.
554 	 */
555 	boot_param = 0x00000000;
556 
557 	calltime = ktime_get();
558 
559 	if (hu->init_speed)
560 		init_speed = hu->init_speed;
561 	else
562 		init_speed = hu->proto->init_speed;
563 
564 	if (hu->oper_speed)
565 		oper_speed = hu->oper_speed;
566 	else
567 		oper_speed = hu->proto->oper_speed;
568 
569 	if (oper_speed && init_speed && oper_speed != init_speed)
570 		speed_change = 1;
571 
572 	/* Check that the controller is ready */
573 	err = intel_wait_booting(hu);
574 
575 	clear_bit(STATE_BOOTING, &intel->flags);
576 
577 	/* In case of timeout, try to continue anyway */
578 	if (err && err != -ETIMEDOUT)
579 		return err;
580 
581 	set_bit(STATE_BOOTLOADER, &intel->flags);
582 
583 	/* Read the Intel version information to determine if the device
584 	 * is in bootloader mode or if it already has operational firmware
585 	 * loaded.
586 	 */
587 	err = btintel_read_version(hdev, &ver);
588 	if (err)
589 		return err;
590 
591 	/* The hardware platform number has a fixed value of 0x37 and
592 	 * for now only accept this single value.
593 	 */
594 	if (ver.hw_platform != 0x37) {
595 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
596 			   ver.hw_platform);
597 		return -EINVAL;
598 	}
599 
600         /* Check for supported iBT hardware variants of this firmware
601          * loading method.
602          *
603          * This check has been put in place to ensure correct forward
604          * compatibility options when newer hardware variants come along.
605          */
606 	switch (ver.hw_variant) {
607 	case 0x0b:	/* LnP */
608 	case 0x0c:	/* WsP */
609 	case 0x12:	/* ThP */
610 		break;
611 	default:
612 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
613 			   ver.hw_variant);
614 		return -EINVAL;
615 	}
616 
617 	btintel_version_info(hdev, &ver);
618 
619 	/* The firmware variant determines if the device is in bootloader
620 	 * mode or is running operational firmware. The value 0x06 identifies
621 	 * the bootloader and the value 0x23 identifies the operational
622 	 * firmware.
623 	 *
624 	 * When the operational firmware is already present, then only
625 	 * the check for valid Bluetooth device address is needed. This
626 	 * determines if the device will be added as configured or
627 	 * unconfigured controller.
628 	 *
629 	 * It is not possible to use the Secure Boot Parameters in this
630 	 * case since that command is only available in bootloader mode.
631 	 */
632 	if (ver.fw_variant == 0x23) {
633 		clear_bit(STATE_BOOTLOADER, &intel->flags);
634 		btintel_check_bdaddr(hdev);
635 		return 0;
636 	}
637 
638 	/* If the device is not in bootloader mode, then the only possible
639 	 * choice is to return an error and abort the device initialization.
640 	 */
641 	if (ver.fw_variant != 0x06) {
642 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
643 			   ver.fw_variant);
644 		return -ENODEV;
645 	}
646 
647 	/* Read the secure boot parameters to identify the operating
648 	 * details of the bootloader.
649 	 */
650 	err = btintel_read_boot_params(hdev, &params);
651 	if (err)
652 		return err;
653 
654 	/* It is required that every single firmware fragment is acknowledged
655 	 * with a command complete event. If the boot parameters indicate
656 	 * that this bootloader does not send them, then abort the setup.
657 	 */
658 	if (params.limited_cce != 0x00) {
659 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
660 			   params.limited_cce);
661 		return -EINVAL;
662 	}
663 
664 	/* If the OTP has no valid Bluetooth device address, then there will
665 	 * also be no valid address for the operational firmware.
666 	 */
667 	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
668 		bt_dev_info(hdev, "No device address configured");
669 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
670 	}
671 
672 	/* With this Intel bootloader only the hardware variant and device
673 	 * revision information are used to select the right firmware for SfP
674 	 * and WsP.
675 	 *
676 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
677 	 *
678 	 * Currently the supported hardware variants are:
679 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
680 	 *   12 (0x0c) for iBT 3.5 (WsP)
681 	 *
682 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
683 	 * variant, HW revision and FW revision, as these are dependent on CNVi
684 	 * and RF Combination.
685 	 *
686 	 *   18 (0x12) for iBT3.5 (ThP/JfP)
687 	 *
688 	 * The firmware file name for these will be
689 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
690 	 *
691 	 */
692 	switch (ver.hw_variant) {
693 	case 0x0b:      /* SfP */
694 	case 0x0c:      /* WsP */
695 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
696 			 le16_to_cpu(ver.hw_variant),
697 			 le16_to_cpu(params.dev_revid));
698 		break;
699 	case 0x12:      /* ThP */
700 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
701 			 le16_to_cpu(ver.hw_variant),
702 			 le16_to_cpu(ver.hw_revision),
703 			 le16_to_cpu(ver.fw_revision));
704 		break;
705 	default:
706 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
707 			   ver.hw_variant);
708 		return -EINVAL;
709 	}
710 
711 	err = request_firmware(&fw, fwname, &hdev->dev);
712 	if (err < 0) {
713 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
714 			   err);
715 		return err;
716 	}
717 
718 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
719 
720 	/* Save the DDC file name for later */
721 	switch (ver.hw_variant) {
722 	case 0x0b:      /* SfP */
723 	case 0x0c:      /* WsP */
724 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
725 			 le16_to_cpu(ver.hw_variant),
726 			 le16_to_cpu(params.dev_revid));
727 		break;
728 	case 0x12:      /* ThP */
729 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
730 			 le16_to_cpu(ver.hw_variant),
731 			 le16_to_cpu(ver.hw_revision),
732 			 le16_to_cpu(ver.fw_revision));
733 		break;
734 	default:
735 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
736 			   ver.hw_variant);
737 		return -EINVAL;
738 	}
739 
740 	if (fw->size < 644) {
741 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
742 			   fw->size);
743 		err = -EBADF;
744 		goto done;
745 	}
746 
747 	set_bit(STATE_DOWNLOADING, &intel->flags);
748 
749 	/* Start firmware downloading and get boot parameter */
750 	err = btintel_download_firmware(hdev, fw, &boot_param);
751 	if (err < 0)
752 		goto done;
753 
754 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
755 
756 	bt_dev_info(hdev, "Waiting for firmware download to complete");
757 
758 	/* Before switching the device into operational mode and with that
759 	 * booting the loaded firmware, wait for the bootloader notification
760 	 * that all fragments have been successfully received.
761 	 *
762 	 * When the event processing receives the notification, then the
763 	 * STATE_DOWNLOADING flag will be cleared.
764 	 *
765 	 * The firmware loading should not take longer than 5 seconds
766 	 * and thus just timeout if that happens and fail the setup
767 	 * of this device.
768 	 */
769 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
770 				  TASK_INTERRUPTIBLE,
771 				  msecs_to_jiffies(5000));
772 	if (err == -EINTR) {
773 		bt_dev_err(hdev, "Firmware loading interrupted");
774 		err = -EINTR;
775 		goto done;
776 	}
777 
778 	if (err) {
779 		bt_dev_err(hdev, "Firmware loading timeout");
780 		err = -ETIMEDOUT;
781 		goto done;
782 	}
783 
784 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
785 		bt_dev_err(hdev, "Firmware loading failed");
786 		err = -ENOEXEC;
787 		goto done;
788 	}
789 
790 	rettime = ktime_get();
791 	delta = ktime_sub(rettime, calltime);
792 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
793 
794 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
795 
796 done:
797 	release_firmware(fw);
798 
799 	if (err < 0)
800 		return err;
801 
802 	/* We need to restore the default speed before Intel reset */
803 	if (speed_change) {
804 		err = intel_set_baudrate(hu, init_speed);
805 		if (err)
806 			return err;
807 	}
808 
809 	calltime = ktime_get();
810 
811 	set_bit(STATE_BOOTING, &intel->flags);
812 
813 	err = btintel_send_intel_reset(hdev, boot_param);
814 	if (err)
815 		return err;
816 
817 	/* The bootloader will not indicate when the device is ready. This
818 	 * is done by the operational firmware sending bootup notification.
819 	 *
820 	 * Booting into operational firmware should not take longer than
821 	 * 1 second. However if that happens, then just fail the setup
822 	 * since something went wrong.
823 	 */
824 	bt_dev_info(hdev, "Waiting for device to boot");
825 
826 	err = intel_wait_booting(hu);
827 	if (err)
828 		return err;
829 
830 	clear_bit(STATE_BOOTING, &intel->flags);
831 
832 	rettime = ktime_get();
833 	delta = ktime_sub(rettime, calltime);
834 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
835 
836 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
837 
838 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
839 	 * until further LPM TX notification.
840 	 */
841 	mutex_lock(&intel_device_list_lock);
842 	list_for_each(p, &intel_device_list) {
843 		struct intel_device *dev = list_entry(p, struct intel_device,
844 						      list);
845 		if (!hu->tty->dev)
846 			break;
847 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
848 			if (device_may_wakeup(&dev->pdev->dev)) {
849 				set_bit(STATE_LPM_ENABLED, &intel->flags);
850 				set_bit(STATE_TX_ACTIVE, &intel->flags);
851 			}
852 			break;
853 		}
854 	}
855 	mutex_unlock(&intel_device_list_lock);
856 
857 	/* Ignore errors, device can work without DDC parameters */
858 	btintel_load_ddc_config(hdev, fwname);
859 
860 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
861 	if (IS_ERR(skb))
862 		return PTR_ERR(skb);
863 	kfree_skb(skb);
864 
865 	if (speed_change) {
866 		err = intel_set_baudrate(hu, oper_speed);
867 		if (err)
868 			return err;
869 	}
870 
871 	bt_dev_info(hdev, "Setup complete");
872 
873 	clear_bit(STATE_BOOTLOADER, &intel->flags);
874 
875 	return 0;
876 }
877 
878 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
879 {
880 	struct hci_uart *hu = hci_get_drvdata(hdev);
881 	struct intel_data *intel = hu->priv;
882 	struct hci_event_hdr *hdr;
883 
884 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
885 	    !test_bit(STATE_BOOTING, &intel->flags))
886 		goto recv;
887 
888 	hdr = (void *)skb->data;
889 
890 	/* When the firmware loading completes the device sends
891 	 * out a vendor specific event indicating the result of
892 	 * the firmware loading.
893 	 */
894 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
895 	    skb->data[2] == 0x06) {
896 		if (skb->data[3] != 0x00)
897 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
898 
899 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
900 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
901 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
902 
903 	/* When switching to the operational firmware the device
904 	 * sends a vendor specific event indicating that the bootup
905 	 * completed.
906 	 */
907 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
908 		   skb->data[2] == 0x02) {
909 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
910 			wake_up_bit(&intel->flags, STATE_BOOTING);
911 	}
912 recv:
913 	return hci_recv_frame(hdev, skb);
914 }
915 
916 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
917 {
918 	struct hci_uart *hu = hci_get_drvdata(hdev);
919 	struct intel_data *intel = hu->priv;
920 
921 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
922 
923 	if (value) {
924 		set_bit(STATE_TX_ACTIVE, &intel->flags);
925 		schedule_work(&intel->busy_work);
926 	} else {
927 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
928 	}
929 }
930 
931 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
932 {
933 	struct hci_lpm_pkt *lpm = (void *)skb->data;
934 	struct hci_uart *hu = hci_get_drvdata(hdev);
935 	struct intel_data *intel = hu->priv;
936 
937 	switch (lpm->opcode) {
938 	case LPM_OP_TX_NOTIFY:
939 		if (lpm->dlen < 1) {
940 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
941 			break;
942 		}
943 		intel_recv_lpm_notify(hdev, lpm->data[0]);
944 		break;
945 	case LPM_OP_SUSPEND_ACK:
946 		set_bit(STATE_SUSPENDED, &intel->flags);
947 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
948 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
949 		break;
950 	case LPM_OP_RESUME_ACK:
951 		clear_bit(STATE_SUSPENDED, &intel->flags);
952 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
953 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
954 		break;
955 	default:
956 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
957 		break;
958 	}
959 
960 	kfree_skb(skb);
961 
962 	return 0;
963 }
964 
965 #define INTEL_RECV_LPM \
966 	.type = HCI_LPM_PKT, \
967 	.hlen = HCI_LPM_HDR_SIZE, \
968 	.loff = 1, \
969 	.lsize = 1, \
970 	.maxlen = HCI_LPM_MAX_SIZE
971 
972 static const struct h4_recv_pkt intel_recv_pkts[] = {
973 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
974 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
975 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
976 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
977 };
978 
979 static int intel_recv(struct hci_uart *hu, const void *data, int count)
980 {
981 	struct intel_data *intel = hu->priv;
982 
983 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
984 		return -EUNATCH;
985 
986 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
987 				    intel_recv_pkts,
988 				    ARRAY_SIZE(intel_recv_pkts));
989 	if (IS_ERR(intel->rx_skb)) {
990 		int err = PTR_ERR(intel->rx_skb);
991 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
992 		intel->rx_skb = NULL;
993 		return err;
994 	}
995 
996 	return count;
997 }
998 
999 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1000 {
1001 	struct intel_data *intel = hu->priv;
1002 	struct list_head *p;
1003 
1004 	BT_DBG("hu %p skb %p", hu, skb);
1005 
1006 	if (!hu->tty->dev)
1007 		goto out_enqueue;
1008 
1009 	/* Be sure our controller is resumed and potential LPM transaction
1010 	 * completed before enqueuing any packet.
1011 	 */
1012 	mutex_lock(&intel_device_list_lock);
1013 	list_for_each(p, &intel_device_list) {
1014 		struct intel_device *idev = list_entry(p, struct intel_device,
1015 						       list);
1016 
1017 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1018 			pm_runtime_get_sync(&idev->pdev->dev);
1019 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1020 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1021 			break;
1022 		}
1023 	}
1024 	mutex_unlock(&intel_device_list_lock);
1025 out_enqueue:
1026 	skb_queue_tail(&intel->txq, skb);
1027 
1028 	return 0;
1029 }
1030 
1031 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1032 {
1033 	struct intel_data *intel = hu->priv;
1034 	struct sk_buff *skb;
1035 
1036 	skb = skb_dequeue(&intel->txq);
1037 	if (!skb)
1038 		return skb;
1039 
1040 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1041 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1042 		struct hci_command_hdr *cmd = (void *)skb->data;
1043 		__u16 opcode = le16_to_cpu(cmd->opcode);
1044 
1045 		/* When the 0xfc01 command is issued to boot into
1046 		 * the operational firmware, it will actually not
1047 		 * send a command complete event. To keep the flow
1048 		 * control working inject that event here.
1049 		 */
1050 		if (opcode == 0xfc01)
1051 			inject_cmd_complete(hu->hdev, opcode);
1052 	}
1053 
1054 	/* Prepend skb with frame type */
1055 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1056 
1057 	return skb;
1058 }
1059 
1060 static const struct hci_uart_proto intel_proto = {
1061 	.id		= HCI_UART_INTEL,
1062 	.name		= "Intel",
1063 	.manufacturer	= 2,
1064 	.init_speed	= 115200,
1065 	.oper_speed	= 3000000,
1066 	.open		= intel_open,
1067 	.close		= intel_close,
1068 	.flush		= intel_flush,
1069 	.setup		= intel_setup,
1070 	.set_baudrate	= intel_set_baudrate,
1071 	.recv		= intel_recv,
1072 	.enqueue	= intel_enqueue,
1073 	.dequeue	= intel_dequeue,
1074 };
1075 
1076 #ifdef CONFIG_ACPI
1077 static const struct acpi_device_id intel_acpi_match[] = {
1078 	{ "INT33E1", 0 },
1079 	{ },
1080 };
1081 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1082 #endif
1083 
1084 #ifdef CONFIG_PM
1085 static int intel_suspend_device(struct device *dev)
1086 {
1087 	struct intel_device *idev = dev_get_drvdata(dev);
1088 
1089 	mutex_lock(&idev->hu_lock);
1090 	if (idev->hu)
1091 		intel_lpm_suspend(idev->hu);
1092 	mutex_unlock(&idev->hu_lock);
1093 
1094 	return 0;
1095 }
1096 
1097 static int intel_resume_device(struct device *dev)
1098 {
1099 	struct intel_device *idev = dev_get_drvdata(dev);
1100 
1101 	mutex_lock(&idev->hu_lock);
1102 	if (idev->hu)
1103 		intel_lpm_resume(idev->hu);
1104 	mutex_unlock(&idev->hu_lock);
1105 
1106 	return 0;
1107 }
1108 #endif
1109 
1110 #ifdef CONFIG_PM_SLEEP
1111 static int intel_suspend(struct device *dev)
1112 {
1113 	struct intel_device *idev = dev_get_drvdata(dev);
1114 
1115 	if (device_may_wakeup(dev))
1116 		enable_irq_wake(idev->irq);
1117 
1118 	return intel_suspend_device(dev);
1119 }
1120 
1121 static int intel_resume(struct device *dev)
1122 {
1123 	struct intel_device *idev = dev_get_drvdata(dev);
1124 
1125 	if (device_may_wakeup(dev))
1126 		disable_irq_wake(idev->irq);
1127 
1128 	return intel_resume_device(dev);
1129 }
1130 #endif
1131 
1132 static const struct dev_pm_ops intel_pm_ops = {
1133 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1134 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1135 };
1136 
1137 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1138 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1139 
1140 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1141 	{ "reset-gpios", &reset_gpios, 1 },
1142 	{ "host-wake-gpios", &host_wake_gpios, 1 },
1143 	{ },
1144 };
1145 
1146 static int intel_probe(struct platform_device *pdev)
1147 {
1148 	struct intel_device *idev;
1149 	int ret;
1150 
1151 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1152 	if (!idev)
1153 		return -ENOMEM;
1154 
1155 	mutex_init(&idev->hu_lock);
1156 
1157 	idev->pdev = pdev;
1158 
1159 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1160 	if (ret)
1161 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1162 
1163 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1164 	if (IS_ERR(idev->reset)) {
1165 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1166 		return PTR_ERR(idev->reset);
1167 	}
1168 
1169 	idev->irq = platform_get_irq(pdev, 0);
1170 	if (idev->irq < 0) {
1171 		struct gpio_desc *host_wake;
1172 
1173 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1174 
1175 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1176 		if (IS_ERR(host_wake)) {
1177 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1178 			goto no_irq;
1179 		}
1180 
1181 		idev->irq = gpiod_to_irq(host_wake);
1182 		if (idev->irq < 0) {
1183 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1184 			goto no_irq;
1185 		}
1186 	}
1187 
1188 	/* Only enable wake-up/irq when controller is powered */
1189 	device_set_wakeup_capable(&pdev->dev, true);
1190 	device_wakeup_disable(&pdev->dev);
1191 
1192 no_irq:
1193 	platform_set_drvdata(pdev, idev);
1194 
1195 	/* Place this instance on the device list */
1196 	mutex_lock(&intel_device_list_lock);
1197 	list_add_tail(&idev->list, &intel_device_list);
1198 	mutex_unlock(&intel_device_list_lock);
1199 
1200 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1201 		 desc_to_gpio(idev->reset), idev->irq);
1202 
1203 	return 0;
1204 }
1205 
1206 static int intel_remove(struct platform_device *pdev)
1207 {
1208 	struct intel_device *idev = platform_get_drvdata(pdev);
1209 
1210 	device_wakeup_disable(&pdev->dev);
1211 
1212 	mutex_lock(&intel_device_list_lock);
1213 	list_del(&idev->list);
1214 	mutex_unlock(&intel_device_list_lock);
1215 
1216 	dev_info(&pdev->dev, "unregistered.\n");
1217 
1218 	return 0;
1219 }
1220 
1221 static struct platform_driver intel_driver = {
1222 	.probe = intel_probe,
1223 	.remove = intel_remove,
1224 	.driver = {
1225 		.name = "hci_intel",
1226 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1227 		.pm = &intel_pm_ops,
1228 	},
1229 };
1230 
1231 int __init intel_init(void)
1232 {
1233 	platform_driver_register(&intel_driver);
1234 
1235 	return hci_uart_register_proto(&intel_proto);
1236 }
1237 
1238 int __exit intel_deinit(void)
1239 {
1240 	platform_driver_unregister(&intel_driver);
1241 
1242 	return hci_uart_unregister_proto(&intel_proto);
1243 }
1244