xref: /openbmc/linux/drivers/bluetooth/hci_intel.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21 
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24 
25 #include "hci_uart.h"
26 #include "btintel.h"
27 
28 #define STATE_BOOTLOADER	0
29 #define STATE_DOWNLOADING	1
30 #define STATE_FIRMWARE_LOADED	2
31 #define STATE_FIRMWARE_FAILED	3
32 #define STATE_BOOTING		4
33 #define STATE_LPM_ENABLED	5
34 #define STATE_TX_ACTIVE		6
35 #define STATE_SUSPENDED		7
36 #define STATE_LPM_TRANSACTION	8
37 
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42 
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46 
47 #define LPM_SUSPEND_DELAY_MS 1000
48 
49 struct hci_lpm_pkt {
50 	__u8 opcode;
51 	__u8 dlen;
52 	__u8 data[];
53 } __packed;
54 
55 struct intel_device {
56 	struct list_head list;
57 	struct platform_device *pdev;
58 	struct gpio_desc *reset;
59 	struct hci_uart *hu;
60 	struct mutex hu_lock;
61 	int irq;
62 };
63 
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66 
67 struct intel_data {
68 	struct sk_buff *rx_skb;
69 	struct sk_buff_head txq;
70 	struct work_struct busy_work;
71 	struct hci_uart *hu;
72 	unsigned long flags;
73 };
74 
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 	switch (speed) {
78 	case 9600:
79 		return 0x00;
80 	case 19200:
81 		return 0x01;
82 	case 38400:
83 		return 0x02;
84 	case 57600:
85 		return 0x03;
86 	case 115200:
87 		return 0x04;
88 	case 230400:
89 		return 0x05;
90 	case 460800:
91 		return 0x06;
92 	case 921600:
93 		return 0x07;
94 	case 1843200:
95 		return 0x08;
96 	case 3250000:
97 		return 0x09;
98 	case 2000000:
99 		return 0x0a;
100 	case 3000000:
101 		return 0x0b;
102 	default:
103 		return 0xff;
104 	}
105 }
106 
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 	struct intel_data *intel = hu->priv;
110 	int err;
111 
112 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 				  TASK_INTERRUPTIBLE,
114 				  msecs_to_jiffies(1000));
115 
116 	if (err == -EINTR) {
117 		bt_dev_err(hu->hdev, "Device boot interrupted");
118 		return -EINTR;
119 	}
120 
121 	if (err) {
122 		bt_dev_err(hu->hdev, "Device boot timeout");
123 		return -ETIMEDOUT;
124 	}
125 
126 	return err;
127 }
128 
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132 	struct intel_data *intel = hu->priv;
133 	int err;
134 
135 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136 				  TASK_INTERRUPTIBLE,
137 				  msecs_to_jiffies(1000));
138 
139 	if (err == -EINTR) {
140 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
141 		return -EINTR;
142 	}
143 
144 	if (err) {
145 		bt_dev_err(hu->hdev, "LPM transaction timeout");
146 		return -ETIMEDOUT;
147 	}
148 
149 	return err;
150 }
151 
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 	struct intel_data *intel = hu->priv;
156 	struct sk_buff *skb;
157 
158 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 	    test_bit(STATE_SUSPENDED, &intel->flags))
160 		return 0;
161 
162 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163 		return -EAGAIN;
164 
165 	bt_dev_dbg(hu->hdev, "Suspending");
166 
167 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168 	if (!skb) {
169 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170 		return -ENOMEM;
171 	}
172 
173 	skb_put_data(skb, suspend, sizeof(suspend));
174 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175 
176 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177 
178 	/* LPM flow is a priority, enqueue packet at list head */
179 	skb_queue_head(&intel->txq, skb);
180 	hci_uart_tx_wakeup(hu);
181 
182 	intel_wait_lpm_transaction(hu);
183 	/* Even in case of failure, continue and test the suspended flag */
184 
185 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186 
187 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 		bt_dev_err(hu->hdev, "Device suspend error");
189 		return -EINVAL;
190 	}
191 
192 	bt_dev_dbg(hu->hdev, "Suspended");
193 
194 	hci_uart_set_flow_control(hu, true);
195 
196 	return 0;
197 }
198 
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201 	struct intel_data *intel = hu->priv;
202 	struct sk_buff *skb;
203 
204 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 	    !test_bit(STATE_SUSPENDED, &intel->flags))
206 		return 0;
207 
208 	bt_dev_dbg(hu->hdev, "Resuming");
209 
210 	hci_uart_set_flow_control(hu, false);
211 
212 	skb = bt_skb_alloc(0, GFP_KERNEL);
213 	if (!skb) {
214 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215 		return -ENOMEM;
216 	}
217 
218 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219 
220 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221 
222 	/* LPM flow is a priority, enqueue packet at list head */
223 	skb_queue_head(&intel->txq, skb);
224 	hci_uart_tx_wakeup(hu);
225 
226 	intel_wait_lpm_transaction(hu);
227 	/* Even in case of failure, continue and test the suspended flag */
228 
229 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230 
231 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 		bt_dev_err(hu->hdev, "Device resume error");
233 		return -EINVAL;
234 	}
235 
236 	bt_dev_dbg(hu->hdev, "Resumed");
237 
238 	return 0;
239 }
240 #endif /* CONFIG_PM */
241 
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 	struct intel_data *intel = hu->priv;
246 	struct sk_buff *skb;
247 
248 	hci_uart_set_flow_control(hu, false);
249 
250 	clear_bit(STATE_SUSPENDED, &intel->flags);
251 
252 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253 	if (!skb) {
254 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255 		return -ENOMEM;
256 	}
257 
258 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260 
261 	/* LPM flow is a priority, enqueue packet at list head */
262 	skb_queue_head(&intel->txq, skb);
263 	hci_uart_tx_wakeup(hu);
264 
265 	bt_dev_dbg(hu->hdev, "Resumed by controller");
266 
267 	return 0;
268 }
269 
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272 	struct intel_device *idev = dev_id;
273 
274 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
275 
276 	mutex_lock(&idev->hu_lock);
277 	if (idev->hu)
278 		intel_lpm_host_wake(idev->hu);
279 	mutex_unlock(&idev->hu_lock);
280 
281 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 	pm_runtime_get(&idev->pdev->dev);
283 	pm_runtime_mark_last_busy(&idev->pdev->dev);
284 	pm_runtime_put_autosuspend(&idev->pdev->dev);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291 	struct intel_device *idev;
292 	int err = -ENODEV;
293 
294 	if (!hu->tty->dev)
295 		return err;
296 
297 	mutex_lock(&intel_device_list_lock);
298 
299 	list_for_each_entry(idev, &intel_device_list, list) {
300 		/* tty device and pdev device should share the same parent
301 		 * which is the UART port.
302 		 */
303 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
304 			continue;
305 
306 		if (!idev->reset) {
307 			err = -ENOTSUPP;
308 			break;
309 		}
310 
311 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
312 			hu, dev_name(&idev->pdev->dev), powered);
313 
314 		gpiod_set_value(idev->reset, powered);
315 
316 		/* Provide to idev a hu reference which is used to run LPM
317 		 * transactions (lpm suspend/resume) from PM callbacks.
318 		 * hu needs to be protected against concurrent removing during
319 		 * these PM ops.
320 		 */
321 		mutex_lock(&idev->hu_lock);
322 		idev->hu = powered ? hu : NULL;
323 		mutex_unlock(&idev->hu_lock);
324 
325 		if (idev->irq < 0)
326 			break;
327 
328 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
329 			err = devm_request_threaded_irq(&idev->pdev->dev,
330 							idev->irq, NULL,
331 							intel_irq,
332 							IRQF_ONESHOT,
333 							"bt-host-wake", idev);
334 			if (err) {
335 				BT_ERR("hu %p, unable to allocate irq-%d",
336 				       hu, idev->irq);
337 				break;
338 			}
339 
340 			device_wakeup_enable(&idev->pdev->dev);
341 
342 			pm_runtime_set_active(&idev->pdev->dev);
343 			pm_runtime_use_autosuspend(&idev->pdev->dev);
344 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
345 							 LPM_SUSPEND_DELAY_MS);
346 			pm_runtime_enable(&idev->pdev->dev);
347 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
348 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
349 			device_wakeup_disable(&idev->pdev->dev);
350 
351 			pm_runtime_disable(&idev->pdev->dev);
352 		}
353 	}
354 
355 	mutex_unlock(&intel_device_list_lock);
356 
357 	return err;
358 }
359 
360 static void intel_busy_work(struct work_struct *work)
361 {
362 	struct intel_data *intel = container_of(work, struct intel_data,
363 						busy_work);
364 	struct intel_device *idev;
365 
366 	if (!intel->hu->tty->dev)
367 		return;
368 
369 	/* Link is busy, delay the suspend */
370 	mutex_lock(&intel_device_list_lock);
371 	list_for_each_entry(idev, &intel_device_list, list) {
372 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
373 			pm_runtime_get(&idev->pdev->dev);
374 			pm_runtime_mark_last_busy(&idev->pdev->dev);
375 			pm_runtime_put_autosuspend(&idev->pdev->dev);
376 			break;
377 		}
378 	}
379 	mutex_unlock(&intel_device_list_lock);
380 }
381 
382 static int intel_open(struct hci_uart *hu)
383 {
384 	struct intel_data *intel;
385 
386 	BT_DBG("hu %p", hu);
387 
388 	if (!hci_uart_has_flow_control(hu))
389 		return -EOPNOTSUPP;
390 
391 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
392 	if (!intel)
393 		return -ENOMEM;
394 
395 	skb_queue_head_init(&intel->txq);
396 	INIT_WORK(&intel->busy_work, intel_busy_work);
397 
398 	intel->hu = hu;
399 
400 	hu->priv = intel;
401 
402 	if (!intel_set_power(hu, true))
403 		set_bit(STATE_BOOTING, &intel->flags);
404 
405 	return 0;
406 }
407 
408 static int intel_close(struct hci_uart *hu)
409 {
410 	struct intel_data *intel = hu->priv;
411 
412 	BT_DBG("hu %p", hu);
413 
414 	cancel_work_sync(&intel->busy_work);
415 
416 	intel_set_power(hu, false);
417 
418 	skb_queue_purge(&intel->txq);
419 	kfree_skb(intel->rx_skb);
420 	kfree(intel);
421 
422 	hu->priv = NULL;
423 	return 0;
424 }
425 
426 static int intel_flush(struct hci_uart *hu)
427 {
428 	struct intel_data *intel = hu->priv;
429 
430 	BT_DBG("hu %p", hu);
431 
432 	skb_queue_purge(&intel->txq);
433 
434 	return 0;
435 }
436 
437 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
438 {
439 	struct sk_buff *skb;
440 	struct hci_event_hdr *hdr;
441 	struct hci_ev_cmd_complete *evt;
442 
443 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
444 	if (!skb)
445 		return -ENOMEM;
446 
447 	hdr = skb_put(skb, sizeof(*hdr));
448 	hdr->evt = HCI_EV_CMD_COMPLETE;
449 	hdr->plen = sizeof(*evt) + 1;
450 
451 	evt = skb_put(skb, sizeof(*evt));
452 	evt->ncmd = 0x01;
453 	evt->opcode = cpu_to_le16(opcode);
454 
455 	skb_put_u8(skb, 0x00);
456 
457 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
458 
459 	return hci_recv_frame(hdev, skb);
460 }
461 
462 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
463 {
464 	struct intel_data *intel = hu->priv;
465 	struct hci_dev *hdev = hu->hdev;
466 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
467 	struct sk_buff *skb;
468 	int err;
469 
470 	/* This can be the first command sent to the chip, check
471 	 * that the controller is ready.
472 	 */
473 	err = intel_wait_booting(hu);
474 
475 	clear_bit(STATE_BOOTING, &intel->flags);
476 
477 	/* In case of timeout, try to continue anyway */
478 	if (err && err != -ETIMEDOUT)
479 		return err;
480 
481 	bt_dev_info(hdev, "Change controller speed to %d", speed);
482 
483 	speed_cmd[3] = intel_convert_speed(speed);
484 	if (speed_cmd[3] == 0xff) {
485 		bt_dev_err(hdev, "Unsupported speed");
486 		return -EINVAL;
487 	}
488 
489 	/* Device will not accept speed change if Intel version has not been
490 	 * previously requested.
491 	 */
492 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
493 	if (IS_ERR(skb)) {
494 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
495 			   PTR_ERR(skb));
496 		return PTR_ERR(skb);
497 	}
498 	kfree_skb(skb);
499 
500 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
501 	if (!skb) {
502 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
503 		return -ENOMEM;
504 	}
505 
506 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
507 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
508 
509 	hci_uart_set_flow_control(hu, true);
510 
511 	skb_queue_tail(&intel->txq, skb);
512 	hci_uart_tx_wakeup(hu);
513 
514 	/* wait 100ms to change baudrate on controller side */
515 	msleep(100);
516 
517 	hci_uart_set_baudrate(hu, speed);
518 	hci_uart_set_flow_control(hu, false);
519 
520 	return 0;
521 }
522 
523 static int intel_setup(struct hci_uart *hu)
524 {
525 	struct intel_data *intel = hu->priv;
526 	struct hci_dev *hdev = hu->hdev;
527 	struct sk_buff *skb;
528 	struct intel_version ver;
529 	struct intel_boot_params params;
530 	struct intel_device *idev;
531 	const struct firmware *fw;
532 	char fwname[64];
533 	u32 boot_param;
534 	ktime_t calltime, delta, rettime;
535 	unsigned long long duration;
536 	unsigned int init_speed, oper_speed;
537 	int speed_change = 0;
538 	int err;
539 
540 	bt_dev_dbg(hdev, "start intel_setup");
541 
542 	hu->hdev->set_diag = btintel_set_diag;
543 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
544 
545 	/* Set the default boot parameter to 0x0 and it is updated to
546 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
547 	 * command while downloading the firmware.
548 	 */
549 	boot_param = 0x00000000;
550 
551 	calltime = ktime_get();
552 
553 	if (hu->init_speed)
554 		init_speed = hu->init_speed;
555 	else
556 		init_speed = hu->proto->init_speed;
557 
558 	if (hu->oper_speed)
559 		oper_speed = hu->oper_speed;
560 	else
561 		oper_speed = hu->proto->oper_speed;
562 
563 	if (oper_speed && init_speed && oper_speed != init_speed)
564 		speed_change = 1;
565 
566 	/* Check that the controller is ready */
567 	err = intel_wait_booting(hu);
568 
569 	clear_bit(STATE_BOOTING, &intel->flags);
570 
571 	/* In case of timeout, try to continue anyway */
572 	if (err && err != -ETIMEDOUT)
573 		return err;
574 
575 	set_bit(STATE_BOOTLOADER, &intel->flags);
576 
577 	/* Read the Intel version information to determine if the device
578 	 * is in bootloader mode or if it already has operational firmware
579 	 * loaded.
580 	 */
581 	err = btintel_read_version(hdev, &ver);
582 	if (err)
583 		return err;
584 
585 	/* The hardware platform number has a fixed value of 0x37 and
586 	 * for now only accept this single value.
587 	 */
588 	if (ver.hw_platform != 0x37) {
589 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
590 			   ver.hw_platform);
591 		return -EINVAL;
592 	}
593 
594         /* Check for supported iBT hardware variants of this firmware
595          * loading method.
596          *
597          * This check has been put in place to ensure correct forward
598          * compatibility options when newer hardware variants come along.
599          */
600 	switch (ver.hw_variant) {
601 	case 0x0b:	/* LnP */
602 	case 0x0c:	/* WsP */
603 	case 0x12:	/* ThP */
604 		break;
605 	default:
606 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
607 			   ver.hw_variant);
608 		return -EINVAL;
609 	}
610 
611 	btintel_version_info(hdev, &ver);
612 
613 	/* The firmware variant determines if the device is in bootloader
614 	 * mode or is running operational firmware. The value 0x06 identifies
615 	 * the bootloader and the value 0x23 identifies the operational
616 	 * firmware.
617 	 *
618 	 * When the operational firmware is already present, then only
619 	 * the check for valid Bluetooth device address is needed. This
620 	 * determines if the device will be added as configured or
621 	 * unconfigured controller.
622 	 *
623 	 * It is not possible to use the Secure Boot Parameters in this
624 	 * case since that command is only available in bootloader mode.
625 	 */
626 	if (ver.fw_variant == 0x23) {
627 		clear_bit(STATE_BOOTLOADER, &intel->flags);
628 		btintel_check_bdaddr(hdev);
629 		return 0;
630 	}
631 
632 	/* If the device is not in bootloader mode, then the only possible
633 	 * choice is to return an error and abort the device initialization.
634 	 */
635 	if (ver.fw_variant != 0x06) {
636 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
637 			   ver.fw_variant);
638 		return -ENODEV;
639 	}
640 
641 	/* Read the secure boot parameters to identify the operating
642 	 * details of the bootloader.
643 	 */
644 	err = btintel_read_boot_params(hdev, &params);
645 	if (err)
646 		return err;
647 
648 	/* It is required that every single firmware fragment is acknowledged
649 	 * with a command complete event. If the boot parameters indicate
650 	 * that this bootloader does not send them, then abort the setup.
651 	 */
652 	if (params.limited_cce != 0x00) {
653 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
654 			   params.limited_cce);
655 		return -EINVAL;
656 	}
657 
658 	/* If the OTP has no valid Bluetooth device address, then there will
659 	 * also be no valid address for the operational firmware.
660 	 */
661 	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
662 		bt_dev_info(hdev, "No device address configured");
663 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
664 	}
665 
666 	/* With this Intel bootloader only the hardware variant and device
667 	 * revision information are used to select the right firmware for SfP
668 	 * and WsP.
669 	 *
670 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
671 	 *
672 	 * Currently the supported hardware variants are:
673 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
674 	 *   12 (0x0c) for iBT 3.5 (WsP)
675 	 *
676 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
677 	 * variant, HW revision and FW revision, as these are dependent on CNVi
678 	 * and RF Combination.
679 	 *
680 	 *   18 (0x12) for iBT3.5 (ThP/JfP)
681 	 *
682 	 * The firmware file name for these will be
683 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
684 	 *
685 	 */
686 	switch (ver.hw_variant) {
687 	case 0x0b:      /* SfP */
688 	case 0x0c:      /* WsP */
689 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
690 			 ver.hw_variant, le16_to_cpu(params.dev_revid));
691 		break;
692 	case 0x12:      /* ThP */
693 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
694 			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
695 		break;
696 	default:
697 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
698 			   ver.hw_variant);
699 		return -EINVAL;
700 	}
701 
702 	err = request_firmware(&fw, fwname, &hdev->dev);
703 	if (err < 0) {
704 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
705 			   err);
706 		return err;
707 	}
708 
709 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
710 
711 	/* Save the DDC file name for later */
712 	switch (ver.hw_variant) {
713 	case 0x0b:      /* SfP */
714 	case 0x0c:      /* WsP */
715 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
716 			 ver.hw_variant, le16_to_cpu(params.dev_revid));
717 		break;
718 	case 0x12:      /* ThP */
719 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
720 			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
721 		break;
722 	default:
723 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
724 			   ver.hw_variant);
725 		return -EINVAL;
726 	}
727 
728 	if (fw->size < 644) {
729 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
730 			   fw->size);
731 		err = -EBADF;
732 		goto done;
733 	}
734 
735 	set_bit(STATE_DOWNLOADING, &intel->flags);
736 
737 	/* Start firmware downloading and get boot parameter */
738 	err = btintel_download_firmware(hdev, fw, &boot_param);
739 	if (err < 0)
740 		goto done;
741 
742 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
743 
744 	bt_dev_info(hdev, "Waiting for firmware download to complete");
745 
746 	/* Before switching the device into operational mode and with that
747 	 * booting the loaded firmware, wait for the bootloader notification
748 	 * that all fragments have been successfully received.
749 	 *
750 	 * When the event processing receives the notification, then the
751 	 * STATE_DOWNLOADING flag will be cleared.
752 	 *
753 	 * The firmware loading should not take longer than 5 seconds
754 	 * and thus just timeout if that happens and fail the setup
755 	 * of this device.
756 	 */
757 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
758 				  TASK_INTERRUPTIBLE,
759 				  msecs_to_jiffies(5000));
760 	if (err == -EINTR) {
761 		bt_dev_err(hdev, "Firmware loading interrupted");
762 		err = -EINTR;
763 		goto done;
764 	}
765 
766 	if (err) {
767 		bt_dev_err(hdev, "Firmware loading timeout");
768 		err = -ETIMEDOUT;
769 		goto done;
770 	}
771 
772 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
773 		bt_dev_err(hdev, "Firmware loading failed");
774 		err = -ENOEXEC;
775 		goto done;
776 	}
777 
778 	rettime = ktime_get();
779 	delta = ktime_sub(rettime, calltime);
780 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
781 
782 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
783 
784 done:
785 	release_firmware(fw);
786 
787 	if (err < 0)
788 		return err;
789 
790 	/* We need to restore the default speed before Intel reset */
791 	if (speed_change) {
792 		err = intel_set_baudrate(hu, init_speed);
793 		if (err)
794 			return err;
795 	}
796 
797 	calltime = ktime_get();
798 
799 	set_bit(STATE_BOOTING, &intel->flags);
800 
801 	err = btintel_send_intel_reset(hdev, boot_param);
802 	if (err)
803 		return err;
804 
805 	/* The bootloader will not indicate when the device is ready. This
806 	 * is done by the operational firmware sending bootup notification.
807 	 *
808 	 * Booting into operational firmware should not take longer than
809 	 * 1 second. However if that happens, then just fail the setup
810 	 * since something went wrong.
811 	 */
812 	bt_dev_info(hdev, "Waiting for device to boot");
813 
814 	err = intel_wait_booting(hu);
815 	if (err)
816 		return err;
817 
818 	clear_bit(STATE_BOOTING, &intel->flags);
819 
820 	rettime = ktime_get();
821 	delta = ktime_sub(rettime, calltime);
822 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
823 
824 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
825 
826 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
827 	 * until further LPM TX notification.
828 	 */
829 	mutex_lock(&intel_device_list_lock);
830 	list_for_each_entry(idev, &intel_device_list, list) {
831 		if (!hu->tty->dev)
832 			break;
833 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
834 			if (device_may_wakeup(&idev->pdev->dev)) {
835 				set_bit(STATE_LPM_ENABLED, &intel->flags);
836 				set_bit(STATE_TX_ACTIVE, &intel->flags);
837 			}
838 			break;
839 		}
840 	}
841 	mutex_unlock(&intel_device_list_lock);
842 
843 	/* Ignore errors, device can work without DDC parameters */
844 	btintel_load_ddc_config(hdev, fwname);
845 
846 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
847 	if (IS_ERR(skb))
848 		return PTR_ERR(skb);
849 	kfree_skb(skb);
850 
851 	if (speed_change) {
852 		err = intel_set_baudrate(hu, oper_speed);
853 		if (err)
854 			return err;
855 	}
856 
857 	bt_dev_info(hdev, "Setup complete");
858 
859 	clear_bit(STATE_BOOTLOADER, &intel->flags);
860 
861 	return 0;
862 }
863 
864 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
865 {
866 	struct hci_uart *hu = hci_get_drvdata(hdev);
867 	struct intel_data *intel = hu->priv;
868 	struct hci_event_hdr *hdr;
869 
870 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
871 	    !test_bit(STATE_BOOTING, &intel->flags))
872 		goto recv;
873 
874 	hdr = (void *)skb->data;
875 
876 	/* When the firmware loading completes the device sends
877 	 * out a vendor specific event indicating the result of
878 	 * the firmware loading.
879 	 */
880 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
881 	    skb->data[2] == 0x06) {
882 		if (skb->data[3] != 0x00)
883 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
884 
885 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
886 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
887 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
888 
889 	/* When switching to the operational firmware the device
890 	 * sends a vendor specific event indicating that the bootup
891 	 * completed.
892 	 */
893 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
894 		   skb->data[2] == 0x02) {
895 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
896 			wake_up_bit(&intel->flags, STATE_BOOTING);
897 	}
898 recv:
899 	return hci_recv_frame(hdev, skb);
900 }
901 
902 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
903 {
904 	struct hci_uart *hu = hci_get_drvdata(hdev);
905 	struct intel_data *intel = hu->priv;
906 
907 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
908 
909 	if (value) {
910 		set_bit(STATE_TX_ACTIVE, &intel->flags);
911 		schedule_work(&intel->busy_work);
912 	} else {
913 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
914 	}
915 }
916 
917 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
918 {
919 	struct hci_lpm_pkt *lpm = (void *)skb->data;
920 	struct hci_uart *hu = hci_get_drvdata(hdev);
921 	struct intel_data *intel = hu->priv;
922 
923 	switch (lpm->opcode) {
924 	case LPM_OP_TX_NOTIFY:
925 		if (lpm->dlen < 1) {
926 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
927 			break;
928 		}
929 		intel_recv_lpm_notify(hdev, lpm->data[0]);
930 		break;
931 	case LPM_OP_SUSPEND_ACK:
932 		set_bit(STATE_SUSPENDED, &intel->flags);
933 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
934 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
935 		break;
936 	case LPM_OP_RESUME_ACK:
937 		clear_bit(STATE_SUSPENDED, &intel->flags);
938 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
939 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
940 		break;
941 	default:
942 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
943 		break;
944 	}
945 
946 	kfree_skb(skb);
947 
948 	return 0;
949 }
950 
951 #define INTEL_RECV_LPM \
952 	.type = HCI_LPM_PKT, \
953 	.hlen = HCI_LPM_HDR_SIZE, \
954 	.loff = 1, \
955 	.lsize = 1, \
956 	.maxlen = HCI_LPM_MAX_SIZE
957 
958 static const struct h4_recv_pkt intel_recv_pkts[] = {
959 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
960 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
961 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
962 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
963 };
964 
965 static int intel_recv(struct hci_uart *hu, const void *data, int count)
966 {
967 	struct intel_data *intel = hu->priv;
968 
969 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
970 		return -EUNATCH;
971 
972 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
973 				    intel_recv_pkts,
974 				    ARRAY_SIZE(intel_recv_pkts));
975 	if (IS_ERR(intel->rx_skb)) {
976 		int err = PTR_ERR(intel->rx_skb);
977 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
978 		intel->rx_skb = NULL;
979 		return err;
980 	}
981 
982 	return count;
983 }
984 
985 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
986 {
987 	struct intel_data *intel = hu->priv;
988 	struct intel_device *idev;
989 
990 	BT_DBG("hu %p skb %p", hu, skb);
991 
992 	if (!hu->tty->dev)
993 		goto out_enqueue;
994 
995 	/* Be sure our controller is resumed and potential LPM transaction
996 	 * completed before enqueuing any packet.
997 	 */
998 	mutex_lock(&intel_device_list_lock);
999 	list_for_each_entry(idev, &intel_device_list, list) {
1000 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1001 			pm_runtime_get_sync(&idev->pdev->dev);
1002 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1003 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1004 			break;
1005 		}
1006 	}
1007 	mutex_unlock(&intel_device_list_lock);
1008 out_enqueue:
1009 	skb_queue_tail(&intel->txq, skb);
1010 
1011 	return 0;
1012 }
1013 
1014 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1015 {
1016 	struct intel_data *intel = hu->priv;
1017 	struct sk_buff *skb;
1018 
1019 	skb = skb_dequeue(&intel->txq);
1020 	if (!skb)
1021 		return skb;
1022 
1023 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1024 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1025 		struct hci_command_hdr *cmd = (void *)skb->data;
1026 		__u16 opcode = le16_to_cpu(cmd->opcode);
1027 
1028 		/* When the 0xfc01 command is issued to boot into
1029 		 * the operational firmware, it will actually not
1030 		 * send a command complete event. To keep the flow
1031 		 * control working inject that event here.
1032 		 */
1033 		if (opcode == 0xfc01)
1034 			inject_cmd_complete(hu->hdev, opcode);
1035 	}
1036 
1037 	/* Prepend skb with frame type */
1038 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1039 
1040 	return skb;
1041 }
1042 
1043 static const struct hci_uart_proto intel_proto = {
1044 	.id		= HCI_UART_INTEL,
1045 	.name		= "Intel",
1046 	.manufacturer	= 2,
1047 	.init_speed	= 115200,
1048 	.oper_speed	= 3000000,
1049 	.open		= intel_open,
1050 	.close		= intel_close,
1051 	.flush		= intel_flush,
1052 	.setup		= intel_setup,
1053 	.set_baudrate	= intel_set_baudrate,
1054 	.recv		= intel_recv,
1055 	.enqueue	= intel_enqueue,
1056 	.dequeue	= intel_dequeue,
1057 };
1058 
1059 #ifdef CONFIG_ACPI
1060 static const struct acpi_device_id intel_acpi_match[] = {
1061 	{ "INT33E1", 0 },
1062 	{ "INT33E3", 0 },
1063 	{ }
1064 };
1065 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1066 #endif
1067 
1068 #ifdef CONFIG_PM
1069 static int intel_suspend_device(struct device *dev)
1070 {
1071 	struct intel_device *idev = dev_get_drvdata(dev);
1072 
1073 	mutex_lock(&idev->hu_lock);
1074 	if (idev->hu)
1075 		intel_lpm_suspend(idev->hu);
1076 	mutex_unlock(&idev->hu_lock);
1077 
1078 	return 0;
1079 }
1080 
1081 static int intel_resume_device(struct device *dev)
1082 {
1083 	struct intel_device *idev = dev_get_drvdata(dev);
1084 
1085 	mutex_lock(&idev->hu_lock);
1086 	if (idev->hu)
1087 		intel_lpm_resume(idev->hu);
1088 	mutex_unlock(&idev->hu_lock);
1089 
1090 	return 0;
1091 }
1092 #endif
1093 
1094 #ifdef CONFIG_PM_SLEEP
1095 static int intel_suspend(struct device *dev)
1096 {
1097 	struct intel_device *idev = dev_get_drvdata(dev);
1098 
1099 	if (device_may_wakeup(dev))
1100 		enable_irq_wake(idev->irq);
1101 
1102 	return intel_suspend_device(dev);
1103 }
1104 
1105 static int intel_resume(struct device *dev)
1106 {
1107 	struct intel_device *idev = dev_get_drvdata(dev);
1108 
1109 	if (device_may_wakeup(dev))
1110 		disable_irq_wake(idev->irq);
1111 
1112 	return intel_resume_device(dev);
1113 }
1114 #endif
1115 
1116 static const struct dev_pm_ops intel_pm_ops = {
1117 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1118 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1119 };
1120 
1121 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1122 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1123 
1124 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1125 	{ "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1126 	{ "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1127 	{ }
1128 };
1129 
1130 static int intel_probe(struct platform_device *pdev)
1131 {
1132 	struct intel_device *idev;
1133 	int ret;
1134 
1135 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1136 	if (!idev)
1137 		return -ENOMEM;
1138 
1139 	mutex_init(&idev->hu_lock);
1140 
1141 	idev->pdev = pdev;
1142 
1143 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1144 	if (ret)
1145 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1146 
1147 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1148 	if (IS_ERR(idev->reset)) {
1149 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1150 		return PTR_ERR(idev->reset);
1151 	}
1152 
1153 	idev->irq = platform_get_irq(pdev, 0);
1154 	if (idev->irq < 0) {
1155 		struct gpio_desc *host_wake;
1156 
1157 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1158 
1159 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1160 		if (IS_ERR(host_wake)) {
1161 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1162 			goto no_irq;
1163 		}
1164 
1165 		idev->irq = gpiod_to_irq(host_wake);
1166 		if (idev->irq < 0) {
1167 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1168 			goto no_irq;
1169 		}
1170 	}
1171 
1172 	/* Only enable wake-up/irq when controller is powered */
1173 	device_set_wakeup_capable(&pdev->dev, true);
1174 	device_wakeup_disable(&pdev->dev);
1175 
1176 no_irq:
1177 	platform_set_drvdata(pdev, idev);
1178 
1179 	/* Place this instance on the device list */
1180 	mutex_lock(&intel_device_list_lock);
1181 	list_add_tail(&idev->list, &intel_device_list);
1182 	mutex_unlock(&intel_device_list_lock);
1183 
1184 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1185 		 desc_to_gpio(idev->reset), idev->irq);
1186 
1187 	return 0;
1188 }
1189 
1190 static int intel_remove(struct platform_device *pdev)
1191 {
1192 	struct intel_device *idev = platform_get_drvdata(pdev);
1193 
1194 	device_wakeup_disable(&pdev->dev);
1195 
1196 	mutex_lock(&intel_device_list_lock);
1197 	list_del(&idev->list);
1198 	mutex_unlock(&intel_device_list_lock);
1199 
1200 	dev_info(&pdev->dev, "unregistered.\n");
1201 
1202 	return 0;
1203 }
1204 
1205 static struct platform_driver intel_driver = {
1206 	.probe = intel_probe,
1207 	.remove = intel_remove,
1208 	.driver = {
1209 		.name = "hci_intel",
1210 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1211 		.pm = &intel_pm_ops,
1212 	},
1213 };
1214 
1215 int __init intel_init(void)
1216 {
1217 	platform_driver_register(&intel_driver);
1218 
1219 	return hci_uart_register_proto(&intel_proto);
1220 }
1221 
1222 int __exit intel_deinit(void)
1223 {
1224 	platform_driver_unregister(&intel_driver);
1225 
1226 	return hci_uart_unregister_proto(&intel_proto);
1227 }
1228