xref: /openbmc/linux/drivers/bluetooth/hci_intel.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == -EINTR) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == -EINTR) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	skb_put_data(skb, suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
274 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
275 
276 	/* LPM flow is a priority, enqueue packet at list head */
277 	skb_queue_head(&intel->txq, skb);
278 	hci_uart_tx_wakeup(hu);
279 
280 	bt_dev_dbg(hu->hdev, "Resumed by controller");
281 
282 	return 0;
283 }
284 
285 static irqreturn_t intel_irq(int irq, void *dev_id)
286 {
287 	struct intel_device *idev = dev_id;
288 
289 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
290 
291 	mutex_lock(&idev->hu_lock);
292 	if (idev->hu)
293 		intel_lpm_host_wake(idev->hu);
294 	mutex_unlock(&idev->hu_lock);
295 
296 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 	pm_runtime_get(&idev->pdev->dev);
298 	pm_runtime_mark_last_busy(&idev->pdev->dev);
299 	pm_runtime_put_autosuspend(&idev->pdev->dev);
300 
301 	return IRQ_HANDLED;
302 }
303 
304 static int intel_set_power(struct hci_uart *hu, bool powered)
305 {
306 	struct list_head *p;
307 	int err = -ENODEV;
308 
309 	if (!hu->tty->dev)
310 		return err;
311 
312 	mutex_lock(&intel_device_list_lock);
313 
314 	list_for_each(p, &intel_device_list) {
315 		struct intel_device *idev = list_entry(p, struct intel_device,
316 						       list);
317 
318 		/* tty device and pdev device should share the same parent
319 		 * which is the UART port.
320 		 */
321 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
322 			continue;
323 
324 		if (!idev->reset) {
325 			err = -ENOTSUPP;
326 			break;
327 		}
328 
329 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 			hu, dev_name(&idev->pdev->dev), powered);
331 
332 		gpiod_set_value(idev->reset, powered);
333 
334 		/* Provide to idev a hu reference which is used to run LPM
335 		 * transactions (lpm suspend/resume) from PM callbacks.
336 		 * hu needs to be protected against concurrent removing during
337 		 * these PM ops.
338 		 */
339 		mutex_lock(&idev->hu_lock);
340 		idev->hu = powered ? hu : NULL;
341 		mutex_unlock(&idev->hu_lock);
342 
343 		if (idev->irq < 0)
344 			break;
345 
346 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
347 			err = devm_request_threaded_irq(&idev->pdev->dev,
348 							idev->irq, NULL,
349 							intel_irq,
350 							IRQF_ONESHOT,
351 							"bt-host-wake", idev);
352 			if (err) {
353 				BT_ERR("hu %p, unable to allocate irq-%d",
354 				       hu, idev->irq);
355 				break;
356 			}
357 
358 			device_wakeup_enable(&idev->pdev->dev);
359 
360 			pm_runtime_set_active(&idev->pdev->dev);
361 			pm_runtime_use_autosuspend(&idev->pdev->dev);
362 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
363 							 LPM_SUSPEND_DELAY_MS);
364 			pm_runtime_enable(&idev->pdev->dev);
365 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
366 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
367 			device_wakeup_disable(&idev->pdev->dev);
368 
369 			pm_runtime_disable(&idev->pdev->dev);
370 		}
371 	}
372 
373 	mutex_unlock(&intel_device_list_lock);
374 
375 	return err;
376 }
377 
378 static void intel_busy_work(struct work_struct *work)
379 {
380 	struct list_head *p;
381 	struct intel_data *intel = container_of(work, struct intel_data,
382 						busy_work);
383 
384 	if (!intel->hu->tty->dev)
385 		return;
386 
387 	/* Link is busy, delay the suspend */
388 	mutex_lock(&intel_device_list_lock);
389 	list_for_each(p, &intel_device_list) {
390 		struct intel_device *idev = list_entry(p, struct intel_device,
391 						       list);
392 
393 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
394 			pm_runtime_get(&idev->pdev->dev);
395 			pm_runtime_mark_last_busy(&idev->pdev->dev);
396 			pm_runtime_put_autosuspend(&idev->pdev->dev);
397 			break;
398 		}
399 	}
400 	mutex_unlock(&intel_device_list_lock);
401 }
402 
403 static int intel_open(struct hci_uart *hu)
404 {
405 	struct intel_data *intel;
406 
407 	BT_DBG("hu %p", hu);
408 
409 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
410 	if (!intel)
411 		return -ENOMEM;
412 
413 	skb_queue_head_init(&intel->txq);
414 	INIT_WORK(&intel->busy_work, intel_busy_work);
415 
416 	intel->hu = hu;
417 
418 	hu->priv = intel;
419 
420 	if (!intel_set_power(hu, true))
421 		set_bit(STATE_BOOTING, &intel->flags);
422 
423 	return 0;
424 }
425 
426 static int intel_close(struct hci_uart *hu)
427 {
428 	struct intel_data *intel = hu->priv;
429 
430 	BT_DBG("hu %p", hu);
431 
432 	cancel_work_sync(&intel->busy_work);
433 
434 	intel_set_power(hu, false);
435 
436 	skb_queue_purge(&intel->txq);
437 	kfree_skb(intel->rx_skb);
438 	kfree(intel);
439 
440 	hu->priv = NULL;
441 	return 0;
442 }
443 
444 static int intel_flush(struct hci_uart *hu)
445 {
446 	struct intel_data *intel = hu->priv;
447 
448 	BT_DBG("hu %p", hu);
449 
450 	skb_queue_purge(&intel->txq);
451 
452 	return 0;
453 }
454 
455 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
456 {
457 	struct sk_buff *skb;
458 	struct hci_event_hdr *hdr;
459 	struct hci_ev_cmd_complete *evt;
460 
461 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
462 	if (!skb)
463 		return -ENOMEM;
464 
465 	hdr = skb_put(skb, sizeof(*hdr));
466 	hdr->evt = HCI_EV_CMD_COMPLETE;
467 	hdr->plen = sizeof(*evt) + 1;
468 
469 	evt = skb_put(skb, sizeof(*evt));
470 	evt->ncmd = 0x01;
471 	evt->opcode = cpu_to_le16(opcode);
472 
473 	skb_put_u8(skb, 0x00);
474 
475 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
476 
477 	return hci_recv_frame(hdev, skb);
478 }
479 
480 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
481 {
482 	struct intel_data *intel = hu->priv;
483 	struct hci_dev *hdev = hu->hdev;
484 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
485 	struct sk_buff *skb;
486 	int err;
487 
488 	/* This can be the first command sent to the chip, check
489 	 * that the controller is ready.
490 	 */
491 	err = intel_wait_booting(hu);
492 
493 	clear_bit(STATE_BOOTING, &intel->flags);
494 
495 	/* In case of timeout, try to continue anyway */
496 	if (err && err != -ETIMEDOUT)
497 		return err;
498 
499 	bt_dev_info(hdev, "Change controller speed to %d", speed);
500 
501 	speed_cmd[3] = intel_convert_speed(speed);
502 	if (speed_cmd[3] == 0xff) {
503 		bt_dev_err(hdev, "Unsupported speed");
504 		return -EINVAL;
505 	}
506 
507 	/* Device will not accept speed change if Intel version has not been
508 	 * previously requested.
509 	 */
510 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
511 	if (IS_ERR(skb)) {
512 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
513 			   PTR_ERR(skb));
514 		return PTR_ERR(skb);
515 	}
516 	kfree_skb(skb);
517 
518 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
519 	if (!skb) {
520 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
521 		return -ENOMEM;
522 	}
523 
524 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
525 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
526 
527 	hci_uart_set_flow_control(hu, true);
528 
529 	skb_queue_tail(&intel->txq, skb);
530 	hci_uart_tx_wakeup(hu);
531 
532 	/* wait 100ms to change baudrate on controller side */
533 	msleep(100);
534 
535 	hci_uart_set_baudrate(hu, speed);
536 	hci_uart_set_flow_control(hu, false);
537 
538 	return 0;
539 }
540 
541 static int intel_setup(struct hci_uart *hu)
542 {
543 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
544 					  0x00, 0x08, 0x04, 0x00 };
545 	struct intel_data *intel = hu->priv;
546 	struct hci_dev *hdev = hu->hdev;
547 	struct sk_buff *skb;
548 	struct intel_version ver;
549 	struct intel_boot_params *params;
550 	struct list_head *p;
551 	const struct firmware *fw;
552 	const u8 *fw_ptr;
553 	char fwname[64];
554 	u32 frag_len;
555 	ktime_t calltime, delta, rettime;
556 	unsigned long long duration;
557 	unsigned int init_speed, oper_speed;
558 	int speed_change = 0;
559 	int err;
560 
561 	bt_dev_dbg(hdev, "start intel_setup");
562 
563 	hu->hdev->set_diag = btintel_set_diag;
564 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
565 
566 	calltime = ktime_get();
567 
568 	if (hu->init_speed)
569 		init_speed = hu->init_speed;
570 	else
571 		init_speed = hu->proto->init_speed;
572 
573 	if (hu->oper_speed)
574 		oper_speed = hu->oper_speed;
575 	else
576 		oper_speed = hu->proto->oper_speed;
577 
578 	if (oper_speed && init_speed && oper_speed != init_speed)
579 		speed_change = 1;
580 
581 	/* Check that the controller is ready */
582 	err = intel_wait_booting(hu);
583 
584 	clear_bit(STATE_BOOTING, &intel->flags);
585 
586 	/* In case of timeout, try to continue anyway */
587 	if (err && err != -ETIMEDOUT)
588 		return err;
589 
590 	set_bit(STATE_BOOTLOADER, &intel->flags);
591 
592 	/* Read the Intel version information to determine if the device
593 	 * is in bootloader mode or if it already has operational firmware
594 	 * loaded.
595 	 */
596 	 err = btintel_read_version(hdev, &ver);
597 	 if (err)
598 		return err;
599 
600 	/* The hardware platform number has a fixed value of 0x37 and
601 	 * for now only accept this single value.
602 	 */
603 	if (ver.hw_platform != 0x37) {
604 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
605 			   ver.hw_platform);
606 		return -EINVAL;
607 	}
608 
609         /* Check for supported iBT hardware variants of this firmware
610          * loading method.
611          *
612          * This check has been put in place to ensure correct forward
613          * compatibility options when newer hardware variants come along.
614          */
615 	switch (ver.hw_variant) {
616 	case 0x0b:	/* LnP */
617 	case 0x0c:	/* WsP */
618 	case 0x12:	/* ThP */
619 		break;
620 	default:
621 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
622 			   ver.hw_variant);
623 		return -EINVAL;
624 	}
625 
626 	btintel_version_info(hdev, &ver);
627 
628 	/* The firmware variant determines if the device is in bootloader
629 	 * mode or is running operational firmware. The value 0x06 identifies
630 	 * the bootloader and the value 0x23 identifies the operational
631 	 * firmware.
632 	 *
633 	 * When the operational firmware is already present, then only
634 	 * the check for valid Bluetooth device address is needed. This
635 	 * determines if the device will be added as configured or
636 	 * unconfigured controller.
637 	 *
638 	 * It is not possible to use the Secure Boot Parameters in this
639 	 * case since that command is only available in bootloader mode.
640 	 */
641 	if (ver.fw_variant == 0x23) {
642 		clear_bit(STATE_BOOTLOADER, &intel->flags);
643 		btintel_check_bdaddr(hdev);
644 		return 0;
645 	}
646 
647 	/* If the device is not in bootloader mode, then the only possible
648 	 * choice is to return an error and abort the device initialization.
649 	 */
650 	if (ver.fw_variant != 0x06) {
651 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
652 			   ver.fw_variant);
653 		return -ENODEV;
654 	}
655 
656 	/* Read the secure boot parameters to identify the operating
657 	 * details of the bootloader.
658 	 */
659 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
660 	if (IS_ERR(skb)) {
661 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
662 			   PTR_ERR(skb));
663 		return PTR_ERR(skb);
664 	}
665 
666 	if (skb->len != sizeof(*params)) {
667 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
668 		kfree_skb(skb);
669 		return -EILSEQ;
670 	}
671 
672 	params = (struct intel_boot_params *)skb->data;
673 	if (params->status) {
674 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
675 			   params->status);
676 		err = -bt_to_errno(params->status);
677 		kfree_skb(skb);
678 		return err;
679 	}
680 
681 	bt_dev_info(hdev, "Device revision is %u",
682 		    le16_to_cpu(params->dev_revid));
683 
684 	bt_dev_info(hdev, "Secure boot is %s",
685 		    params->secure_boot ? "enabled" : "disabled");
686 
687 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
688 		params->min_fw_build_nn, params->min_fw_build_cw,
689 		2000 + params->min_fw_build_yy);
690 
691 	/* It is required that every single firmware fragment is acknowledged
692 	 * with a command complete event. If the boot parameters indicate
693 	 * that this bootloader does not send them, then abort the setup.
694 	 */
695 	if (params->limited_cce != 0x00) {
696 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
697 			   params->limited_cce);
698 		kfree_skb(skb);
699 		return -EINVAL;
700 	}
701 
702 	/* If the OTP has no valid Bluetooth device address, then there will
703 	 * also be no valid address for the operational firmware.
704 	 */
705 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
706 		bt_dev_info(hdev, "No device address configured");
707 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
708 	}
709 
710 	/* With this Intel bootloader only the hardware variant and device
711 	 * revision information are used to select the right firmware.
712 	 *
713 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
714 	 *
715 	 * Currently the supported hardware variants are:
716 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
717 	 */
718 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
719 		le16_to_cpu(ver.hw_variant),
720 		le16_to_cpu(params->dev_revid));
721 
722 	err = request_firmware(&fw, fwname, &hdev->dev);
723 	if (err < 0) {
724 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
725 			   err);
726 		kfree_skb(skb);
727 		return err;
728 	}
729 
730 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
731 
732 	/* Save the DDC file name for later */
733 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
734 		le16_to_cpu(ver.hw_variant),
735 		le16_to_cpu(params->dev_revid));
736 
737 	kfree_skb(skb);
738 
739 	if (fw->size < 644) {
740 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
741 			   fw->size);
742 		err = -EBADF;
743 		goto done;
744 	}
745 
746 	set_bit(STATE_DOWNLOADING, &intel->flags);
747 
748 	/* Start the firmware download transaction with the Init fragment
749 	 * represented by the 128 bytes of CSS header.
750 	 */
751 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
752 	if (err < 0) {
753 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
754 		goto done;
755 	}
756 
757 	/* Send the 256 bytes of public key information from the firmware
758 	 * as the PKey fragment.
759 	 */
760 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
761 	if (err < 0) {
762 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
763 			   err);
764 		goto done;
765 	}
766 
767 	/* Send the 256 bytes of signature information from the firmware
768 	 * as the Sign fragment.
769 	 */
770 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
771 	if (err < 0) {
772 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
773 			   err);
774 		goto done;
775 	}
776 
777 	fw_ptr = fw->data + 644;
778 	frag_len = 0;
779 
780 	while (fw_ptr - fw->data < fw->size) {
781 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
782 
783 		frag_len += sizeof(*cmd) + cmd->plen;
784 
785 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
786 			   fw->size);
787 
788 		/* The parameter length of the secure send command requires
789 		 * a 4 byte alignment. It happens so that the firmware file
790 		 * contains proper Intel_NOP commands to align the fragments
791 		 * as needed.
792 		 *
793 		 * Send set of commands with 4 byte alignment from the
794 		 * firmware data buffer as a single Data fragement.
795 		 */
796 		if (frag_len % 4)
797 			continue;
798 
799 		/* Send each command from the firmware data buffer as
800 		 * a single Data fragment.
801 		 */
802 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
803 		if (err < 0) {
804 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
805 				   err);
806 			goto done;
807 		}
808 
809 		fw_ptr += frag_len;
810 		frag_len = 0;
811 	}
812 
813 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
814 
815 	bt_dev_info(hdev, "Waiting for firmware download to complete");
816 
817 	/* Before switching the device into operational mode and with that
818 	 * booting the loaded firmware, wait for the bootloader notification
819 	 * that all fragments have been successfully received.
820 	 *
821 	 * When the event processing receives the notification, then the
822 	 * STATE_DOWNLOADING flag will be cleared.
823 	 *
824 	 * The firmware loading should not take longer than 5 seconds
825 	 * and thus just timeout if that happens and fail the setup
826 	 * of this device.
827 	 */
828 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
829 				  TASK_INTERRUPTIBLE,
830 				  msecs_to_jiffies(5000));
831 	if (err == -EINTR) {
832 		bt_dev_err(hdev, "Firmware loading interrupted");
833 		err = -EINTR;
834 		goto done;
835 	}
836 
837 	if (err) {
838 		bt_dev_err(hdev, "Firmware loading timeout");
839 		err = -ETIMEDOUT;
840 		goto done;
841 	}
842 
843 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
844 		bt_dev_err(hdev, "Firmware loading failed");
845 		err = -ENOEXEC;
846 		goto done;
847 	}
848 
849 	rettime = ktime_get();
850 	delta = ktime_sub(rettime, calltime);
851 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
852 
853 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
854 
855 done:
856 	release_firmware(fw);
857 
858 	if (err < 0)
859 		return err;
860 
861 	/* We need to restore the default speed before Intel reset */
862 	if (speed_change) {
863 		err = intel_set_baudrate(hu, init_speed);
864 		if (err)
865 			return err;
866 	}
867 
868 	calltime = ktime_get();
869 
870 	set_bit(STATE_BOOTING, &intel->flags);
871 
872 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
873 			     HCI_CMD_TIMEOUT);
874 	if (IS_ERR(skb))
875 		return PTR_ERR(skb);
876 
877 	kfree_skb(skb);
878 
879 	/* The bootloader will not indicate when the device is ready. This
880 	 * is done by the operational firmware sending bootup notification.
881 	 *
882 	 * Booting into operational firmware should not take longer than
883 	 * 1 second. However if that happens, then just fail the setup
884 	 * since something went wrong.
885 	 */
886 	bt_dev_info(hdev, "Waiting for device to boot");
887 
888 	err = intel_wait_booting(hu);
889 	if (err)
890 		return err;
891 
892 	clear_bit(STATE_BOOTING, &intel->flags);
893 
894 	rettime = ktime_get();
895 	delta = ktime_sub(rettime, calltime);
896 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
897 
898 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
899 
900 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
901 	 * until further LPM TX notification.
902 	 */
903 	mutex_lock(&intel_device_list_lock);
904 	list_for_each(p, &intel_device_list) {
905 		struct intel_device *dev = list_entry(p, struct intel_device,
906 						      list);
907 		if (!hu->tty->dev)
908 			break;
909 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
910 			if (device_may_wakeup(&dev->pdev->dev)) {
911 				set_bit(STATE_LPM_ENABLED, &intel->flags);
912 				set_bit(STATE_TX_ACTIVE, &intel->flags);
913 			}
914 			break;
915 		}
916 	}
917 	mutex_unlock(&intel_device_list_lock);
918 
919 	/* Ignore errors, device can work without DDC parameters */
920 	btintel_load_ddc_config(hdev, fwname);
921 
922 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
923 	if (IS_ERR(skb))
924 		return PTR_ERR(skb);
925 	kfree_skb(skb);
926 
927 	if (speed_change) {
928 		err = intel_set_baudrate(hu, oper_speed);
929 		if (err)
930 			return err;
931 	}
932 
933 	bt_dev_info(hdev, "Setup complete");
934 
935 	clear_bit(STATE_BOOTLOADER, &intel->flags);
936 
937 	return 0;
938 }
939 
940 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
941 {
942 	struct hci_uart *hu = hci_get_drvdata(hdev);
943 	struct intel_data *intel = hu->priv;
944 	struct hci_event_hdr *hdr;
945 
946 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
947 	    !test_bit(STATE_BOOTING, &intel->flags))
948 		goto recv;
949 
950 	hdr = (void *)skb->data;
951 
952 	/* When the firmware loading completes the device sends
953 	 * out a vendor specific event indicating the result of
954 	 * the firmware loading.
955 	 */
956 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
957 	    skb->data[2] == 0x06) {
958 		if (skb->data[3] != 0x00)
959 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
960 
961 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
962 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
963 			smp_mb__after_atomic();
964 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
965 		}
966 
967 	/* When switching to the operational firmware the device
968 	 * sends a vendor specific event indicating that the bootup
969 	 * completed.
970 	 */
971 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
972 		   skb->data[2] == 0x02) {
973 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
974 			smp_mb__after_atomic();
975 			wake_up_bit(&intel->flags, STATE_BOOTING);
976 		}
977 	}
978 recv:
979 	return hci_recv_frame(hdev, skb);
980 }
981 
982 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
983 {
984 	struct hci_uart *hu = hci_get_drvdata(hdev);
985 	struct intel_data *intel = hu->priv;
986 
987 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
988 
989 	if (value) {
990 		set_bit(STATE_TX_ACTIVE, &intel->flags);
991 		schedule_work(&intel->busy_work);
992 	} else {
993 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
994 	}
995 }
996 
997 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
998 {
999 	struct hci_lpm_pkt *lpm = (void *)skb->data;
1000 	struct hci_uart *hu = hci_get_drvdata(hdev);
1001 	struct intel_data *intel = hu->priv;
1002 
1003 	switch (lpm->opcode) {
1004 	case LPM_OP_TX_NOTIFY:
1005 		if (lpm->dlen < 1) {
1006 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1007 			break;
1008 		}
1009 		intel_recv_lpm_notify(hdev, lpm->data[0]);
1010 		break;
1011 	case LPM_OP_SUSPEND_ACK:
1012 		set_bit(STATE_SUSPENDED, &intel->flags);
1013 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1014 			smp_mb__after_atomic();
1015 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1016 		}
1017 		break;
1018 	case LPM_OP_RESUME_ACK:
1019 		clear_bit(STATE_SUSPENDED, &intel->flags);
1020 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1021 			smp_mb__after_atomic();
1022 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1023 		}
1024 		break;
1025 	default:
1026 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1027 		break;
1028 	}
1029 
1030 	kfree_skb(skb);
1031 
1032 	return 0;
1033 }
1034 
1035 #define INTEL_RECV_LPM \
1036 	.type = HCI_LPM_PKT, \
1037 	.hlen = HCI_LPM_HDR_SIZE, \
1038 	.loff = 1, \
1039 	.lsize = 1, \
1040 	.maxlen = HCI_LPM_MAX_SIZE
1041 
1042 static const struct h4_recv_pkt intel_recv_pkts[] = {
1043 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1044 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1045 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1046 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1047 };
1048 
1049 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1050 {
1051 	struct intel_data *intel = hu->priv;
1052 
1053 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1054 		return -EUNATCH;
1055 
1056 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1057 				    intel_recv_pkts,
1058 				    ARRAY_SIZE(intel_recv_pkts));
1059 	if (IS_ERR(intel->rx_skb)) {
1060 		int err = PTR_ERR(intel->rx_skb);
1061 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1062 		intel->rx_skb = NULL;
1063 		return err;
1064 	}
1065 
1066 	return count;
1067 }
1068 
1069 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1070 {
1071 	struct intel_data *intel = hu->priv;
1072 	struct list_head *p;
1073 
1074 	BT_DBG("hu %p skb %p", hu, skb);
1075 
1076 	if (!hu->tty->dev)
1077 		goto out_enqueue;
1078 
1079 	/* Be sure our controller is resumed and potential LPM transaction
1080 	 * completed before enqueuing any packet.
1081 	 */
1082 	mutex_lock(&intel_device_list_lock);
1083 	list_for_each(p, &intel_device_list) {
1084 		struct intel_device *idev = list_entry(p, struct intel_device,
1085 						       list);
1086 
1087 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1088 			pm_runtime_get_sync(&idev->pdev->dev);
1089 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1090 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1091 			break;
1092 		}
1093 	}
1094 	mutex_unlock(&intel_device_list_lock);
1095 out_enqueue:
1096 	skb_queue_tail(&intel->txq, skb);
1097 
1098 	return 0;
1099 }
1100 
1101 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1102 {
1103 	struct intel_data *intel = hu->priv;
1104 	struct sk_buff *skb;
1105 
1106 	skb = skb_dequeue(&intel->txq);
1107 	if (!skb)
1108 		return skb;
1109 
1110 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1111 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1112 		struct hci_command_hdr *cmd = (void *)skb->data;
1113 		__u16 opcode = le16_to_cpu(cmd->opcode);
1114 
1115 		/* When the 0xfc01 command is issued to boot into
1116 		 * the operational firmware, it will actually not
1117 		 * send a command complete event. To keep the flow
1118 		 * control working inject that event here.
1119 		 */
1120 		if (opcode == 0xfc01)
1121 			inject_cmd_complete(hu->hdev, opcode);
1122 	}
1123 
1124 	/* Prepend skb with frame type */
1125 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1126 
1127 	return skb;
1128 }
1129 
1130 static const struct hci_uart_proto intel_proto = {
1131 	.id		= HCI_UART_INTEL,
1132 	.name		= "Intel",
1133 	.manufacturer	= 2,
1134 	.init_speed	= 115200,
1135 	.oper_speed	= 3000000,
1136 	.open		= intel_open,
1137 	.close		= intel_close,
1138 	.flush		= intel_flush,
1139 	.setup		= intel_setup,
1140 	.set_baudrate	= intel_set_baudrate,
1141 	.recv		= intel_recv,
1142 	.enqueue	= intel_enqueue,
1143 	.dequeue	= intel_dequeue,
1144 };
1145 
1146 #ifdef CONFIG_ACPI
1147 static const struct acpi_device_id intel_acpi_match[] = {
1148 	{ "INT33E1", 0 },
1149 	{ },
1150 };
1151 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1152 #endif
1153 
1154 #ifdef CONFIG_PM
1155 static int intel_suspend_device(struct device *dev)
1156 {
1157 	struct intel_device *idev = dev_get_drvdata(dev);
1158 
1159 	mutex_lock(&idev->hu_lock);
1160 	if (idev->hu)
1161 		intel_lpm_suspend(idev->hu);
1162 	mutex_unlock(&idev->hu_lock);
1163 
1164 	return 0;
1165 }
1166 
1167 static int intel_resume_device(struct device *dev)
1168 {
1169 	struct intel_device *idev = dev_get_drvdata(dev);
1170 
1171 	mutex_lock(&idev->hu_lock);
1172 	if (idev->hu)
1173 		intel_lpm_resume(idev->hu);
1174 	mutex_unlock(&idev->hu_lock);
1175 
1176 	return 0;
1177 }
1178 #endif
1179 
1180 #ifdef CONFIG_PM_SLEEP
1181 static int intel_suspend(struct device *dev)
1182 {
1183 	struct intel_device *idev = dev_get_drvdata(dev);
1184 
1185 	if (device_may_wakeup(dev))
1186 		enable_irq_wake(idev->irq);
1187 
1188 	return intel_suspend_device(dev);
1189 }
1190 
1191 static int intel_resume(struct device *dev)
1192 {
1193 	struct intel_device *idev = dev_get_drvdata(dev);
1194 
1195 	if (device_may_wakeup(dev))
1196 		disable_irq_wake(idev->irq);
1197 
1198 	return intel_resume_device(dev);
1199 }
1200 #endif
1201 
1202 static const struct dev_pm_ops intel_pm_ops = {
1203 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1204 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1205 };
1206 
1207 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1208 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1209 
1210 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1211 	{ "reset-gpios", &reset_gpios, 1 },
1212 	{ "host-wake-gpios", &host_wake_gpios, 1 },
1213 	{ },
1214 };
1215 
1216 static int intel_probe(struct platform_device *pdev)
1217 {
1218 	struct intel_device *idev;
1219 	int ret;
1220 
1221 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1222 	if (!idev)
1223 		return -ENOMEM;
1224 
1225 	mutex_init(&idev->hu_lock);
1226 
1227 	idev->pdev = pdev;
1228 
1229 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1230 	if (ret)
1231 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1232 
1233 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1234 	if (IS_ERR(idev->reset)) {
1235 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1236 		return PTR_ERR(idev->reset);
1237 	}
1238 
1239 	idev->irq = platform_get_irq(pdev, 0);
1240 	if (idev->irq < 0) {
1241 		struct gpio_desc *host_wake;
1242 
1243 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1244 
1245 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1246 		if (IS_ERR(host_wake)) {
1247 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1248 			goto no_irq;
1249 		}
1250 
1251 		idev->irq = gpiod_to_irq(host_wake);
1252 		if (idev->irq < 0) {
1253 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1254 			goto no_irq;
1255 		}
1256 	}
1257 
1258 	/* Only enable wake-up/irq when controller is powered */
1259 	device_set_wakeup_capable(&pdev->dev, true);
1260 	device_wakeup_disable(&pdev->dev);
1261 
1262 no_irq:
1263 	platform_set_drvdata(pdev, idev);
1264 
1265 	/* Place this instance on the device list */
1266 	mutex_lock(&intel_device_list_lock);
1267 	list_add_tail(&idev->list, &intel_device_list);
1268 	mutex_unlock(&intel_device_list_lock);
1269 
1270 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1271 		 desc_to_gpio(idev->reset), idev->irq);
1272 
1273 	return 0;
1274 }
1275 
1276 static int intel_remove(struct platform_device *pdev)
1277 {
1278 	struct intel_device *idev = platform_get_drvdata(pdev);
1279 
1280 	device_wakeup_disable(&pdev->dev);
1281 
1282 	mutex_lock(&intel_device_list_lock);
1283 	list_del(&idev->list);
1284 	mutex_unlock(&intel_device_list_lock);
1285 
1286 	dev_info(&pdev->dev, "unregistered.\n");
1287 
1288 	return 0;
1289 }
1290 
1291 static struct platform_driver intel_driver = {
1292 	.probe = intel_probe,
1293 	.remove = intel_remove,
1294 	.driver = {
1295 		.name = "hci_intel",
1296 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1297 		.pm = &intel_pm_ops,
1298 	},
1299 };
1300 
1301 int __init intel_init(void)
1302 {
1303 	platform_driver_register(&intel_driver);
1304 
1305 	return hci_uart_register_proto(&intel_proto);
1306 }
1307 
1308 int __exit intel_deinit(void)
1309 {
1310 	platform_driver_unregister(&intel_driver);
1311 
1312 	return hci_uart_unregister_proto(&intel_proto);
1313 }
1314